• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/v8.h"
6 
7 #include "src/accessors.h"
8 #include "src/api.h"
9 #include "src/bootstrapper.h"
10 #include "src/deoptimizer.h"
11 #include "src/execution.h"
12 #include "src/global-handles.h"
13 #include "src/ic-inl.h"
14 #include "src/natives.h"
15 #include "src/platform.h"
16 #include "src/runtime.h"
17 #include "src/serialize.h"
18 #include "src/snapshot.h"
19 #include "src/stub-cache.h"
20 #include "src/v8threads.h"
21 
22 namespace v8 {
23 namespace internal {
24 
25 
26 // -----------------------------------------------------------------------------
27 // Coding of external references.
28 
29 // The encoding of an external reference. The type is in the high word.
30 // The id is in the low word.
EncodeExternal(TypeCode type,uint16_t id)31 static uint32_t EncodeExternal(TypeCode type, uint16_t id) {
32   return static_cast<uint32_t>(type) << 16 | id;
33 }
34 
35 
GetInternalPointer(StatsCounter * counter)36 static int* GetInternalPointer(StatsCounter* counter) {
37   // All counters refer to dummy_counter, if deserializing happens without
38   // setting up counters.
39   static int dummy_counter = 0;
40   return counter->Enabled() ? counter->GetInternalPointer() : &dummy_counter;
41 }
42 
43 
instance(Isolate * isolate)44 ExternalReferenceTable* ExternalReferenceTable::instance(Isolate* isolate) {
45   ExternalReferenceTable* external_reference_table =
46       isolate->external_reference_table();
47   if (external_reference_table == NULL) {
48     external_reference_table = new ExternalReferenceTable(isolate);
49     isolate->set_external_reference_table(external_reference_table);
50   }
51   return external_reference_table;
52 }
53 
54 
AddFromId(TypeCode type,uint16_t id,const char * name,Isolate * isolate)55 void ExternalReferenceTable::AddFromId(TypeCode type,
56                                        uint16_t id,
57                                        const char* name,
58                                        Isolate* isolate) {
59   Address address;
60   switch (type) {
61     case C_BUILTIN: {
62       ExternalReference ref(static_cast<Builtins::CFunctionId>(id), isolate);
63       address = ref.address();
64       break;
65     }
66     case BUILTIN: {
67       ExternalReference ref(static_cast<Builtins::Name>(id), isolate);
68       address = ref.address();
69       break;
70     }
71     case RUNTIME_FUNCTION: {
72       ExternalReference ref(static_cast<Runtime::FunctionId>(id), isolate);
73       address = ref.address();
74       break;
75     }
76     case IC_UTILITY: {
77       ExternalReference ref(IC_Utility(static_cast<IC::UtilityId>(id)),
78                             isolate);
79       address = ref.address();
80       break;
81     }
82     default:
83       UNREACHABLE();
84       return;
85   }
86   Add(address, type, id, name);
87 }
88 
89 
Add(Address address,TypeCode type,uint16_t id,const char * name)90 void ExternalReferenceTable::Add(Address address,
91                                  TypeCode type,
92                                  uint16_t id,
93                                  const char* name) {
94   ASSERT_NE(NULL, address);
95   ExternalReferenceEntry entry;
96   entry.address = address;
97   entry.code = EncodeExternal(type, id);
98   entry.name = name;
99   ASSERT_NE(0, entry.code);
100   refs_.Add(entry);
101   if (id > max_id_[type]) max_id_[type] = id;
102 }
103 
104 
PopulateTable(Isolate * isolate)105 void ExternalReferenceTable::PopulateTable(Isolate* isolate) {
106   for (int type_code = 0; type_code < kTypeCodeCount; type_code++) {
107     max_id_[type_code] = 0;
108   }
109 
110   // The following populates all of the different type of external references
111   // into the ExternalReferenceTable.
112   //
113   // NOTE: This function was originally 100k of code.  It has since been
114   // rewritten to be mostly table driven, as the callback macro style tends to
115   // very easily cause code bloat.  Please be careful in the future when adding
116   // new references.
117 
118   struct RefTableEntry {
119     TypeCode type;
120     uint16_t id;
121     const char* name;
122   };
123 
124   static const RefTableEntry ref_table[] = {
125   // Builtins
126 #define DEF_ENTRY_C(name, ignored) \
127   { C_BUILTIN, \
128     Builtins::c_##name, \
129     "Builtins::" #name },
130 
131   BUILTIN_LIST_C(DEF_ENTRY_C)
132 #undef DEF_ENTRY_C
133 
134 #define DEF_ENTRY_C(name, ignored) \
135   { BUILTIN, \
136     Builtins::k##name, \
137     "Builtins::" #name },
138 #define DEF_ENTRY_A(name, kind, state, extra) DEF_ENTRY_C(name, ignored)
139 
140   BUILTIN_LIST_C(DEF_ENTRY_C)
141   BUILTIN_LIST_A(DEF_ENTRY_A)
142   BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A)
143 #undef DEF_ENTRY_C
144 #undef DEF_ENTRY_A
145 
146   // Runtime functions
147 #define RUNTIME_ENTRY(name, nargs, ressize) \
148   { RUNTIME_FUNCTION, \
149     Runtime::k##name, \
150     "Runtime::" #name },
151 
152   RUNTIME_FUNCTION_LIST(RUNTIME_ENTRY)
153   INLINE_OPTIMIZED_FUNCTION_LIST(RUNTIME_ENTRY)
154 #undef RUNTIME_ENTRY
155 
156 #define RUNTIME_HIDDEN_ENTRY(name, nargs, ressize) \
157   { RUNTIME_FUNCTION, \
158     Runtime::kHidden##name, \
159     "Runtime::Hidden" #name },
160 
161   RUNTIME_HIDDEN_FUNCTION_LIST(RUNTIME_HIDDEN_ENTRY)
162 #undef RUNTIME_HIDDEN_ENTRY
163 
164 #define INLINE_OPTIMIZED_ENTRY(name, nargs, ressize) \
165   { RUNTIME_FUNCTION, \
166     Runtime::kInlineOptimized##name, \
167     "Runtime::" #name },
168 
169   INLINE_OPTIMIZED_FUNCTION_LIST(INLINE_OPTIMIZED_ENTRY)
170 #undef INLINE_OPTIMIZED_ENTRY
171 
172   // IC utilities
173 #define IC_ENTRY(name) \
174   { IC_UTILITY, \
175     IC::k##name, \
176     "IC::" #name },
177 
178   IC_UTIL_LIST(IC_ENTRY)
179 #undef IC_ENTRY
180   };  // end of ref_table[].
181 
182   for (size_t i = 0; i < ARRAY_SIZE(ref_table); ++i) {
183     AddFromId(ref_table[i].type,
184               ref_table[i].id,
185               ref_table[i].name,
186               isolate);
187   }
188 
189   // Stat counters
190   struct StatsRefTableEntry {
191     StatsCounter* (Counters::*counter)();
192     uint16_t id;
193     const char* name;
194   };
195 
196   const StatsRefTableEntry stats_ref_table[] = {
197 #define COUNTER_ENTRY(name, caption) \
198   { &Counters::name,    \
199     Counters::k_##name, \
200     "Counters::" #name },
201 
202   STATS_COUNTER_LIST_1(COUNTER_ENTRY)
203   STATS_COUNTER_LIST_2(COUNTER_ENTRY)
204 #undef COUNTER_ENTRY
205   };  // end of stats_ref_table[].
206 
207   Counters* counters = isolate->counters();
208   for (size_t i = 0; i < ARRAY_SIZE(stats_ref_table); ++i) {
209     Add(reinterpret_cast<Address>(GetInternalPointer(
210             (counters->*(stats_ref_table[i].counter))())),
211         STATS_COUNTER,
212         stats_ref_table[i].id,
213         stats_ref_table[i].name);
214   }
215 
216   // Top addresses
217 
218   const char* AddressNames[] = {
219 #define BUILD_NAME_LITERAL(CamelName, hacker_name)      \
220     "Isolate::" #hacker_name "_address",
221     FOR_EACH_ISOLATE_ADDRESS_NAME(BUILD_NAME_LITERAL)
222     NULL
223 #undef BUILD_NAME_LITERAL
224   };
225 
226   for (uint16_t i = 0; i < Isolate::kIsolateAddressCount; ++i) {
227     Add(isolate->get_address_from_id((Isolate::AddressId)i),
228         TOP_ADDRESS, i, AddressNames[i]);
229   }
230 
231   // Accessors
232 #define ACCESSOR_INFO_DECLARATION(name) \
233   Add(FUNCTION_ADDR(&Accessors::name##Getter), \
234       ACCESSOR, \
235       Accessors::k##name##Getter, \
236       "Accessors::" #name "Getter"); \
237   Add(FUNCTION_ADDR(&Accessors::name##Setter), \
238       ACCESSOR, \
239       Accessors::k##name##Setter, \
240       "Accessors::" #name "Setter");
241   ACCESSOR_INFO_LIST(ACCESSOR_INFO_DECLARATION)
242 #undef ACCESSOR_INFO_DECLARATION
243 
244   StubCache* stub_cache = isolate->stub_cache();
245 
246   // Stub cache tables
247   Add(stub_cache->key_reference(StubCache::kPrimary).address(),
248       STUB_CACHE_TABLE,
249       1,
250       "StubCache::primary_->key");
251   Add(stub_cache->value_reference(StubCache::kPrimary).address(),
252       STUB_CACHE_TABLE,
253       2,
254       "StubCache::primary_->value");
255   Add(stub_cache->map_reference(StubCache::kPrimary).address(),
256       STUB_CACHE_TABLE,
257       3,
258       "StubCache::primary_->map");
259   Add(stub_cache->key_reference(StubCache::kSecondary).address(),
260       STUB_CACHE_TABLE,
261       4,
262       "StubCache::secondary_->key");
263   Add(stub_cache->value_reference(StubCache::kSecondary).address(),
264       STUB_CACHE_TABLE,
265       5,
266       "StubCache::secondary_->value");
267   Add(stub_cache->map_reference(StubCache::kSecondary).address(),
268       STUB_CACHE_TABLE,
269       6,
270       "StubCache::secondary_->map");
271 
272   // Runtime entries
273   Add(ExternalReference::delete_handle_scope_extensions(isolate).address(),
274       RUNTIME_ENTRY,
275       4,
276       "HandleScope::DeleteExtensions");
277   Add(ExternalReference::
278           incremental_marking_record_write_function(isolate).address(),
279       RUNTIME_ENTRY,
280       5,
281       "IncrementalMarking::RecordWrite");
282   Add(ExternalReference::store_buffer_overflow_function(isolate).address(),
283       RUNTIME_ENTRY,
284       6,
285       "StoreBuffer::StoreBufferOverflow");
286 
287   // Miscellaneous
288   Add(ExternalReference::roots_array_start(isolate).address(),
289       UNCLASSIFIED,
290       3,
291       "Heap::roots_array_start()");
292   Add(ExternalReference::address_of_stack_limit(isolate).address(),
293       UNCLASSIFIED,
294       4,
295       "StackGuard::address_of_jslimit()");
296   Add(ExternalReference::address_of_real_stack_limit(isolate).address(),
297       UNCLASSIFIED,
298       5,
299       "StackGuard::address_of_real_jslimit()");
300 #ifndef V8_INTERPRETED_REGEXP
301   Add(ExternalReference::address_of_regexp_stack_limit(isolate).address(),
302       UNCLASSIFIED,
303       6,
304       "RegExpStack::limit_address()");
305   Add(ExternalReference::address_of_regexp_stack_memory_address(
306           isolate).address(),
307       UNCLASSIFIED,
308       7,
309       "RegExpStack::memory_address()");
310   Add(ExternalReference::address_of_regexp_stack_memory_size(isolate).address(),
311       UNCLASSIFIED,
312       8,
313       "RegExpStack::memory_size()");
314   Add(ExternalReference::address_of_static_offsets_vector(isolate).address(),
315       UNCLASSIFIED,
316       9,
317       "OffsetsVector::static_offsets_vector");
318 #endif  // V8_INTERPRETED_REGEXP
319   Add(ExternalReference::new_space_start(isolate).address(),
320       UNCLASSIFIED,
321       10,
322       "Heap::NewSpaceStart()");
323   Add(ExternalReference::new_space_mask(isolate).address(),
324       UNCLASSIFIED,
325       11,
326       "Heap::NewSpaceMask()");
327   Add(ExternalReference::new_space_allocation_limit_address(isolate).address(),
328       UNCLASSIFIED,
329       14,
330       "Heap::NewSpaceAllocationLimitAddress()");
331   Add(ExternalReference::new_space_allocation_top_address(isolate).address(),
332       UNCLASSIFIED,
333       15,
334       "Heap::NewSpaceAllocationTopAddress()");
335   Add(ExternalReference::debug_break(isolate).address(),
336       UNCLASSIFIED,
337       16,
338       "Debug::Break()");
339   Add(ExternalReference::debug_step_in_fp_address(isolate).address(),
340       UNCLASSIFIED,
341       17,
342       "Debug::step_in_fp_addr()");
343   Add(ExternalReference::mod_two_doubles_operation(isolate).address(),
344       UNCLASSIFIED,
345       22,
346       "mod_two_doubles");
347 #ifndef V8_INTERPRETED_REGEXP
348   Add(ExternalReference::re_case_insensitive_compare_uc16(isolate).address(),
349       UNCLASSIFIED,
350       24,
351       "NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()");
352   Add(ExternalReference::re_check_stack_guard_state(isolate).address(),
353       UNCLASSIFIED,
354       25,
355       "RegExpMacroAssembler*::CheckStackGuardState()");
356   Add(ExternalReference::re_grow_stack(isolate).address(),
357       UNCLASSIFIED,
358       26,
359       "NativeRegExpMacroAssembler::GrowStack()");
360   Add(ExternalReference::re_word_character_map().address(),
361       UNCLASSIFIED,
362       27,
363       "NativeRegExpMacroAssembler::word_character_map");
364 #endif  // V8_INTERPRETED_REGEXP
365   // Keyed lookup cache.
366   Add(ExternalReference::keyed_lookup_cache_keys(isolate).address(),
367       UNCLASSIFIED,
368       28,
369       "KeyedLookupCache::keys()");
370   Add(ExternalReference::keyed_lookup_cache_field_offsets(isolate).address(),
371       UNCLASSIFIED,
372       29,
373       "KeyedLookupCache::field_offsets()");
374   Add(ExternalReference::handle_scope_next_address(isolate).address(),
375       UNCLASSIFIED,
376       31,
377       "HandleScope::next");
378   Add(ExternalReference::handle_scope_limit_address(isolate).address(),
379       UNCLASSIFIED,
380       32,
381       "HandleScope::limit");
382   Add(ExternalReference::handle_scope_level_address(isolate).address(),
383       UNCLASSIFIED,
384       33,
385       "HandleScope::level");
386   Add(ExternalReference::new_deoptimizer_function(isolate).address(),
387       UNCLASSIFIED,
388       34,
389       "Deoptimizer::New()");
390   Add(ExternalReference::compute_output_frames_function(isolate).address(),
391       UNCLASSIFIED,
392       35,
393       "Deoptimizer::ComputeOutputFrames()");
394   Add(ExternalReference::address_of_min_int().address(),
395       UNCLASSIFIED,
396       36,
397       "LDoubleConstant::min_int");
398   Add(ExternalReference::address_of_one_half().address(),
399       UNCLASSIFIED,
400       37,
401       "LDoubleConstant::one_half");
402   Add(ExternalReference::isolate_address(isolate).address(),
403       UNCLASSIFIED,
404       38,
405       "isolate");
406   Add(ExternalReference::address_of_minus_zero().address(),
407       UNCLASSIFIED,
408       39,
409       "LDoubleConstant::minus_zero");
410   Add(ExternalReference::address_of_negative_infinity().address(),
411       UNCLASSIFIED,
412       40,
413       "LDoubleConstant::negative_infinity");
414   Add(ExternalReference::power_double_double_function(isolate).address(),
415       UNCLASSIFIED,
416       41,
417       "power_double_double_function");
418   Add(ExternalReference::power_double_int_function(isolate).address(),
419       UNCLASSIFIED,
420       42,
421       "power_double_int_function");
422   Add(ExternalReference::store_buffer_top(isolate).address(),
423       UNCLASSIFIED,
424       43,
425       "store_buffer_top");
426   Add(ExternalReference::address_of_canonical_non_hole_nan().address(),
427       UNCLASSIFIED,
428       44,
429       "canonical_nan");
430   Add(ExternalReference::address_of_the_hole_nan().address(),
431       UNCLASSIFIED,
432       45,
433       "the_hole_nan");
434   Add(ExternalReference::get_date_field_function(isolate).address(),
435       UNCLASSIFIED,
436       46,
437       "JSDate::GetField");
438   Add(ExternalReference::date_cache_stamp(isolate).address(),
439       UNCLASSIFIED,
440       47,
441       "date_cache_stamp");
442   Add(ExternalReference::address_of_pending_message_obj(isolate).address(),
443       UNCLASSIFIED,
444       48,
445       "address_of_pending_message_obj");
446   Add(ExternalReference::address_of_has_pending_message(isolate).address(),
447       UNCLASSIFIED,
448       49,
449       "address_of_has_pending_message");
450   Add(ExternalReference::address_of_pending_message_script(isolate).address(),
451       UNCLASSIFIED,
452       50,
453       "pending_message_script");
454   Add(ExternalReference::get_make_code_young_function(isolate).address(),
455       UNCLASSIFIED,
456       51,
457       "Code::MakeCodeYoung");
458   Add(ExternalReference::cpu_features().address(),
459       UNCLASSIFIED,
460       52,
461       "cpu_features");
462   Add(ExternalReference(Runtime::kHiddenAllocateInNewSpace, isolate).address(),
463       UNCLASSIFIED,
464       53,
465       "Runtime::AllocateInNewSpace");
466   Add(ExternalReference(
467           Runtime::kHiddenAllocateInTargetSpace, isolate).address(),
468       UNCLASSIFIED,
469       54,
470       "Runtime::AllocateInTargetSpace");
471   Add(ExternalReference::old_pointer_space_allocation_top_address(
472       isolate).address(),
473       UNCLASSIFIED,
474       55,
475       "Heap::OldPointerSpaceAllocationTopAddress");
476   Add(ExternalReference::old_pointer_space_allocation_limit_address(
477       isolate).address(),
478       UNCLASSIFIED,
479       56,
480       "Heap::OldPointerSpaceAllocationLimitAddress");
481   Add(ExternalReference::old_data_space_allocation_top_address(
482       isolate).address(),
483       UNCLASSIFIED,
484       57,
485       "Heap::OldDataSpaceAllocationTopAddress");
486   Add(ExternalReference::old_data_space_allocation_limit_address(
487       isolate).address(),
488       UNCLASSIFIED,
489       58,
490       "Heap::OldDataSpaceAllocationLimitAddress");
491   Add(ExternalReference::allocation_sites_list_address(isolate).address(),
492       UNCLASSIFIED,
493       59,
494       "Heap::allocation_sites_list_address()");
495   Add(ExternalReference::address_of_uint32_bias().address(),
496       UNCLASSIFIED,
497       60,
498       "uint32_bias");
499   Add(ExternalReference::get_mark_code_as_executed_function(isolate).address(),
500       UNCLASSIFIED,
501       61,
502       "Code::MarkCodeAsExecuted");
503 
504   Add(ExternalReference::is_profiling_address(isolate).address(),
505       UNCLASSIFIED,
506       62,
507       "CpuProfiler::is_profiling");
508 
509   Add(ExternalReference::scheduled_exception_address(isolate).address(),
510       UNCLASSIFIED,
511       63,
512       "Isolate::scheduled_exception");
513 
514   Add(ExternalReference::invoke_function_callback(isolate).address(),
515       UNCLASSIFIED,
516       64,
517       "InvokeFunctionCallback");
518 
519   Add(ExternalReference::invoke_accessor_getter_callback(isolate).address(),
520       UNCLASSIFIED,
521       65,
522       "InvokeAccessorGetterCallback");
523 
524   // Debug addresses
525   Add(ExternalReference::debug_after_break_target_address(isolate).address(),
526       UNCLASSIFIED,
527       66,
528       "Debug::after_break_target_address()");
529 
530   Add(ExternalReference::debug_restarter_frame_function_pointer_address(
531           isolate).address(),
532       UNCLASSIFIED,
533       67,
534       "Debug::restarter_frame_function_pointer_address()");
535 
536   // Add a small set of deopt entry addresses to encoder without generating the
537   // deopt table code, which isn't possible at deserialization time.
538   HandleScope scope(isolate);
539   for (int entry = 0; entry < kDeoptTableSerializeEntryCount; ++entry) {
540     Address address = Deoptimizer::GetDeoptimizationEntry(
541         isolate,
542         entry,
543         Deoptimizer::LAZY,
544         Deoptimizer::CALCULATE_ENTRY_ADDRESS);
545     Add(address, LAZY_DEOPTIMIZATION, entry, "lazy_deopt");
546   }
547 }
548 
549 
ExternalReferenceEncoder(Isolate * isolate)550 ExternalReferenceEncoder::ExternalReferenceEncoder(Isolate* isolate)
551     : encodings_(HashMap::PointersMatch),
552       isolate_(isolate) {
553   ExternalReferenceTable* external_references =
554       ExternalReferenceTable::instance(isolate_);
555   for (int i = 0; i < external_references->size(); ++i) {
556     Put(external_references->address(i), i);
557   }
558 }
559 
560 
Encode(Address key) const561 uint32_t ExternalReferenceEncoder::Encode(Address key) const {
562   int index = IndexOf(key);
563   ASSERT(key == NULL || index >= 0);
564   return index >= 0 ?
565          ExternalReferenceTable::instance(isolate_)->code(index) : 0;
566 }
567 
568 
NameOfAddress(Address key) const569 const char* ExternalReferenceEncoder::NameOfAddress(Address key) const {
570   int index = IndexOf(key);
571   return index >= 0 ?
572       ExternalReferenceTable::instance(isolate_)->name(index) : NULL;
573 }
574 
575 
IndexOf(Address key) const576 int ExternalReferenceEncoder::IndexOf(Address key) const {
577   if (key == NULL) return -1;
578   HashMap::Entry* entry =
579       const_cast<HashMap&>(encodings_).Lookup(key, Hash(key), false);
580   return entry == NULL
581       ? -1
582       : static_cast<int>(reinterpret_cast<intptr_t>(entry->value));
583 }
584 
585 
Put(Address key,int index)586 void ExternalReferenceEncoder::Put(Address key, int index) {
587   HashMap::Entry* entry = encodings_.Lookup(key, Hash(key), true);
588   entry->value = reinterpret_cast<void*>(index);
589 }
590 
591 
ExternalReferenceDecoder(Isolate * isolate)592 ExternalReferenceDecoder::ExternalReferenceDecoder(Isolate* isolate)
593     : encodings_(NewArray<Address*>(kTypeCodeCount)),
594       isolate_(isolate) {
595   ExternalReferenceTable* external_references =
596       ExternalReferenceTable::instance(isolate_);
597   for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) {
598     int max = external_references->max_id(type) + 1;
599     encodings_[type] = NewArray<Address>(max + 1);
600   }
601   for (int i = 0; i < external_references->size(); ++i) {
602     Put(external_references->code(i), external_references->address(i));
603   }
604 }
605 
606 
~ExternalReferenceDecoder()607 ExternalReferenceDecoder::~ExternalReferenceDecoder() {
608   for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) {
609     DeleteArray(encodings_[type]);
610   }
611   DeleteArray(encodings_);
612 }
613 
614 
615 class CodeAddressMap: public CodeEventLogger {
616  public:
CodeAddressMap(Isolate * isolate)617   explicit CodeAddressMap(Isolate* isolate)
618       : isolate_(isolate) {
619     isolate->logger()->addCodeEventListener(this);
620   }
621 
~CodeAddressMap()622   virtual ~CodeAddressMap() {
623     isolate_->logger()->removeCodeEventListener(this);
624   }
625 
CodeMoveEvent(Address from,Address to)626   virtual void CodeMoveEvent(Address from, Address to) {
627     address_to_name_map_.Move(from, to);
628   }
629 
CodeDisableOptEvent(Code * code,SharedFunctionInfo * shared)630   virtual void CodeDisableOptEvent(Code* code, SharedFunctionInfo* shared) {
631   }
632 
CodeDeleteEvent(Address from)633   virtual void CodeDeleteEvent(Address from) {
634     address_to_name_map_.Remove(from);
635   }
636 
Lookup(Address address)637   const char* Lookup(Address address) {
638     return address_to_name_map_.Lookup(address);
639   }
640 
641  private:
642   class NameMap {
643    public:
NameMap()644     NameMap() : impl_(HashMap::PointersMatch) {}
645 
~NameMap()646     ~NameMap() {
647       for (HashMap::Entry* p = impl_.Start(); p != NULL; p = impl_.Next(p)) {
648         DeleteArray(static_cast<const char*>(p->value));
649       }
650     }
651 
Insert(Address code_address,const char * name,int name_size)652     void Insert(Address code_address, const char* name, int name_size) {
653       HashMap::Entry* entry = FindOrCreateEntry(code_address);
654       if (entry->value == NULL) {
655         entry->value = CopyName(name, name_size);
656       }
657     }
658 
Lookup(Address code_address)659     const char* Lookup(Address code_address) {
660       HashMap::Entry* entry = FindEntry(code_address);
661       return (entry != NULL) ? static_cast<const char*>(entry->value) : NULL;
662     }
663 
Remove(Address code_address)664     void Remove(Address code_address) {
665       HashMap::Entry* entry = FindEntry(code_address);
666       if (entry != NULL) {
667         DeleteArray(static_cast<char*>(entry->value));
668         RemoveEntry(entry);
669       }
670     }
671 
Move(Address from,Address to)672     void Move(Address from, Address to) {
673       if (from == to) return;
674       HashMap::Entry* from_entry = FindEntry(from);
675       ASSERT(from_entry != NULL);
676       void* value = from_entry->value;
677       RemoveEntry(from_entry);
678       HashMap::Entry* to_entry = FindOrCreateEntry(to);
679       ASSERT(to_entry->value == NULL);
680       to_entry->value = value;
681     }
682 
683    private:
CopyName(const char * name,int name_size)684     static char* CopyName(const char* name, int name_size) {
685       char* result = NewArray<char>(name_size + 1);
686       for (int i = 0; i < name_size; ++i) {
687         char c = name[i];
688         if (c == '\0') c = ' ';
689         result[i] = c;
690       }
691       result[name_size] = '\0';
692       return result;
693     }
694 
FindOrCreateEntry(Address code_address)695     HashMap::Entry* FindOrCreateEntry(Address code_address) {
696       return impl_.Lookup(code_address, ComputePointerHash(code_address), true);
697     }
698 
FindEntry(Address code_address)699     HashMap::Entry* FindEntry(Address code_address) {
700       return impl_.Lookup(code_address,
701                           ComputePointerHash(code_address),
702                           false);
703     }
704 
RemoveEntry(HashMap::Entry * entry)705     void RemoveEntry(HashMap::Entry* entry) {
706       impl_.Remove(entry->key, entry->hash);
707     }
708 
709     HashMap impl_;
710 
711     DISALLOW_COPY_AND_ASSIGN(NameMap);
712   };
713 
LogRecordedBuffer(Code * code,SharedFunctionInfo *,const char * name,int length)714   virtual void LogRecordedBuffer(Code* code,
715                                  SharedFunctionInfo*,
716                                  const char* name,
717                                  int length) {
718     address_to_name_map_.Insert(code->address(), name, length);
719   }
720 
721   NameMap address_to_name_map_;
722   Isolate* isolate_;
723 };
724 
725 
Deserializer(SnapshotByteSource * source)726 Deserializer::Deserializer(SnapshotByteSource* source)
727     : isolate_(NULL),
728       source_(source),
729       external_reference_decoder_(NULL) {
730   for (int i = 0; i < LAST_SPACE + 1; i++) {
731     reservations_[i] = kUninitializedReservation;
732   }
733 }
734 
735 
FlushICacheForNewCodeObjects()736 void Deserializer::FlushICacheForNewCodeObjects() {
737   PageIterator it(isolate_->heap()->code_space());
738   while (it.has_next()) {
739     Page* p = it.next();
740     CPU::FlushICache(p->area_start(), p->area_end() - p->area_start());
741   }
742 }
743 
744 
Deserialize(Isolate * isolate)745 void Deserializer::Deserialize(Isolate* isolate) {
746   isolate_ = isolate;
747   ASSERT(isolate_ != NULL);
748   isolate_->heap()->ReserveSpace(reservations_, &high_water_[0]);
749   // No active threads.
750   ASSERT_EQ(NULL, isolate_->thread_manager()->FirstThreadStateInUse());
751   // No active handles.
752   ASSERT(isolate_->handle_scope_implementer()->blocks()->is_empty());
753   ASSERT_EQ(NULL, external_reference_decoder_);
754   external_reference_decoder_ = new ExternalReferenceDecoder(isolate);
755   isolate_->heap()->IterateSmiRoots(this);
756   isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
757   isolate_->heap()->RepairFreeListsAfterBoot();
758   isolate_->heap()->IterateWeakRoots(this, VISIT_ALL);
759 
760   isolate_->heap()->set_native_contexts_list(
761       isolate_->heap()->undefined_value());
762   isolate_->heap()->set_array_buffers_list(
763       isolate_->heap()->undefined_value());
764 
765   // The allocation site list is build during root iteration, but if no sites
766   // were encountered then it needs to be initialized to undefined.
767   if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
768     isolate_->heap()->set_allocation_sites_list(
769         isolate_->heap()->undefined_value());
770   }
771 
772   isolate_->heap()->InitializeWeakObjectToCodeTable();
773 
774   // Update data pointers to the external strings containing natives sources.
775   for (int i = 0; i < Natives::GetBuiltinsCount(); i++) {
776     Object* source = isolate_->heap()->natives_source_cache()->get(i);
777     if (!source->IsUndefined()) {
778       ExternalAsciiString::cast(source)->update_data_cache();
779     }
780   }
781 
782   FlushICacheForNewCodeObjects();
783 
784   // Issue code events for newly deserialized code objects.
785   LOG_CODE_EVENT(isolate_, LogCodeObjects());
786   LOG_CODE_EVENT(isolate_, LogCompiledFunctions());
787 }
788 
789 
DeserializePartial(Isolate * isolate,Object ** root)790 void Deserializer::DeserializePartial(Isolate* isolate, Object** root) {
791   isolate_ = isolate;
792   for (int i = NEW_SPACE; i < kNumberOfSpaces; i++) {
793     ASSERT(reservations_[i] != kUninitializedReservation);
794   }
795   isolate_->heap()->ReserveSpace(reservations_, &high_water_[0]);
796   if (external_reference_decoder_ == NULL) {
797     external_reference_decoder_ = new ExternalReferenceDecoder(isolate);
798   }
799 
800   // Keep track of the code space start and end pointers in case new
801   // code objects were unserialized
802   OldSpace* code_space = isolate_->heap()->code_space();
803   Address start_address = code_space->top();
804   VisitPointer(root);
805 
806   // There's no code deserialized here. If this assert fires
807   // then that's changed and logging should be added to notify
808   // the profiler et al of the new code.
809   CHECK_EQ(start_address, code_space->top());
810 }
811 
812 
~Deserializer()813 Deserializer::~Deserializer() {
814   // TODO(svenpanne) Re-enable this assertion when v8 initialization is fixed.
815   // ASSERT(source_->AtEOF());
816   if (external_reference_decoder_) {
817     delete external_reference_decoder_;
818     external_reference_decoder_ = NULL;
819   }
820 }
821 
822 
823 // This is called on the roots.  It is the driver of the deserialization
824 // process.  It is also called on the body of each function.
VisitPointers(Object ** start,Object ** end)825 void Deserializer::VisitPointers(Object** start, Object** end) {
826   // The space must be new space.  Any other space would cause ReadChunk to try
827   // to update the remembered using NULL as the address.
828   ReadChunk(start, end, NEW_SPACE, NULL);
829 }
830 
831 
RelinkAllocationSite(AllocationSite * site)832 void Deserializer::RelinkAllocationSite(AllocationSite* site) {
833   if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
834     site->set_weak_next(isolate_->heap()->undefined_value());
835   } else {
836     site->set_weak_next(isolate_->heap()->allocation_sites_list());
837   }
838   isolate_->heap()->set_allocation_sites_list(site);
839 }
840 
841 
842 // This routine writes the new object into the pointer provided and then
843 // returns true if the new object was in young space and false otherwise.
844 // The reason for this strange interface is that otherwise the object is
845 // written very late, which means the FreeSpace map is not set up by the
846 // time we need to use it to mark the space at the end of a page free.
ReadObject(int space_number,Object ** write_back)847 void Deserializer::ReadObject(int space_number,
848                               Object** write_back) {
849   int size = source_->GetInt() << kObjectAlignmentBits;
850   Address address = Allocate(space_number, size);
851   HeapObject* obj = HeapObject::FromAddress(address);
852   *write_back = obj;
853   Object** current = reinterpret_cast<Object**>(address);
854   Object** limit = current + (size >> kPointerSizeLog2);
855   if (FLAG_log_snapshot_positions) {
856     LOG(isolate_, SnapshotPositionEvent(address, source_->position()));
857   }
858   ReadChunk(current, limit, space_number, address);
859 
860   // TODO(mvstanton): consider treating the heap()->allocation_sites_list()
861   // as a (weak) root. If this root is relocated correctly,
862   // RelinkAllocationSite() isn't necessary.
863   if (obj->IsAllocationSite()) {
864     RelinkAllocationSite(AllocationSite::cast(obj));
865   }
866 
867 #ifdef DEBUG
868   bool is_codespace = (space_number == CODE_SPACE);
869   ASSERT(obj->IsCode() == is_codespace);
870 #endif
871 }
872 
ReadChunk(Object ** current,Object ** limit,int source_space,Address current_object_address)873 void Deserializer::ReadChunk(Object** current,
874                              Object** limit,
875                              int source_space,
876                              Address current_object_address) {
877   Isolate* const isolate = isolate_;
878   // Write barrier support costs around 1% in startup time.  In fact there
879   // are no new space objects in current boot snapshots, so it's not needed,
880   // but that may change.
881   bool write_barrier_needed = (current_object_address != NULL &&
882                                source_space != NEW_SPACE &&
883                                source_space != CELL_SPACE &&
884                                source_space != PROPERTY_CELL_SPACE &&
885                                source_space != CODE_SPACE &&
886                                source_space != OLD_DATA_SPACE);
887   while (current < limit) {
888     int data = source_->Get();
889     switch (data) {
890 #define CASE_STATEMENT(where, how, within, space_number)                       \
891       case where + how + within + space_number:                                \
892       ASSERT((where & ~kPointedToMask) == 0);                                  \
893       ASSERT((how & ~kHowToCodeMask) == 0);                                    \
894       ASSERT((within & ~kWhereToPointMask) == 0);                              \
895       ASSERT((space_number & ~kSpaceMask) == 0);
896 
897 #define CASE_BODY(where, how, within, space_number_if_any)                     \
898       {                                                                        \
899         bool emit_write_barrier = false;                                       \
900         bool current_was_incremented = false;                                  \
901         int space_number =  space_number_if_any == kAnyOldSpace ?              \
902                             (data & kSpaceMask) : space_number_if_any;         \
903         if (where == kNewObject && how == kPlain && within == kStartOfObject) {\
904           ReadObject(space_number, current);                                   \
905           emit_write_barrier = (space_number == NEW_SPACE);                    \
906         } else {                                                               \
907           Object* new_object = NULL;  /* May not be a real Object pointer. */  \
908           if (where == kNewObject) {                                           \
909             ReadObject(space_number, &new_object);                             \
910           } else if (where == kRootArray) {                                    \
911             int root_id = source_->GetInt();                                   \
912             new_object = isolate->heap()->roots_array_start()[root_id];        \
913             emit_write_barrier = isolate->heap()->InNewSpace(new_object);      \
914           } else if (where == kPartialSnapshotCache) {                         \
915             int cache_index = source_->GetInt();                               \
916             new_object = isolate->serialize_partial_snapshot_cache()           \
917                 [cache_index];                                                 \
918             emit_write_barrier = isolate->heap()->InNewSpace(new_object);      \
919           } else if (where == kExternalReference) {                            \
920             int skip = source_->GetInt();                                      \
921             current = reinterpret_cast<Object**>(reinterpret_cast<Address>(    \
922                 current) + skip);                                              \
923             int reference_id = source_->GetInt();                              \
924             Address address = external_reference_decoder_->                    \
925                 Decode(reference_id);                                          \
926             new_object = reinterpret_cast<Object*>(address);                   \
927           } else if (where == kBackref) {                                      \
928             emit_write_barrier = (space_number == NEW_SPACE);                  \
929             new_object = GetAddressFromEnd(data & kSpaceMask);                 \
930           } else {                                                             \
931             ASSERT(where == kBackrefWithSkip);                                 \
932             int skip = source_->GetInt();                                      \
933             current = reinterpret_cast<Object**>(                              \
934                 reinterpret_cast<Address>(current) + skip);                    \
935             emit_write_barrier = (space_number == NEW_SPACE);                  \
936             new_object = GetAddressFromEnd(data & kSpaceMask);                 \
937           }                                                                    \
938           if (within == kInnerPointer) {                                       \
939             if (space_number != CODE_SPACE || new_object->IsCode()) {          \
940               Code* new_code_object = reinterpret_cast<Code*>(new_object);     \
941               new_object = reinterpret_cast<Object*>(                          \
942                   new_code_object->instruction_start());                       \
943             } else {                                                           \
944               ASSERT(space_number == CODE_SPACE);                              \
945               Cell* cell = Cell::cast(new_object);                             \
946               new_object = reinterpret_cast<Object*>(                          \
947                   cell->ValueAddress());                                       \
948             }                                                                  \
949           }                                                                    \
950           if (how == kFromCode) {                                              \
951             Address location_of_branch_data =                                  \
952                 reinterpret_cast<Address>(current);                            \
953             Assembler::deserialization_set_special_target_at(                  \
954                 location_of_branch_data,                                       \
955                 Code::cast(HeapObject::FromAddress(current_object_address)),   \
956                 reinterpret_cast<Address>(new_object));                        \
957             location_of_branch_data += Assembler::kSpecialTargetSize;          \
958             current = reinterpret_cast<Object**>(location_of_branch_data);     \
959             current_was_incremented = true;                                    \
960           } else {                                                             \
961             *current = new_object;                                             \
962           }                                                                    \
963         }                                                                      \
964         if (emit_write_barrier && write_barrier_needed) {                      \
965           Address current_address = reinterpret_cast<Address>(current);        \
966           isolate->heap()->RecordWrite(                                        \
967               current_object_address,                                          \
968               static_cast<int>(current_address - current_object_address));     \
969         }                                                                      \
970         if (!current_was_incremented) {                                        \
971           current++;                                                           \
972         }                                                                      \
973         break;                                                                 \
974       }                                                                        \
975 
976 // This generates a case and a body for the new space (which has to do extra
977 // write barrier handling) and handles the other spaces with 8 fall-through
978 // cases and one body.
979 #define ALL_SPACES(where, how, within)                                         \
980   CASE_STATEMENT(where, how, within, NEW_SPACE)                                \
981   CASE_BODY(where, how, within, NEW_SPACE)                                     \
982   CASE_STATEMENT(where, how, within, OLD_DATA_SPACE)                           \
983   CASE_STATEMENT(where, how, within, OLD_POINTER_SPACE)                        \
984   CASE_STATEMENT(where, how, within, CODE_SPACE)                               \
985   CASE_STATEMENT(where, how, within, CELL_SPACE)                               \
986   CASE_STATEMENT(where, how, within, PROPERTY_CELL_SPACE)                      \
987   CASE_STATEMENT(where, how, within, MAP_SPACE)                                \
988   CASE_BODY(where, how, within, kAnyOldSpace)
989 
990 #define FOUR_CASES(byte_code)             \
991   case byte_code:                         \
992   case byte_code + 1:                     \
993   case byte_code + 2:                     \
994   case byte_code + 3:
995 
996 #define SIXTEEN_CASES(byte_code)          \
997   FOUR_CASES(byte_code)                   \
998   FOUR_CASES(byte_code + 4)               \
999   FOUR_CASES(byte_code + 8)               \
1000   FOUR_CASES(byte_code + 12)
1001 
1002 #define COMMON_RAW_LENGTHS(f)        \
1003   f(1)  \
1004   f(2)  \
1005   f(3)  \
1006   f(4)  \
1007   f(5)  \
1008   f(6)  \
1009   f(7)  \
1010   f(8)  \
1011   f(9)  \
1012   f(10) \
1013   f(11) \
1014   f(12) \
1015   f(13) \
1016   f(14) \
1017   f(15) \
1018   f(16) \
1019   f(17) \
1020   f(18) \
1021   f(19) \
1022   f(20) \
1023   f(21) \
1024   f(22) \
1025   f(23) \
1026   f(24) \
1027   f(25) \
1028   f(26) \
1029   f(27) \
1030   f(28) \
1031   f(29) \
1032   f(30) \
1033   f(31)
1034 
1035       // We generate 15 cases and bodies that process special tags that combine
1036       // the raw data tag and the length into one byte.
1037 #define RAW_CASE(index)                                                      \
1038       case kRawData + index: {                                               \
1039         byte* raw_data_out = reinterpret_cast<byte*>(current);               \
1040         source_->CopyRaw(raw_data_out, index * kPointerSize);                \
1041         current =                                                            \
1042             reinterpret_cast<Object**>(raw_data_out + index * kPointerSize); \
1043         break;                                                               \
1044       }
1045       COMMON_RAW_LENGTHS(RAW_CASE)
1046 #undef RAW_CASE
1047 
1048       // Deserialize a chunk of raw data that doesn't have one of the popular
1049       // lengths.
1050       case kRawData: {
1051         int size = source_->GetInt();
1052         byte* raw_data_out = reinterpret_cast<byte*>(current);
1053         source_->CopyRaw(raw_data_out, size);
1054         break;
1055       }
1056 
1057       SIXTEEN_CASES(kRootArrayConstants + kNoSkipDistance)
1058       SIXTEEN_CASES(kRootArrayConstants + kNoSkipDistance + 16) {
1059         int root_id = RootArrayConstantFromByteCode(data);
1060         Object* object = isolate->heap()->roots_array_start()[root_id];
1061         ASSERT(!isolate->heap()->InNewSpace(object));
1062         *current++ = object;
1063         break;
1064       }
1065 
1066       SIXTEEN_CASES(kRootArrayConstants + kHasSkipDistance)
1067       SIXTEEN_CASES(kRootArrayConstants + kHasSkipDistance + 16) {
1068         int root_id = RootArrayConstantFromByteCode(data);
1069         int skip = source_->GetInt();
1070         current = reinterpret_cast<Object**>(
1071             reinterpret_cast<intptr_t>(current) + skip);
1072         Object* object = isolate->heap()->roots_array_start()[root_id];
1073         ASSERT(!isolate->heap()->InNewSpace(object));
1074         *current++ = object;
1075         break;
1076       }
1077 
1078       case kRepeat: {
1079         int repeats = source_->GetInt();
1080         Object* object = current[-1];
1081         ASSERT(!isolate->heap()->InNewSpace(object));
1082         for (int i = 0; i < repeats; i++) current[i] = object;
1083         current += repeats;
1084         break;
1085       }
1086 
1087       STATIC_ASSERT(kRootArrayNumberOfConstantEncodings ==
1088                     Heap::kOldSpaceRoots);
1089       STATIC_ASSERT(kMaxRepeats == 13);
1090       case kConstantRepeat:
1091       FOUR_CASES(kConstantRepeat + 1)
1092       FOUR_CASES(kConstantRepeat + 5)
1093       FOUR_CASES(kConstantRepeat + 9) {
1094         int repeats = RepeatsForCode(data);
1095         Object* object = current[-1];
1096         ASSERT(!isolate->heap()->InNewSpace(object));
1097         for (int i = 0; i < repeats; i++) current[i] = object;
1098         current += repeats;
1099         break;
1100       }
1101 
1102       // Deserialize a new object and write a pointer to it to the current
1103       // object.
1104       ALL_SPACES(kNewObject, kPlain, kStartOfObject)
1105       // Support for direct instruction pointers in functions.  It's an inner
1106       // pointer because it points at the entry point, not at the start of the
1107       // code object.
1108       CASE_STATEMENT(kNewObject, kPlain, kInnerPointer, CODE_SPACE)
1109       CASE_BODY(kNewObject, kPlain, kInnerPointer, CODE_SPACE)
1110       // Deserialize a new code object and write a pointer to its first
1111       // instruction to the current code object.
1112       ALL_SPACES(kNewObject, kFromCode, kInnerPointer)
1113       // Find a recently deserialized object using its offset from the current
1114       // allocation point and write a pointer to it to the current object.
1115       ALL_SPACES(kBackref, kPlain, kStartOfObject)
1116       ALL_SPACES(kBackrefWithSkip, kPlain, kStartOfObject)
1117 #if defined(V8_TARGET_ARCH_MIPS) || V8_OOL_CONSTANT_POOL
1118       // Deserialize a new object from pointer found in code and write
1119       // a pointer to it to the current object. Required only for MIPS or ARM
1120       // with ool constant pool, and omitted on the other architectures because
1121       // it is fully unrolled and would cause bloat.
1122       ALL_SPACES(kNewObject, kFromCode, kStartOfObject)
1123       // Find a recently deserialized code object using its offset from the
1124       // current allocation point and write a pointer to it to the current
1125       // object. Required only for MIPS or ARM with ool constant pool.
1126       ALL_SPACES(kBackref, kFromCode, kStartOfObject)
1127       ALL_SPACES(kBackrefWithSkip, kFromCode, kStartOfObject)
1128 #endif
1129       // Find a recently deserialized code object using its offset from the
1130       // current allocation point and write a pointer to its first instruction
1131       // to the current code object or the instruction pointer in a function
1132       // object.
1133       ALL_SPACES(kBackref, kFromCode, kInnerPointer)
1134       ALL_SPACES(kBackrefWithSkip, kFromCode, kInnerPointer)
1135       ALL_SPACES(kBackref, kPlain, kInnerPointer)
1136       ALL_SPACES(kBackrefWithSkip, kPlain, kInnerPointer)
1137       // Find an object in the roots array and write a pointer to it to the
1138       // current object.
1139       CASE_STATEMENT(kRootArray, kPlain, kStartOfObject, 0)
1140       CASE_BODY(kRootArray, kPlain, kStartOfObject, 0)
1141       // Find an object in the partial snapshots cache and write a pointer to it
1142       // to the current object.
1143       CASE_STATEMENT(kPartialSnapshotCache, kPlain, kStartOfObject, 0)
1144       CASE_BODY(kPartialSnapshotCache,
1145                 kPlain,
1146                 kStartOfObject,
1147                 0)
1148       // Find an code entry in the partial snapshots cache and
1149       // write a pointer to it to the current object.
1150       CASE_STATEMENT(kPartialSnapshotCache, kPlain, kInnerPointer, 0)
1151       CASE_BODY(kPartialSnapshotCache,
1152                 kPlain,
1153                 kInnerPointer,
1154                 0)
1155       // Find an external reference and write a pointer to it to the current
1156       // object.
1157       CASE_STATEMENT(kExternalReference, kPlain, kStartOfObject, 0)
1158       CASE_BODY(kExternalReference,
1159                 kPlain,
1160                 kStartOfObject,
1161                 0)
1162       // Find an external reference and write a pointer to it in the current
1163       // code object.
1164       CASE_STATEMENT(kExternalReference, kFromCode, kStartOfObject, 0)
1165       CASE_BODY(kExternalReference,
1166                 kFromCode,
1167                 kStartOfObject,
1168                 0)
1169 
1170 #undef CASE_STATEMENT
1171 #undef CASE_BODY
1172 #undef ALL_SPACES
1173 
1174       case kSkip: {
1175         int size = source_->GetInt();
1176         current = reinterpret_cast<Object**>(
1177             reinterpret_cast<intptr_t>(current) + size);
1178         break;
1179       }
1180 
1181       case kNativesStringResource: {
1182         int index = source_->Get();
1183         Vector<const char> source_vector = Natives::GetRawScriptSource(index);
1184         NativesExternalStringResource* resource =
1185             new NativesExternalStringResource(isolate->bootstrapper(),
1186                                               source_vector.start(),
1187                                               source_vector.length());
1188         *current++ = reinterpret_cast<Object*>(resource);
1189         break;
1190       }
1191 
1192       case kSynchronize: {
1193         // If we get here then that indicates that you have a mismatch between
1194         // the number of GC roots when serializing and deserializing.
1195         UNREACHABLE();
1196       }
1197 
1198       default:
1199         UNREACHABLE();
1200     }
1201   }
1202   ASSERT_EQ(limit, current);
1203 }
1204 
1205 
PutInt(uintptr_t integer,const char * description)1206 void SnapshotByteSink::PutInt(uintptr_t integer, const char* description) {
1207   ASSERT(integer < 1 << 22);
1208   integer <<= 2;
1209   int bytes = 1;
1210   if (integer > 0xff) bytes = 2;
1211   if (integer > 0xffff) bytes = 3;
1212   integer |= bytes;
1213   Put(static_cast<int>(integer & 0xff), "IntPart1");
1214   if (bytes > 1) Put(static_cast<int>((integer >> 8) & 0xff), "IntPart2");
1215   if (bytes > 2) Put(static_cast<int>((integer >> 16) & 0xff), "IntPart3");
1216 }
1217 
1218 
Serializer(Isolate * isolate,SnapshotByteSink * sink)1219 Serializer::Serializer(Isolate* isolate, SnapshotByteSink* sink)
1220     : isolate_(isolate),
1221       sink_(sink),
1222       external_reference_encoder_(new ExternalReferenceEncoder(isolate)),
1223       root_index_wave_front_(0),
1224       code_address_map_(NULL) {
1225   // The serializer is meant to be used only to generate initial heap images
1226   // from a context in which there is only one isolate.
1227   for (int i = 0; i <= LAST_SPACE; i++) {
1228     fullness_[i] = 0;
1229   }
1230 }
1231 
1232 
~Serializer()1233 Serializer::~Serializer() {
1234   delete external_reference_encoder_;
1235   if (code_address_map_ != NULL) delete code_address_map_;
1236 }
1237 
1238 
SerializeStrongReferences()1239 void StartupSerializer::SerializeStrongReferences() {
1240   Isolate* isolate = this->isolate();
1241   // No active threads.
1242   CHECK_EQ(NULL, isolate->thread_manager()->FirstThreadStateInUse());
1243   // No active or weak handles.
1244   CHECK(isolate->handle_scope_implementer()->blocks()->is_empty());
1245   CHECK_EQ(0, isolate->global_handles()->NumberOfWeakHandles());
1246   CHECK_EQ(0, isolate->eternal_handles()->NumberOfHandles());
1247   // We don't support serializing installed extensions.
1248   CHECK(!isolate->has_installed_extensions());
1249   isolate->heap()->IterateSmiRoots(this);
1250   isolate->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
1251 }
1252 
1253 
Serialize(Object ** object)1254 void PartialSerializer::Serialize(Object** object) {
1255   this->VisitPointer(object);
1256   Pad();
1257 }
1258 
1259 
ShouldBeSkipped(Object ** current)1260 bool Serializer::ShouldBeSkipped(Object** current) {
1261   Object** roots = isolate()->heap()->roots_array_start();
1262   return current == &roots[Heap::kStoreBufferTopRootIndex]
1263       || current == &roots[Heap::kStackLimitRootIndex]
1264       || current == &roots[Heap::kRealStackLimitRootIndex];
1265 }
1266 
1267 
VisitPointers(Object ** start,Object ** end)1268 void Serializer::VisitPointers(Object** start, Object** end) {
1269   Isolate* isolate = this->isolate();;
1270 
1271   for (Object** current = start; current < end; current++) {
1272     if (start == isolate->heap()->roots_array_start()) {
1273       root_index_wave_front_ =
1274           Max(root_index_wave_front_, static_cast<intptr_t>(current - start));
1275     }
1276     if (ShouldBeSkipped(current)) {
1277       sink_->Put(kSkip, "Skip");
1278       sink_->PutInt(kPointerSize, "SkipOneWord");
1279     } else if ((*current)->IsSmi()) {
1280       sink_->Put(kRawData + 1, "Smi");
1281       for (int i = 0; i < kPointerSize; i++) {
1282         sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
1283       }
1284     } else {
1285       SerializeObject(*current, kPlain, kStartOfObject, 0);
1286     }
1287   }
1288 }
1289 
1290 
1291 // This ensures that the partial snapshot cache keeps things alive during GC and
1292 // tracks their movement.  When it is called during serialization of the startup
1293 // snapshot nothing happens.  When the partial (context) snapshot is created,
1294 // this array is populated with the pointers that the partial snapshot will
1295 // need. As that happens we emit serialized objects to the startup snapshot
1296 // that correspond to the elements of this cache array.  On deserialization we
1297 // therefore need to visit the cache array.  This fills it up with pointers to
1298 // deserialized objects.
Iterate(Isolate * isolate,ObjectVisitor * visitor)1299 void SerializerDeserializer::Iterate(Isolate* isolate,
1300                                      ObjectVisitor* visitor) {
1301   if (isolate->serializer_enabled()) return;
1302   for (int i = 0; ; i++) {
1303     if (isolate->serialize_partial_snapshot_cache_length() <= i) {
1304       // Extend the array ready to get a value from the visitor when
1305       // deserializing.
1306       isolate->PushToPartialSnapshotCache(Smi::FromInt(0));
1307     }
1308     Object** cache = isolate->serialize_partial_snapshot_cache();
1309     visitor->VisitPointers(&cache[i], &cache[i + 1]);
1310     // Sentinel is the undefined object, which is a root so it will not normally
1311     // be found in the cache.
1312     if (cache[i] == isolate->heap()->undefined_value()) {
1313       break;
1314     }
1315   }
1316 }
1317 
1318 
PartialSnapshotCacheIndex(HeapObject * heap_object)1319 int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) {
1320   Isolate* isolate = this->isolate();
1321 
1322   for (int i = 0;
1323        i < isolate->serialize_partial_snapshot_cache_length();
1324        i++) {
1325     Object* entry = isolate->serialize_partial_snapshot_cache()[i];
1326     if (entry == heap_object) return i;
1327   }
1328 
1329   // We didn't find the object in the cache.  So we add it to the cache and
1330   // then visit the pointer so that it becomes part of the startup snapshot
1331   // and we can refer to it from the partial snapshot.
1332   int length = isolate->serialize_partial_snapshot_cache_length();
1333   isolate->PushToPartialSnapshotCache(heap_object);
1334   startup_serializer_->VisitPointer(reinterpret_cast<Object**>(&heap_object));
1335   // We don't recurse from the startup snapshot generator into the partial
1336   // snapshot generator.
1337   ASSERT(length == isolate->serialize_partial_snapshot_cache_length() - 1);
1338   return length;
1339 }
1340 
1341 
RootIndex(HeapObject * heap_object,HowToCode from)1342 int Serializer::RootIndex(HeapObject* heap_object, HowToCode from) {
1343   Heap* heap = isolate()->heap();
1344   if (heap->InNewSpace(heap_object)) return kInvalidRootIndex;
1345   for (int i = 0; i < root_index_wave_front_; i++) {
1346     Object* root = heap->roots_array_start()[i];
1347     if (!root->IsSmi() && root == heap_object) {
1348 #if defined(V8_TARGET_ARCH_MIPS) || V8_OOL_CONSTANT_POOL
1349       if (from == kFromCode) {
1350         // In order to avoid code bloat in the deserializer we don't have
1351         // support for the encoding that specifies a particular root should
1352         // be written from within code.
1353         return kInvalidRootIndex;
1354       }
1355 #endif
1356       return i;
1357     }
1358   }
1359   return kInvalidRootIndex;
1360 }
1361 
1362 
1363 // Encode the location of an already deserialized object in order to write its
1364 // location into a later object.  We can encode the location as an offset from
1365 // the start of the deserialized objects or as an offset backwards from the
1366 // current allocation pointer.
SerializeReferenceToPreviousObject(int space,int address,HowToCode how_to_code,WhereToPoint where_to_point,int skip)1367 void Serializer::SerializeReferenceToPreviousObject(
1368     int space,
1369     int address,
1370     HowToCode how_to_code,
1371     WhereToPoint where_to_point,
1372     int skip) {
1373   int offset = CurrentAllocationAddress(space) - address;
1374   // Shift out the bits that are always 0.
1375   offset >>= kObjectAlignmentBits;
1376   if (skip == 0) {
1377     sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRefSer");
1378   } else {
1379     sink_->Put(kBackrefWithSkip + how_to_code + where_to_point + space,
1380                "BackRefSerWithSkip");
1381     sink_->PutInt(skip, "BackRefSkipDistance");
1382   }
1383   sink_->PutInt(offset, "offset");
1384 }
1385 
1386 
SerializeObject(Object * o,HowToCode how_to_code,WhereToPoint where_to_point,int skip)1387 void StartupSerializer::SerializeObject(
1388     Object* o,
1389     HowToCode how_to_code,
1390     WhereToPoint where_to_point,
1391     int skip) {
1392   CHECK(o->IsHeapObject());
1393   HeapObject* heap_object = HeapObject::cast(o);
1394 
1395   int root_index;
1396   if ((root_index = RootIndex(heap_object, how_to_code)) != kInvalidRootIndex) {
1397     PutRoot(root_index, heap_object, how_to_code, where_to_point, skip);
1398     return;
1399   }
1400 
1401   if (address_mapper_.IsMapped(heap_object)) {
1402     int space = SpaceOfObject(heap_object);
1403     int address = address_mapper_.MappedTo(heap_object);
1404     SerializeReferenceToPreviousObject(space,
1405                                        address,
1406                                        how_to_code,
1407                                        where_to_point,
1408                                        skip);
1409   } else {
1410     if (skip != 0) {
1411       sink_->Put(kSkip, "FlushPendingSkip");
1412       sink_->PutInt(skip, "SkipDistance");
1413     }
1414 
1415     // Object has not yet been serialized.  Serialize it here.
1416     ObjectSerializer object_serializer(this,
1417                                        heap_object,
1418                                        sink_,
1419                                        how_to_code,
1420                                        where_to_point);
1421     object_serializer.Serialize();
1422   }
1423 }
1424 
1425 
SerializeWeakReferences()1426 void StartupSerializer::SerializeWeakReferences() {
1427   // This phase comes right after the partial serialization (of the snapshot).
1428   // After we have done the partial serialization the partial snapshot cache
1429   // will contain some references needed to decode the partial snapshot.  We
1430   // add one entry with 'undefined' which is the sentinel that the deserializer
1431   // uses to know it is done deserializing the array.
1432   Object* undefined = isolate()->heap()->undefined_value();
1433   VisitPointer(&undefined);
1434   isolate()->heap()->IterateWeakRoots(this, VISIT_ALL);
1435   Pad();
1436 }
1437 
1438 
PutRoot(int root_index,HeapObject * object,SerializerDeserializer::HowToCode how_to_code,SerializerDeserializer::WhereToPoint where_to_point,int skip)1439 void Serializer::PutRoot(int root_index,
1440                          HeapObject* object,
1441                          SerializerDeserializer::HowToCode how_to_code,
1442                          SerializerDeserializer::WhereToPoint where_to_point,
1443                          int skip) {
1444   if (how_to_code == kPlain &&
1445       where_to_point == kStartOfObject &&
1446       root_index < kRootArrayNumberOfConstantEncodings &&
1447       !isolate()->heap()->InNewSpace(object)) {
1448     if (skip == 0) {
1449       sink_->Put(kRootArrayConstants + kNoSkipDistance + root_index,
1450                  "RootConstant");
1451     } else {
1452       sink_->Put(kRootArrayConstants + kHasSkipDistance + root_index,
1453                  "RootConstant");
1454       sink_->PutInt(skip, "SkipInPutRoot");
1455     }
1456   } else {
1457     if (skip != 0) {
1458       sink_->Put(kSkip, "SkipFromPutRoot");
1459       sink_->PutInt(skip, "SkipFromPutRootDistance");
1460     }
1461     sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization");
1462     sink_->PutInt(root_index, "root_index");
1463   }
1464 }
1465 
1466 
SerializeObject(Object * o,HowToCode how_to_code,WhereToPoint where_to_point,int skip)1467 void PartialSerializer::SerializeObject(
1468     Object* o,
1469     HowToCode how_to_code,
1470     WhereToPoint where_to_point,
1471     int skip) {
1472   CHECK(o->IsHeapObject());
1473   HeapObject* heap_object = HeapObject::cast(o);
1474 
1475   if (heap_object->IsMap()) {
1476     // The code-caches link to context-specific code objects, which
1477     // the startup and context serializes cannot currently handle.
1478     ASSERT(Map::cast(heap_object)->code_cache() ==
1479            heap_object->GetHeap()->empty_fixed_array());
1480   }
1481 
1482   int root_index;
1483   if ((root_index = RootIndex(heap_object, how_to_code)) != kInvalidRootIndex) {
1484     PutRoot(root_index, heap_object, how_to_code, where_to_point, skip);
1485     return;
1486   }
1487 
1488   if (ShouldBeInThePartialSnapshotCache(heap_object)) {
1489     if (skip != 0) {
1490       sink_->Put(kSkip, "SkipFromSerializeObject");
1491       sink_->PutInt(skip, "SkipDistanceFromSerializeObject");
1492     }
1493 
1494     int cache_index = PartialSnapshotCacheIndex(heap_object);
1495     sink_->Put(kPartialSnapshotCache + how_to_code + where_to_point,
1496                "PartialSnapshotCache");
1497     sink_->PutInt(cache_index, "partial_snapshot_cache_index");
1498     return;
1499   }
1500 
1501   // Pointers from the partial snapshot to the objects in the startup snapshot
1502   // should go through the root array or through the partial snapshot cache.
1503   // If this is not the case you may have to add something to the root array.
1504   ASSERT(!startup_serializer_->address_mapper()->IsMapped(heap_object));
1505   // All the internalized strings that the partial snapshot needs should be
1506   // either in the root table or in the partial snapshot cache.
1507   ASSERT(!heap_object->IsInternalizedString());
1508 
1509   if (address_mapper_.IsMapped(heap_object)) {
1510     int space = SpaceOfObject(heap_object);
1511     int address = address_mapper_.MappedTo(heap_object);
1512     SerializeReferenceToPreviousObject(space,
1513                                        address,
1514                                        how_to_code,
1515                                        where_to_point,
1516                                        skip);
1517   } else {
1518     if (skip != 0) {
1519       sink_->Put(kSkip, "SkipFromSerializeObject");
1520       sink_->PutInt(skip, "SkipDistanceFromSerializeObject");
1521     }
1522     // Object has not yet been serialized.  Serialize it here.
1523     ObjectSerializer serializer(this,
1524                                 heap_object,
1525                                 sink_,
1526                                 how_to_code,
1527                                 where_to_point);
1528     serializer.Serialize();
1529   }
1530 }
1531 
1532 
Serialize()1533 void Serializer::ObjectSerializer::Serialize() {
1534   int space = Serializer::SpaceOfObject(object_);
1535   int size = object_->Size();
1536 
1537   sink_->Put(kNewObject + reference_representation_ + space,
1538              "ObjectSerialization");
1539   sink_->PutInt(size >> kObjectAlignmentBits, "Size in words");
1540 
1541   if (serializer_->code_address_map_) {
1542     const char* code_name =
1543         serializer_->code_address_map_->Lookup(object_->address());
1544     LOG(serializer_->isolate_,
1545         CodeNameEvent(object_->address(), sink_->Position(), code_name));
1546     LOG(serializer_->isolate_,
1547         SnapshotPositionEvent(object_->address(), sink_->Position()));
1548   }
1549 
1550   // Mark this object as already serialized.
1551   int offset = serializer_->Allocate(space, size);
1552   serializer_->address_mapper()->AddMapping(object_, offset);
1553 
1554   // Serialize the map (first word of the object).
1555   serializer_->SerializeObject(object_->map(), kPlain, kStartOfObject, 0);
1556 
1557   // Serialize the rest of the object.
1558   CHECK_EQ(0, bytes_processed_so_far_);
1559   bytes_processed_so_far_ = kPointerSize;
1560   object_->IterateBody(object_->map()->instance_type(), size, this);
1561   OutputRawData(object_->address() + size);
1562 }
1563 
1564 
VisitPointers(Object ** start,Object ** end)1565 void Serializer::ObjectSerializer::VisitPointers(Object** start,
1566                                                  Object** end) {
1567   Object** current = start;
1568   while (current < end) {
1569     while (current < end && (*current)->IsSmi()) current++;
1570     if (current < end) OutputRawData(reinterpret_cast<Address>(current));
1571 
1572     while (current < end && !(*current)->IsSmi()) {
1573       HeapObject* current_contents = HeapObject::cast(*current);
1574       int root_index = serializer_->RootIndex(current_contents, kPlain);
1575       // Repeats are not subject to the write barrier so there are only some
1576       // objects that can be used in a repeat encoding.  These are the early
1577       // ones in the root array that are never in new space.
1578       if (current != start &&
1579           root_index != kInvalidRootIndex &&
1580           root_index < kRootArrayNumberOfConstantEncodings &&
1581           current_contents == current[-1]) {
1582         ASSERT(!serializer_->isolate()->heap()->InNewSpace(current_contents));
1583         int repeat_count = 1;
1584         while (current < end - 1 && current[repeat_count] == current_contents) {
1585           repeat_count++;
1586         }
1587         current += repeat_count;
1588         bytes_processed_so_far_ += repeat_count * kPointerSize;
1589         if (repeat_count > kMaxRepeats) {
1590           sink_->Put(kRepeat, "SerializeRepeats");
1591           sink_->PutInt(repeat_count, "SerializeRepeats");
1592         } else {
1593           sink_->Put(CodeForRepeats(repeat_count), "SerializeRepeats");
1594         }
1595       } else {
1596         serializer_->SerializeObject(
1597                 current_contents, kPlain, kStartOfObject, 0);
1598         bytes_processed_so_far_ += kPointerSize;
1599         current++;
1600       }
1601     }
1602   }
1603 }
1604 
1605 
VisitEmbeddedPointer(RelocInfo * rinfo)1606 void Serializer::ObjectSerializer::VisitEmbeddedPointer(RelocInfo* rinfo) {
1607   // Out-of-line constant pool entries will be visited by the ConstantPoolArray.
1608   if (FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool()) return;
1609 
1610   int skip = OutputRawData(rinfo->target_address_address(),
1611                            kCanReturnSkipInsteadOfSkipping);
1612   HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
1613   Object* object = rinfo->target_object();
1614   serializer_->SerializeObject(object, how_to_code, kStartOfObject, skip);
1615   bytes_processed_so_far_ += rinfo->target_address_size();
1616 }
1617 
1618 
VisitExternalReference(Address * p)1619 void Serializer::ObjectSerializer::VisitExternalReference(Address* p) {
1620   int skip = OutputRawData(reinterpret_cast<Address>(p),
1621                            kCanReturnSkipInsteadOfSkipping);
1622   sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef");
1623   sink_->PutInt(skip, "SkipB4ExternalRef");
1624   Address target = *p;
1625   sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
1626   bytes_processed_so_far_ += kPointerSize;
1627 }
1628 
1629 
VisitExternalReference(RelocInfo * rinfo)1630 void Serializer::ObjectSerializer::VisitExternalReference(RelocInfo* rinfo) {
1631   int skip = OutputRawData(rinfo->target_address_address(),
1632                            kCanReturnSkipInsteadOfSkipping);
1633   HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
1634   sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
1635   sink_->PutInt(skip, "SkipB4ExternalRef");
1636   Address target = rinfo->target_reference();
1637   sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
1638   bytes_processed_so_far_ += rinfo->target_address_size();
1639 }
1640 
1641 
VisitRuntimeEntry(RelocInfo * rinfo)1642 void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) {
1643   int skip = OutputRawData(rinfo->target_address_address(),
1644                            kCanReturnSkipInsteadOfSkipping);
1645   HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
1646   sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
1647   sink_->PutInt(skip, "SkipB4ExternalRef");
1648   Address target = rinfo->target_address();
1649   sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
1650   bytes_processed_so_far_ += rinfo->target_address_size();
1651 }
1652 
1653 
VisitCodeTarget(RelocInfo * rinfo)1654 void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) {
1655   // Out-of-line constant pool entries will be visited by the ConstantPoolArray.
1656   if (FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool()) return;
1657 
1658   int skip = OutputRawData(rinfo->target_address_address(),
1659                            kCanReturnSkipInsteadOfSkipping);
1660   Code* object = Code::GetCodeFromTargetAddress(rinfo->target_address());
1661   serializer_->SerializeObject(object, kFromCode, kInnerPointer, skip);
1662   bytes_processed_so_far_ += rinfo->target_address_size();
1663 }
1664 
1665 
VisitCodeEntry(Address entry_address)1666 void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) {
1667   int skip = OutputRawData(entry_address, kCanReturnSkipInsteadOfSkipping);
1668   Code* object = Code::cast(Code::GetObjectFromEntryAddress(entry_address));
1669   serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
1670   bytes_processed_so_far_ += kPointerSize;
1671 }
1672 
1673 
VisitCell(RelocInfo * rinfo)1674 void Serializer::ObjectSerializer::VisitCell(RelocInfo* rinfo) {
1675   // Out-of-line constant pool entries will be visited by the ConstantPoolArray.
1676   if (FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool()) return;
1677 
1678   int skip = OutputRawData(rinfo->pc(), kCanReturnSkipInsteadOfSkipping);
1679   Cell* object = Cell::cast(rinfo->target_cell());
1680   serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
1681 }
1682 
1683 
VisitExternalAsciiString(v8::String::ExternalAsciiStringResource ** resource_pointer)1684 void Serializer::ObjectSerializer::VisitExternalAsciiString(
1685     v8::String::ExternalAsciiStringResource** resource_pointer) {
1686   Address references_start = reinterpret_cast<Address>(resource_pointer);
1687   OutputRawData(references_start);
1688   for (int i = 0; i < Natives::GetBuiltinsCount(); i++) {
1689     Object* source =
1690         serializer_->isolate()->heap()->natives_source_cache()->get(i);
1691     if (!source->IsUndefined()) {
1692       ExternalAsciiString* string = ExternalAsciiString::cast(source);
1693       typedef v8::String::ExternalAsciiStringResource Resource;
1694       const Resource* resource = string->resource();
1695       if (resource == *resource_pointer) {
1696         sink_->Put(kNativesStringResource, "NativesStringResource");
1697         sink_->PutSection(i, "NativesStringResourceEnd");
1698         bytes_processed_so_far_ += sizeof(resource);
1699         return;
1700       }
1701     }
1702   }
1703   // One of the strings in the natives cache should match the resource.  We
1704   // can't serialize any other kinds of external strings.
1705   UNREACHABLE();
1706 }
1707 
1708 
CloneCodeObject(HeapObject * code)1709 static Code* CloneCodeObject(HeapObject* code) {
1710   Address copy = new byte[code->Size()];
1711   MemCopy(copy, code->address(), code->Size());
1712   return Code::cast(HeapObject::FromAddress(copy));
1713 }
1714 
1715 
WipeOutRelocations(Code * code)1716 static void WipeOutRelocations(Code* code) {
1717   int mode_mask =
1718       RelocInfo::kCodeTargetMask |
1719       RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
1720       RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) |
1721       RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY);
1722   for (RelocIterator it(code, mode_mask); !it.done(); it.next()) {
1723     if (!(FLAG_enable_ool_constant_pool && it.rinfo()->IsInConstantPool())) {
1724       it.rinfo()->WipeOut();
1725     }
1726   }
1727 }
1728 
1729 
OutputRawData(Address up_to,Serializer::ObjectSerializer::ReturnSkip return_skip)1730 int Serializer::ObjectSerializer::OutputRawData(
1731     Address up_to, Serializer::ObjectSerializer::ReturnSkip return_skip) {
1732   Address object_start = object_->address();
1733   int base = bytes_processed_so_far_;
1734   int up_to_offset = static_cast<int>(up_to - object_start);
1735   int to_skip = up_to_offset - bytes_processed_so_far_;
1736   int bytes_to_output = to_skip;
1737   bytes_processed_so_far_ +=  to_skip;
1738   // This assert will fail if the reloc info gives us the target_address_address
1739   // locations in a non-ascending order.  Luckily that doesn't happen.
1740   ASSERT(to_skip >= 0);
1741   bool outputting_code = false;
1742   if (to_skip != 0 && code_object_ && !code_has_been_output_) {
1743     // Output the code all at once and fix later.
1744     bytes_to_output = object_->Size() + to_skip - bytes_processed_so_far_;
1745     outputting_code = true;
1746     code_has_been_output_ = true;
1747   }
1748   if (bytes_to_output != 0 &&
1749       (!code_object_ || outputting_code)) {
1750 #define RAW_CASE(index)                                                        \
1751     if (!outputting_code && bytes_to_output == index * kPointerSize &&         \
1752         index * kPointerSize == to_skip) {                                     \
1753       sink_->PutSection(kRawData + index, "RawDataFixed");                     \
1754       to_skip = 0;  /* This insn already skips. */                             \
1755     } else  /* NOLINT */
1756     COMMON_RAW_LENGTHS(RAW_CASE)
1757 #undef RAW_CASE
1758     {  /* NOLINT */
1759       // We always end up here if we are outputting the code of a code object.
1760       sink_->Put(kRawData, "RawData");
1761       sink_->PutInt(bytes_to_output, "length");
1762     }
1763 
1764     // To make snapshots reproducible, we need to wipe out all pointers in code.
1765     if (code_object_) {
1766       Code* code = CloneCodeObject(object_);
1767       WipeOutRelocations(code);
1768       // We need to wipe out the header fields *after* wiping out the
1769       // relocations, because some of these fields are needed for the latter.
1770       code->WipeOutHeader();
1771       object_start = code->address();
1772     }
1773 
1774     const char* description = code_object_ ? "Code" : "Byte";
1775     for (int i = 0; i < bytes_to_output; i++) {
1776       sink_->PutSection(object_start[base + i], description);
1777     }
1778     if (code_object_) delete[] object_start;
1779   }
1780   if (to_skip != 0 && return_skip == kIgnoringReturn) {
1781     sink_->Put(kSkip, "Skip");
1782     sink_->PutInt(to_skip, "SkipDistance");
1783     to_skip = 0;
1784   }
1785   return to_skip;
1786 }
1787 
1788 
SpaceOfObject(HeapObject * object)1789 int Serializer::SpaceOfObject(HeapObject* object) {
1790   for (int i = FIRST_SPACE; i <= LAST_SPACE; i++) {
1791     AllocationSpace s = static_cast<AllocationSpace>(i);
1792     if (object->GetHeap()->InSpace(object, s)) {
1793       ASSERT(i < kNumberOfSpaces);
1794       return i;
1795     }
1796   }
1797   UNREACHABLE();
1798   return 0;
1799 }
1800 
1801 
Allocate(int space,int size)1802 int Serializer::Allocate(int space, int size) {
1803   CHECK(space >= 0 && space < kNumberOfSpaces);
1804   int allocation_address = fullness_[space];
1805   fullness_[space] = allocation_address + size;
1806   return allocation_address;
1807 }
1808 
1809 
SpaceAreaSize(int space)1810 int Serializer::SpaceAreaSize(int space) {
1811   if (space == CODE_SPACE) {
1812     return isolate_->memory_allocator()->CodePageAreaSize();
1813   } else {
1814     return Page::kPageSize - Page::kObjectStartOffset;
1815   }
1816 }
1817 
1818 
Pad()1819 void Serializer::Pad() {
1820   // The non-branching GetInt will read up to 3 bytes too far, so we need
1821   // to pad the snapshot to make sure we don't read over the end.
1822   for (unsigned i = 0; i < sizeof(int32_t) - 1; i++) {
1823     sink_->Put(kNop, "Padding");
1824   }
1825 }
1826 
1827 
InitializeCodeAddressMap()1828 void Serializer::InitializeCodeAddressMap() {
1829   isolate_->InitializeLoggingAndCounters();
1830   code_address_map_ = new CodeAddressMap(isolate_);
1831 }
1832 
1833 
AtEOF()1834 bool SnapshotByteSource::AtEOF() {
1835   if (0u + length_ - position_ > 2 * sizeof(uint32_t)) return false;
1836   for (int x = position_; x < length_; x++) {
1837     if (data_[x] != SerializerDeserializer::nop()) return false;
1838   }
1839   return true;
1840 }
1841 
1842 } }  // namespace v8::internal
1843