Searched refs:kappa (Results 1 – 9 of 9) sorted by relevance
168 int* kappa) { in RoundWeedCounted() argument200 (*kappa) += 1; in RoundWeedCounted()367 int* kappa) { in DigitGen() argument404 *kappa = divisor_exponent + 1; in DigitGen()410 while (*kappa > 0) { in DigitGen()415 (*kappa)--; in DigitGen()450 (*kappa)--; in DigitGen()492 int* kappa) { in DigitGenCounted() argument512 *kappa = divisor_exponent + 1; in DigitGenCounted()519 while (*kappa > 0) { in DigitGenCounted()[all …]
190 int* kappa) { in RoundWeedCounted() argument222 (*kappa) += 1; in RoundWeedCounted()391 int* kappa) { in DigitGen() argument428 *kappa = divisor_exponent + 1; in DigitGen()434 while (*kappa > 0) { in DigitGen()439 (*kappa)--; in DigitGen()474 (*kappa)--; in DigitGen()516 int* kappa) { in DigitGenCounted() argument536 *kappa = divisor_exponent + 1; in DigitGenCounted()543 while (*kappa > 0) { in DigitGenCounted()[all …]
502 float kappa = 2.*KAPPA * sign * offset * angles[i]; in make_circle() local506 o->x2 = circle[i][0] - normals[i][1]*kappa; in make_circle()507 o->y2 = circle[i][1] + normals[i][0]*kappa; in make_circle()508 o->x3 = circle[i+1][0] + normals[i+1][1]*kappa; in make_circle()509 o->y3 = circle[i+1][1] - normals[i+1][0]*kappa; in make_circle()
169 # kappa 954
129 def : NCR<"kappa", 0x003BA>;
624 more importantly, it can be shown that :math:`\kappa(S)\leq625 \kappa(H)`. Cseres implements PCG on :math:`S` as the668 :math:`\sqrt{\kappa(H)}`, where, :math:`\kappa(H)` is the condition670 :math:`\kappa(H)` is high and a direct application of Conjugate679 matrix :math:`\kappa(M^{-1}A)`.685 so that the condition number :math:`\kappa(HM^{-1})` is low, and the687 preconditioner would be one for which :math:`\kappa(M^{-1}A)
1214 "kappa;","U+003BA"
15535 kappa kap@