1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Basic/PrettyStackTrace.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/Sema/LoopHint.h"
22 #include "clang/Sema/SemaDiagnostic.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/IR/CallSite.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/InlineAsm.h"
27 #include "llvm/IR/Intrinsics.h"
28 using namespace clang;
29 using namespace CodeGen;
30
31 //===----------------------------------------------------------------------===//
32 // Statement Emission
33 //===----------------------------------------------------------------------===//
34
EmitStopPoint(const Stmt * S)35 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
36 if (CGDebugInfo *DI = getDebugInfo()) {
37 SourceLocation Loc;
38 Loc = S->getLocStart();
39 DI->EmitLocation(Builder, Loc);
40
41 LastStopPoint = Loc;
42 }
43 }
44
EmitStmt(const Stmt * S)45 void CodeGenFunction::EmitStmt(const Stmt *S) {
46 assert(S && "Null statement?");
47 PGO.setCurrentStmt(S);
48
49 // These statements have their own debug info handling.
50 if (EmitSimpleStmt(S))
51 return;
52
53 // Check if we are generating unreachable code.
54 if (!HaveInsertPoint()) {
55 // If so, and the statement doesn't contain a label, then we do not need to
56 // generate actual code. This is safe because (1) the current point is
57 // unreachable, so we don't need to execute the code, and (2) we've already
58 // handled the statements which update internal data structures (like the
59 // local variable map) which could be used by subsequent statements.
60 if (!ContainsLabel(S)) {
61 // Verify that any decl statements were handled as simple, they may be in
62 // scope of subsequent reachable statements.
63 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
64 return;
65 }
66
67 // Otherwise, make a new block to hold the code.
68 EnsureInsertPoint();
69 }
70
71 // Generate a stoppoint if we are emitting debug info.
72 EmitStopPoint(S);
73
74 switch (S->getStmtClass()) {
75 case Stmt::NoStmtClass:
76 case Stmt::CXXCatchStmtClass:
77 case Stmt::SEHExceptStmtClass:
78 case Stmt::SEHFinallyStmtClass:
79 case Stmt::MSDependentExistsStmtClass:
80 llvm_unreachable("invalid statement class to emit generically");
81 case Stmt::NullStmtClass:
82 case Stmt::CompoundStmtClass:
83 case Stmt::DeclStmtClass:
84 case Stmt::LabelStmtClass:
85 case Stmt::AttributedStmtClass:
86 case Stmt::GotoStmtClass:
87 case Stmt::BreakStmtClass:
88 case Stmt::ContinueStmtClass:
89 case Stmt::DefaultStmtClass:
90 case Stmt::CaseStmtClass:
91 llvm_unreachable("should have emitted these statements as simple");
92
93 #define STMT(Type, Base)
94 #define ABSTRACT_STMT(Op)
95 #define EXPR(Type, Base) \
96 case Stmt::Type##Class:
97 #include "clang/AST/StmtNodes.inc"
98 {
99 // Remember the block we came in on.
100 llvm::BasicBlock *incoming = Builder.GetInsertBlock();
101 assert(incoming && "expression emission must have an insertion point");
102
103 EmitIgnoredExpr(cast<Expr>(S));
104
105 llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
106 assert(outgoing && "expression emission cleared block!");
107
108 // The expression emitters assume (reasonably!) that the insertion
109 // point is always set. To maintain that, the call-emission code
110 // for noreturn functions has to enter a new block with no
111 // predecessors. We want to kill that block and mark the current
112 // insertion point unreachable in the common case of a call like
113 // "exit();". Since expression emission doesn't otherwise create
114 // blocks with no predecessors, we can just test for that.
115 // However, we must be careful not to do this to our incoming
116 // block, because *statement* emission does sometimes create
117 // reachable blocks which will have no predecessors until later in
118 // the function. This occurs with, e.g., labels that are not
119 // reachable by fallthrough.
120 if (incoming != outgoing && outgoing->use_empty()) {
121 outgoing->eraseFromParent();
122 Builder.ClearInsertionPoint();
123 }
124 break;
125 }
126
127 case Stmt::IndirectGotoStmtClass:
128 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
129
130 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break;
131 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break;
132 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break;
133 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break;
134
135 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break;
136
137 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break;
138 case Stmt::GCCAsmStmtClass: // Intentional fall-through.
139 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break;
140 case Stmt::CapturedStmtClass: {
141 const CapturedStmt *CS = cast<CapturedStmt>(S);
142 EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
143 }
144 break;
145 case Stmt::ObjCAtTryStmtClass:
146 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
147 break;
148 case Stmt::ObjCAtCatchStmtClass:
149 llvm_unreachable(
150 "@catch statements should be handled by EmitObjCAtTryStmt");
151 case Stmt::ObjCAtFinallyStmtClass:
152 llvm_unreachable(
153 "@finally statements should be handled by EmitObjCAtTryStmt");
154 case Stmt::ObjCAtThrowStmtClass:
155 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
156 break;
157 case Stmt::ObjCAtSynchronizedStmtClass:
158 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
159 break;
160 case Stmt::ObjCForCollectionStmtClass:
161 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
162 break;
163 case Stmt::ObjCAutoreleasePoolStmtClass:
164 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
165 break;
166
167 case Stmt::CXXTryStmtClass:
168 EmitCXXTryStmt(cast<CXXTryStmt>(*S));
169 break;
170 case Stmt::CXXForRangeStmtClass:
171 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
172 break;
173 case Stmt::SEHTryStmtClass:
174 EmitSEHTryStmt(cast<SEHTryStmt>(*S));
175 break;
176 case Stmt::SEHLeaveStmtClass:
177 EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S));
178 break;
179 case Stmt::OMPParallelDirectiveClass:
180 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
181 break;
182 case Stmt::OMPSimdDirectiveClass:
183 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
184 break;
185 case Stmt::OMPForDirectiveClass:
186 EmitOMPForDirective(cast<OMPForDirective>(*S));
187 break;
188 case Stmt::OMPSectionsDirectiveClass:
189 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
190 break;
191 case Stmt::OMPSectionDirectiveClass:
192 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
193 break;
194 case Stmt::OMPSingleDirectiveClass:
195 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
196 break;
197 case Stmt::OMPParallelForDirectiveClass:
198 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
199 break;
200 case Stmt::OMPParallelSectionsDirectiveClass:
201 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
202 break;
203 }
204 }
205
EmitSimpleStmt(const Stmt * S)206 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
207 switch (S->getStmtClass()) {
208 default: return false;
209 case Stmt::NullStmtClass: break;
210 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
211 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break;
212 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break;
213 case Stmt::AttributedStmtClass:
214 EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
215 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break;
216 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break;
217 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
218 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break;
219 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break;
220 }
221
222 return true;
223 }
224
225 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true,
226 /// this captures the expression result of the last sub-statement and returns it
227 /// (for use by the statement expression extension).
EmitCompoundStmt(const CompoundStmt & S,bool GetLast,AggValueSlot AggSlot)228 llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
229 AggValueSlot AggSlot) {
230 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
231 "LLVM IR generation of compound statement ('{}')");
232
233 // Keep track of the current cleanup stack depth, including debug scopes.
234 LexicalScope Scope(*this, S.getSourceRange());
235
236 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
237 }
238
239 llvm::Value*
EmitCompoundStmtWithoutScope(const CompoundStmt & S,bool GetLast,AggValueSlot AggSlot)240 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
241 bool GetLast,
242 AggValueSlot AggSlot) {
243
244 for (CompoundStmt::const_body_iterator I = S.body_begin(),
245 E = S.body_end()-GetLast; I != E; ++I)
246 EmitStmt(*I);
247
248 llvm::Value *RetAlloca = nullptr;
249 if (GetLast) {
250 // We have to special case labels here. They are statements, but when put
251 // at the end of a statement expression, they yield the value of their
252 // subexpression. Handle this by walking through all labels we encounter,
253 // emitting them before we evaluate the subexpr.
254 const Stmt *LastStmt = S.body_back();
255 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
256 EmitLabel(LS->getDecl());
257 LastStmt = LS->getSubStmt();
258 }
259
260 EnsureInsertPoint();
261
262 QualType ExprTy = cast<Expr>(LastStmt)->getType();
263 if (hasAggregateEvaluationKind(ExprTy)) {
264 EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
265 } else {
266 // We can't return an RValue here because there might be cleanups at
267 // the end of the StmtExpr. Because of that, we have to emit the result
268 // here into a temporary alloca.
269 RetAlloca = CreateMemTemp(ExprTy);
270 EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
271 /*IsInit*/false);
272 }
273
274 }
275
276 return RetAlloca;
277 }
278
SimplifyForwardingBlocks(llvm::BasicBlock * BB)279 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
280 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
281
282 // If there is a cleanup stack, then we it isn't worth trying to
283 // simplify this block (we would need to remove it from the scope map
284 // and cleanup entry).
285 if (!EHStack.empty())
286 return;
287
288 // Can only simplify direct branches.
289 if (!BI || !BI->isUnconditional())
290 return;
291
292 // Can only simplify empty blocks.
293 if (BI != BB->begin())
294 return;
295
296 BB->replaceAllUsesWith(BI->getSuccessor(0));
297 BI->eraseFromParent();
298 BB->eraseFromParent();
299 }
300
EmitBlock(llvm::BasicBlock * BB,bool IsFinished)301 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
302 llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
303
304 // Fall out of the current block (if necessary).
305 EmitBranch(BB);
306
307 if (IsFinished && BB->use_empty()) {
308 delete BB;
309 return;
310 }
311
312 // Place the block after the current block, if possible, or else at
313 // the end of the function.
314 if (CurBB && CurBB->getParent())
315 CurFn->getBasicBlockList().insertAfter(CurBB, BB);
316 else
317 CurFn->getBasicBlockList().push_back(BB);
318 Builder.SetInsertPoint(BB);
319 }
320
EmitBranch(llvm::BasicBlock * Target)321 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
322 // Emit a branch from the current block to the target one if this
323 // was a real block. If this was just a fall-through block after a
324 // terminator, don't emit it.
325 llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
326
327 if (!CurBB || CurBB->getTerminator()) {
328 // If there is no insert point or the previous block is already
329 // terminated, don't touch it.
330 } else {
331 // Otherwise, create a fall-through branch.
332 Builder.CreateBr(Target);
333 }
334
335 Builder.ClearInsertionPoint();
336 }
337
EmitBlockAfterUses(llvm::BasicBlock * block)338 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
339 bool inserted = false;
340 for (llvm::User *u : block->users()) {
341 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
342 CurFn->getBasicBlockList().insertAfter(insn->getParent(), block);
343 inserted = true;
344 break;
345 }
346 }
347
348 if (!inserted)
349 CurFn->getBasicBlockList().push_back(block);
350
351 Builder.SetInsertPoint(block);
352 }
353
354 CodeGenFunction::JumpDest
getJumpDestForLabel(const LabelDecl * D)355 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
356 JumpDest &Dest = LabelMap[D];
357 if (Dest.isValid()) return Dest;
358
359 // Create, but don't insert, the new block.
360 Dest = JumpDest(createBasicBlock(D->getName()),
361 EHScopeStack::stable_iterator::invalid(),
362 NextCleanupDestIndex++);
363 return Dest;
364 }
365
EmitLabel(const LabelDecl * D)366 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
367 // Add this label to the current lexical scope if we're within any
368 // normal cleanups. Jumps "in" to this label --- when permitted by
369 // the language --- may need to be routed around such cleanups.
370 if (EHStack.hasNormalCleanups() && CurLexicalScope)
371 CurLexicalScope->addLabel(D);
372
373 JumpDest &Dest = LabelMap[D];
374
375 // If we didn't need a forward reference to this label, just go
376 // ahead and create a destination at the current scope.
377 if (!Dest.isValid()) {
378 Dest = getJumpDestInCurrentScope(D->getName());
379
380 // Otherwise, we need to give this label a target depth and remove
381 // it from the branch-fixups list.
382 } else {
383 assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
384 Dest.setScopeDepth(EHStack.stable_begin());
385 ResolveBranchFixups(Dest.getBlock());
386 }
387
388 RegionCounter Cnt = getPGORegionCounter(D->getStmt());
389 EmitBlock(Dest.getBlock());
390 Cnt.beginRegion(Builder);
391 }
392
393 /// Change the cleanup scope of the labels in this lexical scope to
394 /// match the scope of the enclosing context.
rescopeLabels()395 void CodeGenFunction::LexicalScope::rescopeLabels() {
396 assert(!Labels.empty());
397 EHScopeStack::stable_iterator innermostScope
398 = CGF.EHStack.getInnermostNormalCleanup();
399
400 // Change the scope depth of all the labels.
401 for (SmallVectorImpl<const LabelDecl*>::const_iterator
402 i = Labels.begin(), e = Labels.end(); i != e; ++i) {
403 assert(CGF.LabelMap.count(*i));
404 JumpDest &dest = CGF.LabelMap.find(*i)->second;
405 assert(dest.getScopeDepth().isValid());
406 assert(innermostScope.encloses(dest.getScopeDepth()));
407 dest.setScopeDepth(innermostScope);
408 }
409
410 // Reparent the labels if the new scope also has cleanups.
411 if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
412 ParentScope->Labels.append(Labels.begin(), Labels.end());
413 }
414 }
415
416
EmitLabelStmt(const LabelStmt & S)417 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
418 EmitLabel(S.getDecl());
419 EmitStmt(S.getSubStmt());
420 }
421
EmitAttributedStmt(const AttributedStmt & S)422 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
423 const Stmt *SubStmt = S.getSubStmt();
424 switch (SubStmt->getStmtClass()) {
425 case Stmt::DoStmtClass:
426 EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs());
427 break;
428 case Stmt::ForStmtClass:
429 EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs());
430 break;
431 case Stmt::WhileStmtClass:
432 EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs());
433 break;
434 case Stmt::CXXForRangeStmtClass:
435 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs());
436 break;
437 default:
438 EmitStmt(SubStmt);
439 }
440 }
441
EmitGotoStmt(const GotoStmt & S)442 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
443 // If this code is reachable then emit a stop point (if generating
444 // debug info). We have to do this ourselves because we are on the
445 // "simple" statement path.
446 if (HaveInsertPoint())
447 EmitStopPoint(&S);
448
449 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
450 }
451
452
EmitIndirectGotoStmt(const IndirectGotoStmt & S)453 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
454 if (const LabelDecl *Target = S.getConstantTarget()) {
455 EmitBranchThroughCleanup(getJumpDestForLabel(Target));
456 return;
457 }
458
459 // Ensure that we have an i8* for our PHI node.
460 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
461 Int8PtrTy, "addr");
462 llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
463
464 // Get the basic block for the indirect goto.
465 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
466
467 // The first instruction in the block has to be the PHI for the switch dest,
468 // add an entry for this branch.
469 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
470
471 EmitBranch(IndGotoBB);
472 }
473
EmitIfStmt(const IfStmt & S)474 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
475 // C99 6.8.4.1: The first substatement is executed if the expression compares
476 // unequal to 0. The condition must be a scalar type.
477 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
478 RegionCounter Cnt = getPGORegionCounter(&S);
479
480 if (S.getConditionVariable())
481 EmitAutoVarDecl(*S.getConditionVariable());
482
483 // If the condition constant folds and can be elided, try to avoid emitting
484 // the condition and the dead arm of the if/else.
485 bool CondConstant;
486 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
487 // Figure out which block (then or else) is executed.
488 const Stmt *Executed = S.getThen();
489 const Stmt *Skipped = S.getElse();
490 if (!CondConstant) // Condition false?
491 std::swap(Executed, Skipped);
492
493 // If the skipped block has no labels in it, just emit the executed block.
494 // This avoids emitting dead code and simplifies the CFG substantially.
495 if (!ContainsLabel(Skipped)) {
496 if (CondConstant)
497 Cnt.beginRegion(Builder);
498 if (Executed) {
499 RunCleanupsScope ExecutedScope(*this);
500 EmitStmt(Executed);
501 }
502 return;
503 }
504 }
505
506 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit
507 // the conditional branch.
508 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
509 llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
510 llvm::BasicBlock *ElseBlock = ContBlock;
511 if (S.getElse())
512 ElseBlock = createBasicBlock("if.else");
513
514 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Cnt.getCount());
515
516 // Emit the 'then' code.
517 EmitBlock(ThenBlock);
518 Cnt.beginRegion(Builder);
519 {
520 RunCleanupsScope ThenScope(*this);
521 EmitStmt(S.getThen());
522 }
523 EmitBranch(ContBlock);
524
525 // Emit the 'else' code if present.
526 if (const Stmt *Else = S.getElse()) {
527 // There is no need to emit line number for unconditional branch.
528 if (getDebugInfo())
529 Builder.SetCurrentDebugLocation(llvm::DebugLoc());
530 EmitBlock(ElseBlock);
531 {
532 RunCleanupsScope ElseScope(*this);
533 EmitStmt(Else);
534 }
535 // There is no need to emit line number for unconditional branch.
536 if (getDebugInfo())
537 Builder.SetCurrentDebugLocation(llvm::DebugLoc());
538 EmitBranch(ContBlock);
539 }
540
541 // Emit the continuation block for code after the if.
542 EmitBlock(ContBlock, true);
543 }
544
EmitCondBrHints(llvm::LLVMContext & Context,llvm::BranchInst * CondBr,const ArrayRef<const Attr * > & Attrs)545 void CodeGenFunction::EmitCondBrHints(llvm::LLVMContext &Context,
546 llvm::BranchInst *CondBr,
547 const ArrayRef<const Attr *> &Attrs) {
548 // Return if there are no hints.
549 if (Attrs.empty())
550 return;
551
552 // Add vectorize and unroll hints to the metadata on the conditional branch.
553 SmallVector<llvm::Value *, 2> Metadata(1);
554 for (const auto *Attr : Attrs) {
555 const LoopHintAttr *LH = dyn_cast<LoopHintAttr>(Attr);
556
557 // Skip non loop hint attributes
558 if (!LH)
559 continue;
560
561 LoopHintAttr::OptionType Option = LH->getOption();
562 int ValueInt = LH->getValue();
563
564 const char *MetadataName;
565 switch (Option) {
566 case LoopHintAttr::Vectorize:
567 case LoopHintAttr::VectorizeWidth:
568 MetadataName = "llvm.loop.vectorize.width";
569 break;
570 case LoopHintAttr::Interleave:
571 case LoopHintAttr::InterleaveCount:
572 MetadataName = "llvm.loop.vectorize.unroll";
573 break;
574 case LoopHintAttr::Unroll:
575 MetadataName = "llvm.loop.unroll.enable";
576 break;
577 case LoopHintAttr::UnrollCount:
578 MetadataName = "llvm.loop.unroll.count";
579 break;
580 }
581
582 llvm::Value *Value;
583 llvm::MDString *Name;
584 switch (Option) {
585 case LoopHintAttr::Vectorize:
586 case LoopHintAttr::Interleave:
587 if (ValueInt == 1) {
588 // FIXME: In the future I will modifiy the behavior of the metadata
589 // so we can enable/disable vectorization and interleaving separately.
590 Name = llvm::MDString::get(Context, "llvm.loop.vectorize.enable");
591 Value = Builder.getTrue();
592 break;
593 }
594 // Vectorization/interleaving is disabled, set width/count to 1.
595 ValueInt = 1;
596 // Fallthrough.
597 case LoopHintAttr::VectorizeWidth:
598 case LoopHintAttr::InterleaveCount:
599 Name = llvm::MDString::get(Context, MetadataName);
600 Value = llvm::ConstantInt::get(Int32Ty, ValueInt);
601 break;
602 case LoopHintAttr::Unroll:
603 Name = llvm::MDString::get(Context, MetadataName);
604 Value = (ValueInt == 0) ? Builder.getFalse() : Builder.getTrue();
605 break;
606 case LoopHintAttr::UnrollCount:
607 Name = llvm::MDString::get(Context, MetadataName);
608 Value = llvm::ConstantInt::get(Int32Ty, ValueInt);
609 break;
610 }
611
612 SmallVector<llvm::Value *, 2> OpValues;
613 OpValues.push_back(Name);
614 OpValues.push_back(Value);
615
616 // Set or overwrite metadata indicated by Name.
617 Metadata.push_back(llvm::MDNode::get(Context, OpValues));
618 }
619
620 if (!Metadata.empty()) {
621 // Add llvm.loop MDNode to CondBr.
622 llvm::MDNode *LoopID = llvm::MDNode::get(Context, Metadata);
623 LoopID->replaceOperandWith(0, LoopID); // First op points to itself.
624
625 CondBr->setMetadata("llvm.loop", LoopID);
626 }
627 }
628
EmitWhileStmt(const WhileStmt & S,const ArrayRef<const Attr * > & WhileAttrs)629 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
630 const ArrayRef<const Attr *> &WhileAttrs) {
631 RegionCounter Cnt = getPGORegionCounter(&S);
632
633 // Emit the header for the loop, which will also become
634 // the continue target.
635 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
636 EmitBlock(LoopHeader.getBlock());
637
638 LoopStack.push(LoopHeader.getBlock());
639
640 // Create an exit block for when the condition fails, which will
641 // also become the break target.
642 JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
643
644 // Store the blocks to use for break and continue.
645 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
646
647 // C++ [stmt.while]p2:
648 // When the condition of a while statement is a declaration, the
649 // scope of the variable that is declared extends from its point
650 // of declaration (3.3.2) to the end of the while statement.
651 // [...]
652 // The object created in a condition is destroyed and created
653 // with each iteration of the loop.
654 RunCleanupsScope ConditionScope(*this);
655
656 if (S.getConditionVariable())
657 EmitAutoVarDecl(*S.getConditionVariable());
658
659 // Evaluate the conditional in the while header. C99 6.8.5.1: The
660 // evaluation of the controlling expression takes place before each
661 // execution of the loop body.
662 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
663
664 // while(1) is common, avoid extra exit blocks. Be sure
665 // to correctly handle break/continue though.
666 bool EmitBoolCondBranch = true;
667 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
668 if (C->isOne())
669 EmitBoolCondBranch = false;
670
671 // As long as the condition is true, go to the loop body.
672 llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
673 if (EmitBoolCondBranch) {
674 llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
675 if (ConditionScope.requiresCleanups())
676 ExitBlock = createBasicBlock("while.exit");
677 llvm::BranchInst *CondBr =
678 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock,
679 PGO.createLoopWeights(S.getCond(), Cnt));
680
681 if (ExitBlock != LoopExit.getBlock()) {
682 EmitBlock(ExitBlock);
683 EmitBranchThroughCleanup(LoopExit);
684 }
685
686 // Attach metadata to loop body conditional branch.
687 EmitCondBrHints(LoopBody->getContext(), CondBr, WhileAttrs);
688 }
689
690 // Emit the loop body. We have to emit this in a cleanup scope
691 // because it might be a singleton DeclStmt.
692 {
693 RunCleanupsScope BodyScope(*this);
694 EmitBlock(LoopBody);
695 Cnt.beginRegion(Builder);
696 EmitStmt(S.getBody());
697 }
698
699 BreakContinueStack.pop_back();
700
701 // Immediately force cleanup.
702 ConditionScope.ForceCleanup();
703
704 // Branch to the loop header again.
705 EmitBranch(LoopHeader.getBlock());
706
707 LoopStack.pop();
708
709 // Emit the exit block.
710 EmitBlock(LoopExit.getBlock(), true);
711
712 // The LoopHeader typically is just a branch if we skipped emitting
713 // a branch, try to erase it.
714 if (!EmitBoolCondBranch)
715 SimplifyForwardingBlocks(LoopHeader.getBlock());
716 }
717
EmitDoStmt(const DoStmt & S,const ArrayRef<const Attr * > & DoAttrs)718 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
719 const ArrayRef<const Attr *> &DoAttrs) {
720 JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
721 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
722
723 RegionCounter Cnt = getPGORegionCounter(&S);
724
725 // Store the blocks to use for break and continue.
726 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
727
728 // Emit the body of the loop.
729 llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
730
731 LoopStack.push(LoopBody);
732
733 EmitBlockWithFallThrough(LoopBody, Cnt);
734 {
735 RunCleanupsScope BodyScope(*this);
736 EmitStmt(S.getBody());
737 }
738
739 EmitBlock(LoopCond.getBlock());
740
741 // C99 6.8.5.2: "The evaluation of the controlling expression takes place
742 // after each execution of the loop body."
743
744 // Evaluate the conditional in the while header.
745 // C99 6.8.5p2/p4: The first substatement is executed if the expression
746 // compares unequal to 0. The condition must be a scalar type.
747 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
748
749 BreakContinueStack.pop_back();
750
751 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure
752 // to correctly handle break/continue though.
753 bool EmitBoolCondBranch = true;
754 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
755 if (C->isZero())
756 EmitBoolCondBranch = false;
757
758 // As long as the condition is true, iterate the loop.
759 if (EmitBoolCondBranch) {
760 llvm::BranchInst *CondBr =
761 Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock(),
762 PGO.createLoopWeights(S.getCond(), Cnt));
763
764 // Attach metadata to loop body conditional branch.
765 EmitCondBrHints(LoopBody->getContext(), CondBr, DoAttrs);
766 }
767
768 LoopStack.pop();
769
770 // Emit the exit block.
771 EmitBlock(LoopExit.getBlock());
772
773 // The DoCond block typically is just a branch if we skipped
774 // emitting a branch, try to erase it.
775 if (!EmitBoolCondBranch)
776 SimplifyForwardingBlocks(LoopCond.getBlock());
777 }
778
EmitForStmt(const ForStmt & S,const ArrayRef<const Attr * > & ForAttrs)779 void CodeGenFunction::EmitForStmt(const ForStmt &S,
780 const ArrayRef<const Attr *> &ForAttrs) {
781 JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
782
783 RunCleanupsScope ForScope(*this);
784
785 CGDebugInfo *DI = getDebugInfo();
786 if (DI)
787 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
788
789 // Evaluate the first part before the loop.
790 if (S.getInit())
791 EmitStmt(S.getInit());
792
793 RegionCounter Cnt = getPGORegionCounter(&S);
794
795 // Start the loop with a block that tests the condition.
796 // If there's an increment, the continue scope will be overwritten
797 // later.
798 JumpDest Continue = getJumpDestInCurrentScope("for.cond");
799 llvm::BasicBlock *CondBlock = Continue.getBlock();
800 EmitBlock(CondBlock);
801
802 LoopStack.push(CondBlock);
803
804 // If the for loop doesn't have an increment we can just use the
805 // condition as the continue block. Otherwise we'll need to create
806 // a block for it (in the current scope, i.e. in the scope of the
807 // condition), and that we will become our continue block.
808 if (S.getInc())
809 Continue = getJumpDestInCurrentScope("for.inc");
810
811 // Store the blocks to use for break and continue.
812 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
813
814 // Create a cleanup scope for the condition variable cleanups.
815 RunCleanupsScope ConditionScope(*this);
816
817 if (S.getCond()) {
818 // If the for statement has a condition scope, emit the local variable
819 // declaration.
820 if (S.getConditionVariable()) {
821 EmitAutoVarDecl(*S.getConditionVariable());
822 }
823
824 llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
825 // If there are any cleanups between here and the loop-exit scope,
826 // create a block to stage a loop exit along.
827 if (ForScope.requiresCleanups())
828 ExitBlock = createBasicBlock("for.cond.cleanup");
829
830 // As long as the condition is true, iterate the loop.
831 llvm::BasicBlock *ForBody = createBasicBlock("for.body");
832
833 // C99 6.8.5p2/p4: The first substatement is executed if the expression
834 // compares unequal to 0. The condition must be a scalar type.
835 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
836 llvm::BranchInst *CondBr =
837 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock,
838 PGO.createLoopWeights(S.getCond(), Cnt));
839
840 // Attach metadata to loop body conditional branch.
841 EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs);
842
843 if (ExitBlock != LoopExit.getBlock()) {
844 EmitBlock(ExitBlock);
845 EmitBranchThroughCleanup(LoopExit);
846 }
847
848 EmitBlock(ForBody);
849 } else {
850 // Treat it as a non-zero constant. Don't even create a new block for the
851 // body, just fall into it.
852 }
853 Cnt.beginRegion(Builder);
854
855 {
856 // Create a separate cleanup scope for the body, in case it is not
857 // a compound statement.
858 RunCleanupsScope BodyScope(*this);
859 EmitStmt(S.getBody());
860 }
861
862 // If there is an increment, emit it next.
863 if (S.getInc()) {
864 EmitBlock(Continue.getBlock());
865 EmitStmt(S.getInc());
866 }
867
868 BreakContinueStack.pop_back();
869
870 ConditionScope.ForceCleanup();
871 EmitBranch(CondBlock);
872
873 ForScope.ForceCleanup();
874
875 if (DI)
876 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
877
878 LoopStack.pop();
879
880 // Emit the fall-through block.
881 EmitBlock(LoopExit.getBlock(), true);
882 }
883
884 void
EmitCXXForRangeStmt(const CXXForRangeStmt & S,const ArrayRef<const Attr * > & ForAttrs)885 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
886 const ArrayRef<const Attr *> &ForAttrs) {
887 JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
888
889 RunCleanupsScope ForScope(*this);
890
891 CGDebugInfo *DI = getDebugInfo();
892 if (DI)
893 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
894
895 // Evaluate the first pieces before the loop.
896 EmitStmt(S.getRangeStmt());
897 EmitStmt(S.getBeginEndStmt());
898
899 RegionCounter Cnt = getPGORegionCounter(&S);
900
901 // Start the loop with a block that tests the condition.
902 // If there's an increment, the continue scope will be overwritten
903 // later.
904 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
905 EmitBlock(CondBlock);
906
907 LoopStack.push(CondBlock);
908
909 // If there are any cleanups between here and the loop-exit scope,
910 // create a block to stage a loop exit along.
911 llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
912 if (ForScope.requiresCleanups())
913 ExitBlock = createBasicBlock("for.cond.cleanup");
914
915 // The loop body, consisting of the specified body and the loop variable.
916 llvm::BasicBlock *ForBody = createBasicBlock("for.body");
917
918 // The body is executed if the expression, contextually converted
919 // to bool, is true.
920 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
921 llvm::BranchInst *CondBr = Builder.CreateCondBr(
922 BoolCondVal, ForBody, ExitBlock, PGO.createLoopWeights(S.getCond(), Cnt));
923
924 // Attach metadata to loop body conditional branch.
925 EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs);
926
927 if (ExitBlock != LoopExit.getBlock()) {
928 EmitBlock(ExitBlock);
929 EmitBranchThroughCleanup(LoopExit);
930 }
931
932 EmitBlock(ForBody);
933 Cnt.beginRegion(Builder);
934
935 // Create a block for the increment. In case of a 'continue', we jump there.
936 JumpDest Continue = getJumpDestInCurrentScope("for.inc");
937
938 // Store the blocks to use for break and continue.
939 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
940
941 {
942 // Create a separate cleanup scope for the loop variable and body.
943 RunCleanupsScope BodyScope(*this);
944 EmitStmt(S.getLoopVarStmt());
945 EmitStmt(S.getBody());
946 }
947
948 // If there is an increment, emit it next.
949 EmitBlock(Continue.getBlock());
950 EmitStmt(S.getInc());
951
952 BreakContinueStack.pop_back();
953
954 EmitBranch(CondBlock);
955
956 ForScope.ForceCleanup();
957
958 if (DI)
959 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
960
961 LoopStack.pop();
962
963 // Emit the fall-through block.
964 EmitBlock(LoopExit.getBlock(), true);
965 }
966
EmitReturnOfRValue(RValue RV,QualType Ty)967 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
968 if (RV.isScalar()) {
969 Builder.CreateStore(RV.getScalarVal(), ReturnValue);
970 } else if (RV.isAggregate()) {
971 EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
972 } else {
973 EmitStoreOfComplex(RV.getComplexVal(),
974 MakeNaturalAlignAddrLValue(ReturnValue, Ty),
975 /*init*/ true);
976 }
977 EmitBranchThroughCleanup(ReturnBlock);
978 }
979
980 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
981 /// if the function returns void, or may be missing one if the function returns
982 /// non-void. Fun stuff :).
EmitReturnStmt(const ReturnStmt & S)983 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
984 // Emit the result value, even if unused, to evalute the side effects.
985 const Expr *RV = S.getRetValue();
986
987 // Treat block literals in a return expression as if they appeared
988 // in their own scope. This permits a small, easily-implemented
989 // exception to our over-conservative rules about not jumping to
990 // statements following block literals with non-trivial cleanups.
991 RunCleanupsScope cleanupScope(*this);
992 if (const ExprWithCleanups *cleanups =
993 dyn_cast_or_null<ExprWithCleanups>(RV)) {
994 enterFullExpression(cleanups);
995 RV = cleanups->getSubExpr();
996 }
997
998 // FIXME: Clean this up by using an LValue for ReturnTemp,
999 // EmitStoreThroughLValue, and EmitAnyExpr.
1000 if (getLangOpts().ElideConstructors &&
1001 S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
1002 // Apply the named return value optimization for this return statement,
1003 // which means doing nothing: the appropriate result has already been
1004 // constructed into the NRVO variable.
1005
1006 // If there is an NRVO flag for this variable, set it to 1 into indicate
1007 // that the cleanup code should not destroy the variable.
1008 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
1009 Builder.CreateStore(Builder.getTrue(), NRVOFlag);
1010 } else if (!ReturnValue || (RV && RV->getType()->isVoidType())) {
1011 // Make sure not to return anything, but evaluate the expression
1012 // for side effects.
1013 if (RV)
1014 EmitAnyExpr(RV);
1015 } else if (!RV) {
1016 // Do nothing (return value is left uninitialized)
1017 } else if (FnRetTy->isReferenceType()) {
1018 // If this function returns a reference, take the address of the expression
1019 // rather than the value.
1020 RValue Result = EmitReferenceBindingToExpr(RV);
1021 Builder.CreateStore(Result.getScalarVal(), ReturnValue);
1022 } else {
1023 switch (getEvaluationKind(RV->getType())) {
1024 case TEK_Scalar:
1025 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1026 break;
1027 case TEK_Complex:
1028 EmitComplexExprIntoLValue(RV,
1029 MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()),
1030 /*isInit*/ true);
1031 break;
1032 case TEK_Aggregate: {
1033 CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType());
1034 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment,
1035 Qualifiers(),
1036 AggValueSlot::IsDestructed,
1037 AggValueSlot::DoesNotNeedGCBarriers,
1038 AggValueSlot::IsNotAliased));
1039 break;
1040 }
1041 }
1042 }
1043
1044 ++NumReturnExprs;
1045 if (!RV || RV->isEvaluatable(getContext()))
1046 ++NumSimpleReturnExprs;
1047
1048 cleanupScope.ForceCleanup();
1049 EmitBranchThroughCleanup(ReturnBlock);
1050 }
1051
EmitDeclStmt(const DeclStmt & S)1052 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1053 // As long as debug info is modeled with instructions, we have to ensure we
1054 // have a place to insert here and write the stop point here.
1055 if (HaveInsertPoint())
1056 EmitStopPoint(&S);
1057
1058 for (const auto *I : S.decls())
1059 EmitDecl(*I);
1060 }
1061
EmitBreakStmt(const BreakStmt & S)1062 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1063 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1064
1065 // If this code is reachable then emit a stop point (if generating
1066 // debug info). We have to do this ourselves because we are on the
1067 // "simple" statement path.
1068 if (HaveInsertPoint())
1069 EmitStopPoint(&S);
1070
1071 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1072 }
1073
EmitContinueStmt(const ContinueStmt & S)1074 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1075 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1076
1077 // If this code is reachable then emit a stop point (if generating
1078 // debug info). We have to do this ourselves because we are on the
1079 // "simple" statement path.
1080 if (HaveInsertPoint())
1081 EmitStopPoint(&S);
1082
1083 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1084 }
1085
1086 /// EmitCaseStmtRange - If case statement range is not too big then
1087 /// add multiple cases to switch instruction, one for each value within
1088 /// the range. If range is too big then emit "if" condition check.
EmitCaseStmtRange(const CaseStmt & S)1089 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
1090 assert(S.getRHS() && "Expected RHS value in CaseStmt");
1091
1092 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1093 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1094
1095 RegionCounter CaseCnt = getPGORegionCounter(&S);
1096
1097 // Emit the code for this case. We do this first to make sure it is
1098 // properly chained from our predecessor before generating the
1099 // switch machinery to enter this block.
1100 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1101 EmitBlockWithFallThrough(CaseDest, CaseCnt);
1102 EmitStmt(S.getSubStmt());
1103
1104 // If range is empty, do nothing.
1105 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1106 return;
1107
1108 llvm::APInt Range = RHS - LHS;
1109 // FIXME: parameters such as this should not be hardcoded.
1110 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1111 // Range is small enough to add multiple switch instruction cases.
1112 uint64_t Total = CaseCnt.getCount();
1113 unsigned NCases = Range.getZExtValue() + 1;
1114 // We only have one region counter for the entire set of cases here, so we
1115 // need to divide the weights evenly between the generated cases, ensuring
1116 // that the total weight is preserved. E.g., a weight of 5 over three cases
1117 // will be distributed as weights of 2, 2, and 1.
1118 uint64_t Weight = Total / NCases, Rem = Total % NCases;
1119 for (unsigned I = 0; I != NCases; ++I) {
1120 if (SwitchWeights)
1121 SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1122 if (Rem)
1123 Rem--;
1124 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1125 LHS++;
1126 }
1127 return;
1128 }
1129
1130 // The range is too big. Emit "if" condition into a new block,
1131 // making sure to save and restore the current insertion point.
1132 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1133
1134 // Push this test onto the chain of range checks (which terminates
1135 // in the default basic block). The switch's default will be changed
1136 // to the top of this chain after switch emission is complete.
1137 llvm::BasicBlock *FalseDest = CaseRangeBlock;
1138 CaseRangeBlock = createBasicBlock("sw.caserange");
1139
1140 CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1141 Builder.SetInsertPoint(CaseRangeBlock);
1142
1143 // Emit range check.
1144 llvm::Value *Diff =
1145 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1146 llvm::Value *Cond =
1147 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1148
1149 llvm::MDNode *Weights = nullptr;
1150 if (SwitchWeights) {
1151 uint64_t ThisCount = CaseCnt.getCount();
1152 uint64_t DefaultCount = (*SwitchWeights)[0];
1153 Weights = PGO.createBranchWeights(ThisCount, DefaultCount);
1154
1155 // Since we're chaining the switch default through each large case range, we
1156 // need to update the weight for the default, ie, the first case, to include
1157 // this case.
1158 (*SwitchWeights)[0] += ThisCount;
1159 }
1160 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1161
1162 // Restore the appropriate insertion point.
1163 if (RestoreBB)
1164 Builder.SetInsertPoint(RestoreBB);
1165 else
1166 Builder.ClearInsertionPoint();
1167 }
1168
EmitCaseStmt(const CaseStmt & S)1169 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
1170 // If there is no enclosing switch instance that we're aware of, then this
1171 // case statement and its block can be elided. This situation only happens
1172 // when we've constant-folded the switch, are emitting the constant case,
1173 // and part of the constant case includes another case statement. For
1174 // instance: switch (4) { case 4: do { case 5: } while (1); }
1175 if (!SwitchInsn) {
1176 EmitStmt(S.getSubStmt());
1177 return;
1178 }
1179
1180 // Handle case ranges.
1181 if (S.getRHS()) {
1182 EmitCaseStmtRange(S);
1183 return;
1184 }
1185
1186 RegionCounter CaseCnt = getPGORegionCounter(&S);
1187 llvm::ConstantInt *CaseVal =
1188 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1189
1190 // If the body of the case is just a 'break', try to not emit an empty block.
1191 // If we're profiling or we're not optimizing, leave the block in for better
1192 // debug and coverage analysis.
1193 if (!CGM.getCodeGenOpts().ProfileInstrGenerate &&
1194 CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1195 isa<BreakStmt>(S.getSubStmt())) {
1196 JumpDest Block = BreakContinueStack.back().BreakBlock;
1197
1198 // Only do this optimization if there are no cleanups that need emitting.
1199 if (isObviouslyBranchWithoutCleanups(Block)) {
1200 if (SwitchWeights)
1201 SwitchWeights->push_back(CaseCnt.getCount());
1202 SwitchInsn->addCase(CaseVal, Block.getBlock());
1203
1204 // If there was a fallthrough into this case, make sure to redirect it to
1205 // the end of the switch as well.
1206 if (Builder.GetInsertBlock()) {
1207 Builder.CreateBr(Block.getBlock());
1208 Builder.ClearInsertionPoint();
1209 }
1210 return;
1211 }
1212 }
1213
1214 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1215 EmitBlockWithFallThrough(CaseDest, CaseCnt);
1216 if (SwitchWeights)
1217 SwitchWeights->push_back(CaseCnt.getCount());
1218 SwitchInsn->addCase(CaseVal, CaseDest);
1219
1220 // Recursively emitting the statement is acceptable, but is not wonderful for
1221 // code where we have many case statements nested together, i.e.:
1222 // case 1:
1223 // case 2:
1224 // case 3: etc.
1225 // Handling this recursively will create a new block for each case statement
1226 // that falls through to the next case which is IR intensive. It also causes
1227 // deep recursion which can run into stack depth limitations. Handle
1228 // sequential non-range case statements specially.
1229 const CaseStmt *CurCase = &S;
1230 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1231
1232 // Otherwise, iteratively add consecutive cases to this switch stmt.
1233 while (NextCase && NextCase->getRHS() == nullptr) {
1234 CurCase = NextCase;
1235 llvm::ConstantInt *CaseVal =
1236 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1237
1238 CaseCnt = getPGORegionCounter(NextCase);
1239 if (SwitchWeights)
1240 SwitchWeights->push_back(CaseCnt.getCount());
1241 if (CGM.getCodeGenOpts().ProfileInstrGenerate) {
1242 CaseDest = createBasicBlock("sw.bb");
1243 EmitBlockWithFallThrough(CaseDest, CaseCnt);
1244 }
1245
1246 SwitchInsn->addCase(CaseVal, CaseDest);
1247 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1248 }
1249
1250 // Normal default recursion for non-cases.
1251 EmitStmt(CurCase->getSubStmt());
1252 }
1253
EmitDefaultStmt(const DefaultStmt & S)1254 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
1255 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1256 assert(DefaultBlock->empty() &&
1257 "EmitDefaultStmt: Default block already defined?");
1258
1259 RegionCounter Cnt = getPGORegionCounter(&S);
1260 EmitBlockWithFallThrough(DefaultBlock, Cnt);
1261
1262 EmitStmt(S.getSubStmt());
1263 }
1264
1265 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1266 /// constant value that is being switched on, see if we can dead code eliminate
1267 /// the body of the switch to a simple series of statements to emit. Basically,
1268 /// on a switch (5) we want to find these statements:
1269 /// case 5:
1270 /// printf(...); <--
1271 /// ++i; <--
1272 /// break;
1273 ///
1274 /// and add them to the ResultStmts vector. If it is unsafe to do this
1275 /// transformation (for example, one of the elided statements contains a label
1276 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S'
1277 /// should include statements after it (e.g. the printf() line is a substmt of
1278 /// the case) then return CSFC_FallThrough. If we handled it and found a break
1279 /// statement, then return CSFC_Success.
1280 ///
1281 /// If Case is non-null, then we are looking for the specified case, checking
1282 /// that nothing we jump over contains labels. If Case is null, then we found
1283 /// the case and are looking for the break.
1284 ///
1285 /// If the recursive walk actually finds our Case, then we set FoundCase to
1286 /// true.
1287 ///
1288 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
CollectStatementsForCase(const Stmt * S,const SwitchCase * Case,bool & FoundCase,SmallVectorImpl<const Stmt * > & ResultStmts)1289 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1290 const SwitchCase *Case,
1291 bool &FoundCase,
1292 SmallVectorImpl<const Stmt*> &ResultStmts) {
1293 // If this is a null statement, just succeed.
1294 if (!S)
1295 return Case ? CSFC_Success : CSFC_FallThrough;
1296
1297 // If this is the switchcase (case 4: or default) that we're looking for, then
1298 // we're in business. Just add the substatement.
1299 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1300 if (S == Case) {
1301 FoundCase = true;
1302 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1303 ResultStmts);
1304 }
1305
1306 // Otherwise, this is some other case or default statement, just ignore it.
1307 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1308 ResultStmts);
1309 }
1310
1311 // If we are in the live part of the code and we found our break statement,
1312 // return a success!
1313 if (!Case && isa<BreakStmt>(S))
1314 return CSFC_Success;
1315
1316 // If this is a switch statement, then it might contain the SwitchCase, the
1317 // break, or neither.
1318 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1319 // Handle this as two cases: we might be looking for the SwitchCase (if so
1320 // the skipped statements must be skippable) or we might already have it.
1321 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1322 if (Case) {
1323 // Keep track of whether we see a skipped declaration. The code could be
1324 // using the declaration even if it is skipped, so we can't optimize out
1325 // the decl if the kept statements might refer to it.
1326 bool HadSkippedDecl = false;
1327
1328 // If we're looking for the case, just see if we can skip each of the
1329 // substatements.
1330 for (; Case && I != E; ++I) {
1331 HadSkippedDecl |= isa<DeclStmt>(*I);
1332
1333 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1334 case CSFC_Failure: return CSFC_Failure;
1335 case CSFC_Success:
1336 // A successful result means that either 1) that the statement doesn't
1337 // have the case and is skippable, or 2) does contain the case value
1338 // and also contains the break to exit the switch. In the later case,
1339 // we just verify the rest of the statements are elidable.
1340 if (FoundCase) {
1341 // If we found the case and skipped declarations, we can't do the
1342 // optimization.
1343 if (HadSkippedDecl)
1344 return CSFC_Failure;
1345
1346 for (++I; I != E; ++I)
1347 if (CodeGenFunction::ContainsLabel(*I, true))
1348 return CSFC_Failure;
1349 return CSFC_Success;
1350 }
1351 break;
1352 case CSFC_FallThrough:
1353 // If we have a fallthrough condition, then we must have found the
1354 // case started to include statements. Consider the rest of the
1355 // statements in the compound statement as candidates for inclusion.
1356 assert(FoundCase && "Didn't find case but returned fallthrough?");
1357 // We recursively found Case, so we're not looking for it anymore.
1358 Case = nullptr;
1359
1360 // If we found the case and skipped declarations, we can't do the
1361 // optimization.
1362 if (HadSkippedDecl)
1363 return CSFC_Failure;
1364 break;
1365 }
1366 }
1367 }
1368
1369 // If we have statements in our range, then we know that the statements are
1370 // live and need to be added to the set of statements we're tracking.
1371 for (; I != E; ++I) {
1372 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1373 case CSFC_Failure: return CSFC_Failure;
1374 case CSFC_FallThrough:
1375 // A fallthrough result means that the statement was simple and just
1376 // included in ResultStmt, keep adding them afterwards.
1377 break;
1378 case CSFC_Success:
1379 // A successful result means that we found the break statement and
1380 // stopped statement inclusion. We just ensure that any leftover stmts
1381 // are skippable and return success ourselves.
1382 for (++I; I != E; ++I)
1383 if (CodeGenFunction::ContainsLabel(*I, true))
1384 return CSFC_Failure;
1385 return CSFC_Success;
1386 }
1387 }
1388
1389 return Case ? CSFC_Success : CSFC_FallThrough;
1390 }
1391
1392 // Okay, this is some other statement that we don't handle explicitly, like a
1393 // for statement or increment etc. If we are skipping over this statement,
1394 // just verify it doesn't have labels, which would make it invalid to elide.
1395 if (Case) {
1396 if (CodeGenFunction::ContainsLabel(S, true))
1397 return CSFC_Failure;
1398 return CSFC_Success;
1399 }
1400
1401 // Otherwise, we want to include this statement. Everything is cool with that
1402 // so long as it doesn't contain a break out of the switch we're in.
1403 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1404
1405 // Otherwise, everything is great. Include the statement and tell the caller
1406 // that we fall through and include the next statement as well.
1407 ResultStmts.push_back(S);
1408 return CSFC_FallThrough;
1409 }
1410
1411 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1412 /// then invoke CollectStatementsForCase to find the list of statements to emit
1413 /// for a switch on constant. See the comment above CollectStatementsForCase
1414 /// for more details.
FindCaseStatementsForValue(const SwitchStmt & S,const llvm::APSInt & ConstantCondValue,SmallVectorImpl<const Stmt * > & ResultStmts,ASTContext & C,const SwitchCase * & ResultCase)1415 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1416 const llvm::APSInt &ConstantCondValue,
1417 SmallVectorImpl<const Stmt*> &ResultStmts,
1418 ASTContext &C,
1419 const SwitchCase *&ResultCase) {
1420 // First step, find the switch case that is being branched to. We can do this
1421 // efficiently by scanning the SwitchCase list.
1422 const SwitchCase *Case = S.getSwitchCaseList();
1423 const DefaultStmt *DefaultCase = nullptr;
1424
1425 for (; Case; Case = Case->getNextSwitchCase()) {
1426 // It's either a default or case. Just remember the default statement in
1427 // case we're not jumping to any numbered cases.
1428 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1429 DefaultCase = DS;
1430 continue;
1431 }
1432
1433 // Check to see if this case is the one we're looking for.
1434 const CaseStmt *CS = cast<CaseStmt>(Case);
1435 // Don't handle case ranges yet.
1436 if (CS->getRHS()) return false;
1437
1438 // If we found our case, remember it as 'case'.
1439 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1440 break;
1441 }
1442
1443 // If we didn't find a matching case, we use a default if it exists, or we
1444 // elide the whole switch body!
1445 if (!Case) {
1446 // It is safe to elide the body of the switch if it doesn't contain labels
1447 // etc. If it is safe, return successfully with an empty ResultStmts list.
1448 if (!DefaultCase)
1449 return !CodeGenFunction::ContainsLabel(&S);
1450 Case = DefaultCase;
1451 }
1452
1453 // Ok, we know which case is being jumped to, try to collect all the
1454 // statements that follow it. This can fail for a variety of reasons. Also,
1455 // check to see that the recursive walk actually found our case statement.
1456 // Insane cases like this can fail to find it in the recursive walk since we
1457 // don't handle every stmt kind:
1458 // switch (4) {
1459 // while (1) {
1460 // case 4: ...
1461 bool FoundCase = false;
1462 ResultCase = Case;
1463 return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1464 ResultStmts) != CSFC_Failure &&
1465 FoundCase;
1466 }
1467
EmitSwitchStmt(const SwitchStmt & S)1468 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1469 // Handle nested switch statements.
1470 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1471 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1472 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1473
1474 // See if we can constant fold the condition of the switch and therefore only
1475 // emit the live case statement (if any) of the switch.
1476 llvm::APSInt ConstantCondValue;
1477 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1478 SmallVector<const Stmt*, 4> CaseStmts;
1479 const SwitchCase *Case = nullptr;
1480 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1481 getContext(), Case)) {
1482 if (Case) {
1483 RegionCounter CaseCnt = getPGORegionCounter(Case);
1484 CaseCnt.beginRegion(Builder);
1485 }
1486 RunCleanupsScope ExecutedScope(*this);
1487
1488 // Emit the condition variable if needed inside the entire cleanup scope
1489 // used by this special case for constant folded switches.
1490 if (S.getConditionVariable())
1491 EmitAutoVarDecl(*S.getConditionVariable());
1492
1493 // At this point, we are no longer "within" a switch instance, so
1494 // we can temporarily enforce this to ensure that any embedded case
1495 // statements are not emitted.
1496 SwitchInsn = nullptr;
1497
1498 // Okay, we can dead code eliminate everything except this case. Emit the
1499 // specified series of statements and we're good.
1500 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1501 EmitStmt(CaseStmts[i]);
1502 RegionCounter ExitCnt = getPGORegionCounter(&S);
1503 ExitCnt.beginRegion(Builder);
1504
1505 // Now we want to restore the saved switch instance so that nested
1506 // switches continue to function properly
1507 SwitchInsn = SavedSwitchInsn;
1508
1509 return;
1510 }
1511 }
1512
1513 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1514
1515 RunCleanupsScope ConditionScope(*this);
1516 if (S.getConditionVariable())
1517 EmitAutoVarDecl(*S.getConditionVariable());
1518 llvm::Value *CondV = EmitScalarExpr(S.getCond());
1519
1520 // Create basic block to hold stuff that comes after switch
1521 // statement. We also need to create a default block now so that
1522 // explicit case ranges tests can have a place to jump to on
1523 // failure.
1524 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1525 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1526 if (PGO.haveRegionCounts()) {
1527 // Walk the SwitchCase list to find how many there are.
1528 uint64_t DefaultCount = 0;
1529 unsigned NumCases = 0;
1530 for (const SwitchCase *Case = S.getSwitchCaseList();
1531 Case;
1532 Case = Case->getNextSwitchCase()) {
1533 if (isa<DefaultStmt>(Case))
1534 DefaultCount = getPGORegionCounter(Case).getCount();
1535 NumCases += 1;
1536 }
1537 SwitchWeights = new SmallVector<uint64_t, 16>();
1538 SwitchWeights->reserve(NumCases);
1539 // The default needs to be first. We store the edge count, so we already
1540 // know the right weight.
1541 SwitchWeights->push_back(DefaultCount);
1542 }
1543 CaseRangeBlock = DefaultBlock;
1544
1545 // Clear the insertion point to indicate we are in unreachable code.
1546 Builder.ClearInsertionPoint();
1547
1548 // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1549 // then reuse last ContinueBlock.
1550 JumpDest OuterContinue;
1551 if (!BreakContinueStack.empty())
1552 OuterContinue = BreakContinueStack.back().ContinueBlock;
1553
1554 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1555
1556 // Emit switch body.
1557 EmitStmt(S.getBody());
1558
1559 BreakContinueStack.pop_back();
1560
1561 // Update the default block in case explicit case range tests have
1562 // been chained on top.
1563 SwitchInsn->setDefaultDest(CaseRangeBlock);
1564
1565 // If a default was never emitted:
1566 if (!DefaultBlock->getParent()) {
1567 // If we have cleanups, emit the default block so that there's a
1568 // place to jump through the cleanups from.
1569 if (ConditionScope.requiresCleanups()) {
1570 EmitBlock(DefaultBlock);
1571
1572 // Otherwise, just forward the default block to the switch end.
1573 } else {
1574 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1575 delete DefaultBlock;
1576 }
1577 }
1578
1579 ConditionScope.ForceCleanup();
1580
1581 // Emit continuation.
1582 EmitBlock(SwitchExit.getBlock(), true);
1583 RegionCounter ExitCnt = getPGORegionCounter(&S);
1584 ExitCnt.beginRegion(Builder);
1585
1586 if (SwitchWeights) {
1587 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1588 "switch weights do not match switch cases");
1589 // If there's only one jump destination there's no sense weighting it.
1590 if (SwitchWeights->size() > 1)
1591 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1592 PGO.createBranchWeights(*SwitchWeights));
1593 delete SwitchWeights;
1594 }
1595 SwitchInsn = SavedSwitchInsn;
1596 SwitchWeights = SavedSwitchWeights;
1597 CaseRangeBlock = SavedCRBlock;
1598 }
1599
1600 static std::string
SimplifyConstraint(const char * Constraint,const TargetInfo & Target,SmallVectorImpl<TargetInfo::ConstraintInfo> * OutCons=nullptr)1601 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1602 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
1603 std::string Result;
1604
1605 while (*Constraint) {
1606 switch (*Constraint) {
1607 default:
1608 Result += Target.convertConstraint(Constraint);
1609 break;
1610 // Ignore these
1611 case '*':
1612 case '?':
1613 case '!':
1614 case '=': // Will see this and the following in mult-alt constraints.
1615 case '+':
1616 break;
1617 case '#': // Ignore the rest of the constraint alternative.
1618 while (Constraint[1] && Constraint[1] != ',')
1619 Constraint++;
1620 break;
1621 case ',':
1622 Result += "|";
1623 break;
1624 case 'g':
1625 Result += "imr";
1626 break;
1627 case '[': {
1628 assert(OutCons &&
1629 "Must pass output names to constraints with a symbolic name");
1630 unsigned Index;
1631 bool result = Target.resolveSymbolicName(Constraint,
1632 &(*OutCons)[0],
1633 OutCons->size(), Index);
1634 assert(result && "Could not resolve symbolic name"); (void)result;
1635 Result += llvm::utostr(Index);
1636 break;
1637 }
1638 }
1639
1640 Constraint++;
1641 }
1642
1643 return Result;
1644 }
1645
1646 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1647 /// as using a particular register add that as a constraint that will be used
1648 /// in this asm stmt.
1649 static std::string
AddVariableConstraints(const std::string & Constraint,const Expr & AsmExpr,const TargetInfo & Target,CodeGenModule & CGM,const AsmStmt & Stmt)1650 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1651 const TargetInfo &Target, CodeGenModule &CGM,
1652 const AsmStmt &Stmt) {
1653 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1654 if (!AsmDeclRef)
1655 return Constraint;
1656 const ValueDecl &Value = *AsmDeclRef->getDecl();
1657 const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1658 if (!Variable)
1659 return Constraint;
1660 if (Variable->getStorageClass() != SC_Register)
1661 return Constraint;
1662 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1663 if (!Attr)
1664 return Constraint;
1665 StringRef Register = Attr->getLabel();
1666 assert(Target.isValidGCCRegisterName(Register));
1667 // We're using validateOutputConstraint here because we only care if
1668 // this is a register constraint.
1669 TargetInfo::ConstraintInfo Info(Constraint, "");
1670 if (Target.validateOutputConstraint(Info) &&
1671 !Info.allowsRegister()) {
1672 CGM.ErrorUnsupported(&Stmt, "__asm__");
1673 return Constraint;
1674 }
1675 // Canonicalize the register here before returning it.
1676 Register = Target.getNormalizedGCCRegisterName(Register);
1677 return "{" + Register.str() + "}";
1678 }
1679
1680 llvm::Value*
EmitAsmInputLValue(const TargetInfo::ConstraintInfo & Info,LValue InputValue,QualType InputType,std::string & ConstraintStr,SourceLocation Loc)1681 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1682 LValue InputValue, QualType InputType,
1683 std::string &ConstraintStr,
1684 SourceLocation Loc) {
1685 llvm::Value *Arg;
1686 if (Info.allowsRegister() || !Info.allowsMemory()) {
1687 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1688 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1689 } else {
1690 llvm::Type *Ty = ConvertType(InputType);
1691 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1692 if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1693 Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1694 Ty = llvm::PointerType::getUnqual(Ty);
1695
1696 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1697 Ty));
1698 } else {
1699 Arg = InputValue.getAddress();
1700 ConstraintStr += '*';
1701 }
1702 }
1703 } else {
1704 Arg = InputValue.getAddress();
1705 ConstraintStr += '*';
1706 }
1707
1708 return Arg;
1709 }
1710
EmitAsmInput(const TargetInfo::ConstraintInfo & Info,const Expr * InputExpr,std::string & ConstraintStr)1711 llvm::Value* CodeGenFunction::EmitAsmInput(
1712 const TargetInfo::ConstraintInfo &Info,
1713 const Expr *InputExpr,
1714 std::string &ConstraintStr) {
1715 if (Info.allowsRegister() || !Info.allowsMemory())
1716 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
1717 return EmitScalarExpr(InputExpr);
1718
1719 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1720 LValue Dest = EmitLValue(InputExpr);
1721 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
1722 InputExpr->getExprLoc());
1723 }
1724
1725 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1726 /// asm call instruction. The !srcloc MDNode contains a list of constant
1727 /// integers which are the source locations of the start of each line in the
1728 /// asm.
getAsmSrcLocInfo(const StringLiteral * Str,CodeGenFunction & CGF)1729 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1730 CodeGenFunction &CGF) {
1731 SmallVector<llvm::Value *, 8> Locs;
1732 // Add the location of the first line to the MDNode.
1733 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1734 Str->getLocStart().getRawEncoding()));
1735 StringRef StrVal = Str->getString();
1736 if (!StrVal.empty()) {
1737 const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1738 const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1739
1740 // Add the location of the start of each subsequent line of the asm to the
1741 // MDNode.
1742 for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
1743 if (StrVal[i] != '\n') continue;
1744 SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
1745 CGF.getTarget());
1746 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1747 LineLoc.getRawEncoding()));
1748 }
1749 }
1750
1751 return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1752 }
1753
EmitAsmStmt(const AsmStmt & S)1754 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1755 // Assemble the final asm string.
1756 std::string AsmString = S.generateAsmString(getContext());
1757
1758 // Get all the output and input constraints together.
1759 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1760 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1761
1762 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1763 StringRef Name;
1764 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1765 Name = GAS->getOutputName(i);
1766 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
1767 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
1768 assert(IsValid && "Failed to parse output constraint");
1769 OutputConstraintInfos.push_back(Info);
1770 }
1771
1772 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1773 StringRef Name;
1774 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1775 Name = GAS->getInputName(i);
1776 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
1777 bool IsValid =
1778 getTarget().validateInputConstraint(OutputConstraintInfos.data(),
1779 S.getNumOutputs(), Info);
1780 assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1781 InputConstraintInfos.push_back(Info);
1782 }
1783
1784 std::string Constraints;
1785
1786 std::vector<LValue> ResultRegDests;
1787 std::vector<QualType> ResultRegQualTys;
1788 std::vector<llvm::Type *> ResultRegTypes;
1789 std::vector<llvm::Type *> ResultTruncRegTypes;
1790 std::vector<llvm::Type *> ArgTypes;
1791 std::vector<llvm::Value*> Args;
1792
1793 // Keep track of inout constraints.
1794 std::string InOutConstraints;
1795 std::vector<llvm::Value*> InOutArgs;
1796 std::vector<llvm::Type*> InOutArgTypes;
1797
1798 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1799 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1800
1801 // Simplify the output constraint.
1802 std::string OutputConstraint(S.getOutputConstraint(i));
1803 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
1804 getTarget());
1805
1806 const Expr *OutExpr = S.getOutputExpr(i);
1807 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1808
1809 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1810 getTarget(), CGM, S);
1811
1812 LValue Dest = EmitLValue(OutExpr);
1813 if (!Constraints.empty())
1814 Constraints += ',';
1815
1816 // If this is a register output, then make the inline asm return it
1817 // by-value. If this is a memory result, return the value by-reference.
1818 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
1819 Constraints += "=" + OutputConstraint;
1820 ResultRegQualTys.push_back(OutExpr->getType());
1821 ResultRegDests.push_back(Dest);
1822 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1823 ResultTruncRegTypes.push_back(ResultRegTypes.back());
1824
1825 // If this output is tied to an input, and if the input is larger, then
1826 // we need to set the actual result type of the inline asm node to be the
1827 // same as the input type.
1828 if (Info.hasMatchingInput()) {
1829 unsigned InputNo;
1830 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1831 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1832 if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1833 break;
1834 }
1835 assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1836
1837 QualType InputTy = S.getInputExpr(InputNo)->getType();
1838 QualType OutputType = OutExpr->getType();
1839
1840 uint64_t InputSize = getContext().getTypeSize(InputTy);
1841 if (getContext().getTypeSize(OutputType) < InputSize) {
1842 // Form the asm to return the value as a larger integer or fp type.
1843 ResultRegTypes.back() = ConvertType(InputTy);
1844 }
1845 }
1846 if (llvm::Type* AdjTy =
1847 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1848 ResultRegTypes.back()))
1849 ResultRegTypes.back() = AdjTy;
1850 else {
1851 CGM.getDiags().Report(S.getAsmLoc(),
1852 diag::err_asm_invalid_type_in_input)
1853 << OutExpr->getType() << OutputConstraint;
1854 }
1855 } else {
1856 ArgTypes.push_back(Dest.getAddress()->getType());
1857 Args.push_back(Dest.getAddress());
1858 Constraints += "=*";
1859 Constraints += OutputConstraint;
1860 }
1861
1862 if (Info.isReadWrite()) {
1863 InOutConstraints += ',';
1864
1865 const Expr *InputExpr = S.getOutputExpr(i);
1866 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
1867 InOutConstraints,
1868 InputExpr->getExprLoc());
1869
1870 if (llvm::Type* AdjTy =
1871 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1872 Arg->getType()))
1873 Arg = Builder.CreateBitCast(Arg, AdjTy);
1874
1875 if (Info.allowsRegister())
1876 InOutConstraints += llvm::utostr(i);
1877 else
1878 InOutConstraints += OutputConstraint;
1879
1880 InOutArgTypes.push_back(Arg->getType());
1881 InOutArgs.push_back(Arg);
1882 }
1883 }
1884
1885 unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
1886
1887 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1888 const Expr *InputExpr = S.getInputExpr(i);
1889
1890 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1891
1892 if (!Constraints.empty())
1893 Constraints += ',';
1894
1895 // Simplify the input constraint.
1896 std::string InputConstraint(S.getInputConstraint(i));
1897 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
1898 &OutputConstraintInfos);
1899
1900 InputConstraint =
1901 AddVariableConstraints(InputConstraint,
1902 *InputExpr->IgnoreParenNoopCasts(getContext()),
1903 getTarget(), CGM, S);
1904
1905 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
1906
1907 // If this input argument is tied to a larger output result, extend the
1908 // input to be the same size as the output. The LLVM backend wants to see
1909 // the input and output of a matching constraint be the same size. Note
1910 // that GCC does not define what the top bits are here. We use zext because
1911 // that is usually cheaper, but LLVM IR should really get an anyext someday.
1912 if (Info.hasTiedOperand()) {
1913 unsigned Output = Info.getTiedOperand();
1914 QualType OutputType = S.getOutputExpr(Output)->getType();
1915 QualType InputTy = InputExpr->getType();
1916
1917 if (getContext().getTypeSize(OutputType) >
1918 getContext().getTypeSize(InputTy)) {
1919 // Use ptrtoint as appropriate so that we can do our extension.
1920 if (isa<llvm::PointerType>(Arg->getType()))
1921 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1922 llvm::Type *OutputTy = ConvertType(OutputType);
1923 if (isa<llvm::IntegerType>(OutputTy))
1924 Arg = Builder.CreateZExt(Arg, OutputTy);
1925 else if (isa<llvm::PointerType>(OutputTy))
1926 Arg = Builder.CreateZExt(Arg, IntPtrTy);
1927 else {
1928 assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1929 Arg = Builder.CreateFPExt(Arg, OutputTy);
1930 }
1931 }
1932 }
1933 if (llvm::Type* AdjTy =
1934 getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1935 Arg->getType()))
1936 Arg = Builder.CreateBitCast(Arg, AdjTy);
1937 else
1938 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
1939 << InputExpr->getType() << InputConstraint;
1940
1941 ArgTypes.push_back(Arg->getType());
1942 Args.push_back(Arg);
1943 Constraints += InputConstraint;
1944 }
1945
1946 // Append the "input" part of inout constraints last.
1947 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1948 ArgTypes.push_back(InOutArgTypes[i]);
1949 Args.push_back(InOutArgs[i]);
1950 }
1951 Constraints += InOutConstraints;
1952
1953 // Clobbers
1954 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1955 StringRef Clobber = S.getClobber(i);
1956
1957 if (Clobber != "memory" && Clobber != "cc")
1958 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
1959
1960 if (i != 0 || NumConstraints != 0)
1961 Constraints += ',';
1962
1963 Constraints += "~{";
1964 Constraints += Clobber;
1965 Constraints += '}';
1966 }
1967
1968 // Add machine specific clobbers
1969 std::string MachineClobbers = getTarget().getClobbers();
1970 if (!MachineClobbers.empty()) {
1971 if (!Constraints.empty())
1972 Constraints += ',';
1973 Constraints += MachineClobbers;
1974 }
1975
1976 llvm::Type *ResultType;
1977 if (ResultRegTypes.empty())
1978 ResultType = VoidTy;
1979 else if (ResultRegTypes.size() == 1)
1980 ResultType = ResultRegTypes[0];
1981 else
1982 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
1983
1984 llvm::FunctionType *FTy =
1985 llvm::FunctionType::get(ResultType, ArgTypes, false);
1986
1987 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
1988 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
1989 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
1990 llvm::InlineAsm *IA =
1991 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
1992 /* IsAlignStack */ false, AsmDialect);
1993 llvm::CallInst *Result = Builder.CreateCall(IA, Args);
1994 Result->addAttribute(llvm::AttributeSet::FunctionIndex,
1995 llvm::Attribute::NoUnwind);
1996
1997 // Slap the source location of the inline asm into a !srcloc metadata on the
1998 // call. FIXME: Handle metadata for MS-style inline asms.
1999 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
2000 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
2001 *this));
2002
2003 // Extract all of the register value results from the asm.
2004 std::vector<llvm::Value*> RegResults;
2005 if (ResultRegTypes.size() == 1) {
2006 RegResults.push_back(Result);
2007 } else {
2008 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2009 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
2010 RegResults.push_back(Tmp);
2011 }
2012 }
2013
2014 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2015 llvm::Value *Tmp = RegResults[i];
2016
2017 // If the result type of the LLVM IR asm doesn't match the result type of
2018 // the expression, do the conversion.
2019 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2020 llvm::Type *TruncTy = ResultTruncRegTypes[i];
2021
2022 // Truncate the integer result to the right size, note that TruncTy can be
2023 // a pointer.
2024 if (TruncTy->isFloatingPointTy())
2025 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2026 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2027 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2028 Tmp = Builder.CreateTrunc(Tmp,
2029 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2030 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2031 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2032 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2033 Tmp = Builder.CreatePtrToInt(Tmp,
2034 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2035 Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2036 } else if (TruncTy->isIntegerTy()) {
2037 Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2038 } else if (TruncTy->isVectorTy()) {
2039 Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2040 }
2041 }
2042
2043 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
2044 }
2045 }
2046
InitCapturedStruct(CodeGenFunction & CGF,const CapturedStmt & S)2047 static LValue InitCapturedStruct(CodeGenFunction &CGF, const CapturedStmt &S) {
2048 const RecordDecl *RD = S.getCapturedRecordDecl();
2049 QualType RecordTy = CGF.getContext().getRecordType(RD);
2050
2051 // Initialize the captured struct.
2052 LValue SlotLV = CGF.MakeNaturalAlignAddrLValue(
2053 CGF.CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2054
2055 RecordDecl::field_iterator CurField = RD->field_begin();
2056 for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(),
2057 E = S.capture_init_end();
2058 I != E; ++I, ++CurField) {
2059 LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
2060 CGF.EmitInitializerForField(*CurField, LV, *I, ArrayRef<VarDecl *>());
2061 }
2062
2063 return SlotLV;
2064 }
2065
InitVLACaptures(CodeGenFunction & CGF,const CapturedStmt & S)2066 static void InitVLACaptures(CodeGenFunction &CGF, const CapturedStmt &S) {
2067 for (auto &C : S.captures()) {
2068 if (C.capturesVariable()) {
2069 QualType QTy;
2070 auto VD = C.getCapturedVar();
2071 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
2072 QTy = PVD->getOriginalType();
2073 else
2074 QTy = VD->getType();
2075 if (QTy->isVariablyModifiedType()) {
2076 CGF.EmitVariablyModifiedType(QTy);
2077 }
2078 }
2079 }
2080 }
2081
2082 /// Generate an outlined function for the body of a CapturedStmt, store any
2083 /// captured variables into the captured struct, and call the outlined function.
2084 llvm::Function *
EmitCapturedStmt(const CapturedStmt & S,CapturedRegionKind K)2085 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2086 LValue CapStruct = InitCapturedStruct(*this, S);
2087
2088 // Emit the CapturedDecl
2089 CodeGenFunction CGF(CGM, true);
2090 CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K);
2091 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2092 delete CGF.CapturedStmtInfo;
2093
2094 // Emit call to the helper function.
2095 EmitCallOrInvoke(F, CapStruct.getAddress());
2096
2097 return F;
2098 }
2099
2100 llvm::Value *
GenerateCapturedStmtArgument(const CapturedStmt & S)2101 CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2102 LValue CapStruct = InitCapturedStruct(*this, S);
2103 return CapStruct.getAddress();
2104 }
2105
2106 /// Creates the outlined function for a CapturedStmt.
2107 llvm::Function *
GenerateCapturedStmtFunction(const CapturedStmt & S)2108 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2109 assert(CapturedStmtInfo &&
2110 "CapturedStmtInfo should be set when generating the captured function");
2111 const CapturedDecl *CD = S.getCapturedDecl();
2112 const RecordDecl *RD = S.getCapturedRecordDecl();
2113 SourceLocation Loc = S.getLocStart();
2114 assert(CD->hasBody() && "missing CapturedDecl body");
2115
2116 // Build the argument list.
2117 ASTContext &Ctx = CGM.getContext();
2118 FunctionArgList Args;
2119 Args.append(CD->param_begin(), CD->param_end());
2120
2121 // Create the function declaration.
2122 FunctionType::ExtInfo ExtInfo;
2123 const CGFunctionInfo &FuncInfo =
2124 CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo,
2125 /*IsVariadic=*/false);
2126 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2127
2128 llvm::Function *F =
2129 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2130 CapturedStmtInfo->getHelperName(), &CGM.getModule());
2131 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2132
2133 // Generate the function.
2134 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args,
2135 CD->getLocation(),
2136 CD->getBody()->getLocStart());
2137 // Set the context parameter in CapturedStmtInfo.
2138 llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()];
2139 assert(DeclPtr && "missing context parameter for CapturedStmt");
2140 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2141
2142 // Initialize variable-length arrays.
2143 InitVLACaptures(*this, S);
2144
2145 // If 'this' is captured, load it into CXXThisValue.
2146 if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2147 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2148 LValue LV = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2149 Ctx.getTagDeclType(RD));
2150 LValue ThisLValue = EmitLValueForField(LV, FD);
2151 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2152 }
2153
2154 PGO.assignRegionCounters(CD, F);
2155 CapturedStmtInfo->EmitBody(*this, CD->getBody());
2156 FinishFunction(CD->getBodyRBrace());
2157 PGO.emitInstrumentationData();
2158 PGO.destroyRegionCounters();
2159
2160 return F;
2161 }
2162