1 // Copyright 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "cc/resources/picture_layer_tiling.h"
6
7 #include <algorithm>
8 #include <cmath>
9 #include <limits>
10 #include <set>
11
12 #include "base/debug/trace_event.h"
13 #include "cc/base/math_util.h"
14 #include "cc/resources/tile.h"
15 #include "cc/resources/tile_priority.h"
16 #include "ui/gfx/point_conversions.h"
17 #include "ui/gfx/rect_conversions.h"
18 #include "ui/gfx/safe_integer_conversions.h"
19 #include "ui/gfx/size_conversions.h"
20
21 namespace cc {
22 namespace {
23
24 const float kSoonBorderDistanceInScreenPixels = 312.f;
25
26 class TileEvictionOrder {
27 public:
TileEvictionOrder(TreePriority tree_priority)28 explicit TileEvictionOrder(TreePriority tree_priority)
29 : tree_priority_(tree_priority) {}
~TileEvictionOrder()30 ~TileEvictionOrder() {}
31
operator ()(const Tile * a,const Tile * b)32 bool operator()(const Tile* a, const Tile* b) {
33 const TilePriority& a_priority =
34 a->priority_for_tree_priority(tree_priority_);
35 const TilePriority& b_priority =
36 b->priority_for_tree_priority(tree_priority_);
37
38 if (a_priority.priority_bin == b_priority.priority_bin &&
39 a->required_for_activation() != b->required_for_activation()) {
40 return b->required_for_activation();
41 }
42 return b_priority.IsHigherPriorityThan(a_priority);
43 }
44
45 private:
46 TreePriority tree_priority_;
47 };
48 } // namespace
49
Create(float contents_scale,const gfx::Size & layer_bounds,PictureLayerTilingClient * client)50 scoped_ptr<PictureLayerTiling> PictureLayerTiling::Create(
51 float contents_scale,
52 const gfx::Size& layer_bounds,
53 PictureLayerTilingClient* client) {
54 return make_scoped_ptr(new PictureLayerTiling(contents_scale,
55 layer_bounds,
56 client));
57 }
58
PictureLayerTiling(float contents_scale,const gfx::Size & layer_bounds,PictureLayerTilingClient * client)59 PictureLayerTiling::PictureLayerTiling(float contents_scale,
60 const gfx::Size& layer_bounds,
61 PictureLayerTilingClient* client)
62 : contents_scale_(contents_scale),
63 layer_bounds_(layer_bounds),
64 resolution_(NON_IDEAL_RESOLUTION),
65 client_(client),
66 tiling_data_(gfx::Size(), gfx::Rect(), true),
67 last_impl_frame_time_in_seconds_(0.0),
68 eviction_tiles_cache_valid_(false),
69 eviction_cache_tree_priority_(SAME_PRIORITY_FOR_BOTH_TREES) {
70 gfx::Size content_bounds =
71 gfx::ToCeiledSize(gfx::ScaleSize(layer_bounds, contents_scale));
72 gfx::Size tile_size = client_->CalculateTileSize(content_bounds);
73
74 DCHECK(!gfx::ToFlooredSize(
75 gfx::ScaleSize(layer_bounds, contents_scale)).IsEmpty()) <<
76 "Tiling created with scale too small as contents become empty." <<
77 " Layer bounds: " << layer_bounds.ToString() <<
78 " Contents scale: " << contents_scale;
79
80 tiling_data_.SetTilingRect(gfx::Rect(content_bounds));
81 tiling_data_.SetMaxTextureSize(tile_size);
82 }
83
~PictureLayerTiling()84 PictureLayerTiling::~PictureLayerTiling() {
85 }
86
SetClient(PictureLayerTilingClient * client)87 void PictureLayerTiling::SetClient(PictureLayerTilingClient* client) {
88 client_ = client;
89 }
90
TilingRect() const91 gfx::Rect PictureLayerTiling::TilingRect() const {
92 return tiling_data_.tiling_rect();
93 }
94
CreateTile(int i,int j,const PictureLayerTiling * twin_tiling)95 Tile* PictureLayerTiling::CreateTile(int i,
96 int j,
97 const PictureLayerTiling* twin_tiling) {
98 TileMapKey key(i, j);
99 DCHECK(tiles_.find(key) == tiles_.end());
100
101 gfx::Rect paint_rect = tiling_data_.TileBoundsWithBorder(i, j);
102 gfx::Rect tile_rect = paint_rect;
103 tile_rect.set_size(tiling_data_.max_texture_size());
104
105 // Check our twin for a valid tile.
106 if (twin_tiling &&
107 tiling_data_.max_texture_size() ==
108 twin_tiling->tiling_data_.max_texture_size()) {
109 if (Tile* candidate_tile = twin_tiling->TileAt(i, j)) {
110 gfx::Rect rect =
111 gfx::ScaleToEnclosingRect(paint_rect, 1.0f / contents_scale_);
112 if (!client_->GetInvalidation()->Intersects(rect)) {
113 tiles_[key] = candidate_tile;
114 return candidate_tile;
115 }
116 }
117 }
118
119 // Create a new tile because our twin didn't have a valid one.
120 scoped_refptr<Tile> tile = client_->CreateTile(this, tile_rect);
121 if (tile.get())
122 tiles_[key] = tile;
123 return tile.get();
124 }
125
CreateMissingTilesInLiveTilesRect()126 void PictureLayerTiling::CreateMissingTilesInLiveTilesRect() {
127 const PictureLayerTiling* twin_tiling = client_->GetTwinTiling(this);
128 bool include_borders = true;
129 for (TilingData::Iterator iter(
130 &tiling_data_, live_tiles_rect_, include_borders);
131 iter;
132 ++iter) {
133 TileMapKey key = iter.index();
134 TileMap::iterator find = tiles_.find(key);
135 if (find != tiles_.end())
136 continue;
137 CreateTile(key.first, key.second, twin_tiling);
138 }
139 }
140
SetLayerBounds(const gfx::Size & layer_bounds)141 void PictureLayerTiling::SetLayerBounds(const gfx::Size& layer_bounds) {
142 if (layer_bounds_ == layer_bounds)
143 return;
144
145 DCHECK(!layer_bounds.IsEmpty());
146
147 gfx::Size old_layer_bounds = layer_bounds_;
148 layer_bounds_ = layer_bounds;
149 gfx::Size content_bounds =
150 gfx::ToCeiledSize(gfx::ScaleSize(layer_bounds_, contents_scale_));
151
152 gfx::Size tile_size = client_->CalculateTileSize(content_bounds);
153 if (tile_size != tiling_data_.max_texture_size()) {
154 tiling_data_.SetTilingRect(gfx::Rect(content_bounds));
155 tiling_data_.SetMaxTextureSize(tile_size);
156 Reset();
157 return;
158 }
159
160 // Any tiles outside our new bounds are invalid and should be dropped.
161 gfx::Rect bounded_live_tiles_rect(live_tiles_rect_);
162 bounded_live_tiles_rect.Intersect(gfx::Rect(content_bounds));
163 SetLiveTilesRect(bounded_live_tiles_rect);
164 tiling_data_.SetTilingRect(gfx::Rect(content_bounds));
165
166 // Create tiles for newly exposed areas.
167 Region layer_region((gfx::Rect(layer_bounds_)));
168 layer_region.Subtract(gfx::Rect(old_layer_bounds));
169 Invalidate(layer_region);
170 }
171
RemoveTilesInRegion(const Region & layer_region)172 void PictureLayerTiling::RemoveTilesInRegion(const Region& layer_region) {
173 DoInvalidate(layer_region, false /* recreate_tiles */);
174 }
175
Invalidate(const Region & layer_region)176 void PictureLayerTiling::Invalidate(const Region& layer_region) {
177 DoInvalidate(layer_region, true /* recreate_tiles */);
178 }
179
DoInvalidate(const Region & layer_region,bool recreate_tiles)180 void PictureLayerTiling::DoInvalidate(const Region& layer_region,
181 bool recreate_tiles) {
182 std::vector<TileMapKey> new_tile_keys;
183 gfx::Rect expanded_live_tiles_rect(
184 tiling_data_.ExpandRectToTileBoundsWithBorders(live_tiles_rect_));
185 for (Region::Iterator iter(layer_region); iter.has_rect(); iter.next()) {
186 gfx::Rect layer_rect = iter.rect();
187 gfx::Rect content_rect =
188 gfx::ScaleToEnclosingRect(layer_rect, contents_scale_);
189 // Avoid needless work by not bothering to invalidate where there aren't
190 // tiles.
191 content_rect.Intersect(expanded_live_tiles_rect);
192 if (content_rect.IsEmpty())
193 continue;
194 bool include_borders = true;
195 for (TilingData::Iterator iter(
196 &tiling_data_, content_rect, include_borders);
197 iter;
198 ++iter) {
199 TileMapKey key(iter.index());
200 TileMap::iterator find = tiles_.find(key);
201 if (find == tiles_.end())
202 continue;
203 tiles_.erase(find);
204 if (recreate_tiles)
205 new_tile_keys.push_back(key);
206 }
207 }
208
209 if (recreate_tiles) {
210 const PictureLayerTiling* twin_tiling = client_->GetTwinTiling(this);
211 for (size_t i = 0; i < new_tile_keys.size(); ++i)
212 CreateTile(new_tile_keys[i].first, new_tile_keys[i].second, twin_tiling);
213 }
214 }
215
CoverageIterator()216 PictureLayerTiling::CoverageIterator::CoverageIterator()
217 : tiling_(NULL),
218 current_tile_(NULL),
219 tile_i_(0),
220 tile_j_(0),
221 left_(0),
222 top_(0),
223 right_(-1),
224 bottom_(-1) {
225 }
226
CoverageIterator(const PictureLayerTiling * tiling,float dest_scale,const gfx::Rect & dest_rect)227 PictureLayerTiling::CoverageIterator::CoverageIterator(
228 const PictureLayerTiling* tiling,
229 float dest_scale,
230 const gfx::Rect& dest_rect)
231 : tiling_(tiling),
232 dest_rect_(dest_rect),
233 dest_to_content_scale_(0),
234 current_tile_(NULL),
235 tile_i_(0),
236 tile_j_(0),
237 left_(0),
238 top_(0),
239 right_(-1),
240 bottom_(-1) {
241 DCHECK(tiling_);
242 if (dest_rect_.IsEmpty())
243 return;
244
245 dest_to_content_scale_ = tiling_->contents_scale_ / dest_scale;
246
247 gfx::Rect content_rect =
248 gfx::ScaleToEnclosingRect(dest_rect_,
249 dest_to_content_scale_,
250 dest_to_content_scale_);
251 // IndexFromSrcCoord clamps to valid tile ranges, so it's necessary to
252 // check for non-intersection first.
253 content_rect.Intersect(tiling_->TilingRect());
254 if (content_rect.IsEmpty())
255 return;
256
257 left_ = tiling_->tiling_data_.TileXIndexFromSrcCoord(content_rect.x());
258 top_ = tiling_->tiling_data_.TileYIndexFromSrcCoord(content_rect.y());
259 right_ = tiling_->tiling_data_.TileXIndexFromSrcCoord(
260 content_rect.right() - 1);
261 bottom_ = tiling_->tiling_data_.TileYIndexFromSrcCoord(
262 content_rect.bottom() - 1);
263
264 tile_i_ = left_ - 1;
265 tile_j_ = top_;
266 ++(*this);
267 }
268
~CoverageIterator()269 PictureLayerTiling::CoverageIterator::~CoverageIterator() {
270 }
271
272 PictureLayerTiling::CoverageIterator&
operator ++()273 PictureLayerTiling::CoverageIterator::operator++() {
274 if (tile_j_ > bottom_)
275 return *this;
276
277 bool first_time = tile_i_ < left_;
278 bool new_row = false;
279 tile_i_++;
280 if (tile_i_ > right_) {
281 tile_i_ = left_;
282 tile_j_++;
283 new_row = true;
284 if (tile_j_ > bottom_) {
285 current_tile_ = NULL;
286 return *this;
287 }
288 }
289
290 current_tile_ = tiling_->TileAt(tile_i_, tile_j_);
291
292 // Calculate the current geometry rect. Due to floating point rounding
293 // and ToEnclosingRect, tiles might overlap in destination space on the
294 // edges.
295 gfx::Rect last_geometry_rect = current_geometry_rect_;
296
297 gfx::Rect content_rect = tiling_->tiling_data_.TileBounds(tile_i_, tile_j_);
298
299 current_geometry_rect_ =
300 gfx::ScaleToEnclosingRect(content_rect,
301 1 / dest_to_content_scale_,
302 1 / dest_to_content_scale_);
303
304 current_geometry_rect_.Intersect(dest_rect_);
305
306 if (first_time)
307 return *this;
308
309 // Iteration happens left->right, top->bottom. Running off the bottom-right
310 // edge is handled by the intersection above with dest_rect_. Here we make
311 // sure that the new current geometry rect doesn't overlap with the last.
312 int min_left;
313 int min_top;
314 if (new_row) {
315 min_left = dest_rect_.x();
316 min_top = last_geometry_rect.bottom();
317 } else {
318 min_left = last_geometry_rect.right();
319 min_top = last_geometry_rect.y();
320 }
321
322 int inset_left = std::max(0, min_left - current_geometry_rect_.x());
323 int inset_top = std::max(0, min_top - current_geometry_rect_.y());
324 current_geometry_rect_.Inset(inset_left, inset_top, 0, 0);
325
326 if (!new_row) {
327 DCHECK_EQ(last_geometry_rect.right(), current_geometry_rect_.x());
328 DCHECK_EQ(last_geometry_rect.bottom(), current_geometry_rect_.bottom());
329 DCHECK_EQ(last_geometry_rect.y(), current_geometry_rect_.y());
330 }
331
332 return *this;
333 }
334
geometry_rect() const335 gfx::Rect PictureLayerTiling::CoverageIterator::geometry_rect() const {
336 return current_geometry_rect_;
337 }
338
339 gfx::Rect
full_tile_geometry_rect() const340 PictureLayerTiling::CoverageIterator::full_tile_geometry_rect() const {
341 gfx::Rect rect = tiling_->tiling_data_.TileBoundsWithBorder(tile_i_, tile_j_);
342 rect.set_size(tiling_->tiling_data_.max_texture_size());
343 return rect;
344 }
345
texture_rect() const346 gfx::RectF PictureLayerTiling::CoverageIterator::texture_rect() const {
347 gfx::PointF tex_origin =
348 tiling_->tiling_data_.TileBoundsWithBorder(tile_i_, tile_j_).origin();
349
350 // Convert from dest space => content space => texture space.
351 gfx::RectF texture_rect(current_geometry_rect_);
352 texture_rect.Scale(dest_to_content_scale_,
353 dest_to_content_scale_);
354 texture_rect.Intersect(tiling_->TilingRect());
355 if (texture_rect.IsEmpty())
356 return texture_rect;
357 texture_rect.Offset(-tex_origin.OffsetFromOrigin());
358
359 return texture_rect;
360 }
361
texture_size() const362 gfx::Size PictureLayerTiling::CoverageIterator::texture_size() const {
363 return tiling_->tiling_data_.max_texture_size();
364 }
365
Reset()366 void PictureLayerTiling::Reset() {
367 live_tiles_rect_ = gfx::Rect();
368 tiles_.clear();
369 }
370
ComputeSkewport(double current_frame_time_in_seconds,const gfx::Rect & visible_rect_in_content_space) const371 gfx::Rect PictureLayerTiling::ComputeSkewport(
372 double current_frame_time_in_seconds,
373 const gfx::Rect& visible_rect_in_content_space) const {
374 gfx::Rect skewport = visible_rect_in_content_space;
375 if (last_impl_frame_time_in_seconds_ == 0.0)
376 return skewport;
377
378 double time_delta =
379 current_frame_time_in_seconds - last_impl_frame_time_in_seconds_;
380 if (time_delta == 0.0)
381 return skewport;
382
383 float skewport_target_time_in_seconds =
384 client_->GetSkewportTargetTimeInSeconds();
385 double extrapolation_multiplier =
386 skewport_target_time_in_seconds / time_delta;
387
388 int old_x = last_visible_rect_in_content_space_.x();
389 int old_y = last_visible_rect_in_content_space_.y();
390 int old_right = last_visible_rect_in_content_space_.right();
391 int old_bottom = last_visible_rect_in_content_space_.bottom();
392
393 int new_x = visible_rect_in_content_space.x();
394 int new_y = visible_rect_in_content_space.y();
395 int new_right = visible_rect_in_content_space.right();
396 int new_bottom = visible_rect_in_content_space.bottom();
397
398 int skewport_limit = client_->GetSkewportExtrapolationLimitInContentPixels();
399
400 // Compute the maximum skewport based on |skewport_limit|.
401 gfx::Rect max_skewport = skewport;
402 max_skewport.Inset(
403 -skewport_limit, -skewport_limit, -skewport_limit, -skewport_limit);
404
405 // Inset the skewport by the needed adjustment.
406 skewport.Inset(extrapolation_multiplier * (new_x - old_x),
407 extrapolation_multiplier * (new_y - old_y),
408 extrapolation_multiplier * (old_right - new_right),
409 extrapolation_multiplier * (old_bottom - new_bottom));
410
411 // Clip the skewport to |max_skewport|.
412 skewport.Intersect(max_skewport);
413
414 // Finally, ensure that visible rect is contained in the skewport.
415 skewport.Union(visible_rect_in_content_space);
416 return skewport;
417 }
418
UpdateTilePriorities(WhichTree tree,const gfx::Rect & visible_layer_rect,float layer_contents_scale,double current_frame_time_in_seconds)419 void PictureLayerTiling::UpdateTilePriorities(
420 WhichTree tree,
421 const gfx::Rect& visible_layer_rect,
422 float layer_contents_scale,
423 double current_frame_time_in_seconds) {
424 if (!NeedsUpdateForFrameAtTime(current_frame_time_in_seconds)) {
425 // This should never be zero for the purposes of has_ever_been_updated().
426 DCHECK_NE(current_frame_time_in_seconds, 0.0);
427 return;
428 }
429
430 gfx::Rect visible_rect_in_content_space =
431 gfx::ScaleToEnclosingRect(visible_layer_rect, contents_scale_);
432
433 if (TilingRect().IsEmpty()) {
434 last_impl_frame_time_in_seconds_ = current_frame_time_in_seconds;
435 last_visible_rect_in_content_space_ = visible_rect_in_content_space;
436 return;
437 }
438
439 size_t max_tiles_for_interest_area = client_->GetMaxTilesForInterestArea();
440
441 gfx::Size tile_size = tiling_data_.max_texture_size();
442 int64 eventually_rect_area =
443 max_tiles_for_interest_area * tile_size.width() * tile_size.height();
444
445 gfx::Rect skewport = ComputeSkewport(current_frame_time_in_seconds,
446 visible_rect_in_content_space);
447 DCHECK(skewport.Contains(visible_rect_in_content_space));
448
449 gfx::Rect eventually_rect =
450 ExpandRectEquallyToAreaBoundedBy(visible_rect_in_content_space,
451 eventually_rect_area,
452 TilingRect(),
453 &expansion_cache_);
454
455 DCHECK(eventually_rect.IsEmpty() || TilingRect().Contains(eventually_rect));
456
457 SetLiveTilesRect(eventually_rect);
458
459 last_impl_frame_time_in_seconds_ = current_frame_time_in_seconds;
460 last_visible_rect_in_content_space_ = visible_rect_in_content_space;
461
462 current_visible_rect_in_content_space_ = visible_rect_in_content_space;
463 current_skewport_ = skewport;
464 current_eventually_rect_ = eventually_rect;
465 eviction_tiles_cache_valid_ = false;
466
467 TilePriority now_priority(resolution_, TilePriority::NOW, 0);
468 float content_to_screen_scale = layer_contents_scale / contents_scale_;
469
470 // Assign now priority to all visible tiles.
471 bool include_borders = true;
472 for (TilingData::Iterator iter(
473 &tiling_data_, visible_rect_in_content_space, include_borders);
474 iter;
475 ++iter) {
476 TileMap::iterator find = tiles_.find(iter.index());
477 if (find == tiles_.end())
478 continue;
479 Tile* tile = find->second.get();
480
481 tile->SetPriority(tree, now_priority);
482 }
483
484 // Assign soon priority to skewport tiles.
485 for (TilingData::DifferenceIterator iter(
486 &tiling_data_, skewport, visible_rect_in_content_space);
487 iter;
488 ++iter) {
489 TileMap::iterator find = tiles_.find(iter.index());
490 if (find == tiles_.end())
491 continue;
492 Tile* tile = find->second.get();
493
494 gfx::Rect tile_bounds =
495 tiling_data_.TileBounds(iter.index_x(), iter.index_y());
496
497 float distance_to_visible =
498 visible_rect_in_content_space.ManhattanInternalDistance(tile_bounds) *
499 content_to_screen_scale;
500
501 TilePriority priority(resolution_, TilePriority::SOON, distance_to_visible);
502 tile->SetPriority(tree, priority);
503 }
504
505 // Assign eventually priority to interest rect tiles.
506 for (TilingData::DifferenceIterator iter(
507 &tiling_data_, eventually_rect, skewport);
508 iter;
509 ++iter) {
510 TileMap::iterator find = tiles_.find(iter.index());
511 if (find == tiles_.end())
512 continue;
513 Tile* tile = find->second.get();
514
515 gfx::Rect tile_bounds =
516 tiling_data_.TileBounds(iter.index_x(), iter.index_y());
517
518 float distance_to_visible =
519 visible_rect_in_content_space.ManhattanInternalDistance(tile_bounds) *
520 content_to_screen_scale;
521 TilePriority priority(
522 resolution_, TilePriority::EVENTUALLY, distance_to_visible);
523 tile->SetPriority(tree, priority);
524 }
525
526 // Upgrade the priority on border tiles to be SOON.
527 current_soon_border_rect_ = visible_rect_in_content_space;
528 float border = kSoonBorderDistanceInScreenPixels / content_to_screen_scale;
529 current_soon_border_rect_.Inset(-border, -border, -border, -border);
530 for (TilingData::DifferenceIterator iter(
531 &tiling_data_, current_soon_border_rect_, skewport);
532 iter;
533 ++iter) {
534 TileMap::iterator find = tiles_.find(iter.index());
535 if (find == tiles_.end())
536 continue;
537 Tile* tile = find->second.get();
538
539 TilePriority priority(resolution_,
540 TilePriority::SOON,
541 tile->priority(tree).distance_to_visible);
542 tile->SetPriority(tree, priority);
543 }
544 }
545
RemoveTileAt(int i,int j)546 void PictureLayerTiling::RemoveTileAt(int i, int j) {
547 TileMapKey key(i, j);
548 TileMap::iterator found = tiles_.find(key);
549 if (found == tiles_.end())
550 return;
551 tiles_.erase(found);
552 }
553
SetLiveTilesRect(const gfx::Rect & new_live_tiles_rect)554 void PictureLayerTiling::SetLiveTilesRect(
555 const gfx::Rect& new_live_tiles_rect) {
556 DCHECK(new_live_tiles_rect.IsEmpty() ||
557 TilingRect().Contains(new_live_tiles_rect));
558 if (live_tiles_rect_ == new_live_tiles_rect)
559 return;
560
561 // Iterate to delete all tiles outside of our new live_tiles rect.
562 PictureLayerTiling* recycled_twin = client_->GetRecycledTwinTiling(this);
563 for (TilingData::DifferenceIterator iter(&tiling_data_,
564 live_tiles_rect_,
565 new_live_tiles_rect);
566 iter;
567 ++iter) {
568 TileMapKey key(iter.index());
569 TileMap::iterator found = tiles_.find(key);
570 // If the tile was outside of the recorded region, it won't exist even
571 // though it was in the live rect.
572 if (found != tiles_.end()) {
573 tiles_.erase(found);
574 if (recycled_twin)
575 recycled_twin->RemoveTileAt(iter.index_x(), iter.index_y());
576 }
577 }
578
579 const PictureLayerTiling* twin_tiling = client_->GetTwinTiling(this);
580
581 // Iterate to allocate new tiles for all regions with newly exposed area.
582 for (TilingData::DifferenceIterator iter(&tiling_data_,
583 new_live_tiles_rect,
584 live_tiles_rect_);
585 iter;
586 ++iter) {
587 TileMapKey key(iter.index());
588 CreateTile(key.first, key.second, twin_tiling);
589 }
590
591 live_tiles_rect_ = new_live_tiles_rect;
592 }
593
DidBecomeRecycled()594 void PictureLayerTiling::DidBecomeRecycled() {
595 // DidBecomeActive below will set the active priority for tiles that are
596 // still in the tree. Calling this first on an active tiling that is becoming
597 // recycled takes care of tiles that are no longer in the active tree (eg.
598 // due to a pending invalidation).
599 for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) {
600 it->second->SetPriority(ACTIVE_TREE, TilePriority());
601 }
602 }
603
DidBecomeActive()604 void PictureLayerTiling::DidBecomeActive() {
605 for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) {
606 it->second->SetPriority(ACTIVE_TREE, it->second->priority(PENDING_TREE));
607 it->second->SetPriority(PENDING_TREE, TilePriority());
608
609 // Tile holds a ref onto a picture pile. If the tile never gets invalidated
610 // and recreated, then that picture pile ref could exist indefinitely. To
611 // prevent this, ask the client to update the pile to its own ref. This
612 // will cause PicturePileImpls and their clones to get deleted once the
613 // corresponding PictureLayerImpl and any in flight raster jobs go out of
614 // scope.
615 client_->UpdatePile(it->second.get());
616 }
617 }
618
UpdateTilesToCurrentPile()619 void PictureLayerTiling::UpdateTilesToCurrentPile() {
620 for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) {
621 client_->UpdatePile(it->second.get());
622 }
623 }
624
GetAllTilesForTracing(std::set<const Tile * > * tiles) const625 void PictureLayerTiling::GetAllTilesForTracing(
626 std::set<const Tile*>* tiles) const {
627 for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it)
628 tiles->insert(it->second.get());
629 }
630
AsValue() const631 scoped_ptr<base::Value> PictureLayerTiling::AsValue() const {
632 scoped_ptr<base::DictionaryValue> state(new base::DictionaryValue());
633 state->SetInteger("num_tiles", tiles_.size());
634 state->SetDouble("content_scale", contents_scale_);
635 state->Set("tiling_rect", MathUtil::AsValue(TilingRect()).release());
636 return state.PassAs<base::Value>();
637 }
638
GPUMemoryUsageInBytes() const639 size_t PictureLayerTiling::GPUMemoryUsageInBytes() const {
640 size_t amount = 0;
641 for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) {
642 const Tile* tile = it->second.get();
643 amount += tile->GPUMemoryUsageInBytes();
644 }
645 return amount;
646 }
647
RectExpansionCache()648 PictureLayerTiling::RectExpansionCache::RectExpansionCache()
649 : previous_target(0) {
650 }
651
652 namespace {
653
654 // This struct represents an event at which the expending rect intersects
655 // one of its boundaries. 4 intersection events will occur during expansion.
656 struct EdgeEvent {
657 enum { BOTTOM, TOP, LEFT, RIGHT } edge;
658 int* num_edges;
659 int distance;
660 };
661
662 // Compute the delta to expand from edges to cover target_area.
ComputeExpansionDelta(int num_x_edges,int num_y_edges,int width,int height,int64 target_area)663 int ComputeExpansionDelta(int num_x_edges, int num_y_edges,
664 int width, int height,
665 int64 target_area) {
666 // Compute coefficients for the quadratic equation:
667 // a*x^2 + b*x + c = 0
668 int a = num_y_edges * num_x_edges;
669 int b = num_y_edges * width + num_x_edges * height;
670 int64 c = static_cast<int64>(width) * height - target_area;
671
672 // Compute the delta for our edges using the quadratic equation.
673 return a == 0 ? -c / b :
674 (-b + static_cast<int>(
675 std::sqrt(static_cast<int64>(b) * b - 4.0 * a * c))) / (2 * a);
676 }
677
678 } // namespace
679
ExpandRectEquallyToAreaBoundedBy(const gfx::Rect & starting_rect,int64 target_area,const gfx::Rect & bounding_rect,RectExpansionCache * cache)680 gfx::Rect PictureLayerTiling::ExpandRectEquallyToAreaBoundedBy(
681 const gfx::Rect& starting_rect,
682 int64 target_area,
683 const gfx::Rect& bounding_rect,
684 RectExpansionCache* cache) {
685 if (starting_rect.IsEmpty())
686 return starting_rect;
687
688 if (cache &&
689 cache->previous_start == starting_rect &&
690 cache->previous_bounds == bounding_rect &&
691 cache->previous_target == target_area)
692 return cache->previous_result;
693
694 if (cache) {
695 cache->previous_start = starting_rect;
696 cache->previous_bounds = bounding_rect;
697 cache->previous_target = target_area;
698 }
699
700 DCHECK(!bounding_rect.IsEmpty());
701 DCHECK_GT(target_area, 0);
702
703 // Expand the starting rect to cover target_area, if it is smaller than it.
704 int delta = ComputeExpansionDelta(
705 2, 2, starting_rect.width(), starting_rect.height(), target_area);
706 gfx::Rect expanded_starting_rect = starting_rect;
707 if (delta > 0)
708 expanded_starting_rect.Inset(-delta, -delta);
709
710 gfx::Rect rect = IntersectRects(expanded_starting_rect, bounding_rect);
711 if (rect.IsEmpty()) {
712 // The starting_rect and bounding_rect are far away.
713 if (cache)
714 cache->previous_result = rect;
715 return rect;
716 }
717 if (delta >= 0 && rect == expanded_starting_rect) {
718 // The starting rect already covers the entire bounding_rect and isn't too
719 // large for the target_area.
720 if (cache)
721 cache->previous_result = rect;
722 return rect;
723 }
724
725 // Continue to expand/shrink rect to let it cover target_area.
726
727 // These values will be updated by the loop and uses as the output.
728 int origin_x = rect.x();
729 int origin_y = rect.y();
730 int width = rect.width();
731 int height = rect.height();
732
733 // In the beginning we will consider 2 edges in each dimension.
734 int num_y_edges = 2;
735 int num_x_edges = 2;
736
737 // Create an event list.
738 EdgeEvent events[] = {
739 { EdgeEvent::BOTTOM, &num_y_edges, rect.y() - bounding_rect.y() },
740 { EdgeEvent::TOP, &num_y_edges, bounding_rect.bottom() - rect.bottom() },
741 { EdgeEvent::LEFT, &num_x_edges, rect.x() - bounding_rect.x() },
742 { EdgeEvent::RIGHT, &num_x_edges, bounding_rect.right() - rect.right() }
743 };
744
745 // Sort the events by distance (closest first).
746 if (events[0].distance > events[1].distance) std::swap(events[0], events[1]);
747 if (events[2].distance > events[3].distance) std::swap(events[2], events[3]);
748 if (events[0].distance > events[2].distance) std::swap(events[0], events[2]);
749 if (events[1].distance > events[3].distance) std::swap(events[1], events[3]);
750 if (events[1].distance > events[2].distance) std::swap(events[1], events[2]);
751
752 for (int event_index = 0; event_index < 4; event_index++) {
753 const EdgeEvent& event = events[event_index];
754
755 int delta = ComputeExpansionDelta(
756 num_x_edges, num_y_edges, width, height, target_area);
757
758 // Clamp delta to our event distance.
759 if (delta > event.distance)
760 delta = event.distance;
761
762 // Adjust the edge count for this kind of edge.
763 --*event.num_edges;
764
765 // Apply the delta to the edges and edge events.
766 for (int i = event_index; i < 4; i++) {
767 switch (events[i].edge) {
768 case EdgeEvent::BOTTOM:
769 origin_y -= delta;
770 height += delta;
771 break;
772 case EdgeEvent::TOP:
773 height += delta;
774 break;
775 case EdgeEvent::LEFT:
776 origin_x -= delta;
777 width += delta;
778 break;
779 case EdgeEvent::RIGHT:
780 width += delta;
781 break;
782 }
783 events[i].distance -= delta;
784 }
785
786 // If our delta is less then our event distance, we're done.
787 if (delta < event.distance)
788 break;
789 }
790
791 gfx::Rect result(origin_x, origin_y, width, height);
792 if (cache)
793 cache->previous_result = result;
794 return result;
795 }
796
UpdateEvictionCacheIfNeeded(TreePriority tree_priority)797 void PictureLayerTiling::UpdateEvictionCacheIfNeeded(
798 TreePriority tree_priority) {
799 if (eviction_tiles_cache_valid_ &&
800 eviction_cache_tree_priority_ == tree_priority)
801 return;
802
803 eviction_tiles_cache_.clear();
804 eviction_tiles_cache_.reserve(tiles_.size());
805 for (TileMap::iterator it = tiles_.begin(); it != tiles_.end(); ++it) {
806 // TODO(vmpstr): This should update the priority if UpdateTilePriorities
807 // changes not to do this.
808 eviction_tiles_cache_.push_back(it->second);
809 }
810
811 std::sort(eviction_tiles_cache_.begin(),
812 eviction_tiles_cache_.end(),
813 TileEvictionOrder(tree_priority));
814 eviction_tiles_cache_valid_ = true;
815 eviction_cache_tree_priority_ = tree_priority;
816 }
817
TilingRasterTileIterator()818 PictureLayerTiling::TilingRasterTileIterator::TilingRasterTileIterator()
819 : tiling_(NULL), current_tile_(NULL) {}
820
TilingRasterTileIterator(PictureLayerTiling * tiling,WhichTree tree)821 PictureLayerTiling::TilingRasterTileIterator::TilingRasterTileIterator(
822 PictureLayerTiling* tiling,
823 WhichTree tree)
824 : tiling_(tiling),
825 type_(TilePriority::NOW),
826 visible_rect_in_content_space_(
827 tiling_->current_visible_rect_in_content_space_),
828 skewport_in_content_space_(tiling_->current_skewport_),
829 eventually_rect_in_content_space_(tiling_->current_eventually_rect_),
830 soon_border_rect_in_content_space_(tiling_->current_soon_border_rect_),
831 tree_(tree),
832 current_tile_(NULL),
833 visible_iterator_(&tiling->tiling_data_,
834 visible_rect_in_content_space_,
835 true /* include_borders */),
836 spiral_iterator_(&tiling->tiling_data_,
837 skewport_in_content_space_,
838 visible_rect_in_content_space_,
839 visible_rect_in_content_space_),
840 skewport_processed_(false) {
841 if (!visible_iterator_) {
842 AdvancePhase();
843 return;
844 }
845
846 current_tile_ =
847 tiling_->TileAt(visible_iterator_.index_x(), visible_iterator_.index_y());
848 if (!current_tile_ || !TileNeedsRaster(current_tile_))
849 ++(*this);
850 }
851
~TilingRasterTileIterator()852 PictureLayerTiling::TilingRasterTileIterator::~TilingRasterTileIterator() {}
853
AdvancePhase()854 void PictureLayerTiling::TilingRasterTileIterator::AdvancePhase() {
855 DCHECK_LT(type_, TilePriority::EVENTUALLY);
856
857 do {
858 type_ = static_cast<TilePriority::PriorityBin>(type_ + 1);
859 if (type_ == TilePriority::EVENTUALLY) {
860 spiral_iterator_ = TilingData::SpiralDifferenceIterator(
861 &tiling_->tiling_data_,
862 eventually_rect_in_content_space_,
863 skewport_in_content_space_,
864 visible_rect_in_content_space_);
865 }
866
867 while (spiral_iterator_) {
868 current_tile_ = tiling_->TileAt(spiral_iterator_.index_x(),
869 spiral_iterator_.index_y());
870 if (current_tile_ && TileNeedsRaster(current_tile_))
871 break;
872 ++spiral_iterator_;
873 }
874
875 if (!spiral_iterator_ && type_ == TilePriority::EVENTUALLY) {
876 current_tile_ = NULL;
877 break;
878 }
879 } while (!spiral_iterator_);
880 }
881
882 PictureLayerTiling::TilingRasterTileIterator&
883 PictureLayerTiling::TilingRasterTileIterator::
operator ++()884 operator++() {
885 current_tile_ = NULL;
886 while (!current_tile_ || !TileNeedsRaster(current_tile_)) {
887 std::pair<int, int> next_index;
888 switch (type_) {
889 case TilePriority::NOW:
890 ++visible_iterator_;
891 if (!visible_iterator_) {
892 AdvancePhase();
893 return *this;
894 }
895 next_index = visible_iterator_.index();
896 break;
897 case TilePriority::SOON:
898 ++spiral_iterator_;
899 if (!spiral_iterator_) {
900 if (skewport_processed_) {
901 AdvancePhase();
902 return *this;
903 }
904 skewport_processed_ = true;
905 spiral_iterator_ = TilingData::SpiralDifferenceIterator(
906 &tiling_->tiling_data_,
907 soon_border_rect_in_content_space_,
908 skewport_in_content_space_,
909 visible_rect_in_content_space_);
910 if (!spiral_iterator_) {
911 AdvancePhase();
912 return *this;
913 }
914 }
915 next_index = spiral_iterator_.index();
916 break;
917 case TilePriority::EVENTUALLY:
918 ++spiral_iterator_;
919 if (!spiral_iterator_) {
920 current_tile_ = NULL;
921 return *this;
922 }
923 next_index = spiral_iterator_.index();
924 break;
925 }
926 current_tile_ = tiling_->TileAt(next_index.first, next_index.second);
927 }
928 return *this;
929 }
930
TilingEvictionTileIterator()931 PictureLayerTiling::TilingEvictionTileIterator::TilingEvictionTileIterator()
932 : is_valid_(false), tiling_(NULL) {}
933
TilingEvictionTileIterator(PictureLayerTiling * tiling,TreePriority tree_priority)934 PictureLayerTiling::TilingEvictionTileIterator::TilingEvictionTileIterator(
935 PictureLayerTiling* tiling,
936 TreePriority tree_priority)
937 : is_valid_(false), tiling_(tiling), tree_priority_(tree_priority) {}
938
~TilingEvictionTileIterator()939 PictureLayerTiling::TilingEvictionTileIterator::~TilingEvictionTileIterator() {}
940
operator bool()941 PictureLayerTiling::TilingEvictionTileIterator::operator bool() {
942 if (!IsValid())
943 Initialize();
944
945 return IsValid() && tile_iterator_ != tiling_->eviction_tiles_cache_.end();
946 }
947
operator *()948 Tile* PictureLayerTiling::TilingEvictionTileIterator::operator*() {
949 if (!IsValid())
950 Initialize();
951
952 DCHECK(*this);
953 return *tile_iterator_;
954 }
955
956 PictureLayerTiling::TilingEvictionTileIterator&
957 PictureLayerTiling::TilingEvictionTileIterator::
operator ++()958 operator++() {
959 DCHECK(*this);
960 do {
961 ++tile_iterator_;
962 } while (tile_iterator_ != tiling_->eviction_tiles_cache_.end() &&
963 (!(*tile_iterator_)->HasResources()));
964
965 return *this;
966 }
967
Initialize()968 void PictureLayerTiling::TilingEvictionTileIterator::Initialize() {
969 if (!tiling_)
970 return;
971
972 tiling_->UpdateEvictionCacheIfNeeded(tree_priority_);
973 tile_iterator_ = tiling_->eviction_tiles_cache_.begin();
974 is_valid_ = true;
975 if (tile_iterator_ != tiling_->eviction_tiles_cache_.end() &&
976 !(*tile_iterator_)->HasResources()) {
977 ++(*this);
978 }
979 }
980
981 } // namespace cc
982