• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "base/metrics/stats_table.h"
6 
7 #include "base/logging.h"
8 #include "base/memory/scoped_ptr.h"
9 #include "base/memory/shared_memory.h"
10 #include "base/process/process_handle.h"
11 #include "base/strings/string_piece.h"
12 #include "base/strings/string_util.h"
13 #include "base/strings/utf_string_conversions.h"
14 #include "base/threading/platform_thread.h"
15 #include "base/threading/thread_local_storage.h"
16 
17 namespace base {
18 
19 // The StatsTable uses a shared memory segment that is laid out as follows
20 //
21 // +-------------------------------------------+
22 // | Version | Size | MaxCounters | MaxThreads |
23 // +-------------------------------------------+
24 // | Thread names table                        |
25 // +-------------------------------------------+
26 // | Thread TID table                          |
27 // +-------------------------------------------+
28 // | Thread PID table                          |
29 // +-------------------------------------------+
30 // | Counter names table                       |
31 // +-------------------------------------------+
32 // | Data                                      |
33 // +-------------------------------------------+
34 //
35 // The data layout is a grid, where the columns are the thread_ids and the
36 // rows are the counter_ids.
37 //
38 // If the first character of the thread_name is '\0', then that column is
39 // empty.
40 // If the first character of the counter_name is '\0', then that row is
41 // empty.
42 //
43 // About Locking:
44 // This class is designed to be both multi-thread and multi-process safe.
45 // Aside from initialization, this is done by partitioning the data which
46 // each thread uses so that no locking is required.  However, to allocate
47 // the rows and columns of the table to particular threads, locking is
48 // required.
49 //
50 // At the shared-memory level, we have a lock.  This lock protects the
51 // shared-memory table only, and is used when we create new counters (e.g.
52 // use rows) or when we register new threads (e.g. use columns).  Reading
53 // data from the table does not require any locking at the shared memory
54 // level.
55 //
56 // Each process which accesses the table will create a StatsTable object.
57 // The StatsTable maintains a hash table of the existing counters in the
58 // table for faster lookup.  Since the hash table is process specific,
59 // each process maintains its own cache.  We avoid complexity here by never
60 // de-allocating from the hash table.  (Counters are dynamically added,
61 // but not dynamically removed).
62 
63 // In order for external viewers to be able to read our shared memory,
64 // we all need to use the same size ints.
65 COMPILE_ASSERT(sizeof(int)==4, expect_4_byte_ints);
66 
67 namespace {
68 
69 // An internal version in case we ever change the format of this
70 // file, and so that we can identify our table.
71 const int kTableVersion = 0x13131313;
72 
73 // The name for un-named counters and threads in the table.
74 const char kUnknownName[] = "<unknown>";
75 
76 // Calculates delta to align an offset to the size of an int
AlignOffset(int offset)77 inline int AlignOffset(int offset) {
78   return (sizeof(int) - (offset % sizeof(int))) % sizeof(int);
79 }
80 
AlignedSize(int size)81 inline int AlignedSize(int size) {
82   return size + AlignOffset(size);
83 }
84 
85 }  // namespace
86 
87 // The StatsTable::Internal maintains convenience pointers into the
88 // shared memory segment.  Use this class to keep the data structure
89 // clean and accessible.
90 class StatsTable::Internal {
91  public:
92   // Various header information contained in the memory mapped segment.
93   struct TableHeader {
94     int version;
95     int size;
96     int max_counters;
97     int max_threads;
98   };
99 
100   // Construct a new Internal based on expected size parameters, or
101   // return NULL on failure.
102   static Internal* New(const StatsTable::TableIdentifier& table,
103                        int size,
104                        int max_threads,
105                        int max_counters);
106 
shared_memory()107   SharedMemory* shared_memory() { return shared_memory_.get(); }
108 
109   // Accessors for our header pointers
table_header() const110   TableHeader* table_header() const { return table_header_; }
version() const111   int version() const { return table_header_->version; }
size() const112   int size() const { return table_header_->size; }
max_counters() const113   int max_counters() const { return table_header_->max_counters; }
max_threads() const114   int max_threads() const { return table_header_->max_threads; }
115 
116   // Accessors for our tables
thread_name(int slot_id) const117   char* thread_name(int slot_id) const {
118     return &thread_names_table_[
119       (slot_id-1) * (StatsTable::kMaxThreadNameLength)];
120   }
thread_tid(int slot_id) const121   PlatformThreadId* thread_tid(int slot_id) const {
122     return &(thread_tid_table_[slot_id-1]);
123   }
thread_pid(int slot_id) const124   int* thread_pid(int slot_id) const {
125     return &(thread_pid_table_[slot_id-1]);
126   }
counter_name(int counter_id) const127   char* counter_name(int counter_id) const {
128     return &counter_names_table_[
129       (counter_id-1) * (StatsTable::kMaxCounterNameLength)];
130   }
row(int counter_id) const131   int* row(int counter_id) const {
132     return &data_table_[(counter_id-1) * max_threads()];
133   }
134 
135  private:
136   // Constructor is private because you should use New() instead.
Internal(SharedMemory * shared_memory)137   explicit Internal(SharedMemory* shared_memory)
138       : shared_memory_(shared_memory),
139         table_header_(NULL),
140         thread_names_table_(NULL),
141         thread_tid_table_(NULL),
142         thread_pid_table_(NULL),
143         counter_names_table_(NULL),
144         data_table_(NULL) {
145   }
146 
147   // Create or open the SharedMemory used by the stats table.
148   static SharedMemory* CreateSharedMemory(
149       const StatsTable::TableIdentifier& table,
150       int size);
151 
152   // Initializes the table on first access.  Sets header values
153   // appropriately and zeroes all counters.
154   void InitializeTable(void* memory, int size, int max_counters,
155                        int max_threads);
156 
157   // Initializes our in-memory pointers into a pre-created StatsTable.
158   void ComputeMappedPointers(void* memory);
159 
160   scoped_ptr<SharedMemory> shared_memory_;
161   TableHeader* table_header_;
162   char* thread_names_table_;
163   PlatformThreadId* thread_tid_table_;
164   int* thread_pid_table_;
165   char* counter_names_table_;
166   int* data_table_;
167 
168   DISALLOW_COPY_AND_ASSIGN(Internal);
169 };
170 
171 // static
New(const StatsTable::TableIdentifier & table,int size,int max_threads,int max_counters)172 StatsTable::Internal* StatsTable::Internal::New(
173     const StatsTable::TableIdentifier& table,
174     int size,
175     int max_threads,
176     int max_counters) {
177   scoped_ptr<SharedMemory> shared_memory(CreateSharedMemory(table, size));
178   if (!shared_memory.get())
179     return NULL;
180   if (!shared_memory->Map(size))
181     return NULL;
182   void* memory = shared_memory->memory();
183 
184   scoped_ptr<Internal> internal(new Internal(shared_memory.release()));
185   TableHeader* header = static_cast<TableHeader*>(memory);
186 
187   // If the version does not match, then assume the table needs
188   // to be initialized.
189   if (header->version != kTableVersion)
190     internal->InitializeTable(memory, size, max_counters, max_threads);
191 
192   // We have a valid table, so compute our pointers.
193   internal->ComputeMappedPointers(memory);
194 
195   return internal.release();
196 }
197 
198 // static
CreateSharedMemory(const StatsTable::TableIdentifier & table,int size)199 SharedMemory* StatsTable::Internal::CreateSharedMemory(
200     const StatsTable::TableIdentifier& table,
201     int size) {
202 #if defined(OS_POSIX)
203   // Check for existing table.
204   if (table.fd != -1)
205     return new SharedMemory(table, false);
206 
207   // Otherwise we need to create it.
208   scoped_ptr<SharedMemory> shared_memory(new SharedMemory());
209   if (!shared_memory->CreateAnonymous(size))
210     return NULL;
211   return shared_memory.release();
212 #elif defined(OS_WIN)
213   scoped_ptr<SharedMemory> shared_memory(new SharedMemory());
214   if (table.empty()) {
215     // Create an anonymous table.
216     if (!shared_memory->CreateAnonymous(size))
217       return NULL;
218   } else {
219     // Create a named table for sharing between processes.
220     if (!shared_memory->CreateNamedDeprecated(table, true, size))
221       return NULL;
222   }
223   return shared_memory.release();
224 #endif
225 }
226 
InitializeTable(void * memory,int size,int max_counters,int max_threads)227 void StatsTable::Internal::InitializeTable(void* memory, int size,
228                                            int max_counters,
229                                            int max_threads) {
230   // Zero everything.
231   memset(memory, 0, size);
232 
233   // Initialize the header.
234   TableHeader* header = static_cast<TableHeader*>(memory);
235   header->version = kTableVersion;
236   header->size = size;
237   header->max_counters = max_counters;
238   header->max_threads = max_threads;
239 }
240 
ComputeMappedPointers(void * memory)241 void StatsTable::Internal::ComputeMappedPointers(void* memory) {
242   char* data = static_cast<char*>(memory);
243   int offset = 0;
244 
245   table_header_ = reinterpret_cast<TableHeader*>(data);
246   offset += sizeof(*table_header_);
247   offset += AlignOffset(offset);
248 
249   // Verify we're looking at a valid StatsTable.
250   DCHECK_EQ(table_header_->version, kTableVersion);
251 
252   thread_names_table_ = reinterpret_cast<char*>(data + offset);
253   offset += sizeof(char) *
254             max_threads() * StatsTable::kMaxThreadNameLength;
255   offset += AlignOffset(offset);
256 
257   thread_tid_table_ = reinterpret_cast<PlatformThreadId*>(data + offset);
258   offset += sizeof(int) * max_threads();
259   offset += AlignOffset(offset);
260 
261   thread_pid_table_ = reinterpret_cast<int*>(data + offset);
262   offset += sizeof(int) * max_threads();
263   offset += AlignOffset(offset);
264 
265   counter_names_table_ = reinterpret_cast<char*>(data + offset);
266   offset += sizeof(char) *
267             max_counters() * StatsTable::kMaxCounterNameLength;
268   offset += AlignOffset(offset);
269 
270   data_table_ = reinterpret_cast<int*>(data + offset);
271   offset += sizeof(int) * max_threads() * max_counters();
272 
273   DCHECK_EQ(offset, size());
274 }
275 
276 // TLSData carries the data stored in the TLS slots for the
277 // StatsTable.  This is used so that we can properly cleanup when the
278 // thread exits and return the table slot.
279 //
280 // Each thread that calls RegisterThread in the StatsTable will have
281 // a TLSData stored in its TLS.
282 struct StatsTable::TLSData {
283   StatsTable* table;
284   int slot;
285 };
286 
287 // We keep a singleton table which can be easily accessed.
288 StatsTable* global_table = NULL;
289 
StatsTable(const TableIdentifier & table,int max_threads,int max_counters)290 StatsTable::StatsTable(const TableIdentifier& table,
291                        int max_threads,
292                        int max_counters)
293     : internal_(NULL),
294       tls_index_(SlotReturnFunction) {
295   int table_size =
296     AlignedSize(sizeof(Internal::TableHeader)) +
297     AlignedSize((max_counters * sizeof(char) * kMaxCounterNameLength)) +
298     AlignedSize((max_threads * sizeof(char) * kMaxThreadNameLength)) +
299     AlignedSize(max_threads * sizeof(int)) +
300     AlignedSize(max_threads * sizeof(int)) +
301     AlignedSize((sizeof(int) * (max_counters * max_threads)));
302 
303   internal_ = Internal::New(table, table_size, max_threads, max_counters);
304 
305   if (!internal_)
306     DPLOG(ERROR) << "StatsTable did not initialize";
307 }
308 
~StatsTable()309 StatsTable::~StatsTable() {
310   // Before we tear down our copy of the table, be sure to
311   // unregister our thread.
312   UnregisterThread();
313 
314   // Return ThreadLocalStorage.  At this point, if any registered threads
315   // still exist, they cannot Unregister.
316   tls_index_.Free();
317 
318   // Cleanup our shared memory.
319   delete internal_;
320 
321   // If we are the global table, unregister ourselves.
322   if (global_table == this)
323     global_table = NULL;
324 }
325 
current()326 StatsTable* StatsTable::current() {
327   return global_table;
328 }
329 
set_current(StatsTable * value)330 void StatsTable::set_current(StatsTable* value) {
331   global_table = value;
332 }
333 
GetSlot() const334 int StatsTable::GetSlot() const {
335   TLSData* data = GetTLSData();
336   if (!data)
337     return 0;
338   return data->slot;
339 }
340 
RegisterThread(const std::string & name)341 int StatsTable::RegisterThread(const std::string& name) {
342   int slot = 0;
343   if (!internal_)
344     return 0;
345 
346   // Registering a thread requires that we lock the shared memory
347   // so that two threads don't grab the same slot.  Fortunately,
348   // thread creation shouldn't happen in inner loops.
349   // TODO(viettrungluu): crbug.com/345734: Use a different locking mechanism.
350   {
351     SharedMemoryAutoLockDeprecated lock(internal_->shared_memory());
352     slot = FindEmptyThread();
353     if (!slot) {
354       return 0;
355     }
356 
357     // We have space, so consume a column in the table.
358     std::string thread_name = name;
359     if (name.empty())
360       thread_name = kUnknownName;
361     strlcpy(internal_->thread_name(slot), thread_name.c_str(),
362             kMaxThreadNameLength);
363     *(internal_->thread_tid(slot)) = PlatformThread::CurrentId();
364     *(internal_->thread_pid(slot)) = GetCurrentProcId();
365   }
366 
367   // Set our thread local storage.
368   TLSData* data = new TLSData;
369   data->table = this;
370   data->slot = slot;
371   tls_index_.Set(data);
372   return slot;
373 }
374 
CountThreadsRegistered() const375 int StatsTable::CountThreadsRegistered() const {
376   if (!internal_)
377     return 0;
378 
379   // Loop through the shared memory and count the threads that are active.
380   // We intentionally do not lock the table during the operation.
381   int count = 0;
382   for (int index = 1; index <= internal_->max_threads(); index++) {
383     char* name = internal_->thread_name(index);
384     if (*name != '\0')
385       count++;
386   }
387   return count;
388 }
389 
FindCounter(const std::string & name)390 int StatsTable::FindCounter(const std::string& name) {
391   // Note: the API returns counters numbered from 1..N, although
392   // internally, the array is 0..N-1.  This is so that we can return
393   // zero as "not found".
394   if (!internal_)
395     return 0;
396 
397   // Create a scope for our auto-lock.
398   {
399     AutoLock scoped_lock(counters_lock_);
400 
401     // Attempt to find the counter.
402     CountersMap::const_iterator iter;
403     iter = counters_.find(name);
404     if (iter != counters_.end())
405       return iter->second;
406   }
407 
408   // Counter does not exist, so add it.
409   return AddCounter(name);
410 }
411 
GetLocation(int counter_id,int slot_id) const412 int* StatsTable::GetLocation(int counter_id, int slot_id) const {
413   if (!internal_)
414     return NULL;
415   if (slot_id > internal_->max_threads())
416     return NULL;
417 
418   int* row = internal_->row(counter_id);
419   return &(row[slot_id-1]);
420 }
421 
GetRowName(int index) const422 const char* StatsTable::GetRowName(int index) const {
423   if (!internal_)
424     return NULL;
425 
426   return internal_->counter_name(index);
427 }
428 
GetRowValue(int index) const429 int StatsTable::GetRowValue(int index) const {
430   return GetRowValue(index, 0);
431 }
432 
GetRowValue(int index,int pid) const433 int StatsTable::GetRowValue(int index, int pid) const {
434   if (!internal_)
435     return 0;
436 
437   int rv = 0;
438   int* row = internal_->row(index);
439   for (int slot_id = 1; slot_id <= internal_->max_threads(); slot_id++) {
440     if (pid == 0 || *internal_->thread_pid(slot_id) == pid)
441       rv += row[slot_id-1];
442   }
443   return rv;
444 }
445 
GetCounterValue(const std::string & name)446 int StatsTable::GetCounterValue(const std::string& name) {
447   return GetCounterValue(name, 0);
448 }
449 
GetCounterValue(const std::string & name,int pid)450 int StatsTable::GetCounterValue(const std::string& name, int pid) {
451   if (!internal_)
452     return 0;
453 
454   int row = FindCounter(name);
455   if (!row)
456     return 0;
457   return GetRowValue(row, pid);
458 }
459 
GetMaxCounters() const460 int StatsTable::GetMaxCounters() const {
461   if (!internal_)
462     return 0;
463   return internal_->max_counters();
464 }
465 
GetMaxThreads() const466 int StatsTable::GetMaxThreads() const {
467   if (!internal_)
468     return 0;
469   return internal_->max_threads();
470 }
471 
FindLocation(const char * name)472 int* StatsTable::FindLocation(const char* name) {
473   // Get the static StatsTable
474   StatsTable *table = StatsTable::current();
475   if (!table)
476     return NULL;
477 
478   // Get the slot for this thread.  Try to register
479   // it if none exists.
480   int slot = table->GetSlot();
481   if (!slot && !(slot = table->RegisterThread(std::string())))
482     return NULL;
483 
484   // Find the counter id for the counter.
485   std::string str_name(name);
486   int counter = table->FindCounter(str_name);
487 
488   // Now we can find the location in the table.
489   return table->GetLocation(counter, slot);
490 }
491 
UnregisterThread()492 void StatsTable::UnregisterThread() {
493   UnregisterThread(GetTLSData());
494 }
495 
UnregisterThread(TLSData * data)496 void StatsTable::UnregisterThread(TLSData* data) {
497   if (!data)
498     return;
499   DCHECK(internal_);
500 
501   // Mark the slot free by zeroing out the thread name.
502   char* name = internal_->thread_name(data->slot);
503   *name = '\0';
504 
505   // Remove the calling thread's TLS so that it cannot use the slot.
506   tls_index_.Set(NULL);
507   delete data;
508 }
509 
SlotReturnFunction(void * data)510 void StatsTable::SlotReturnFunction(void* data) {
511   // This is called by the TLS destructor, which on some platforms has
512   // already cleared the TLS info, so use the tls_data argument
513   // rather than trying to fetch it ourselves.
514   TLSData* tls_data = static_cast<TLSData*>(data);
515   if (tls_data) {
516     DCHECK(tls_data->table);
517     tls_data->table->UnregisterThread(tls_data);
518   }
519 }
520 
FindEmptyThread() const521 int StatsTable::FindEmptyThread() const {
522   // Note: the API returns slots numbered from 1..N, although
523   // internally, the array is 0..N-1.  This is so that we can return
524   // zero as "not found".
525   //
526   // The reason for doing this is because the thread 'slot' is stored
527   // in TLS, which is always initialized to zero, not -1.  If 0 were
528   // returned as a valid slot number, it would be confused with the
529   // uninitialized state.
530   if (!internal_)
531     return 0;
532 
533   int index = 1;
534   for (; index <= internal_->max_threads(); index++) {
535     char* name = internal_->thread_name(index);
536     if (!*name)
537       break;
538   }
539   if (index > internal_->max_threads())
540     return 0;  // The table is full.
541   return index;
542 }
543 
FindCounterOrEmptyRow(const std::string & name) const544 int StatsTable::FindCounterOrEmptyRow(const std::string& name) const {
545   // Note: the API returns slots numbered from 1..N, although
546   // internally, the array is 0..N-1.  This is so that we can return
547   // zero as "not found".
548   //
549   // There isn't much reason for this other than to be consistent
550   // with the way we track columns for thread slots.  (See comments
551   // in FindEmptyThread for why it is done this way).
552   if (!internal_)
553     return 0;
554 
555   int free_slot = 0;
556   for (int index = 1; index <= internal_->max_counters(); index++) {
557     char* row_name = internal_->counter_name(index);
558     if (!*row_name && !free_slot)
559       free_slot = index;  // save that we found a free slot
560     else if (!strncmp(row_name, name.c_str(), kMaxCounterNameLength))
561       return index;
562   }
563   return free_slot;
564 }
565 
AddCounter(const std::string & name)566 int StatsTable::AddCounter(const std::string& name) {
567   if (!internal_)
568     return 0;
569 
570   int counter_id = 0;
571   {
572     // To add a counter to the shared memory, we need the
573     // shared memory lock.
574     SharedMemoryAutoLockDeprecated lock(internal_->shared_memory());
575 
576     // We have space, so create a new counter.
577     counter_id = FindCounterOrEmptyRow(name);
578     if (!counter_id)
579       return 0;
580 
581     std::string counter_name = name;
582     if (name.empty())
583       counter_name = kUnknownName;
584     strlcpy(internal_->counter_name(counter_id), counter_name.c_str(),
585             kMaxCounterNameLength);
586   }
587 
588   // now add to our in-memory cache
589   {
590     AutoLock lock(counters_lock_);
591     counters_[name] = counter_id;
592   }
593   return counter_id;
594 }
595 
GetTLSData() const596 StatsTable::TLSData* StatsTable::GetTLSData() const {
597   TLSData* data =
598     static_cast<TLSData*>(tls_index_.Get());
599   if (!data)
600     return NULL;
601 
602   DCHECK(data->slot);
603   DCHECK_EQ(data->table, this);
604   return data;
605 }
606 
607 #if defined(OS_POSIX)
GetSharedMemoryHandle() const608 SharedMemoryHandle StatsTable::GetSharedMemoryHandle() const {
609   if (!internal_)
610     return SharedMemory::NULLHandle();
611   return internal_->shared_memory()->handle();
612 }
613 #endif
614 
615 }  // namespace base
616