• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /*
2   * Copyright (C) 2011 The Android Open Source Project
3   *
4   * Licensed under the Apache License, Version 2.0 (the "License");
5   * you may not use this file except in compliance with the License.
6   * You may obtain a copy of the License at
7   *
8   *      http://www.apache.org/licenses/LICENSE-2.0
9   *
10   * Unless required by applicable law or agreed to in writing, software
11   * distributed under the License is distributed on an "AS IS" BASIS,
12   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13   * See the License for the specific language governing permissions and
14   * limitations under the License.
15   */
16  
17  #include "compiler_internals.h"
18  #include "local_value_numbering.h"
19  #include "dataflow_iterator-inl.h"
20  
21  namespace art {
22  
23  /*
24   * Main table containing data flow attributes for each bytecode. The
25   * first kNumPackedOpcodes entries are for Dalvik bytecode
26   * instructions, where extended opcode at the MIR level are appended
27   * afterwards.
28   *
29   * TODO - many optimization flags are incomplete - they will only limit the
30   * scope of optimizations but will not cause mis-optimizations.
31   */
32  const uint64_t MIRGraph::oat_data_flow_attributes_[kMirOpLast] = {
33    // 00 NOP
34    DF_NOP,
35  
36    // 01 MOVE vA, vB
37    DF_DA | DF_UB | DF_IS_MOVE,
38  
39    // 02 MOVE_FROM16 vAA, vBBBB
40    DF_DA | DF_UB | DF_IS_MOVE,
41  
42    // 03 MOVE_16 vAAAA, vBBBB
43    DF_DA | DF_UB | DF_IS_MOVE,
44  
45    // 04 MOVE_WIDE vA, vB
46    DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE,
47  
48    // 05 MOVE_WIDE_FROM16 vAA, vBBBB
49    DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE,
50  
51    // 06 MOVE_WIDE_16 vAAAA, vBBBB
52    DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE,
53  
54    // 07 MOVE_OBJECT vA, vB
55    DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B,
56  
57    // 08 MOVE_OBJECT_FROM16 vAA, vBBBB
58    DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B,
59  
60    // 09 MOVE_OBJECT_16 vAAAA, vBBBB
61    DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B,
62  
63    // 0A MOVE_RESULT vAA
64    DF_DA,
65  
66    // 0B MOVE_RESULT_WIDE vAA
67    DF_DA | DF_A_WIDE,
68  
69    // 0C MOVE_RESULT_OBJECT vAA
70    DF_DA | DF_REF_A,
71  
72    // 0D MOVE_EXCEPTION vAA
73    DF_DA | DF_REF_A | DF_NON_NULL_DST,
74  
75    // 0E RETURN_VOID
76    DF_NOP,
77  
78    // 0F RETURN vAA
79    DF_UA,
80  
81    // 10 RETURN_WIDE vAA
82    DF_UA | DF_A_WIDE,
83  
84    // 11 RETURN_OBJECT vAA
85    DF_UA | DF_REF_A,
86  
87    // 12 CONST_4 vA, #+B
88    DF_DA | DF_SETS_CONST,
89  
90    // 13 CONST_16 vAA, #+BBBB
91    DF_DA | DF_SETS_CONST,
92  
93    // 14 CONST vAA, #+BBBBBBBB
94    DF_DA | DF_SETS_CONST,
95  
96    // 15 CONST_HIGH16 VAA, #+BBBB0000
97    DF_DA | DF_SETS_CONST,
98  
99    // 16 CONST_WIDE_16 vAA, #+BBBB
100    DF_DA | DF_A_WIDE | DF_SETS_CONST,
101  
102    // 17 CONST_WIDE_32 vAA, #+BBBBBBBB
103    DF_DA | DF_A_WIDE | DF_SETS_CONST,
104  
105    // 18 CONST_WIDE vAA, #+BBBBBBBBBBBBBBBB
106    DF_DA | DF_A_WIDE | DF_SETS_CONST,
107  
108    // 19 CONST_WIDE_HIGH16 vAA, #+BBBB000000000000
109    DF_DA | DF_A_WIDE | DF_SETS_CONST,
110  
111    // 1A CONST_STRING vAA, string@BBBB
112    DF_DA | DF_REF_A | DF_NON_NULL_DST,
113  
114    // 1B CONST_STRING_JUMBO vAA, string@BBBBBBBB
115    DF_DA | DF_REF_A | DF_NON_NULL_DST,
116  
117    // 1C CONST_CLASS vAA, type@BBBB
118    DF_DA | DF_REF_A | DF_NON_NULL_DST,
119  
120    // 1D MONITOR_ENTER vAA
121    DF_UA | DF_NULL_CHK_0 | DF_REF_A,
122  
123    // 1E MONITOR_EXIT vAA
124    DF_UA | DF_NULL_CHK_0 | DF_REF_A,
125  
126    // 1F CHK_CAST vAA, type@BBBB
127    DF_UA | DF_REF_A | DF_UMS,
128  
129    // 20 INSTANCE_OF vA, vB, type@CCCC
130    DF_DA | DF_UB | DF_CORE_A | DF_REF_B | DF_UMS,
131  
132    // 21 ARRAY_LENGTH vA, vB
133    DF_DA | DF_UB | DF_NULL_CHK_0 | DF_CORE_A | DF_REF_B,
134  
135    // 22 NEW_INSTANCE vAA, type@BBBB
136    DF_DA | DF_NON_NULL_DST | DF_REF_A | DF_UMS,
137  
138    // 23 NEW_ARRAY vA, vB, type@CCCC
139    DF_DA | DF_UB | DF_NON_NULL_DST | DF_REF_A | DF_CORE_B | DF_UMS,
140  
141    // 24 FILLED_NEW_ARRAY {vD, vE, vF, vG, vA}
142    DF_FORMAT_35C | DF_NON_NULL_RET | DF_UMS,
143  
144    // 25 FILLED_NEW_ARRAY_RANGE {vCCCC .. vNNNN}, type@BBBB
145    DF_FORMAT_3RC | DF_NON_NULL_RET | DF_UMS,
146  
147    // 26 FILL_ARRAY_DATA vAA, +BBBBBBBB
148    DF_UA | DF_REF_A | DF_UMS,
149  
150    // 27 THROW vAA
151    DF_UA | DF_REF_A | DF_UMS,
152  
153    // 28 GOTO
154    DF_NOP,
155  
156    // 29 GOTO_16
157    DF_NOP,
158  
159    // 2A GOTO_32
160    DF_NOP,
161  
162    // 2B PACKED_SWITCH vAA, +BBBBBBBB
163    DF_UA,
164  
165    // 2C SPARSE_SWITCH vAA, +BBBBBBBB
166    DF_UA,
167  
168    // 2D CMPL_FLOAT vAA, vBB, vCC
169    DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C | DF_CORE_A,
170  
171    // 2E CMPG_FLOAT vAA, vBB, vCC
172    DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C | DF_CORE_A,
173  
174    // 2F CMPL_DOUBLE vAA, vBB, vCC
175    DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_B | DF_FP_C | DF_CORE_A,
176  
177    // 30 CMPG_DOUBLE vAA, vBB, vCC
178    DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_B | DF_FP_C | DF_CORE_A,
179  
180    // 31 CMP_LONG vAA, vBB, vCC
181    DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
182  
183    // 32 IF_EQ vA, vB, +CCCC
184    DF_UA | DF_UB,
185  
186    // 33 IF_NE vA, vB, +CCCC
187    DF_UA | DF_UB,
188  
189    // 34 IF_LT vA, vB, +CCCC
190    DF_UA | DF_UB,
191  
192    // 35 IF_GE vA, vB, +CCCC
193    DF_UA | DF_UB,
194  
195    // 36 IF_GT vA, vB, +CCCC
196    DF_UA | DF_UB,
197  
198    // 37 IF_LE vA, vB, +CCCC
199    DF_UA | DF_UB,
200  
201    // 38 IF_EQZ vAA, +BBBB
202    DF_UA,
203  
204    // 39 IF_NEZ vAA, +BBBB
205    DF_UA,
206  
207    // 3A IF_LTZ vAA, +BBBB
208    DF_UA,
209  
210    // 3B IF_GEZ vAA, +BBBB
211    DF_UA,
212  
213    // 3C IF_GTZ vAA, +BBBB
214    DF_UA,
215  
216    // 3D IF_LEZ vAA, +BBBB
217    DF_UA,
218  
219    // 3E UNUSED_3E
220    DF_NOP,
221  
222    // 3F UNUSED_3F
223    DF_NOP,
224  
225    // 40 UNUSED_40
226    DF_NOP,
227  
228    // 41 UNUSED_41
229    DF_NOP,
230  
231    // 42 UNUSED_42
232    DF_NOP,
233  
234    // 43 UNUSED_43
235    DF_NOP,
236  
237    // 44 AGET vAA, vBB, vCC
238    DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C | DF_LVN,
239  
240    // 45 AGET_WIDE vAA, vBB, vCC
241    DF_DA | DF_A_WIDE | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C | DF_LVN,
242  
243    // 46 AGET_OBJECT vAA, vBB, vCC
244    DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_A | DF_REF_B | DF_CORE_C | DF_LVN,
245  
246    // 47 AGET_BOOLEAN vAA, vBB, vCC
247    DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C | DF_LVN,
248  
249    // 48 AGET_BYTE vAA, vBB, vCC
250    DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C | DF_LVN,
251  
252    // 49 AGET_CHAR vAA, vBB, vCC
253    DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C | DF_LVN,
254  
255    // 4A AGET_SHORT vAA, vBB, vCC
256    DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C | DF_LVN,
257  
258    // 4B APUT vAA, vBB, vCC
259    DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C | DF_LVN,
260  
261    // 4C APUT_WIDE vAA, vBB, vCC
262    DF_UA | DF_A_WIDE | DF_UB | DF_UC | DF_NULL_CHK_2 | DF_RANGE_CHK_3 | DF_REF_B | DF_CORE_C | DF_LVN,
263  
264    // 4D APUT_OBJECT vAA, vBB, vCC
265    DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_A | DF_REF_B | DF_CORE_C | DF_LVN,
266  
267    // 4E APUT_BOOLEAN vAA, vBB, vCC
268    DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C | DF_LVN,
269  
270    // 4F APUT_BYTE vAA, vBB, vCC
271    DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C | DF_LVN,
272  
273    // 50 APUT_CHAR vAA, vBB, vCC
274    DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C | DF_LVN,
275  
276    // 51 APUT_SHORT vAA, vBB, vCC
277    DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C | DF_LVN,
278  
279    // 52 IGET vA, vB, field@CCCC
280    DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN,
281  
282    // 53 IGET_WIDE vA, vB, field@CCCC
283    DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN,
284  
285    // 54 IGET_OBJECT vA, vB, field@CCCC
286    DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN,
287  
288    // 55 IGET_BOOLEAN vA, vB, field@CCCC
289    DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN,
290  
291    // 56 IGET_BYTE vA, vB, field@CCCC
292    DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN,
293  
294    // 57 IGET_CHAR vA, vB, field@CCCC
295    DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN,
296  
297    // 58 IGET_SHORT vA, vB, field@CCCC
298    DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN,
299  
300    // 59 IPUT vA, vB, field@CCCC
301    DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B | DF_IFIELD | DF_LVN,
302  
303    // 5A IPUT_WIDE vA, vB, field@CCCC
304    DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_2 | DF_REF_B | DF_IFIELD | DF_LVN,
305  
306    // 5B IPUT_OBJECT vA, vB, field@CCCC
307    DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN,
308  
309    // 5C IPUT_BOOLEAN vA, vB, field@CCCC
310    DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B | DF_IFIELD | DF_LVN,
311  
312    // 5D IPUT_BYTE vA, vB, field@CCCC
313    DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B | DF_IFIELD | DF_LVN,
314  
315    // 5E IPUT_CHAR vA, vB, field@CCCC
316    DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B | DF_IFIELD | DF_LVN,
317  
318    // 5F IPUT_SHORT vA, vB, field@CCCC
319    DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B | DF_IFIELD | DF_LVN,
320  
321    // 60 SGET vAA, field@BBBB
322    DF_DA | DF_SFIELD | DF_UMS,
323  
324    // 61 SGET_WIDE vAA, field@BBBB
325    DF_DA | DF_A_WIDE | DF_SFIELD | DF_UMS,
326  
327    // 62 SGET_OBJECT vAA, field@BBBB
328    DF_DA | DF_REF_A | DF_SFIELD | DF_UMS,
329  
330    // 63 SGET_BOOLEAN vAA, field@BBBB
331    DF_DA | DF_SFIELD | DF_UMS,
332  
333    // 64 SGET_BYTE vAA, field@BBBB
334    DF_DA | DF_SFIELD | DF_UMS,
335  
336    // 65 SGET_CHAR vAA, field@BBBB
337    DF_DA | DF_SFIELD | DF_UMS,
338  
339    // 66 SGET_SHORT vAA, field@BBBB
340    DF_DA | DF_SFIELD | DF_UMS,
341  
342    // 67 SPUT vAA, field@BBBB
343    DF_UA | DF_SFIELD | DF_UMS,
344  
345    // 68 SPUT_WIDE vAA, field@BBBB
346    DF_UA | DF_A_WIDE | DF_SFIELD | DF_UMS,
347  
348    // 69 SPUT_OBJECT vAA, field@BBBB
349    DF_UA | DF_REF_A | DF_SFIELD | DF_UMS,
350  
351    // 6A SPUT_BOOLEAN vAA, field@BBBB
352    DF_UA | DF_SFIELD | DF_UMS,
353  
354    // 6B SPUT_BYTE vAA, field@BBBB
355    DF_UA | DF_SFIELD | DF_UMS,
356  
357    // 6C SPUT_CHAR vAA, field@BBBB
358    DF_UA | DF_SFIELD | DF_UMS,
359  
360    // 6D SPUT_SHORT vAA, field@BBBB
361    DF_UA | DF_SFIELD | DF_UMS,
362  
363    // 6E INVOKE_VIRTUAL {vD, vE, vF, vG, vA}
364    DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
365  
366    // 6F INVOKE_SUPER {vD, vE, vF, vG, vA}
367    DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
368  
369    // 70 INVOKE_DIRECT {vD, vE, vF, vG, vA}
370    DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
371  
372    // 71 INVOKE_STATIC {vD, vE, vF, vG, vA}
373    DF_FORMAT_35C | DF_UMS,
374  
375    // 72 INVOKE_INTERFACE {vD, vE, vF, vG, vA}
376    DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
377  
378    // 73 UNUSED_73
379    DF_NOP,
380  
381    // 74 INVOKE_VIRTUAL_RANGE {vCCCC .. vNNNN}
382    DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
383  
384    // 75 INVOKE_SUPER_RANGE {vCCCC .. vNNNN}
385    DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
386  
387    // 76 INVOKE_DIRECT_RANGE {vCCCC .. vNNNN}
388    DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
389  
390    // 77 INVOKE_STATIC_RANGE {vCCCC .. vNNNN}
391    DF_FORMAT_3RC | DF_UMS,
392  
393    // 78 INVOKE_INTERFACE_RANGE {vCCCC .. vNNNN}
394    DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
395  
396    // 79 UNUSED_79
397    DF_NOP,
398  
399    // 7A UNUSED_7A
400    DF_NOP,
401  
402    // 7B NEG_INT vA, vB
403    DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
404  
405    // 7C NOT_INT vA, vB
406    DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
407  
408    // 7D NEG_LONG vA, vB
409    DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
410  
411    // 7E NOT_LONG vA, vB
412    DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
413  
414    // 7F NEG_FLOAT vA, vB
415    DF_DA | DF_UB | DF_FP_A | DF_FP_B,
416  
417    // 80 NEG_DOUBLE vA, vB
418    DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
419  
420    // 81 INT_TO_LONG vA, vB
421    DF_DA | DF_A_WIDE | DF_UB | DF_CORE_A | DF_CORE_B,
422  
423    // 82 INT_TO_FLOAT vA, vB
424    DF_DA | DF_UB | DF_FP_A | DF_CORE_B,
425  
426    // 83 INT_TO_DOUBLE vA, vB
427    DF_DA | DF_A_WIDE | DF_UB | DF_FP_A | DF_CORE_B,
428  
429    // 84 LONG_TO_INT vA, vB
430    DF_DA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
431  
432    // 85 LONG_TO_FLOAT vA, vB
433    DF_DA | DF_UB | DF_B_WIDE | DF_FP_A | DF_CORE_B,
434  
435    // 86 LONG_TO_DOUBLE vA, vB
436    DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_CORE_B,
437  
438    // 87 FLOAT_TO_INT vA, vB
439    DF_DA | DF_UB | DF_FP_B | DF_CORE_A,
440  
441    // 88 FLOAT_TO_LONG vA, vB
442    DF_DA | DF_A_WIDE | DF_UB | DF_FP_B | DF_CORE_A,
443  
444    // 89 FLOAT_TO_DOUBLE vA, vB
445    DF_DA | DF_A_WIDE | DF_UB | DF_FP_A | DF_FP_B,
446  
447    // 8A DOUBLE_TO_INT vA, vB
448    DF_DA | DF_UB | DF_B_WIDE | DF_FP_B | DF_CORE_A,
449  
450    // 8B DOUBLE_TO_LONG vA, vB
451    DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_B | DF_CORE_A,
452  
453    // 8C DOUBLE_TO_FLOAT vA, vB
454    DF_DA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
455  
456    // 8D INT_TO_BYTE vA, vB
457    DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
458  
459    // 8E INT_TO_CHAR vA, vB
460    DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
461  
462    // 8F INT_TO_SHORT vA, vB
463    DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
464  
465    // 90 ADD_INT vAA, vBB, vCC
466    DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
467  
468    // 91 SUB_INT vAA, vBB, vCC
469    DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
470  
471    // 92 MUL_INT vAA, vBB, vCC
472    DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
473  
474    // 93 DIV_INT vAA, vBB, vCC
475    DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
476  
477    // 94 REM_INT vAA, vBB, vCC
478    DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
479  
480    // 95 AND_INT vAA, vBB, vCC
481    DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
482  
483    // 96 OR_INT vAA, vBB, vCC
484    DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
485  
486    // 97 XOR_INT vAA, vBB, vCC
487    DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
488  
489    // 98 SHL_INT vAA, vBB, vCC
490    DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
491  
492    // 99 SHR_INT vAA, vBB, vCC
493    DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
494  
495    // 9A USHR_INT vAA, vBB, vCC
496    DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
497  
498    // 9B ADD_LONG vAA, vBB, vCC
499    DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
500  
501    // 9C SUB_LONG vAA, vBB, vCC
502    DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
503  
504    // 9D MUL_LONG vAA, vBB, vCC
505    DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
506  
507    // 9E DIV_LONG vAA, vBB, vCC
508    DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
509  
510    // 9F REM_LONG vAA, vBB, vCC
511    DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
512  
513    // A0 AND_LONG vAA, vBB, vCC
514    DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
515  
516    // A1 OR_LONG vAA, vBB, vCC
517    DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
518  
519    // A2 XOR_LONG vAA, vBB, vCC
520    DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
521  
522    // A3 SHL_LONG vAA, vBB, vCC
523    DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
524  
525    // A4 SHR_LONG vAA, vBB, vCC
526    DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
527  
528    // A5 USHR_LONG vAA, vBB, vCC
529    DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
530  
531    // A6 ADD_FLOAT vAA, vBB, vCC
532    DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
533  
534    // A7 SUB_FLOAT vAA, vBB, vCC
535    DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
536  
537    // A8 MUL_FLOAT vAA, vBB, vCC
538    DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
539  
540    // A9 DIV_FLOAT vAA, vBB, vCC
541    DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
542  
543    // AA REM_FLOAT vAA, vBB, vCC
544    DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
545  
546    // AB ADD_DOUBLE vAA, vBB, vCC
547    DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
548  
549    // AC SUB_DOUBLE vAA, vBB, vCC
550    DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
551  
552    // AD MUL_DOUBLE vAA, vBB, vCC
553    DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
554  
555    // AE DIV_DOUBLE vAA, vBB, vCC
556    DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
557  
558    // AF REM_DOUBLE vAA, vBB, vCC
559    DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
560  
561    // B0 ADD_INT_2ADDR vA, vB
562    DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
563  
564    // B1 SUB_INT_2ADDR vA, vB
565    DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
566  
567    // B2 MUL_INT_2ADDR vA, vB
568    DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
569  
570    // B3 DIV_INT_2ADDR vA, vB
571    DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
572  
573    // B4 REM_INT_2ADDR vA, vB
574    DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
575  
576    // B5 AND_INT_2ADDR vA, vB
577    DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
578  
579    // B6 OR_INT_2ADDR vA, vB
580    DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
581  
582    // B7 XOR_INT_2ADDR vA, vB
583    DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
584  
585    // B8 SHL_INT_2ADDR vA, vB
586    DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
587  
588    // B9 SHR_INT_2ADDR vA, vB
589    DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
590  
591    // BA USHR_INT_2ADDR vA, vB
592    DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
593  
594    // BB ADD_LONG_2ADDR vA, vB
595    DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
596  
597    // BC SUB_LONG_2ADDR vA, vB
598    DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
599  
600    // BD MUL_LONG_2ADDR vA, vB
601    DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
602  
603    // BE DIV_LONG_2ADDR vA, vB
604    DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
605  
606    // BF REM_LONG_2ADDR vA, vB
607    DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
608  
609    // C0 AND_LONG_2ADDR vA, vB
610    DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
611  
612    // C1 OR_LONG_2ADDR vA, vB
613    DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
614  
615    // C2 XOR_LONG_2ADDR vA, vB
616    DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
617  
618    // C3 SHL_LONG_2ADDR vA, vB
619    DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
620  
621    // C4 SHR_LONG_2ADDR vA, vB
622    DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
623  
624    // C5 USHR_LONG_2ADDR vA, vB
625    DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
626  
627    // C6 ADD_FLOAT_2ADDR vA, vB
628    DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
629  
630    // C7 SUB_FLOAT_2ADDR vA, vB
631    DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
632  
633    // C8 MUL_FLOAT_2ADDR vA, vB
634    DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
635  
636    // C9 DIV_FLOAT_2ADDR vA, vB
637    DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
638  
639    // CA REM_FLOAT_2ADDR vA, vB
640    DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
641  
642    // CB ADD_DOUBLE_2ADDR vA, vB
643    DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
644  
645    // CC SUB_DOUBLE_2ADDR vA, vB
646    DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
647  
648    // CD MUL_DOUBLE_2ADDR vA, vB
649    DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
650  
651    // CE DIV_DOUBLE_2ADDR vA, vB
652    DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
653  
654    // CF REM_DOUBLE_2ADDR vA, vB
655    DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
656  
657    // D0 ADD_INT_LIT16 vA, vB, #+CCCC
658    DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
659  
660    // D1 RSUB_INT vA, vB, #+CCCC
661    DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
662  
663    // D2 MUL_INT_LIT16 vA, vB, #+CCCC
664    DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
665  
666    // D3 DIV_INT_LIT16 vA, vB, #+CCCC
667    DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
668  
669    // D4 REM_INT_LIT16 vA, vB, #+CCCC
670    DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
671  
672    // D5 AND_INT_LIT16 vA, vB, #+CCCC
673    DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
674  
675    // D6 OR_INT_LIT16 vA, vB, #+CCCC
676    DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
677  
678    // D7 XOR_INT_LIT16 vA, vB, #+CCCC
679    DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
680  
681    // D8 ADD_INT_LIT8 vAA, vBB, #+CC
682    DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
683  
684    // D9 RSUB_INT_LIT8 vAA, vBB, #+CC
685    DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
686  
687    // DA MUL_INT_LIT8 vAA, vBB, #+CC
688    DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
689  
690    // DB DIV_INT_LIT8 vAA, vBB, #+CC
691    DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
692  
693    // DC REM_INT_LIT8 vAA, vBB, #+CC
694    DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
695  
696    // DD AND_INT_LIT8 vAA, vBB, #+CC
697    DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
698  
699    // DE OR_INT_LIT8 vAA, vBB, #+CC
700    DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
701  
702    // DF XOR_INT_LIT8 vAA, vBB, #+CC
703    DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
704  
705    // E0 SHL_INT_LIT8 vAA, vBB, #+CC
706    DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
707  
708    // E1 SHR_INT_LIT8 vAA, vBB, #+CC
709    DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
710  
711    // E2 USHR_INT_LIT8 vAA, vBB, #+CC
712    DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
713  
714    // E3 IGET_VOLATILE
715    DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN,
716  
717    // E4 IPUT_VOLATILE
718    DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B | DF_IFIELD | DF_LVN,
719  
720    // E5 SGET_VOLATILE
721    DF_DA | DF_SFIELD | DF_UMS,
722  
723    // E6 SPUT_VOLATILE
724    DF_UA | DF_SFIELD | DF_UMS,
725  
726    // E7 IGET_OBJECT_VOLATILE
727    DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN,
728  
729    // E8 IGET_WIDE_VOLATILE
730    DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN,
731  
732    // E9 IPUT_WIDE_VOLATILE
733    DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_2 | DF_REF_B | DF_IFIELD | DF_LVN,
734  
735    // EA SGET_WIDE_VOLATILE
736    DF_DA | DF_A_WIDE | DF_SFIELD | DF_UMS,
737  
738    // EB SPUT_WIDE_VOLATILE
739    DF_UA | DF_A_WIDE | DF_SFIELD | DF_UMS,
740  
741    // EC BREAKPOINT
742    DF_NOP,
743  
744    // ED THROW_VERIFICATION_ERROR
745    DF_NOP | DF_UMS,
746  
747    // EE EXECUTE_INLINE
748    DF_FORMAT_35C,
749  
750    // EF EXECUTE_INLINE_RANGE
751    DF_FORMAT_3RC,
752  
753    // F0 INVOKE_OBJECT_INIT_RANGE
754    DF_NOP | DF_NULL_CHK_0,
755  
756    // F1 RETURN_VOID_BARRIER
757    DF_NOP,
758  
759    // F2 IGET_QUICK
760    DF_DA | DF_UB | DF_NULL_CHK_0 | DF_IFIELD | DF_LVN,
761  
762    // F3 IGET_WIDE_QUICK
763    DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_0 | DF_IFIELD | DF_LVN,
764  
765    // F4 IGET_OBJECT_QUICK
766    DF_DA | DF_UB | DF_NULL_CHK_0 | DF_IFIELD | DF_LVN,
767  
768    // F5 IPUT_QUICK
769    DF_UA | DF_UB | DF_NULL_CHK_1 | DF_IFIELD | DF_LVN,
770  
771    // F6 IPUT_WIDE_QUICK
772    DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_2 | DF_IFIELD | DF_LVN,
773  
774    // F7 IPUT_OBJECT_QUICK
775    DF_UA | DF_UB | DF_NULL_CHK_1 | DF_IFIELD | DF_LVN,
776  
777    // F8 INVOKE_VIRTUAL_QUICK
778    DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
779  
780    // F9 INVOKE_VIRTUAL_QUICK_RANGE
781    DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
782  
783    // FA INVOKE_SUPER_QUICK
784    DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
785  
786    // FB INVOKE_SUPER_QUICK_RANGE
787    DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
788  
789    // FC IPUT_OBJECT_VOLATILE
790    DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN,
791  
792    // FD SGET_OBJECT_VOLATILE
793    DF_DA | DF_REF_A | DF_SFIELD | DF_UMS,
794  
795    // FE SPUT_OBJECT_VOLATILE
796    DF_UA | DF_REF_A | DF_SFIELD | DF_UMS,
797  
798    // FF UNUSED_FF
799    DF_NOP,
800  
801    // Beginning of extended MIR opcodes
802    // 100 MIR_PHI
803    DF_DA | DF_NULL_TRANSFER_N,
804  
805    // 101 MIR_COPY
806    DF_DA | DF_UB | DF_IS_MOVE,
807  
808    // 102 MIR_FUSED_CMPL_FLOAT
809    DF_UA | DF_UB | DF_FP_A | DF_FP_B,
810  
811    // 103 MIR_FUSED_CMPG_FLOAT
812    DF_UA | DF_UB | DF_FP_A | DF_FP_B,
813  
814    // 104 MIR_FUSED_CMPL_DOUBLE
815    DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
816  
817    // 105 MIR_FUSED_CMPG_DOUBLE
818    DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
819  
820    // 106 MIR_FUSED_CMP_LONG
821    DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
822  
823    // 107 MIR_NOP
824    DF_NOP,
825  
826    // 108 MIR_NULL_CHECK
827    0,
828  
829    // 109 MIR_RANGE_CHECK
830    0,
831  
832    // 110 MIR_DIV_ZERO_CHECK
833    0,
834  
835    // 111 MIR_CHECK
836    0,
837  
838    // 112 MIR_CHECKPART2
839    0,
840  
841    // 113 MIR_SELECT
842    DF_DA | DF_UB,
843  
844    // 114 MirOpConstVector
845    DF_DA,
846  
847    // 115 MirOpMoveVector
848    0,
849  
850    // 116 MirOpPackedMultiply
851    0,
852  
853    // 117 MirOpPackedAddition
854    0,
855  
856    // 118 MirOpPackedSubtract
857    0,
858  
859    // 119 MirOpPackedShiftLeft
860    0,
861  
862    // 120 MirOpPackedSignedShiftRight
863    0,
864  
865    // 121 MirOpPackedUnsignedShiftRight
866    0,
867  
868    // 122 MirOpPackedAnd
869    0,
870  
871    // 123 MirOpPackedOr
872    0,
873  
874    // 124 MirOpPackedXor
875    0,
876  
877    // 125 MirOpPackedAddReduce
878    DF_DA | DF_UA,
879  
880    // 126 MirOpPackedReduce
881    DF_DA,
882  
883    // 127 MirOpPackedSet
884    DF_UB,
885  
886    // 128 MirOpReserveVectorRegisters
887    0,
888  
889    // 129 MirOpReturnVectorRegisters
890    0,
891  };
892  
893  /* Return the base virtual register for a SSA name */
SRegToVReg(int ssa_reg) const894  int MIRGraph::SRegToVReg(int ssa_reg) const {
895    return ssa_base_vregs_->Get(ssa_reg);
896  }
897  
898  /* Any register that is used before being defined is considered live-in */
HandleLiveInUse(ArenaBitVector * use_v,ArenaBitVector * def_v,ArenaBitVector * live_in_v,int dalvik_reg_id)899  void MIRGraph::HandleLiveInUse(ArenaBitVector* use_v, ArenaBitVector* def_v,
900                              ArenaBitVector* live_in_v, int dalvik_reg_id) {
901    use_v->SetBit(dalvik_reg_id);
902    if (!def_v->IsBitSet(dalvik_reg_id)) {
903      live_in_v->SetBit(dalvik_reg_id);
904    }
905  }
906  
907  /* Mark a reg as being defined */
HandleDef(ArenaBitVector * def_v,int dalvik_reg_id)908  void MIRGraph::HandleDef(ArenaBitVector* def_v, int dalvik_reg_id) {
909    def_v->SetBit(dalvik_reg_id);
910  }
911  
HandleExtended(ArenaBitVector * use_v,ArenaBitVector * def_v,ArenaBitVector * live_in_v,const MIR::DecodedInstruction & d_insn)912  void MIRGraph::HandleExtended(ArenaBitVector* use_v, ArenaBitVector* def_v,
913                              ArenaBitVector* live_in_v,
914                              const MIR::DecodedInstruction& d_insn) {
915    switch (static_cast<int>(d_insn.opcode)) {
916      default:
917        LOG(ERROR) << "Unexpected Extended Opcode " << d_insn.opcode;
918        break;
919    }
920  }
921  
922  /*
923   * Find out live-in variables for natural loops. Variables that are live-in in
924   * the main loop body are considered to be defined in the entry block.
925   */
FindLocalLiveIn(BasicBlock * bb)926  bool MIRGraph::FindLocalLiveIn(BasicBlock* bb) {
927    MIR* mir;
928    ArenaBitVector *use_v, *def_v, *live_in_v;
929  
930    if (bb->data_flow_info == NULL) return false;
931  
932    use_v = bb->data_flow_info->use_v =
933        new (arena_) ArenaBitVector(arena_, cu_->num_dalvik_registers, false, kBitMapUse);
934    def_v = bb->data_flow_info->def_v =
935        new (arena_) ArenaBitVector(arena_, cu_->num_dalvik_registers, false, kBitMapDef);
936    live_in_v = bb->data_flow_info->live_in_v =
937        new (arena_) ArenaBitVector(arena_, cu_->num_dalvik_registers, false, kBitMapLiveIn);
938  
939    for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
940      uint64_t df_attributes = GetDataFlowAttributes(mir);
941      MIR::DecodedInstruction* d_insn = &mir->dalvikInsn;
942  
943      if (df_attributes & DF_HAS_USES) {
944        if (df_attributes & DF_UA) {
945          HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vA);
946          if (df_attributes & DF_A_WIDE) {
947            HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vA+1);
948          }
949        }
950        if (df_attributes & DF_UB) {
951          HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vB);
952          if (df_attributes & DF_B_WIDE) {
953            HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vB+1);
954          }
955        }
956        if (df_attributes & DF_UC) {
957          HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vC);
958          if (df_attributes & DF_C_WIDE) {
959            HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vC+1);
960          }
961        }
962      }
963      if (df_attributes & DF_FORMAT_35C) {
964        for (unsigned int i = 0; i < d_insn->vA; i++) {
965          HandleLiveInUse(use_v, def_v, live_in_v, d_insn->arg[i]);
966        }
967      }
968      if (df_attributes & DF_FORMAT_3RC) {
969        for (unsigned int i = 0; i < d_insn->vA; i++) {
970          HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vC+i);
971        }
972      }
973      if (df_attributes & DF_HAS_DEFS) {
974        HandleDef(def_v, d_insn->vA);
975        if (df_attributes & DF_A_WIDE) {
976          HandleDef(def_v, d_insn->vA+1);
977        }
978      }
979      if (df_attributes & DF_FORMAT_EXTENDED) {
980        HandleExtended(use_v, def_v, live_in_v, mir->dalvikInsn);
981      }
982    }
983    return true;
984  }
985  
AddNewSReg(int v_reg)986  int MIRGraph::AddNewSReg(int v_reg) {
987    // Compiler temps always have a subscript of 0
988    int subscript = (v_reg < 0) ? 0 : ++ssa_last_defs_[v_reg];
989    uint32_t ssa_reg = GetNumSSARegs();
990    SetNumSSARegs(ssa_reg + 1);
991    ssa_base_vregs_->Insert(v_reg);
992    ssa_subscripts_->Insert(subscript);
993    DCHECK_EQ(ssa_base_vregs_->Size(), ssa_subscripts_->Size());
994    // If we are expanding very late, update use counts too.
995    if (ssa_reg > 0 && use_counts_.Size() == ssa_reg) {
996      // Need to expand the counts.
997      use_counts_.Insert(0);
998      raw_use_counts_.Insert(0);
999    }
1000    return ssa_reg;
1001  }
1002  
1003  /* Find out the latest SSA register for a given Dalvik register */
HandleSSAUse(int * uses,int dalvik_reg,int reg_index)1004  void MIRGraph::HandleSSAUse(int* uses, int dalvik_reg, int reg_index) {
1005    DCHECK((dalvik_reg >= 0) && (dalvik_reg < cu_->num_dalvik_registers));
1006    uses[reg_index] = vreg_to_ssa_map_[dalvik_reg];
1007  }
1008  
1009  /* Setup a new SSA register for a given Dalvik register */
HandleSSADef(int * defs,int dalvik_reg,int reg_index)1010  void MIRGraph::HandleSSADef(int* defs, int dalvik_reg, int reg_index) {
1011    DCHECK((dalvik_reg >= 0) && (dalvik_reg < cu_->num_dalvik_registers));
1012    int ssa_reg = AddNewSReg(dalvik_reg);
1013    vreg_to_ssa_map_[dalvik_reg] = ssa_reg;
1014    defs[reg_index] = ssa_reg;
1015  }
1016  
AllocateSSAUseData(MIR * mir,int num_uses)1017  void MIRGraph::AllocateSSAUseData(MIR *mir, int num_uses) {
1018    mir->ssa_rep->num_uses = num_uses;
1019  
1020    if (mir->ssa_rep->num_uses_allocated < num_uses) {
1021      mir->ssa_rep->uses = static_cast<int*>(arena_->Alloc(sizeof(int) * num_uses, kArenaAllocDFInfo));
1022      // NOTE: will be filled in during type & size inference pass
1023      mir->ssa_rep->fp_use = static_cast<bool*>(arena_->Alloc(sizeof(bool) * num_uses, kArenaAllocDFInfo));
1024    }
1025  }
1026  
AllocateSSADefData(MIR * mir,int num_defs)1027  void MIRGraph::AllocateSSADefData(MIR *mir, int num_defs) {
1028    mir->ssa_rep->num_defs = num_defs;
1029  
1030    if (mir->ssa_rep->num_defs_allocated < num_defs) {
1031      mir->ssa_rep->defs = static_cast<int*>(arena_->Alloc(sizeof(int) * num_defs,
1032            kArenaAllocDFInfo));
1033      mir->ssa_rep->fp_def = static_cast<bool*>(arena_->Alloc(sizeof(bool) * num_defs,
1034            kArenaAllocDFInfo));
1035    }
1036  }
1037  
1038  /* Look up new SSA names for format_35c instructions */
DataFlowSSAFormat35C(MIR * mir)1039  void MIRGraph::DataFlowSSAFormat35C(MIR* mir) {
1040    MIR::DecodedInstruction* d_insn = &mir->dalvikInsn;
1041    int num_uses = d_insn->vA;
1042    int i;
1043  
1044    AllocateSSAUseData(mir, num_uses);
1045  
1046    for (i = 0; i < num_uses; i++) {
1047      HandleSSAUse(mir->ssa_rep->uses, d_insn->arg[i], i);
1048    }
1049  }
1050  
1051  /* Look up new SSA names for format_3rc instructions */
DataFlowSSAFormat3RC(MIR * mir)1052  void MIRGraph::DataFlowSSAFormat3RC(MIR* mir) {
1053    MIR::DecodedInstruction* d_insn = &mir->dalvikInsn;
1054    int num_uses = d_insn->vA;
1055    int i;
1056  
1057    AllocateSSAUseData(mir, num_uses);
1058  
1059    for (i = 0; i < num_uses; i++) {
1060      HandleSSAUse(mir->ssa_rep->uses, d_insn->vC+i, i);
1061    }
1062  }
1063  
DataFlowSSAFormatExtended(MIR * mir)1064  void MIRGraph::DataFlowSSAFormatExtended(MIR* mir) {
1065    switch (static_cast<int>(mir->dalvikInsn.opcode)) {
1066      default:
1067        LOG(ERROR) << "Missing case for extended MIR: " << mir->dalvikInsn.opcode;
1068        break;
1069    }
1070  }
1071  
1072  /* Entry function to convert a block into SSA representation */
DoSSAConversion(BasicBlock * bb)1073  bool MIRGraph::DoSSAConversion(BasicBlock* bb) {
1074    MIR* mir;
1075  
1076    if (bb->data_flow_info == NULL) return false;
1077  
1078    for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
1079      mir->ssa_rep =
1080          static_cast<struct SSARepresentation *>(arena_->Alloc(sizeof(SSARepresentation),
1081                                                                kArenaAllocDFInfo));
1082      memset(mir->ssa_rep, 0, sizeof(*mir->ssa_rep));
1083  
1084      uint64_t df_attributes = GetDataFlowAttributes(mir);
1085  
1086        // If not a pseudo-op, note non-leaf or can throw
1087      if (!MIR::DecodedInstruction::IsPseudoMirOp(mir->dalvikInsn.opcode)) {
1088        int flags = Instruction::FlagsOf(mir->dalvikInsn.opcode);
1089  
1090        if ((flags & Instruction::kInvoke) != 0 && (mir->optimization_flags & MIR_INLINED) == 0) {
1091          attributes_ &= ~METHOD_IS_LEAF;
1092        }
1093      }
1094  
1095      int num_uses = 0;
1096  
1097      if (df_attributes & DF_FORMAT_35C) {
1098        DataFlowSSAFormat35C(mir);
1099        continue;
1100      }
1101  
1102      if (df_attributes & DF_FORMAT_3RC) {
1103        DataFlowSSAFormat3RC(mir);
1104        continue;
1105      }
1106  
1107      if (df_attributes & DF_FORMAT_EXTENDED) {
1108        DataFlowSSAFormatExtended(mir);
1109        continue;
1110      }
1111  
1112      if (df_attributes & DF_HAS_USES) {
1113        if (df_attributes & DF_UA) {
1114          num_uses++;
1115          if (df_attributes & DF_A_WIDE) {
1116            num_uses++;
1117          }
1118        }
1119        if (df_attributes & DF_UB) {
1120          num_uses++;
1121          if (df_attributes & DF_B_WIDE) {
1122            num_uses++;
1123          }
1124        }
1125        if (df_attributes & DF_UC) {
1126          num_uses++;
1127          if (df_attributes & DF_C_WIDE) {
1128            num_uses++;
1129          }
1130        }
1131      }
1132  
1133      AllocateSSAUseData(mir, num_uses);
1134  
1135      int num_defs = 0;
1136  
1137      if (df_attributes & DF_HAS_DEFS) {
1138        num_defs++;
1139        if (df_attributes & DF_A_WIDE) {
1140          num_defs++;
1141        }
1142      }
1143  
1144      AllocateSSADefData(mir, num_defs);
1145  
1146      MIR::DecodedInstruction* d_insn = &mir->dalvikInsn;
1147  
1148      if (df_attributes & DF_HAS_USES) {
1149        num_uses = 0;
1150        if (df_attributes & DF_UA) {
1151          mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_A;
1152          HandleSSAUse(mir->ssa_rep->uses, d_insn->vA, num_uses++);
1153          if (df_attributes & DF_A_WIDE) {
1154            mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_A;
1155            HandleSSAUse(mir->ssa_rep->uses, d_insn->vA+1, num_uses++);
1156          }
1157        }
1158        if (df_attributes & DF_UB) {
1159          mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_B;
1160          HandleSSAUse(mir->ssa_rep->uses, d_insn->vB, num_uses++);
1161          if (df_attributes & DF_B_WIDE) {
1162            mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_B;
1163            HandleSSAUse(mir->ssa_rep->uses, d_insn->vB+1, num_uses++);
1164          }
1165        }
1166        if (df_attributes & DF_UC) {
1167          mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_C;
1168          HandleSSAUse(mir->ssa_rep->uses, d_insn->vC, num_uses++);
1169          if (df_attributes & DF_C_WIDE) {
1170            mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_C;
1171            HandleSSAUse(mir->ssa_rep->uses, d_insn->vC+1, num_uses++);
1172          }
1173        }
1174      }
1175      if (df_attributes & DF_HAS_DEFS) {
1176        mir->ssa_rep->fp_def[0] = df_attributes & DF_FP_A;
1177        HandleSSADef(mir->ssa_rep->defs, d_insn->vA, 0);
1178        if (df_attributes & DF_A_WIDE) {
1179          mir->ssa_rep->fp_def[1] = df_attributes & DF_FP_A;
1180          HandleSSADef(mir->ssa_rep->defs, d_insn->vA+1, 1);
1181        }
1182      }
1183    }
1184  
1185    /*
1186     * Take a snapshot of Dalvik->SSA mapping at the end of each block. The
1187     * input to PHI nodes can be derived from the snapshot of all
1188     * predecessor blocks.
1189     */
1190    bb->data_flow_info->vreg_to_ssa_map_exit =
1191        static_cast<int*>(arena_->Alloc(sizeof(int) * cu_->num_dalvik_registers,
1192                                        kArenaAllocDFInfo));
1193  
1194    memcpy(bb->data_flow_info->vreg_to_ssa_map_exit, vreg_to_ssa_map_,
1195           sizeof(int) * cu_->num_dalvik_registers);
1196    return true;
1197  }
1198  
1199  /* Setup the basic data structures for SSA conversion */
CompilerInitializeSSAConversion()1200  void MIRGraph::CompilerInitializeSSAConversion() {
1201    size_t num_dalvik_reg = cu_->num_dalvik_registers;
1202  
1203    ssa_base_vregs_ = new (arena_) GrowableArray<int>(arena_, num_dalvik_reg + GetDefCount() + 128,
1204                                                      kGrowableArraySSAtoDalvikMap);
1205    ssa_subscripts_ = new (arena_) GrowableArray<int>(arena_, num_dalvik_reg + GetDefCount() + 128,
1206                                                      kGrowableArraySSAtoDalvikMap);
1207    /*
1208     * Initial number of SSA registers is equal to the number of Dalvik
1209     * registers.
1210     */
1211    SetNumSSARegs(num_dalvik_reg);
1212  
1213    /*
1214     * Initialize the SSA2Dalvik map list. For the first num_dalvik_reg elements,
1215     * the subscript is 0 so we use the ENCODE_REG_SUB macro to encode the value
1216     * into "(0 << 16) | i"
1217     */
1218    for (unsigned int i = 0; i < num_dalvik_reg; i++) {
1219      ssa_base_vregs_->Insert(i);
1220      ssa_subscripts_->Insert(0);
1221    }
1222  
1223    /*
1224     * Initialize the DalvikToSSAMap map. There is one entry for each
1225     * Dalvik register, and the SSA names for those are the same.
1226     */
1227    vreg_to_ssa_map_ =
1228        static_cast<int*>(arena_->Alloc(sizeof(int) * num_dalvik_reg,
1229                                        kArenaAllocDFInfo));
1230    /* Keep track of the higest def for each dalvik reg */
1231    ssa_last_defs_ =
1232        static_cast<int*>(arena_->Alloc(sizeof(int) * num_dalvik_reg,
1233                                        kArenaAllocDFInfo));
1234  
1235    for (unsigned int i = 0; i < num_dalvik_reg; i++) {
1236      vreg_to_ssa_map_[i] = i;
1237      ssa_last_defs_[i] = 0;
1238    }
1239  
1240    // Create a compiler temporary for Method*. This is done after SSA initialization.
1241    GetNewCompilerTemp(kCompilerTempSpecialMethodPtr, false);
1242  
1243    /*
1244     * Allocate the BasicBlockDataFlow structure for the entry and code blocks
1245     */
1246    GrowableArray<BasicBlock*>::Iterator iterator(&block_list_);
1247  
1248    while (true) {
1249      BasicBlock* bb = iterator.Next();
1250      if (bb == NULL) break;
1251      if (bb->hidden == true) continue;
1252      if (bb->block_type == kDalvikByteCode ||
1253        bb->block_type == kEntryBlock ||
1254        bb->block_type == kExitBlock) {
1255        bb->data_flow_info =
1256            static_cast<BasicBlockDataFlow*>(arena_->Alloc(sizeof(BasicBlockDataFlow),
1257                                                           kArenaAllocDFInfo));
1258        }
1259    }
1260  }
1261  
1262  /*
1263   * This function will make a best guess at whether the invoke will
1264   * end up using Method*.  It isn't critical to get it exactly right,
1265   * and attempting to do would involve more complexity than it's
1266   * worth.
1267   */
InvokeUsesMethodStar(MIR * mir)1268  bool MIRGraph::InvokeUsesMethodStar(MIR* mir) {
1269    InvokeType type;
1270    Instruction::Code opcode = mir->dalvikInsn.opcode;
1271    switch (opcode) {
1272      case Instruction::INVOKE_STATIC:
1273      case Instruction::INVOKE_STATIC_RANGE:
1274        type = kStatic;
1275        break;
1276      case Instruction::INVOKE_DIRECT:
1277      case Instruction::INVOKE_DIRECT_RANGE:
1278        type = kDirect;
1279        break;
1280      case Instruction::INVOKE_VIRTUAL:
1281      case Instruction::INVOKE_VIRTUAL_RANGE:
1282        type = kVirtual;
1283        break;
1284      case Instruction::INVOKE_INTERFACE:
1285      case Instruction::INVOKE_INTERFACE_RANGE:
1286        return false;
1287      case Instruction::INVOKE_SUPER_RANGE:
1288      case Instruction::INVOKE_SUPER:
1289        type = kSuper;
1290        break;
1291      default:
1292        LOG(WARNING) << "Unexpected invoke op: " << opcode;
1293        return false;
1294    }
1295    DexCompilationUnit m_unit(cu_);
1296    MethodReference target_method(cu_->dex_file, mir->dalvikInsn.vB);
1297    int vtable_idx;
1298    uintptr_t direct_code;
1299    uintptr_t direct_method;
1300    uint32_t current_offset = static_cast<uint32_t>(current_offset_);
1301    bool fast_path =
1302        cu_->compiler_driver->ComputeInvokeInfo(&m_unit, current_offset,
1303                                                false, true,
1304                                                &type, &target_method,
1305                                                &vtable_idx,
1306                                                &direct_code, &direct_method) &&
1307                                                !(cu_->enable_debug & (1 << kDebugSlowInvokePath));
1308    return (((type == kDirect) || (type == kStatic)) &&
1309            fast_path && ((direct_code == 0) || (direct_method == 0)));
1310  }
1311  
1312  /*
1313   * Count uses, weighting by loop nesting depth.  This code only
1314   * counts explicitly used s_regs.  A later phase will add implicit
1315   * counts for things such as Method*, null-checked references, etc.
1316   */
CountUses(struct BasicBlock * bb)1317  void MIRGraph::CountUses(struct BasicBlock* bb) {
1318    if (bb->block_type != kDalvikByteCode) {
1319      return;
1320    }
1321    // Each level of nesting adds *100 to count, up to 3 levels deep.
1322    uint32_t depth = std::min(3U, static_cast<uint32_t>(bb->nesting_depth));
1323    uint32_t weight = std::max(1U, depth * 100);
1324    for (MIR* mir = bb->first_mir_insn; (mir != NULL); mir = mir->next) {
1325      if (mir->ssa_rep == NULL) {
1326        continue;
1327      }
1328      for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
1329        int s_reg = mir->ssa_rep->uses[i];
1330        raw_use_counts_.Increment(s_reg);
1331        use_counts_.Put(s_reg, use_counts_.Get(s_reg) + weight);
1332      }
1333      if (!(cu_->disable_opt & (1 << kPromoteCompilerTemps))) {
1334        uint64_t df_attributes = GetDataFlowAttributes(mir);
1335        // Implicit use of Method* ? */
1336        if (df_attributes & DF_UMS) {
1337          /*
1338           * Some invokes will not use Method* - need to perform test similar
1339           * to that found in GenInvoke() to decide whether to count refs
1340           * for Method* on invoke-class opcodes.  This is a relatively expensive
1341           * operation, so should only be done once.
1342           * TODO: refactor InvokeUsesMethodStar() to perform check at parse time,
1343           * and save results for both here and GenInvoke.  For now, go ahead
1344           * and assume all invokes use method*.
1345           */
1346          raw_use_counts_.Increment(method_sreg_);
1347          use_counts_.Put(method_sreg_, use_counts_.Get(method_sreg_) + weight);
1348        }
1349      }
1350    }
1351  }
1352  
1353  /* Verify if all the successor is connected with all the claimed predecessors */
VerifyPredInfo(BasicBlock * bb)1354  bool MIRGraph::VerifyPredInfo(BasicBlock* bb) {
1355    GrowableArray<BasicBlockId>::Iterator iter(bb->predecessors);
1356  
1357    while (true) {
1358      BasicBlock* pred_bb = GetBasicBlock(iter.Next());
1359      if (!pred_bb) break;
1360      bool found = false;
1361      if (pred_bb->taken == bb->id) {
1362          found = true;
1363      } else if (pred_bb->fall_through == bb->id) {
1364          found = true;
1365      } else if (pred_bb->successor_block_list_type != kNotUsed) {
1366        GrowableArray<SuccessorBlockInfo*>::Iterator iterator(pred_bb->successor_blocks);
1367        while (true) {
1368          SuccessorBlockInfo *successor_block_info = iterator.Next();
1369          if (successor_block_info == NULL) break;
1370          BasicBlockId succ_bb = successor_block_info->block;
1371          if (succ_bb == bb->id) {
1372              found = true;
1373              break;
1374          }
1375        }
1376      }
1377      if (found == false) {
1378        char block_name1[BLOCK_NAME_LEN], block_name2[BLOCK_NAME_LEN];
1379        GetBlockName(bb, block_name1);
1380        GetBlockName(pred_bb, block_name2);
1381        DumpCFG("/sdcard/cfg/", false);
1382        LOG(FATAL) << "Successor " << block_name1 << "not found from "
1383                   << block_name2;
1384      }
1385    }
1386    return true;
1387  }
1388  
VerifyDataflow()1389  void MIRGraph::VerifyDataflow() {
1390      /* Verify if all blocks are connected as claimed */
1391    AllNodesIterator iter(this);
1392    for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
1393      VerifyPredInfo(bb);
1394    }
1395  }
1396  
1397  }  // namespace art
1398