• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2008, 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_DOT_H
11 #define EIGEN_DOT_H
12 
13 namespace Eigen {
14 
15 namespace internal {
16 
17 // helper function for dot(). The problem is that if we put that in the body of dot(), then upon calling dot
18 // with mismatched types, the compiler emits errors about failing to instantiate cwiseProduct BEFORE
19 // looking at the static assertions. Thus this is a trick to get better compile errors.
20 template<typename T, typename U,
21 // the NeedToTranspose condition here is taken straight from Assign.h
22          bool NeedToTranspose = T::IsVectorAtCompileTime
23                 && U::IsVectorAtCompileTime
24                 && ((int(T::RowsAtCompileTime) == 1 && int(U::ColsAtCompileTime) == 1)
25                       |  // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&".
26                          // revert to || as soon as not needed anymore.
27                     (int(T::ColsAtCompileTime) == 1 && int(U::RowsAtCompileTime) == 1))
28 >
29 struct dot_nocheck
30 {
31   typedef typename scalar_product_traits<typename traits<T>::Scalar,typename traits<U>::Scalar>::ReturnType ResScalar;
rundot_nocheck32   static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
33   {
34     return a.template binaryExpr<scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> >(b).sum();
35   }
36 };
37 
38 template<typename T, typename U>
39 struct dot_nocheck<T, U, true>
40 {
41   typedef typename scalar_product_traits<typename traits<T>::Scalar,typename traits<U>::Scalar>::ReturnType ResScalar;
42   static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
43   {
44     return a.transpose().template binaryExpr<scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> >(b).sum();
45   }
46 };
47 
48 } // end namespace internal
49 
50 /** \returns the dot product of *this with other.
51   *
52   * \only_for_vectors
53   *
54   * \note If the scalar type is complex numbers, then this function returns the hermitian
55   * (sesquilinear) dot product, conjugate-linear in the first variable and linear in the
56   * second variable.
57   *
58   * \sa squaredNorm(), norm()
59   */
60 template<typename Derived>
61 template<typename OtherDerived>
62 typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType
63 MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
64 {
65   EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
66   EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
67   EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
68   typedef internal::scalar_conj_product_op<Scalar,typename OtherDerived::Scalar> func;
69   EIGEN_CHECK_BINARY_COMPATIBILIY(func,Scalar,typename OtherDerived::Scalar);
70 
71   eigen_assert(size() == other.size());
72 
73   return internal::dot_nocheck<Derived,OtherDerived>::run(*this, other);
74 }
75 
76 #ifdef EIGEN2_SUPPORT
77 /** \returns the dot product of *this with other, with the Eigen2 convention that the dot product is linear in the first variable
78   * (conjugating the second variable). Of course this only makes a difference in the complex case.
79   *
80   * This method is only available in EIGEN2_SUPPORT mode.
81   *
82   * \only_for_vectors
83   *
84   * \sa dot()
85   */
86 template<typename Derived>
87 template<typename OtherDerived>
88 typename internal::traits<Derived>::Scalar
89 MatrixBase<Derived>::eigen2_dot(const MatrixBase<OtherDerived>& other) const
90 {
91   EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
92   EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
93   EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
94   EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
95     YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
96 
97   eigen_assert(size() == other.size());
98 
99   return internal::dot_nocheck<OtherDerived,Derived>::run(other,*this);
100 }
101 #endif
102 
103 
104 //---------- implementation of L2 norm and related functions ----------
105 
106 /** \returns, for vectors, the squared \em l2 norm of \c *this, and for matrices the Frobenius norm.
107   * In both cases, it consists in the sum of the square of all the matrix entries.
108   * For vectors, this is also equals to the dot product of \c *this with itself.
109   *
110   * \sa dot(), norm()
111   */
112 template<typename Derived>
113 EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::squaredNorm() const
114 {
115   return numext::real((*this).cwiseAbs2().sum());
116 }
117 
118 /** \returns, for vectors, the \em l2 norm of \c *this, and for matrices the Frobenius norm.
119   * In both cases, it consists in the square root of the sum of the square of all the matrix entries.
120   * For vectors, this is also equals to the square root of the dot product of \c *this with itself.
121   *
122   * \sa dot(), squaredNorm()
123   */
124 template<typename Derived>
125 inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm() const
126 {
127   using std::sqrt;
128   return sqrt(squaredNorm());
129 }
130 
131 /** \returns an expression of the quotient of *this by its own norm.
132   *
133   * \only_for_vectors
134   *
135   * \sa norm(), normalize()
136   */
137 template<typename Derived>
138 inline const typename MatrixBase<Derived>::PlainObject
139 MatrixBase<Derived>::normalized() const
140 {
141   typedef typename internal::nested<Derived>::type Nested;
142   typedef typename internal::remove_reference<Nested>::type _Nested;
143   _Nested n(derived());
144   return n / n.norm();
145 }
146 
147 /** Normalizes the vector, i.e. divides it by its own norm.
148   *
149   * \only_for_vectors
150   *
151   * \sa norm(), normalized()
152   */
153 template<typename Derived>
154 inline void MatrixBase<Derived>::normalize()
155 {
156   *this /= norm();
157 }
158 
159 //---------- implementation of other norms ----------
160 
161 namespace internal {
162 
163 template<typename Derived, int p>
164 struct lpNorm_selector
165 {
166   typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar;
167   static inline RealScalar run(const MatrixBase<Derived>& m)
168   {
169     using std::pow;
170     return pow(m.cwiseAbs().array().pow(p).sum(), RealScalar(1)/p);
171   }
172 };
173 
174 template<typename Derived>
175 struct lpNorm_selector<Derived, 1>
176 {
177   static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
178   {
179     return m.cwiseAbs().sum();
180   }
181 };
182 
183 template<typename Derived>
184 struct lpNorm_selector<Derived, 2>
185 {
186   static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
187   {
188     return m.norm();
189   }
190 };
191 
192 template<typename Derived>
193 struct lpNorm_selector<Derived, Infinity>
194 {
195   static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
196   {
197     return m.cwiseAbs().maxCoeff();
198   }
199 };
200 
201 } // end namespace internal
202 
203 /** \returns the \f$ \ell^p \f$ norm of *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values
204   *          of the coefficients of *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^\infty \f$
205   *          norm, that is the maximum of the absolute values of the coefficients of *this.
206   *
207   * \sa norm()
208   */
209 template<typename Derived>
210 template<int p>
211 inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
212 MatrixBase<Derived>::lpNorm() const
213 {
214   return internal::lpNorm_selector<Derived, p>::run(*this);
215 }
216 
217 //---------- implementation of isOrthogonal / isUnitary ----------
218 
219 /** \returns true if *this is approximately orthogonal to \a other,
220   *          within the precision given by \a prec.
221   *
222   * Example: \include MatrixBase_isOrthogonal.cpp
223   * Output: \verbinclude MatrixBase_isOrthogonal.out
224   */
225 template<typename Derived>
226 template<typename OtherDerived>
227 bool MatrixBase<Derived>::isOrthogonal
228 (const MatrixBase<OtherDerived>& other, const RealScalar& prec) const
229 {
230   typename internal::nested<Derived,2>::type nested(derived());
231   typename internal::nested<OtherDerived,2>::type otherNested(other.derived());
232   return numext::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm();
233 }
234 
235 /** \returns true if *this is approximately an unitary matrix,
236   *          within the precision given by \a prec. In the case where the \a Scalar
237   *          type is real numbers, a unitary matrix is an orthogonal matrix, whence the name.
238   *
239   * \note This can be used to check whether a family of vectors forms an orthonormal basis.
240   *       Indeed, \c m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an
241   *       orthonormal basis.
242   *
243   * Example: \include MatrixBase_isUnitary.cpp
244   * Output: \verbinclude MatrixBase_isUnitary.out
245   */
246 template<typename Derived>
247 bool MatrixBase<Derived>::isUnitary(const RealScalar& prec) const
248 {
249   typename Derived::Nested nested(derived());
250   for(Index i = 0; i < cols(); ++i)
251   {
252     if(!internal::isApprox(nested.col(i).squaredNorm(), static_cast<RealScalar>(1), prec))
253       return false;
254     for(Index j = 0; j < i; ++j)
255       if(!internal::isMuchSmallerThan(nested.col(i).dot(nested.col(j)), static_cast<Scalar>(1), prec))
256         return false;
257   }
258   return true;
259 }
260 
261 } // end namespace Eigen
262 
263 #endif // EIGEN_DOT_H
264