• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*#define CHASE_CHAIN*/
2 /*
3  * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that: (1) source code distributions
8  * retain the above copyright notice and this paragraph in its entirety, (2)
9  * distributions including binary code include the above copyright notice and
10  * this paragraph in its entirety in the documentation or other materials
11  * provided with the distribution, and (3) all advertising materials mentioning
12  * features or use of this software display the following acknowledgement:
13  * ``This product includes software developed by the University of California,
14  * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15  * the University nor the names of its contributors may be used to endorse
16  * or promote products derived from this software without specific prior
17  * written permission.
18  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21  */
22 #ifndef lint
23 static const char rcsid[] _U_ =
24     "@(#) $Header: /tcpdump/master/libpcap/gencode.c,v 1.309 2008-12-23 20:13:29 guy Exp $ (LBL)";
25 #endif
26 
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
30 
31 #ifdef WIN32
32 #include <pcap-stdinc.h>
33 #else /* WIN32 */
34 #if HAVE_INTTYPES_H
35 #include <inttypes.h>
36 #elif HAVE_STDINT_H
37 #include <stdint.h>
38 #endif
39 #ifdef HAVE_SYS_BITYPES_H
40 #include <sys/bitypes.h>
41 #endif
42 #include <sys/types.h>
43 #include <sys/socket.h>
44 #endif /* WIN32 */
45 
46 /*
47  * XXX - why was this included even on UNIX?
48  */
49 #ifdef __MINGW32__
50 #include "ip6_misc.h"
51 #endif
52 
53 #ifndef WIN32
54 
55 #ifdef __NetBSD__
56 #include <sys/param.h>
57 #endif
58 
59 #include <netinet/in.h>
60 #include <arpa/inet.h>
61 
62 #endif /* WIN32 */
63 
64 #include <stdlib.h>
65 #include <string.h>
66 #include <memory.h>
67 #include <setjmp.h>
68 #include <stdarg.h>
69 
70 #ifdef MSDOS
71 #include "pcap-dos.h"
72 #endif
73 
74 #include "pcap-int.h"
75 
76 #include "ethertype.h"
77 #include "nlpid.h"
78 #include "llc.h"
79 #include "gencode.h"
80 #include "ieee80211.h"
81 #include "atmuni31.h"
82 #include "sunatmpos.h"
83 #include "ppp.h"
84 #include "pcap/sll.h"
85 #include "pcap/ipnet.h"
86 #include "arcnet.h"
87 #if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
88 #include <linux/types.h>
89 #include <linux/if_packet.h>
90 #include <linux/filter.h>
91 #endif
92 #ifdef HAVE_NET_PFVAR_H
93 #include <sys/socket.h>
94 #include <net/if.h>
95 #include <net/pfvar.h>
96 #include <net/if_pflog.h>
97 #endif
98 #ifndef offsetof
99 #define offsetof(s, e) ((size_t)&((s *)0)->e)
100 #endif
101 #ifdef INET6
102 #ifndef WIN32
103 #include <netdb.h>	/* for "struct addrinfo" */
104 #endif /* WIN32 */
105 #endif /*INET6*/
106 #include <pcap/namedb.h>
107 
108 #define ETHERMTU	1500
109 
110 #ifndef IPPROTO_HOPOPTS
111 #define IPPROTO_HOPOPTS 0
112 #endif
113 #ifndef IPPROTO_ROUTING
114 #define IPPROTO_ROUTING 43
115 #endif
116 #ifndef IPPROTO_FRAGMENT
117 #define IPPROTO_FRAGMENT 44
118 #endif
119 #ifndef IPPROTO_DSTOPTS
120 #define IPPROTO_DSTOPTS 60
121 #endif
122 #ifndef IPPROTO_SCTP
123 #define IPPROTO_SCTP 132
124 #endif
125 
126 #ifdef HAVE_OS_PROTO_H
127 #include "os-proto.h"
128 #endif
129 
130 #define JMP(c) ((c)|BPF_JMP|BPF_K)
131 
132 /* Locals */
133 static jmp_buf top_ctx;
134 static pcap_t *bpf_pcap;
135 
136 /* Hack for updating VLAN, MPLS, and PPPoE offsets. */
137 #ifdef WIN32
138 static u_int	orig_linktype = (u_int)-1, orig_nl = (u_int)-1, label_stack_depth = (u_int)-1;
139 #else
140 static u_int	orig_linktype = -1U, orig_nl = -1U, label_stack_depth = -1U;
141 #endif
142 
143 /* XXX */
144 static int	pcap_fddipad;
145 
146 /* VARARGS */
147 void
bpf_error(const char * fmt,...)148 bpf_error(const char *fmt, ...)
149 {
150 	va_list ap;
151 
152 	va_start(ap, fmt);
153 	if (bpf_pcap != NULL)
154 		(void)vsnprintf(pcap_geterr(bpf_pcap), PCAP_ERRBUF_SIZE,
155 		    fmt, ap);
156 	va_end(ap);
157 	longjmp(top_ctx, 1);
158 	/* NOTREACHED */
159 }
160 
161 static void init_linktype(pcap_t *);
162 
163 static void init_regs(void);
164 static int alloc_reg(void);
165 static void free_reg(int);
166 
167 static struct block *root;
168 
169 /*
170  * Value passed to gen_load_a() to indicate what the offset argument
171  * is relative to.
172  */
173 enum e_offrel {
174 	OR_PACKET,	/* relative to the beginning of the packet */
175 	OR_LINK,	/* relative to the beginning of the link-layer header */
176 	OR_MACPL,	/* relative to the end of the MAC-layer header */
177 	OR_NET,		/* relative to the network-layer header */
178 	OR_NET_NOSNAP,	/* relative to the network-layer header, with no SNAP header at the link layer */
179 	OR_TRAN_IPV4,	/* relative to the transport-layer header, with IPv4 network layer */
180 	OR_TRAN_IPV6	/* relative to the transport-layer header, with IPv6 network layer */
181 };
182 
183 #ifdef INET6
184 /*
185  * As errors are handled by a longjmp, anything allocated must be freed
186  * in the longjmp handler, so it must be reachable from that handler.
187  * One thing that's allocated is the result of pcap_nametoaddrinfo();
188  * it must be freed with freeaddrinfo().  This variable points to any
189  * addrinfo structure that would need to be freed.
190  */
191 static struct addrinfo *ai;
192 #endif
193 
194 /*
195  * We divy out chunks of memory rather than call malloc each time so
196  * we don't have to worry about leaking memory.  It's probably
197  * not a big deal if all this memory was wasted but if this ever
198  * goes into a library that would probably not be a good idea.
199  *
200  * XXX - this *is* in a library....
201  */
202 #define NCHUNKS 16
203 #define CHUNK0SIZE 1024
204 struct chunk {
205 	u_int n_left;
206 	void *m;
207 };
208 
209 static struct chunk chunks[NCHUNKS];
210 static int cur_chunk;
211 
212 static void *newchunk(u_int);
213 static void freechunks(void);
214 static inline struct block *new_block(int);
215 static inline struct slist *new_stmt(int);
216 static struct block *gen_retblk(int);
217 static inline void syntax(void);
218 
219 static void backpatch(struct block *, struct block *);
220 static void merge(struct block *, struct block *);
221 static struct block *gen_cmp(enum e_offrel, u_int, u_int, bpf_int32);
222 static struct block *gen_cmp_gt(enum e_offrel, u_int, u_int, bpf_int32);
223 static struct block *gen_cmp_ge(enum e_offrel, u_int, u_int, bpf_int32);
224 static struct block *gen_cmp_lt(enum e_offrel, u_int, u_int, bpf_int32);
225 static struct block *gen_cmp_le(enum e_offrel, u_int, u_int, bpf_int32);
226 static struct block *gen_mcmp(enum e_offrel, u_int, u_int, bpf_int32,
227     bpf_u_int32);
228 static struct block *gen_bcmp(enum e_offrel, u_int, u_int, const u_char *);
229 static struct block *gen_ncmp(enum e_offrel, bpf_u_int32, bpf_u_int32,
230     bpf_u_int32, bpf_u_int32, int, bpf_int32);
231 static struct slist *gen_load_llrel(u_int, u_int);
232 static struct slist *gen_load_macplrel(u_int, u_int);
233 static struct slist *gen_load_a(enum e_offrel, u_int, u_int);
234 static struct slist *gen_loadx_iphdrlen(void);
235 static struct block *gen_uncond(int);
236 static inline struct block *gen_true(void);
237 static inline struct block *gen_false(void);
238 static struct block *gen_ether_linktype(int);
239 static struct block *gen_ipnet_linktype(int);
240 static struct block *gen_linux_sll_linktype(int);
241 static struct slist *gen_load_prism_llprefixlen(void);
242 static struct slist *gen_load_avs_llprefixlen(void);
243 static struct slist *gen_load_radiotap_llprefixlen(void);
244 static struct slist *gen_load_ppi_llprefixlen(void);
245 static void insert_compute_vloffsets(struct block *);
246 static struct slist *gen_llprefixlen(void);
247 static struct slist *gen_off_macpl(void);
248 static int ethertype_to_ppptype(int);
249 static struct block *gen_linktype(int);
250 static struct block *gen_snap(bpf_u_int32, bpf_u_int32);
251 static struct block *gen_llc_linktype(int);
252 static struct block *gen_hostop(bpf_u_int32, bpf_u_int32, int, int, u_int, u_int);
253 #ifdef INET6
254 static struct block *gen_hostop6(struct in6_addr *, struct in6_addr *, int, int, u_int, u_int);
255 #endif
256 static struct block *gen_ahostop(const u_char *, int);
257 static struct block *gen_ehostop(const u_char *, int);
258 static struct block *gen_fhostop(const u_char *, int);
259 static struct block *gen_thostop(const u_char *, int);
260 static struct block *gen_wlanhostop(const u_char *, int);
261 static struct block *gen_ipfchostop(const u_char *, int);
262 static struct block *gen_dnhostop(bpf_u_int32, int);
263 static struct block *gen_mpls_linktype(int);
264 static struct block *gen_host(bpf_u_int32, bpf_u_int32, int, int, int);
265 #ifdef INET6
266 static struct block *gen_host6(struct in6_addr *, struct in6_addr *, int, int, int);
267 #endif
268 #ifndef INET6
269 static struct block *gen_gateway(const u_char *, bpf_u_int32 **, int, int);
270 #endif
271 static struct block *gen_ipfrag(void);
272 static struct block *gen_portatom(int, bpf_int32);
273 static struct block *gen_portrangeatom(int, bpf_int32, bpf_int32);
274 static struct block *gen_portatom6(int, bpf_int32);
275 static struct block *gen_portrangeatom6(int, bpf_int32, bpf_int32);
276 struct block *gen_portop(int, int, int);
277 static struct block *gen_port(int, int, int);
278 struct block *gen_portrangeop(int, int, int, int);
279 static struct block *gen_portrange(int, int, int, int);
280 struct block *gen_portop6(int, int, int);
281 static struct block *gen_port6(int, int, int);
282 struct block *gen_portrangeop6(int, int, int, int);
283 static struct block *gen_portrange6(int, int, int, int);
284 static int lookup_proto(const char *, int);
285 static struct block *gen_protochain(int, int, int);
286 static struct block *gen_proto(int, int, int);
287 static struct slist *xfer_to_x(struct arth *);
288 static struct slist *xfer_to_a(struct arth *);
289 static struct block *gen_mac_multicast(int);
290 static struct block *gen_len(int, int);
291 static struct block *gen_check_802_11_data_frame(void);
292 
293 static struct block *gen_ppi_dlt_check(void);
294 static struct block *gen_msg_abbrev(int type);
295 
296 static void *
newchunk(n)297 newchunk(n)
298 	u_int n;
299 {
300 	struct chunk *cp;
301 	int k;
302 	size_t size;
303 
304 #ifndef __NetBSD__
305 	/* XXX Round up to nearest long. */
306 	n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
307 #else
308 	/* XXX Round up to structure boundary. */
309 	n = ALIGN(n);
310 #endif
311 
312 	cp = &chunks[cur_chunk];
313 	if (n > cp->n_left) {
314 		++cp, k = ++cur_chunk;
315 		if (k >= NCHUNKS)
316 			bpf_error("out of memory");
317 		size = CHUNK0SIZE << k;
318 		cp->m = (void *)malloc(size);
319 		if (cp->m == NULL)
320 			bpf_error("out of memory");
321 		memset((char *)cp->m, 0, size);
322 		cp->n_left = size;
323 		if (n > size)
324 			bpf_error("out of memory");
325 	}
326 	cp->n_left -= n;
327 	return (void *)((char *)cp->m + cp->n_left);
328 }
329 
330 static void
freechunks()331 freechunks()
332 {
333 	int i;
334 
335 	cur_chunk = 0;
336 	for (i = 0; i < NCHUNKS; ++i)
337 		if (chunks[i].m != NULL) {
338 			free(chunks[i].m);
339 			chunks[i].m = NULL;
340 		}
341 }
342 
343 /*
344  * A strdup whose allocations are freed after code generation is over.
345  */
346 char *
sdup(s)347 sdup(s)
348 	register const char *s;
349 {
350 	int n = strlen(s) + 1;
351 	char *cp = newchunk(n);
352 
353 	strlcpy(cp, s, n);
354 	return (cp);
355 }
356 
357 static inline struct block *
new_block(code)358 new_block(code)
359 	int code;
360 {
361 	struct block *p;
362 
363 	p = (struct block *)newchunk(sizeof(*p));
364 	p->s.code = code;
365 	p->head = p;
366 
367 	return p;
368 }
369 
370 static inline struct slist *
new_stmt(code)371 new_stmt(code)
372 	int code;
373 {
374 	struct slist *p;
375 
376 	p = (struct slist *)newchunk(sizeof(*p));
377 	p->s.code = code;
378 
379 	return p;
380 }
381 
382 static struct block *
gen_retblk(v)383 gen_retblk(v)
384 	int v;
385 {
386 	struct block *b = new_block(BPF_RET|BPF_K);
387 
388 	b->s.k = v;
389 	return b;
390 }
391 
392 static inline void
syntax()393 syntax()
394 {
395 	bpf_error("syntax error in filter expression");
396 }
397 
398 static bpf_u_int32 netmask;
399 static int snaplen;
400 int no_optimize;
401 #ifdef WIN32
402 static int
403 pcap_compile_unsafe(pcap_t *p, struct bpf_program *program,
404 	     const char *buf, int optimize, bpf_u_int32 mask);
405 
406 int
pcap_compile(pcap_t * p,struct bpf_program * program,const char * buf,int optimize,bpf_u_int32 mask)407 pcap_compile(pcap_t *p, struct bpf_program *program,
408 	     const char *buf, int optimize, bpf_u_int32 mask)
409 {
410 	int result;
411 
412 	EnterCriticalSection(&g_PcapCompileCriticalSection);
413 
414 	result = pcap_compile_unsafe(p, program, buf, optimize, mask);
415 
416 	LeaveCriticalSection(&g_PcapCompileCriticalSection);
417 
418 	return result;
419 }
420 
421 static int
pcap_compile_unsafe(pcap_t * p,struct bpf_program * program,const char * buf,int optimize,bpf_u_int32 mask)422 pcap_compile_unsafe(pcap_t *p, struct bpf_program *program,
423 	     const char *buf, int optimize, bpf_u_int32 mask)
424 #else /* WIN32 */
425 int
426 pcap_compile(pcap_t *p, struct bpf_program *program,
427 	     const char *buf, int optimize, bpf_u_int32 mask)
428 #endif /* WIN32 */
429 {
430 	extern int n_errors;
431 	const char * volatile xbuf = buf;
432 	u_int len;
433 
434 	/*
435 	 * If this pcap_t hasn't been activated, it doesn't have a
436 	 * link-layer type, so we can't use it.
437 	 */
438 	if (!p->activated) {
439 		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
440 		    "not-yet-activated pcap_t passed to pcap_compile");
441 		return (-1);
442 	}
443 	no_optimize = 0;
444 	n_errors = 0;
445 	root = NULL;
446 	bpf_pcap = p;
447 	init_regs();
448 	if (setjmp(top_ctx)) {
449 #ifdef INET6
450 		if (ai != NULL) {
451 			freeaddrinfo(ai);
452 			ai = NULL;
453 		}
454 #endif
455 		lex_cleanup();
456 		freechunks();
457 		return (-1);
458 	}
459 
460 	netmask = mask;
461 
462 	snaplen = pcap_snapshot(p);
463 	if (snaplen == 0) {
464 		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
465 			 "snaplen of 0 rejects all packets");
466 		return -1;
467 	}
468 
469 	lex_init(xbuf ? xbuf : "");
470 	init_linktype(p);
471 	(void)pcap_parse();
472 
473 	if (n_errors)
474 		syntax();
475 
476 	if (root == NULL)
477 		root = gen_retblk(snaplen);
478 
479 	if (optimize && !no_optimize) {
480 		bpf_optimize(&root);
481 		if (root == NULL ||
482 		    (root->s.code == (BPF_RET|BPF_K) && root->s.k == 0))
483 			bpf_error("expression rejects all packets");
484 	}
485 	program->bf_insns = icode_to_fcode(root, &len);
486 	program->bf_len = len;
487 
488 	lex_cleanup();
489 	freechunks();
490 	return (0);
491 }
492 
493 /*
494  * entry point for using the compiler with no pcap open
495  * pass in all the stuff that is needed explicitly instead.
496  */
497 int
pcap_compile_nopcap(int snaplen_arg,int linktype_arg,struct bpf_program * program,const char * buf,int optimize,bpf_u_int32 mask)498 pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
499 		    struct bpf_program *program,
500 	     const char *buf, int optimize, bpf_u_int32 mask)
501 {
502 	pcap_t *p;
503 	int ret;
504 
505 	p = pcap_open_dead(linktype_arg, snaplen_arg);
506 	if (p == NULL)
507 		return (-1);
508 	ret = pcap_compile(p, program, buf, optimize, mask);
509 	pcap_close(p);
510 	return (ret);
511 }
512 
513 /*
514  * Clean up a "struct bpf_program" by freeing all the memory allocated
515  * in it.
516  */
517 void
pcap_freecode(struct bpf_program * program)518 pcap_freecode(struct bpf_program *program)
519 {
520 	program->bf_len = 0;
521 	if (program->bf_insns != NULL) {
522 		free((char *)program->bf_insns);
523 		program->bf_insns = NULL;
524 	}
525 }
526 
527 /*
528  * Backpatch the blocks in 'list' to 'target'.  The 'sense' field indicates
529  * which of the jt and jf fields has been resolved and which is a pointer
530  * back to another unresolved block (or nil).  At least one of the fields
531  * in each block is already resolved.
532  */
533 static void
backpatch(list,target)534 backpatch(list, target)
535 	struct block *list, *target;
536 {
537 	struct block *next;
538 
539 	while (list) {
540 		if (!list->sense) {
541 			next = JT(list);
542 			JT(list) = target;
543 		} else {
544 			next = JF(list);
545 			JF(list) = target;
546 		}
547 		list = next;
548 	}
549 }
550 
551 /*
552  * Merge the lists in b0 and b1, using the 'sense' field to indicate
553  * which of jt and jf is the link.
554  */
555 static void
merge(b0,b1)556 merge(b0, b1)
557 	struct block *b0, *b1;
558 {
559 	register struct block **p = &b0;
560 
561 	/* Find end of list. */
562 	while (*p)
563 		p = !((*p)->sense) ? &JT(*p) : &JF(*p);
564 
565 	/* Concatenate the lists. */
566 	*p = b1;
567 }
568 
569 void
finish_parse(p)570 finish_parse(p)
571 	struct block *p;
572 {
573 	struct block *ppi_dlt_check;
574 
575 	/*
576 	 * Insert before the statements of the first (root) block any
577 	 * statements needed to load the lengths of any variable-length
578 	 * headers into registers.
579 	 *
580 	 * XXX - a fancier strategy would be to insert those before the
581 	 * statements of all blocks that use those lengths and that
582 	 * have no predecessors that use them, so that we only compute
583 	 * the lengths if we need them.  There might be even better
584 	 * approaches than that.
585 	 *
586 	 * However, those strategies would be more complicated, and
587 	 * as we don't generate code to compute a length if the
588 	 * program has no tests that use the length, and as most
589 	 * tests will probably use those lengths, we would just
590 	 * postpone computing the lengths so that it's not done
591 	 * for tests that fail early, and it's not clear that's
592 	 * worth the effort.
593 	 */
594 	insert_compute_vloffsets(p->head);
595 
596 	/*
597 	 * For DLT_PPI captures, generate a check of the per-packet
598 	 * DLT value to make sure it's DLT_IEEE802_11.
599 	 */
600 	ppi_dlt_check = gen_ppi_dlt_check();
601 	if (ppi_dlt_check != NULL)
602 		gen_and(ppi_dlt_check, p);
603 
604 	backpatch(p, gen_retblk(snaplen));
605 	p->sense = !p->sense;
606 	backpatch(p, gen_retblk(0));
607 	root = p->head;
608 }
609 
610 void
gen_and(b0,b1)611 gen_and(b0, b1)
612 	struct block *b0, *b1;
613 {
614 	backpatch(b0, b1->head);
615 	b0->sense = !b0->sense;
616 	b1->sense = !b1->sense;
617 	merge(b1, b0);
618 	b1->sense = !b1->sense;
619 	b1->head = b0->head;
620 }
621 
622 void
gen_or(b0,b1)623 gen_or(b0, b1)
624 	struct block *b0, *b1;
625 {
626 	b0->sense = !b0->sense;
627 	backpatch(b0, b1->head);
628 	b0->sense = !b0->sense;
629 	merge(b1, b0);
630 	b1->head = b0->head;
631 }
632 
633 void
gen_not(b)634 gen_not(b)
635 	struct block *b;
636 {
637 	b->sense = !b->sense;
638 }
639 
640 static struct block *
gen_cmp(offrel,offset,size,v)641 gen_cmp(offrel, offset, size, v)
642 	enum e_offrel offrel;
643 	u_int offset, size;
644 	bpf_int32 v;
645 {
646 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
647 }
648 
649 static struct block *
gen_cmp_gt(offrel,offset,size,v)650 gen_cmp_gt(offrel, offset, size, v)
651 	enum e_offrel offrel;
652 	u_int offset, size;
653 	bpf_int32 v;
654 {
655 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
656 }
657 
658 static struct block *
gen_cmp_ge(offrel,offset,size,v)659 gen_cmp_ge(offrel, offset, size, v)
660 	enum e_offrel offrel;
661 	u_int offset, size;
662 	bpf_int32 v;
663 {
664 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
665 }
666 
667 static struct block *
gen_cmp_lt(offrel,offset,size,v)668 gen_cmp_lt(offrel, offset, size, v)
669 	enum e_offrel offrel;
670 	u_int offset, size;
671 	bpf_int32 v;
672 {
673 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
674 }
675 
676 static struct block *
gen_cmp_le(offrel,offset,size,v)677 gen_cmp_le(offrel, offset, size, v)
678 	enum e_offrel offrel;
679 	u_int offset, size;
680 	bpf_int32 v;
681 {
682 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
683 }
684 
685 static struct block *
gen_mcmp(offrel,offset,size,v,mask)686 gen_mcmp(offrel, offset, size, v, mask)
687 	enum e_offrel offrel;
688 	u_int offset, size;
689 	bpf_int32 v;
690 	bpf_u_int32 mask;
691 {
692 	return gen_ncmp(offrel, offset, size, mask, BPF_JEQ, 0, v);
693 }
694 
695 static struct block *
gen_bcmp(offrel,offset,size,v)696 gen_bcmp(offrel, offset, size, v)
697 	enum e_offrel offrel;
698 	register u_int offset, size;
699 	register const u_char *v;
700 {
701 	register struct block *b, *tmp;
702 
703 	b = NULL;
704 	while (size >= 4) {
705 		register const u_char *p = &v[size - 4];
706 		bpf_int32 w = ((bpf_int32)p[0] << 24) |
707 		    ((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3];
708 
709 		tmp = gen_cmp(offrel, offset + size - 4, BPF_W, w);
710 		if (b != NULL)
711 			gen_and(b, tmp);
712 		b = tmp;
713 		size -= 4;
714 	}
715 	while (size >= 2) {
716 		register const u_char *p = &v[size - 2];
717 		bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1];
718 
719 		tmp = gen_cmp(offrel, offset + size - 2, BPF_H, w);
720 		if (b != NULL)
721 			gen_and(b, tmp);
722 		b = tmp;
723 		size -= 2;
724 	}
725 	if (size > 0) {
726 		tmp = gen_cmp(offrel, offset, BPF_B, (bpf_int32)v[0]);
727 		if (b != NULL)
728 			gen_and(b, tmp);
729 		b = tmp;
730 	}
731 	return b;
732 }
733 
734 /*
735  * AND the field of size "size" at offset "offset" relative to the header
736  * specified by "offrel" with "mask", and compare it with the value "v"
737  * with the test specified by "jtype"; if "reverse" is true, the test
738  * should test the opposite of "jtype".
739  */
740 static struct block *
gen_ncmp(offrel,offset,size,mask,jtype,reverse,v)741 gen_ncmp(offrel, offset, size, mask, jtype, reverse, v)
742 	enum e_offrel offrel;
743 	bpf_int32 v;
744 	bpf_u_int32 offset, size, mask, jtype;
745 	int reverse;
746 {
747 	struct slist *s, *s2;
748 	struct block *b;
749 
750 	s = gen_load_a(offrel, offset, size);
751 
752 	if (mask != 0xffffffff) {
753 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
754 		s2->s.k = mask;
755 		sappend(s, s2);
756 	}
757 
758 	b = new_block(JMP(jtype));
759 	b->stmts = s;
760 	b->s.k = v;
761 	if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
762 		gen_not(b);
763 	return b;
764 }
765 
766 /*
767  * Various code constructs need to know the layout of the data link
768  * layer.  These variables give the necessary offsets from the beginning
769  * of the packet data.
770  */
771 
772 /*
773  * This is the offset of the beginning of the link-layer header from
774  * the beginning of the raw packet data.
775  *
776  * It's usually 0, except for 802.11 with a fixed-length radio header.
777  * (For 802.11 with a variable-length radio header, we have to generate
778  * code to compute that offset; off_ll is 0 in that case.)
779  */
780 static u_int off_ll;
781 
782 /*
783  * If there's a variable-length header preceding the link-layer header,
784  * "reg_off_ll" is the register number for a register containing the
785  * length of that header, and therefore the offset of the link-layer
786  * header from the beginning of the raw packet data.  Otherwise,
787  * "reg_off_ll" is -1.
788  */
789 static int reg_off_ll;
790 
791 /*
792  * This is the offset of the beginning of the MAC-layer header from
793  * the beginning of the link-layer header.
794  * It's usually 0, except for ATM LANE, where it's the offset, relative
795  * to the beginning of the raw packet data, of the Ethernet header, and
796  * for Ethernet with various additional information.
797  */
798 static u_int off_mac;
799 
800 /*
801  * This is the offset of the beginning of the MAC-layer payload,
802  * from the beginning of the raw packet data.
803  *
804  * I.e., it's the sum of the length of the link-layer header (without,
805  * for example, any 802.2 LLC header, so it's the MAC-layer
806  * portion of that header), plus any prefix preceding the
807  * link-layer header.
808  */
809 static u_int off_macpl;
810 
811 /*
812  * This is 1 if the offset of the beginning of the MAC-layer payload
813  * from the beginning of the link-layer header is variable-length.
814  */
815 static int off_macpl_is_variable;
816 
817 /*
818  * If the link layer has variable_length headers, "reg_off_macpl"
819  * is the register number for a register containing the length of the
820  * link-layer header plus the length of any variable-length header
821  * preceding the link-layer header.  Otherwise, "reg_off_macpl"
822  * is -1.
823  */
824 static int reg_off_macpl;
825 
826 /*
827  * "off_linktype" is the offset to information in the link-layer header
828  * giving the packet type.  This offset is relative to the beginning
829  * of the link-layer header (i.e., it doesn't include off_ll).
830  *
831  * For Ethernet, it's the offset of the Ethernet type field.
832  *
833  * For link-layer types that always use 802.2 headers, it's the
834  * offset of the LLC header.
835  *
836  * For PPP, it's the offset of the PPP type field.
837  *
838  * For Cisco HDLC, it's the offset of the CHDLC type field.
839  *
840  * For BSD loopback, it's the offset of the AF_ value.
841  *
842  * For Linux cooked sockets, it's the offset of the type field.
843  *
844  * It's set to -1 for no encapsulation, in which case, IP is assumed.
845  */
846 static u_int off_linktype;
847 
848 /*
849  * TRUE if "pppoes" appeared in the filter; it causes link-layer type
850  * checks to check the PPP header, assumed to follow a LAN-style link-
851  * layer header and a PPPoE session header.
852  */
853 static int is_pppoes = 0;
854 
855 /*
856  * TRUE if the link layer includes an ATM pseudo-header.
857  */
858 static int is_atm = 0;
859 
860 /*
861  * TRUE if "lane" appeared in the filter; it causes us to generate
862  * code that assumes LANE rather than LLC-encapsulated traffic in SunATM.
863  */
864 static int is_lane = 0;
865 
866 /*
867  * These are offsets for the ATM pseudo-header.
868  */
869 static u_int off_vpi;
870 static u_int off_vci;
871 static u_int off_proto;
872 
873 /*
874  * These are offsets for the MTP2 fields.
875  */
876 static u_int off_li;
877 static u_int off_li_hsl;
878 
879 /*
880  * These are offsets for the MTP3 fields.
881  */
882 static u_int off_sio;
883 static u_int off_opc;
884 static u_int off_dpc;
885 static u_int off_sls;
886 
887 /*
888  * This is the offset of the first byte after the ATM pseudo_header,
889  * or -1 if there is no ATM pseudo-header.
890  */
891 static u_int off_payload;
892 
893 /*
894  * These are offsets to the beginning of the network-layer header.
895  * They are relative to the beginning of the MAC-layer payload (i.e.,
896  * they don't include off_ll or off_macpl).
897  *
898  * If the link layer never uses 802.2 LLC:
899  *
900  *	"off_nl" and "off_nl_nosnap" are the same.
901  *
902  * If the link layer always uses 802.2 LLC:
903  *
904  *	"off_nl" is the offset if there's a SNAP header following
905  *	the 802.2 header;
906  *
907  *	"off_nl_nosnap" is the offset if there's no SNAP header.
908  *
909  * If the link layer is Ethernet:
910  *
911  *	"off_nl" is the offset if the packet is an Ethernet II packet
912  *	(we assume no 802.3+802.2+SNAP);
913  *
914  *	"off_nl_nosnap" is the offset if the packet is an 802.3 packet
915  *	with an 802.2 header following it.
916  */
917 static u_int off_nl;
918 static u_int off_nl_nosnap;
919 
920 static int linktype;
921 
922 static void
init_linktype(p)923 init_linktype(p)
924 	pcap_t *p;
925 {
926 	linktype = pcap_datalink(p);
927 	pcap_fddipad = p->fddipad;
928 
929 	/*
930 	 * Assume it's not raw ATM with a pseudo-header, for now.
931 	 */
932 	off_mac = 0;
933 	is_atm = 0;
934 	is_lane = 0;
935 	off_vpi = -1;
936 	off_vci = -1;
937 	off_proto = -1;
938 	off_payload = -1;
939 
940 	/*
941 	 * And that we're not doing PPPoE.
942 	 */
943 	is_pppoes = 0;
944 
945 	/*
946 	 * And assume we're not doing SS7.
947 	 */
948 	off_li = -1;
949 	off_li_hsl = -1;
950 	off_sio = -1;
951 	off_opc = -1;
952 	off_dpc = -1;
953 	off_sls = -1;
954 
955 	/*
956 	 * Also assume it's not 802.11.
957 	 */
958 	off_ll = 0;
959 	off_macpl = 0;
960 	off_macpl_is_variable = 0;
961 
962 	orig_linktype = -1;
963 	orig_nl = -1;
964         label_stack_depth = 0;
965 
966 	reg_off_ll = -1;
967 	reg_off_macpl = -1;
968 
969 	switch (linktype) {
970 
971 	case DLT_ARCNET:
972 		off_linktype = 2;
973 		off_macpl = 6;
974 		off_nl = 0;		/* XXX in reality, variable! */
975 		off_nl_nosnap = 0;	/* no 802.2 LLC */
976 		return;
977 
978 	case DLT_ARCNET_LINUX:
979 		off_linktype = 4;
980 		off_macpl = 8;
981 		off_nl = 0;		/* XXX in reality, variable! */
982 		off_nl_nosnap = 0;	/* no 802.2 LLC */
983 		return;
984 
985 	case DLT_EN10MB:
986 		off_linktype = 12;
987 		off_macpl = 14;		/* Ethernet header length */
988 		off_nl = 0;		/* Ethernet II */
989 		off_nl_nosnap = 3;	/* 802.3+802.2 */
990 		return;
991 
992 	case DLT_SLIP:
993 		/*
994 		 * SLIP doesn't have a link level type.  The 16 byte
995 		 * header is hacked into our SLIP driver.
996 		 */
997 		off_linktype = -1;
998 		off_macpl = 16;
999 		off_nl = 0;
1000 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1001 		return;
1002 
1003 	case DLT_SLIP_BSDOS:
1004 		/* XXX this may be the same as the DLT_PPP_BSDOS case */
1005 		off_linktype = -1;
1006 		/* XXX end */
1007 		off_macpl = 24;
1008 		off_nl = 0;
1009 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1010 		return;
1011 
1012 	case DLT_NULL:
1013 	case DLT_LOOP:
1014 		off_linktype = 0;
1015 		off_macpl = 4;
1016 		off_nl = 0;
1017 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1018 		return;
1019 
1020 	case DLT_ENC:
1021 		off_linktype = 0;
1022 		off_macpl = 12;
1023 		off_nl = 0;
1024 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1025 		return;
1026 
1027 	case DLT_PPP:
1028 	case DLT_PPP_PPPD:
1029 	case DLT_C_HDLC:		/* BSD/OS Cisco HDLC */
1030 	case DLT_PPP_SERIAL:		/* NetBSD sync/async serial PPP */
1031 		off_linktype = 2;
1032 		off_macpl = 4;
1033 		off_nl = 0;
1034 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1035 		return;
1036 
1037 	case DLT_PPP_ETHER:
1038 		/*
1039 		 * This does no include the Ethernet header, and
1040 		 * only covers session state.
1041 		 */
1042 		off_linktype = 6;
1043 		off_macpl = 8;
1044 		off_nl = 0;
1045 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1046 		return;
1047 
1048 	case DLT_PPP_BSDOS:
1049 		off_linktype = 5;
1050 		off_macpl = 24;
1051 		off_nl = 0;
1052 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1053 		return;
1054 
1055 	case DLT_FDDI:
1056 		/*
1057 		 * FDDI doesn't really have a link-level type field.
1058 		 * We set "off_linktype" to the offset of the LLC header.
1059 		 *
1060 		 * To check for Ethernet types, we assume that SSAP = SNAP
1061 		 * is being used and pick out the encapsulated Ethernet type.
1062 		 * XXX - should we generate code to check for SNAP?
1063 		 */
1064 		off_linktype = 13;
1065 		off_linktype += pcap_fddipad;
1066 		off_macpl = 13;		/* FDDI MAC header length */
1067 		off_macpl += pcap_fddipad;
1068 		off_nl = 8;		/* 802.2+SNAP */
1069 		off_nl_nosnap = 3;	/* 802.2 */
1070 		return;
1071 
1072 	case DLT_IEEE802:
1073 		/*
1074 		 * Token Ring doesn't really have a link-level type field.
1075 		 * We set "off_linktype" to the offset of the LLC header.
1076 		 *
1077 		 * To check for Ethernet types, we assume that SSAP = SNAP
1078 		 * is being used and pick out the encapsulated Ethernet type.
1079 		 * XXX - should we generate code to check for SNAP?
1080 		 *
1081 		 * XXX - the header is actually variable-length.
1082 		 * Some various Linux patched versions gave 38
1083 		 * as "off_linktype" and 40 as "off_nl"; however,
1084 		 * if a token ring packet has *no* routing
1085 		 * information, i.e. is not source-routed, the correct
1086 		 * values are 20 and 22, as they are in the vanilla code.
1087 		 *
1088 		 * A packet is source-routed iff the uppermost bit
1089 		 * of the first byte of the source address, at an
1090 		 * offset of 8, has the uppermost bit set.  If the
1091 		 * packet is source-routed, the total number of bytes
1092 		 * of routing information is 2 plus bits 0x1F00 of
1093 		 * the 16-bit value at an offset of 14 (shifted right
1094 		 * 8 - figure out which byte that is).
1095 		 */
1096 		off_linktype = 14;
1097 		off_macpl = 14;		/* Token Ring MAC header length */
1098 		off_nl = 8;		/* 802.2+SNAP */
1099 		off_nl_nosnap = 3;	/* 802.2 */
1100 		return;
1101 
1102 	case DLT_IEEE802_11:
1103 	case DLT_PRISM_HEADER:
1104 	case DLT_IEEE802_11_RADIO_AVS:
1105 	case DLT_IEEE802_11_RADIO:
1106 		/*
1107 		 * 802.11 doesn't really have a link-level type field.
1108 		 * We set "off_linktype" to the offset of the LLC header.
1109 		 *
1110 		 * To check for Ethernet types, we assume that SSAP = SNAP
1111 		 * is being used and pick out the encapsulated Ethernet type.
1112 		 * XXX - should we generate code to check for SNAP?
1113 		 *
1114 		 * We also handle variable-length radio headers here.
1115 		 * The Prism header is in theory variable-length, but in
1116 		 * practice it's always 144 bytes long.  However, some
1117 		 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1118 		 * sometimes or always supply an AVS header, so we
1119 		 * have to check whether the radio header is a Prism
1120 		 * header or an AVS header, so, in practice, it's
1121 		 * variable-length.
1122 		 */
1123 		off_linktype = 24;
1124 		off_macpl = 0;		/* link-layer header is variable-length */
1125 		off_macpl_is_variable = 1;
1126 		off_nl = 8;		/* 802.2+SNAP */
1127 		off_nl_nosnap = 3;	/* 802.2 */
1128 		return;
1129 
1130 	case DLT_PPI:
1131 		/*
1132 		 * At the moment we treat PPI the same way that we treat
1133 		 * normal Radiotap encoded packets. The difference is in
1134 		 * the function that generates the code at the beginning
1135 		 * to compute the header length.  Since this code generator
1136 		 * of PPI supports bare 802.11 encapsulation only (i.e.
1137 		 * the encapsulated DLT should be DLT_IEEE802_11) we
1138 		 * generate code to check for this too.
1139 		 */
1140 		off_linktype = 24;
1141 		off_macpl = 0;		/* link-layer header is variable-length */
1142 		off_macpl_is_variable = 1;
1143 		off_nl = 8;		/* 802.2+SNAP */
1144 		off_nl_nosnap = 3;	/* 802.2 */
1145 		return;
1146 
1147 	case DLT_ATM_RFC1483:
1148 	case DLT_ATM_CLIP:	/* Linux ATM defines this */
1149 		/*
1150 		 * assume routed, non-ISO PDUs
1151 		 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1152 		 *
1153 		 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1154 		 * or PPP with the PPP NLPID (e.g., PPPoA)?  The
1155 		 * latter would presumably be treated the way PPPoE
1156 		 * should be, so you can do "pppoe and udp port 2049"
1157 		 * or "pppoa and tcp port 80" and have it check for
1158 		 * PPPo{A,E} and a PPP protocol of IP and....
1159 		 */
1160 		off_linktype = 0;
1161 		off_macpl = 0;		/* packet begins with LLC header */
1162 		off_nl = 8;		/* 802.2+SNAP */
1163 		off_nl_nosnap = 3;	/* 802.2 */
1164 		return;
1165 
1166 	case DLT_SUNATM:
1167 		/*
1168 		 * Full Frontal ATM; you get AALn PDUs with an ATM
1169 		 * pseudo-header.
1170 		 */
1171 		is_atm = 1;
1172 		off_vpi = SUNATM_VPI_POS;
1173 		off_vci = SUNATM_VCI_POS;
1174 		off_proto = PROTO_POS;
1175 		off_mac = -1;	/* assume LLC-encapsulated, so no MAC-layer header */
1176 		off_payload = SUNATM_PKT_BEGIN_POS;
1177 		off_linktype = off_payload;
1178 		off_macpl = off_payload;	/* if LLC-encapsulated */
1179 		off_nl = 8;		/* 802.2+SNAP */
1180 		off_nl_nosnap = 3;	/* 802.2 */
1181 		return;
1182 
1183 	case DLT_RAW:
1184 	case DLT_IPV4:
1185 	case DLT_IPV6:
1186 		off_linktype = -1;
1187 		off_macpl = 0;
1188 		off_nl = 0;
1189 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1190 		return;
1191 
1192 	case DLT_LINUX_SLL:	/* fake header for Linux cooked socket */
1193 		off_linktype = 14;
1194 		off_macpl = 16;
1195 		off_nl = 0;
1196 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1197 		return;
1198 
1199 	case DLT_LTALK:
1200 		/*
1201 		 * LocalTalk does have a 1-byte type field in the LLAP header,
1202 		 * but really it just indicates whether there is a "short" or
1203 		 * "long" DDP packet following.
1204 		 */
1205 		off_linktype = -1;
1206 		off_macpl = 0;
1207 		off_nl = 0;
1208 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1209 		return;
1210 
1211 	case DLT_IP_OVER_FC:
1212 		/*
1213 		 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1214 		 * link-level type field.  We set "off_linktype" to the
1215 		 * offset of the LLC header.
1216 		 *
1217 		 * To check for Ethernet types, we assume that SSAP = SNAP
1218 		 * is being used and pick out the encapsulated Ethernet type.
1219 		 * XXX - should we generate code to check for SNAP? RFC
1220 		 * 2625 says SNAP should be used.
1221 		 */
1222 		off_linktype = 16;
1223 		off_macpl = 16;
1224 		off_nl = 8;		/* 802.2+SNAP */
1225 		off_nl_nosnap = 3;	/* 802.2 */
1226 		return;
1227 
1228 	case DLT_FRELAY:
1229 		/*
1230 		 * XXX - we should set this to handle SNAP-encapsulated
1231 		 * frames (NLPID of 0x80).
1232 		 */
1233 		off_linktype = -1;
1234 		off_macpl = 0;
1235 		off_nl = 0;
1236 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1237 		return;
1238 
1239                 /*
1240                  * the only BPF-interesting FRF.16 frames are non-control frames;
1241                  * Frame Relay has a variable length link-layer
1242                  * so lets start with offset 4 for now and increments later on (FIXME);
1243                  */
1244 	case DLT_MFR:
1245 		off_linktype = -1;
1246 		off_macpl = 0;
1247 		off_nl = 4;
1248 		off_nl_nosnap = 0;	/* XXX - for now -> no 802.2 LLC */
1249 		return;
1250 
1251 	case DLT_APPLE_IP_OVER_IEEE1394:
1252 		off_linktype = 16;
1253 		off_macpl = 18;
1254 		off_nl = 0;
1255 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1256 		return;
1257 
1258 	case DLT_SYMANTEC_FIREWALL:
1259 		off_linktype = 6;
1260 		off_macpl = 44;
1261 		off_nl = 0;		/* Ethernet II */
1262 		off_nl_nosnap = 0;	/* XXX - what does it do with 802.3 packets? */
1263 		return;
1264 
1265 #ifdef HAVE_NET_PFVAR_H
1266 	case DLT_PFLOG:
1267 		off_linktype = 0;
1268 		off_macpl = PFLOG_HDRLEN;
1269 		off_nl = 0;
1270 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1271 		return;
1272 #endif
1273 
1274         case DLT_JUNIPER_MFR:
1275         case DLT_JUNIPER_MLFR:
1276         case DLT_JUNIPER_MLPPP:
1277         case DLT_JUNIPER_PPP:
1278         case DLT_JUNIPER_CHDLC:
1279         case DLT_JUNIPER_FRELAY:
1280                 off_linktype = 4;
1281 		off_macpl = 4;
1282 		off_nl = 0;
1283 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1284                 return;
1285 
1286 	case DLT_JUNIPER_ATM1:
1287 		off_linktype = 4;	/* in reality variable between 4-8 */
1288 		off_macpl = 4;	/* in reality variable between 4-8 */
1289 		off_nl = 0;
1290 		off_nl_nosnap = 10;
1291 		return;
1292 
1293 	case DLT_JUNIPER_ATM2:
1294 		off_linktype = 8;	/* in reality variable between 8-12 */
1295 		off_macpl = 8;	/* in reality variable between 8-12 */
1296 		off_nl = 0;
1297 		off_nl_nosnap = 10;
1298 		return;
1299 
1300 		/* frames captured on a Juniper PPPoE service PIC
1301 		 * contain raw ethernet frames */
1302 	case DLT_JUNIPER_PPPOE:
1303         case DLT_JUNIPER_ETHER:
1304         	off_macpl = 14;
1305 		off_linktype = 16;
1306 		off_nl = 18;		/* Ethernet II */
1307 		off_nl_nosnap = 21;	/* 802.3+802.2 */
1308 		return;
1309 
1310 	case DLT_JUNIPER_PPPOE_ATM:
1311 		off_linktype = 4;
1312 		off_macpl = 6;
1313 		off_nl = 0;
1314 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1315 		return;
1316 
1317 	case DLT_JUNIPER_GGSN:
1318 		off_linktype = 6;
1319 		off_macpl = 12;
1320 		off_nl = 0;
1321 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1322 		return;
1323 
1324 	case DLT_JUNIPER_ES:
1325 		off_linktype = 6;
1326 		off_macpl = -1;		/* not really a network layer but raw IP addresses */
1327 		off_nl = -1;		/* not really a network layer but raw IP addresses */
1328 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1329 		return;
1330 
1331 	case DLT_JUNIPER_MONITOR:
1332 		off_linktype = 12;
1333 		off_macpl = 12;
1334 		off_nl = 0;		/* raw IP/IP6 header */
1335 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1336 		return;
1337 
1338 	case DLT_BACNET_MS_TP:
1339 		off_linktype = -1;
1340 		off_macpl = -1;
1341 		off_nl = -1;
1342 		off_nl_nosnap = -1;
1343 		return;
1344 
1345 	case DLT_JUNIPER_SERVICES:
1346 		off_linktype = 12;
1347 		off_macpl = -1;		/* L3 proto location dep. on cookie type */
1348 		off_nl = -1;		/* L3 proto location dep. on cookie type */
1349 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1350 		return;
1351 
1352 	case DLT_JUNIPER_VP:
1353 		off_linktype = 18;
1354 		off_macpl = -1;
1355 		off_nl = -1;
1356 		off_nl_nosnap = -1;
1357 		return;
1358 
1359 	case DLT_JUNIPER_ST:
1360 		off_linktype = 18;
1361 		off_macpl = -1;
1362 		off_nl = -1;
1363 		off_nl_nosnap = -1;
1364 		return;
1365 
1366 	case DLT_JUNIPER_ISM:
1367 		off_linktype = 8;
1368 		off_macpl = -1;
1369 		off_nl = -1;
1370 		off_nl_nosnap = -1;
1371 		return;
1372 
1373 	case DLT_JUNIPER_VS:
1374 	case DLT_JUNIPER_SRX_E2E:
1375 	case DLT_JUNIPER_FIBRECHANNEL:
1376 	case DLT_JUNIPER_ATM_CEMIC:
1377 		off_linktype = 8;
1378 		off_macpl = -1;
1379 		off_nl = -1;
1380 		off_nl_nosnap = -1;
1381 		return;
1382 
1383 	case DLT_MTP2:
1384 		off_li = 2;
1385 		off_li_hsl = 4;
1386 		off_sio = 3;
1387 		off_opc = 4;
1388 		off_dpc = 4;
1389 		off_sls = 7;
1390 		off_linktype = -1;
1391 		off_macpl = -1;
1392 		off_nl = -1;
1393 		off_nl_nosnap = -1;
1394 		return;
1395 
1396 	case DLT_MTP2_WITH_PHDR:
1397 		off_li = 6;
1398 		off_li_hsl = 8;
1399 		off_sio = 7;
1400 		off_opc = 8;
1401 		off_dpc = 8;
1402 		off_sls = 11;
1403 		off_linktype = -1;
1404 		off_macpl = -1;
1405 		off_nl = -1;
1406 		off_nl_nosnap = -1;
1407 		return;
1408 
1409 	case DLT_ERF:
1410 		off_li = 22;
1411 		off_li_hsl = 24;
1412 		off_sio = 23;
1413 		off_opc = 24;
1414 		off_dpc = 24;
1415 		off_sls = 27;
1416 		off_linktype = -1;
1417 		off_macpl = -1;
1418 		off_nl = -1;
1419 		off_nl_nosnap = -1;
1420 		return;
1421 
1422 	case DLT_PFSYNC:
1423 		off_linktype = -1;
1424 		off_macpl = 4;
1425 		off_nl = 0;
1426 		off_nl_nosnap = 0;
1427 		return;
1428 
1429 	case DLT_AX25_KISS:
1430 		/*
1431 		 * Currently, only raw "link[N:M]" filtering is supported.
1432 		 */
1433 		off_linktype = -1;	/* variable, min 15, max 71 steps of 7 */
1434 		off_macpl = -1;
1435 		off_nl = -1;		/* variable, min 16, max 71 steps of 7 */
1436 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1437 		off_mac = 1;		/* step over the kiss length byte */
1438 		return;
1439 
1440 	case DLT_IPNET:
1441 		off_linktype = 1;
1442 		off_macpl = 24;		/* ipnet header length */
1443 		off_nl = 0;
1444 		off_nl_nosnap = -1;
1445 		return;
1446 
1447 	case DLT_NETANALYZER:
1448 		off_mac = 4;		/* MAC header is past 4-byte pseudo-header */
1449 		off_linktype = 16;	/* includes 4-byte pseudo-header */
1450 		off_macpl = 18;		/* pseudo-header+Ethernet header length */
1451 		off_nl = 0;		/* Ethernet II */
1452 		off_nl_nosnap = 3;	/* 802.3+802.2 */
1453 		return;
1454 
1455 	case DLT_NETANALYZER_TRANSPARENT:
1456 		off_mac = 12;		/* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1457 		off_linktype = 24;	/* includes 4-byte pseudo-header+preamble+SFD */
1458 		off_macpl = 26;		/* pseudo-header+preamble+SFD+Ethernet header length */
1459 		off_nl = 0;		/* Ethernet II */
1460 		off_nl_nosnap = 3;	/* 802.3+802.2 */
1461 		return;
1462 
1463 	default:
1464 		/*
1465 		 * For values in the range in which we've assigned new
1466 		 * DLT_ values, only raw "link[N:M]" filtering is supported.
1467 		 */
1468 		if (linktype >= DLT_MATCHING_MIN &&
1469 		    linktype <= DLT_MATCHING_MAX) {
1470 			off_linktype = -1;
1471 			off_macpl = -1;
1472 			off_nl = -1;
1473 			off_nl_nosnap = -1;
1474 			return;
1475 		}
1476 
1477 	}
1478 	bpf_error("unknown data link type %d", linktype);
1479 	/* NOTREACHED */
1480 }
1481 
1482 /*
1483  * Load a value relative to the beginning of the link-layer header.
1484  * The link-layer header doesn't necessarily begin at the beginning
1485  * of the packet data; there might be a variable-length prefix containing
1486  * radio information.
1487  */
1488 static struct slist *
gen_load_llrel(offset,size)1489 gen_load_llrel(offset, size)
1490 	u_int offset, size;
1491 {
1492 	struct slist *s, *s2;
1493 
1494 	s = gen_llprefixlen();
1495 
1496 	/*
1497 	 * If "s" is non-null, it has code to arrange that the X register
1498 	 * contains the length of the prefix preceding the link-layer
1499 	 * header.
1500 	 *
1501 	 * Otherwise, the length of the prefix preceding the link-layer
1502 	 * header is "off_ll".
1503 	 */
1504 	if (s != NULL) {
1505 		/*
1506 		 * There's a variable-length prefix preceding the
1507 		 * link-layer header.  "s" points to a list of statements
1508 		 * that put the length of that prefix into the X register.
1509 		 * do an indirect load, to use the X register as an offset.
1510 		 */
1511 		s2 = new_stmt(BPF_LD|BPF_IND|size);
1512 		s2->s.k = offset;
1513 		sappend(s, s2);
1514 	} else {
1515 		/*
1516 		 * There is no variable-length header preceding the
1517 		 * link-layer header; add in off_ll, which, if there's
1518 		 * a fixed-length header preceding the link-layer header,
1519 		 * is the length of that header.
1520 		 */
1521 		s = new_stmt(BPF_LD|BPF_ABS|size);
1522 		s->s.k = offset + off_ll;
1523 	}
1524 	return s;
1525 }
1526 
1527 /*
1528  * Load a value relative to the beginning of the MAC-layer payload.
1529  */
1530 static struct slist *
gen_load_macplrel(offset,size)1531 gen_load_macplrel(offset, size)
1532 	u_int offset, size;
1533 {
1534 	struct slist *s, *s2;
1535 
1536 	s = gen_off_macpl();
1537 
1538 	/*
1539 	 * If s is non-null, the offset of the MAC-layer payload is
1540 	 * variable, and s points to a list of instructions that
1541 	 * arrange that the X register contains that offset.
1542 	 *
1543 	 * Otherwise, the offset of the MAC-layer payload is constant,
1544 	 * and is in off_macpl.
1545 	 */
1546 	if (s != NULL) {
1547 		/*
1548 		 * The offset of the MAC-layer payload is in the X
1549 		 * register.  Do an indirect load, to use the X register
1550 		 * as an offset.
1551 		 */
1552 		s2 = new_stmt(BPF_LD|BPF_IND|size);
1553 		s2->s.k = offset;
1554 		sappend(s, s2);
1555 	} else {
1556 		/*
1557 		 * The offset of the MAC-layer payload is constant,
1558 		 * and is in off_macpl; load the value at that offset
1559 		 * plus the specified offset.
1560 		 */
1561 		s = new_stmt(BPF_LD|BPF_ABS|size);
1562 		s->s.k = off_macpl + offset;
1563 	}
1564 	return s;
1565 }
1566 
1567 /*
1568  * Load a value relative to the beginning of the specified header.
1569  */
1570 static struct slist *
gen_load_a(offrel,offset,size)1571 gen_load_a(offrel, offset, size)
1572 	enum e_offrel offrel;
1573 	u_int offset, size;
1574 {
1575 	struct slist *s, *s2;
1576 
1577 	switch (offrel) {
1578 
1579 	case OR_PACKET:
1580                 s = new_stmt(BPF_LD|BPF_ABS|size);
1581                 s->s.k = offset;
1582 		break;
1583 
1584 	case OR_LINK:
1585 		s = gen_load_llrel(offset, size);
1586 		break;
1587 
1588 	case OR_MACPL:
1589 		s = gen_load_macplrel(offset, size);
1590 		break;
1591 
1592 	case OR_NET:
1593 		s = gen_load_macplrel(off_nl + offset, size);
1594 		break;
1595 
1596 	case OR_NET_NOSNAP:
1597 		s = gen_load_macplrel(off_nl_nosnap + offset, size);
1598 		break;
1599 
1600 	case OR_TRAN_IPV4:
1601 		/*
1602 		 * Load the X register with the length of the IPv4 header
1603 		 * (plus the offset of the link-layer header, if it's
1604 		 * preceded by a variable-length header such as a radio
1605 		 * header), in bytes.
1606 		 */
1607 		s = gen_loadx_iphdrlen();
1608 
1609 		/*
1610 		 * Load the item at {offset of the MAC-layer payload} +
1611 		 * {offset, relative to the start of the MAC-layer
1612 		 * paylod, of the IPv4 header} + {length of the IPv4 header} +
1613 		 * {specified offset}.
1614 		 *
1615 		 * (If the offset of the MAC-layer payload is variable,
1616 		 * it's included in the value in the X register, and
1617 		 * off_macpl is 0.)
1618 		 */
1619 		s2 = new_stmt(BPF_LD|BPF_IND|size);
1620 		s2->s.k = off_macpl + off_nl + offset;
1621 		sappend(s, s2);
1622 		break;
1623 
1624 	case OR_TRAN_IPV6:
1625 		s = gen_load_macplrel(off_nl + 40 + offset, size);
1626 		break;
1627 
1628 	default:
1629 		abort();
1630 		return NULL;
1631 	}
1632 	return s;
1633 }
1634 
1635 /*
1636  * Generate code to load into the X register the sum of the length of
1637  * the IPv4 header and any variable-length header preceding the link-layer
1638  * header.
1639  */
1640 static struct slist *
gen_loadx_iphdrlen()1641 gen_loadx_iphdrlen()
1642 {
1643 	struct slist *s, *s2;
1644 
1645 	s = gen_off_macpl();
1646 	if (s != NULL) {
1647 		/*
1648 		 * There's a variable-length prefix preceding the
1649 		 * link-layer header, or the link-layer header is itself
1650 		 * variable-length.  "s" points to a list of statements
1651 		 * that put the offset of the MAC-layer payload into
1652 		 * the X register.
1653 		 *
1654 		 * The 4*([k]&0xf) addressing mode can't be used, as we
1655 		 * don't have a constant offset, so we have to load the
1656 		 * value in question into the A register and add to it
1657 		 * the value from the X register.
1658 		 */
1659 		s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
1660 		s2->s.k = off_nl;
1661 		sappend(s, s2);
1662 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
1663 		s2->s.k = 0xf;
1664 		sappend(s, s2);
1665 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
1666 		s2->s.k = 2;
1667 		sappend(s, s2);
1668 
1669 		/*
1670 		 * The A register now contains the length of the
1671 		 * IP header.  We need to add to it the offset of
1672 		 * the MAC-layer payload, which is still in the X
1673 		 * register, and move the result into the X register.
1674 		 */
1675 		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
1676 		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
1677 	} else {
1678 		/*
1679 		 * There is no variable-length header preceding the
1680 		 * link-layer header, and the link-layer header is
1681 		 * fixed-length; load the length of the IPv4 header,
1682 		 * which is at an offset of off_nl from the beginning
1683 		 * of the MAC-layer payload, and thus at an offset
1684 		 * of off_mac_pl + off_nl from the beginning of the
1685 		 * raw packet data.
1686 		 */
1687 		s = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
1688 		s->s.k = off_macpl + off_nl;
1689 	}
1690 	return s;
1691 }
1692 
1693 static struct block *
gen_uncond(rsense)1694 gen_uncond(rsense)
1695 	int rsense;
1696 {
1697 	struct block *b;
1698 	struct slist *s;
1699 
1700 	s = new_stmt(BPF_LD|BPF_IMM);
1701 	s->s.k = !rsense;
1702 	b = new_block(JMP(BPF_JEQ));
1703 	b->stmts = s;
1704 
1705 	return b;
1706 }
1707 
1708 static inline struct block *
gen_true()1709 gen_true()
1710 {
1711 	return gen_uncond(1);
1712 }
1713 
1714 static inline struct block *
gen_false()1715 gen_false()
1716 {
1717 	return gen_uncond(0);
1718 }
1719 
1720 /*
1721  * Byte-swap a 32-bit number.
1722  * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1723  * big-endian platforms.)
1724  */
1725 #define	SWAPLONG(y) \
1726 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1727 
1728 /*
1729  * Generate code to match a particular packet type.
1730  *
1731  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1732  * value, if <= ETHERMTU.  We use that to determine whether to
1733  * match the type/length field or to check the type/length field for
1734  * a value <= ETHERMTU to see whether it's a type field and then do
1735  * the appropriate test.
1736  */
1737 static struct block *
gen_ether_linktype(proto)1738 gen_ether_linktype(proto)
1739 	register int proto;
1740 {
1741 	struct block *b0, *b1;
1742 
1743 	switch (proto) {
1744 
1745 	case LLCSAP_ISONS:
1746 	case LLCSAP_IP:
1747 	case LLCSAP_NETBEUI:
1748 		/*
1749 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1750 		 * so we check the DSAP and SSAP.
1751 		 *
1752 		 * LLCSAP_IP checks for IP-over-802.2, rather
1753 		 * than IP-over-Ethernet or IP-over-SNAP.
1754 		 *
1755 		 * XXX - should we check both the DSAP and the
1756 		 * SSAP, like this, or should we check just the
1757 		 * DSAP, as we do for other types <= ETHERMTU
1758 		 * (i.e., other SAP values)?
1759 		 */
1760 		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1761 		gen_not(b0);
1762 		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)
1763 			     ((proto << 8) | proto));
1764 		gen_and(b0, b1);
1765 		return b1;
1766 
1767 	case LLCSAP_IPX:
1768 		/*
1769 		 * Check for;
1770 		 *
1771 		 *	Ethernet_II frames, which are Ethernet
1772 		 *	frames with a frame type of ETHERTYPE_IPX;
1773 		 *
1774 		 *	Ethernet_802.3 frames, which are 802.3
1775 		 *	frames (i.e., the type/length field is
1776 		 *	a length field, <= ETHERMTU, rather than
1777 		 *	a type field) with the first two bytes
1778 		 *	after the Ethernet/802.3 header being
1779 		 *	0xFFFF;
1780 		 *
1781 		 *	Ethernet_802.2 frames, which are 802.3
1782 		 *	frames with an 802.2 LLC header and
1783 		 *	with the IPX LSAP as the DSAP in the LLC
1784 		 *	header;
1785 		 *
1786 		 *	Ethernet_SNAP frames, which are 802.3
1787 		 *	frames with an LLC header and a SNAP
1788 		 *	header and with an OUI of 0x000000
1789 		 *	(encapsulated Ethernet) and a protocol
1790 		 *	ID of ETHERTYPE_IPX in the SNAP header.
1791 		 *
1792 		 * XXX - should we generate the same code both
1793 		 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1794 		 */
1795 
1796 		/*
1797 		 * This generates code to check both for the
1798 		 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1799 		 */
1800 		b0 = gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
1801 		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)0xFFFF);
1802 		gen_or(b0, b1);
1803 
1804 		/*
1805 		 * Now we add code to check for SNAP frames with
1806 		 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1807 		 */
1808 		b0 = gen_snap(0x000000, ETHERTYPE_IPX);
1809 		gen_or(b0, b1);
1810 
1811 		/*
1812 		 * Now we generate code to check for 802.3
1813 		 * frames in general.
1814 		 */
1815 		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1816 		gen_not(b0);
1817 
1818 		/*
1819 		 * Now add the check for 802.3 frames before the
1820 		 * check for Ethernet_802.2 and Ethernet_802.3,
1821 		 * as those checks should only be done on 802.3
1822 		 * frames, not on Ethernet frames.
1823 		 */
1824 		gen_and(b0, b1);
1825 
1826 		/*
1827 		 * Now add the check for Ethernet_II frames, and
1828 		 * do that before checking for the other frame
1829 		 * types.
1830 		 */
1831 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
1832 		    (bpf_int32)ETHERTYPE_IPX);
1833 		gen_or(b0, b1);
1834 		return b1;
1835 
1836 	case ETHERTYPE_ATALK:
1837 	case ETHERTYPE_AARP:
1838 		/*
1839 		 * EtherTalk (AppleTalk protocols on Ethernet link
1840 		 * layer) may use 802.2 encapsulation.
1841 		 */
1842 
1843 		/*
1844 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1845 		 * we check for an Ethernet type field less than
1846 		 * 1500, which means it's an 802.3 length field.
1847 		 */
1848 		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1849 		gen_not(b0);
1850 
1851 		/*
1852 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1853 		 * SNAP packets with an organization code of
1854 		 * 0x080007 (Apple, for Appletalk) and a protocol
1855 		 * type of ETHERTYPE_ATALK (Appletalk).
1856 		 *
1857 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
1858 		 * SNAP packets with an organization code of
1859 		 * 0x000000 (encapsulated Ethernet) and a protocol
1860 		 * type of ETHERTYPE_AARP (Appletalk ARP).
1861 		 */
1862 		if (proto == ETHERTYPE_ATALK)
1863 			b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
1864 		else	/* proto == ETHERTYPE_AARP */
1865 			b1 = gen_snap(0x000000, ETHERTYPE_AARP);
1866 		gen_and(b0, b1);
1867 
1868 		/*
1869 		 * Check for Ethernet encapsulation (Ethertalk
1870 		 * phase 1?); we just check for the Ethernet
1871 		 * protocol type.
1872 		 */
1873 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
1874 
1875 		gen_or(b0, b1);
1876 		return b1;
1877 
1878 	default:
1879 		if (proto <= ETHERMTU) {
1880 			/*
1881 			 * This is an LLC SAP value, so the frames
1882 			 * that match would be 802.2 frames.
1883 			 * Check that the frame is an 802.2 frame
1884 			 * (i.e., that the length/type field is
1885 			 * a length field, <= ETHERMTU) and
1886 			 * then check the DSAP.
1887 			 */
1888 			b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1889 			gen_not(b0);
1890 			b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1891 			    (bpf_int32)proto);
1892 			gen_and(b0, b1);
1893 			return b1;
1894 		} else {
1895 			/*
1896 			 * This is an Ethernet type, so compare
1897 			 * the length/type field with it (if
1898 			 * the frame is an 802.2 frame, the length
1899 			 * field will be <= ETHERMTU, and, as
1900 			 * "proto" is > ETHERMTU, this test
1901 			 * will fail and the frame won't match,
1902 			 * which is what we want).
1903 			 */
1904 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
1905 			    (bpf_int32)proto);
1906 		}
1907 	}
1908 }
1909 
1910 /*
1911  * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
1912  * or IPv6 then we have an error.
1913  */
1914 static struct block *
gen_ipnet_linktype(proto)1915 gen_ipnet_linktype(proto)
1916 	register int proto;
1917 {
1918 	switch (proto) {
1919 
1920 	case ETHERTYPE_IP:
1921 		return gen_cmp(OR_LINK, off_linktype, BPF_B,
1922 		    (bpf_int32)IPH_AF_INET);
1923 		/* NOTREACHED */
1924 
1925 	case ETHERTYPE_IPV6:
1926 		return gen_cmp(OR_LINK, off_linktype, BPF_B,
1927 		    (bpf_int32)IPH_AF_INET6);
1928 		/* NOTREACHED */
1929 
1930 	default:
1931 		break;
1932 	}
1933 
1934 	return gen_false();
1935 }
1936 
1937 /*
1938  * Generate code to match a particular packet type.
1939  *
1940  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1941  * value, if <= ETHERMTU.  We use that to determine whether to
1942  * match the type field or to check the type field for the special
1943  * LINUX_SLL_P_802_2 value and then do the appropriate test.
1944  */
1945 static struct block *
gen_linux_sll_linktype(proto)1946 gen_linux_sll_linktype(proto)
1947 	register int proto;
1948 {
1949 	struct block *b0, *b1;
1950 
1951 	switch (proto) {
1952 
1953 	case LLCSAP_ISONS:
1954 	case LLCSAP_IP:
1955 	case LLCSAP_NETBEUI:
1956 		/*
1957 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1958 		 * so we check the DSAP and SSAP.
1959 		 *
1960 		 * LLCSAP_IP checks for IP-over-802.2, rather
1961 		 * than IP-over-Ethernet or IP-over-SNAP.
1962 		 *
1963 		 * XXX - should we check both the DSAP and the
1964 		 * SSAP, like this, or should we check just the
1965 		 * DSAP, as we do for other types <= ETHERMTU
1966 		 * (i.e., other SAP values)?
1967 		 */
1968 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
1969 		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)
1970 			     ((proto << 8) | proto));
1971 		gen_and(b0, b1);
1972 		return b1;
1973 
1974 	case LLCSAP_IPX:
1975 		/*
1976 		 *	Ethernet_II frames, which are Ethernet
1977 		 *	frames with a frame type of ETHERTYPE_IPX;
1978 		 *
1979 		 *	Ethernet_802.3 frames, which have a frame
1980 		 *	type of LINUX_SLL_P_802_3;
1981 		 *
1982 		 *	Ethernet_802.2 frames, which are 802.3
1983 		 *	frames with an 802.2 LLC header (i.e, have
1984 		 *	a frame type of LINUX_SLL_P_802_2) and
1985 		 *	with the IPX LSAP as the DSAP in the LLC
1986 		 *	header;
1987 		 *
1988 		 *	Ethernet_SNAP frames, which are 802.3
1989 		 *	frames with an LLC header and a SNAP
1990 		 *	header and with an OUI of 0x000000
1991 		 *	(encapsulated Ethernet) and a protocol
1992 		 *	ID of ETHERTYPE_IPX in the SNAP header.
1993 		 *
1994 		 * First, do the checks on LINUX_SLL_P_802_2
1995 		 * frames; generate the check for either
1996 		 * Ethernet_802.2 or Ethernet_SNAP frames, and
1997 		 * then put a check for LINUX_SLL_P_802_2 frames
1998 		 * before it.
1999 		 */
2000 		b0 = gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
2001 		b1 = gen_snap(0x000000, ETHERTYPE_IPX);
2002 		gen_or(b0, b1);
2003 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
2004 		gen_and(b0, b1);
2005 
2006 		/*
2007 		 * Now check for 802.3 frames and OR that with
2008 		 * the previous test.
2009 		 */
2010 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_3);
2011 		gen_or(b0, b1);
2012 
2013 		/*
2014 		 * Now add the check for Ethernet_II frames, and
2015 		 * do that before checking for the other frame
2016 		 * types.
2017 		 */
2018 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
2019 		    (bpf_int32)ETHERTYPE_IPX);
2020 		gen_or(b0, b1);
2021 		return b1;
2022 
2023 	case ETHERTYPE_ATALK:
2024 	case ETHERTYPE_AARP:
2025 		/*
2026 		 * EtherTalk (AppleTalk protocols on Ethernet link
2027 		 * layer) may use 802.2 encapsulation.
2028 		 */
2029 
2030 		/*
2031 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2032 		 * we check for the 802.2 protocol type in the
2033 		 * "Ethernet type" field.
2034 		 */
2035 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
2036 
2037 		/*
2038 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2039 		 * SNAP packets with an organization code of
2040 		 * 0x080007 (Apple, for Appletalk) and a protocol
2041 		 * type of ETHERTYPE_ATALK (Appletalk).
2042 		 *
2043 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
2044 		 * SNAP packets with an organization code of
2045 		 * 0x000000 (encapsulated Ethernet) and a protocol
2046 		 * type of ETHERTYPE_AARP (Appletalk ARP).
2047 		 */
2048 		if (proto == ETHERTYPE_ATALK)
2049 			b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
2050 		else	/* proto == ETHERTYPE_AARP */
2051 			b1 = gen_snap(0x000000, ETHERTYPE_AARP);
2052 		gen_and(b0, b1);
2053 
2054 		/*
2055 		 * Check for Ethernet encapsulation (Ethertalk
2056 		 * phase 1?); we just check for the Ethernet
2057 		 * protocol type.
2058 		 */
2059 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
2060 
2061 		gen_or(b0, b1);
2062 		return b1;
2063 
2064 	default:
2065 		if (proto <= ETHERMTU) {
2066 			/*
2067 			 * This is an LLC SAP value, so the frames
2068 			 * that match would be 802.2 frames.
2069 			 * Check for the 802.2 protocol type
2070 			 * in the "Ethernet type" field, and
2071 			 * then check the DSAP.
2072 			 */
2073 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
2074 			    LINUX_SLL_P_802_2);
2075 			b1 = gen_cmp(OR_LINK, off_macpl, BPF_B,
2076 			     (bpf_int32)proto);
2077 			gen_and(b0, b1);
2078 			return b1;
2079 		} else {
2080 			/*
2081 			 * This is an Ethernet type, so compare
2082 			 * the length/type field with it (if
2083 			 * the frame is an 802.2 frame, the length
2084 			 * field will be <= ETHERMTU, and, as
2085 			 * "proto" is > ETHERMTU, this test
2086 			 * will fail and the frame won't match,
2087 			 * which is what we want).
2088 			 */
2089 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
2090 			    (bpf_int32)proto);
2091 		}
2092 	}
2093 }
2094 
2095 static struct slist *
gen_load_prism_llprefixlen()2096 gen_load_prism_llprefixlen()
2097 {
2098 	struct slist *s1, *s2;
2099 	struct slist *sjeq_avs_cookie;
2100 	struct slist *sjcommon;
2101 
2102 	/*
2103 	 * This code is not compatible with the optimizer, as
2104 	 * we are generating jmp instructions within a normal
2105 	 * slist of instructions
2106 	 */
2107 	no_optimize = 1;
2108 
2109 	/*
2110 	 * Generate code to load the length of the radio header into
2111 	 * the register assigned to hold that length, if one has been
2112 	 * assigned.  (If one hasn't been assigned, no code we've
2113 	 * generated uses that prefix, so we don't need to generate any
2114 	 * code to load it.)
2115 	 *
2116 	 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2117 	 * or always use the AVS header rather than the Prism header.
2118 	 * We load a 4-byte big-endian value at the beginning of the
2119 	 * raw packet data, and see whether, when masked with 0xFFFFF000,
2120 	 * it's equal to 0x80211000.  If so, that indicates that it's
2121 	 * an AVS header (the masked-out bits are the version number).
2122 	 * Otherwise, it's a Prism header.
2123 	 *
2124 	 * XXX - the Prism header is also, in theory, variable-length,
2125 	 * but no known software generates headers that aren't 144
2126 	 * bytes long.
2127 	 */
2128 	if (reg_off_ll != -1) {
2129 		/*
2130 		 * Load the cookie.
2131 		 */
2132 		s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2133 		s1->s.k = 0;
2134 
2135 		/*
2136 		 * AND it with 0xFFFFF000.
2137 		 */
2138 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
2139 		s2->s.k = 0xFFFFF000;
2140 		sappend(s1, s2);
2141 
2142 		/*
2143 		 * Compare with 0x80211000.
2144 		 */
2145 		sjeq_avs_cookie = new_stmt(JMP(BPF_JEQ));
2146 		sjeq_avs_cookie->s.k = 0x80211000;
2147 		sappend(s1, sjeq_avs_cookie);
2148 
2149 		/*
2150 		 * If it's AVS:
2151 		 *
2152 		 * The 4 bytes at an offset of 4 from the beginning of
2153 		 * the AVS header are the length of the AVS header.
2154 		 * That field is big-endian.
2155 		 */
2156 		s2 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2157 		s2->s.k = 4;
2158 		sappend(s1, s2);
2159 		sjeq_avs_cookie->s.jt = s2;
2160 
2161 		/*
2162 		 * Now jump to the code to allocate a register
2163 		 * into which to save the header length and
2164 		 * store the length there.  (The "jump always"
2165 		 * instruction needs to have the k field set;
2166 		 * it's added to the PC, so, as we're jumping
2167 		 * over a single instruction, it should be 1.)
2168 		 */
2169 		sjcommon = new_stmt(JMP(BPF_JA));
2170 		sjcommon->s.k = 1;
2171 		sappend(s1, sjcommon);
2172 
2173 		/*
2174 		 * Now for the code that handles the Prism header.
2175 		 * Just load the length of the Prism header (144)
2176 		 * into the A register.  Have the test for an AVS
2177 		 * header branch here if we don't have an AVS header.
2178 		 */
2179 		s2 = new_stmt(BPF_LD|BPF_W|BPF_IMM);
2180 		s2->s.k = 144;
2181 		sappend(s1, s2);
2182 		sjeq_avs_cookie->s.jf = s2;
2183 
2184 		/*
2185 		 * Now allocate a register to hold that value and store
2186 		 * it.  The code for the AVS header will jump here after
2187 		 * loading the length of the AVS header.
2188 		 */
2189 		s2 = new_stmt(BPF_ST);
2190 		s2->s.k = reg_off_ll;
2191 		sappend(s1, s2);
2192 		sjcommon->s.jf = s2;
2193 
2194 		/*
2195 		 * Now move it into the X register.
2196 		 */
2197 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2198 		sappend(s1, s2);
2199 
2200 		return (s1);
2201 	} else
2202 		return (NULL);
2203 }
2204 
2205 static struct slist *
gen_load_avs_llprefixlen()2206 gen_load_avs_llprefixlen()
2207 {
2208 	struct slist *s1, *s2;
2209 
2210 	/*
2211 	 * Generate code to load the length of the AVS header into
2212 	 * the register assigned to hold that length, if one has been
2213 	 * assigned.  (If one hasn't been assigned, no code we've
2214 	 * generated uses that prefix, so we don't need to generate any
2215 	 * code to load it.)
2216 	 */
2217 	if (reg_off_ll != -1) {
2218 		/*
2219 		 * The 4 bytes at an offset of 4 from the beginning of
2220 		 * the AVS header are the length of the AVS header.
2221 		 * That field is big-endian.
2222 		 */
2223 		s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2224 		s1->s.k = 4;
2225 
2226 		/*
2227 		 * Now allocate a register to hold that value and store
2228 		 * it.
2229 		 */
2230 		s2 = new_stmt(BPF_ST);
2231 		s2->s.k = reg_off_ll;
2232 		sappend(s1, s2);
2233 
2234 		/*
2235 		 * Now move it into the X register.
2236 		 */
2237 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2238 		sappend(s1, s2);
2239 
2240 		return (s1);
2241 	} else
2242 		return (NULL);
2243 }
2244 
2245 static struct slist *
gen_load_radiotap_llprefixlen()2246 gen_load_radiotap_llprefixlen()
2247 {
2248 	struct slist *s1, *s2;
2249 
2250 	/*
2251 	 * Generate code to load the length of the radiotap header into
2252 	 * the register assigned to hold that length, if one has been
2253 	 * assigned.  (If one hasn't been assigned, no code we've
2254 	 * generated uses that prefix, so we don't need to generate any
2255 	 * code to load it.)
2256 	 */
2257 	if (reg_off_ll != -1) {
2258 		/*
2259 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2260 		 * of the radiotap header are the length of the radiotap
2261 		 * header; unfortunately, it's little-endian, so we have
2262 		 * to load it a byte at a time and construct the value.
2263 		 */
2264 
2265 		/*
2266 		 * Load the high-order byte, at an offset of 3, shift it
2267 		 * left a byte, and put the result in the X register.
2268 		 */
2269 		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2270 		s1->s.k = 3;
2271 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2272 		sappend(s1, s2);
2273 		s2->s.k = 8;
2274 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2275 		sappend(s1, s2);
2276 
2277 		/*
2278 		 * Load the next byte, at an offset of 2, and OR the
2279 		 * value from the X register into it.
2280 		 */
2281 		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2282 		sappend(s1, s2);
2283 		s2->s.k = 2;
2284 		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2285 		sappend(s1, s2);
2286 
2287 		/*
2288 		 * Now allocate a register to hold that value and store
2289 		 * it.
2290 		 */
2291 		s2 = new_stmt(BPF_ST);
2292 		s2->s.k = reg_off_ll;
2293 		sappend(s1, s2);
2294 
2295 		/*
2296 		 * Now move it into the X register.
2297 		 */
2298 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2299 		sappend(s1, s2);
2300 
2301 		return (s1);
2302 	} else
2303 		return (NULL);
2304 }
2305 
2306 /*
2307  * At the moment we treat PPI as normal Radiotap encoded
2308  * packets. The difference is in the function that generates
2309  * the code at the beginning to compute the header length.
2310  * Since this code generator of PPI supports bare 802.11
2311  * encapsulation only (i.e. the encapsulated DLT should be
2312  * DLT_IEEE802_11) we generate code to check for this too;
2313  * that's done in finish_parse().
2314  */
2315 static struct slist *
gen_load_ppi_llprefixlen()2316 gen_load_ppi_llprefixlen()
2317 {
2318 	struct slist *s1, *s2;
2319 
2320 	/*
2321 	 * Generate code to load the length of the radiotap header
2322 	 * into the register assigned to hold that length, if one has
2323 	 * been assigned.
2324 	 */
2325 	if (reg_off_ll != -1) {
2326 		/*
2327 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2328 		 * of the radiotap header are the length of the radiotap
2329 		 * header; unfortunately, it's little-endian, so we have
2330 		 * to load it a byte at a time and construct the value.
2331 		 */
2332 
2333 		/*
2334 		 * Load the high-order byte, at an offset of 3, shift it
2335 		 * left a byte, and put the result in the X register.
2336 		 */
2337 		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2338 		s1->s.k = 3;
2339 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2340 		sappend(s1, s2);
2341 		s2->s.k = 8;
2342 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2343 		sappend(s1, s2);
2344 
2345 		/*
2346 		 * Load the next byte, at an offset of 2, and OR the
2347 		 * value from the X register into it.
2348 		 */
2349 		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2350 		sappend(s1, s2);
2351 		s2->s.k = 2;
2352 		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2353 		sappend(s1, s2);
2354 
2355 		/*
2356 		 * Now allocate a register to hold that value and store
2357 		 * it.
2358 		 */
2359 		s2 = new_stmt(BPF_ST);
2360 		s2->s.k = reg_off_ll;
2361 		sappend(s1, s2);
2362 
2363 		/*
2364 		 * Now move it into the X register.
2365 		 */
2366 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2367 		sappend(s1, s2);
2368 
2369 		return (s1);
2370 	} else
2371 		return (NULL);
2372 }
2373 
2374 /*
2375  * Load a value relative to the beginning of the link-layer header after the 802.11
2376  * header, i.e. LLC_SNAP.
2377  * The link-layer header doesn't necessarily begin at the beginning
2378  * of the packet data; there might be a variable-length prefix containing
2379  * radio information.
2380  */
2381 static struct slist *
gen_load_802_11_header_len(struct slist * s,struct slist * snext)2382 gen_load_802_11_header_len(struct slist *s, struct slist *snext)
2383 {
2384 	struct slist *s2;
2385 	struct slist *sjset_data_frame_1;
2386 	struct slist *sjset_data_frame_2;
2387 	struct slist *sjset_qos;
2388 	struct slist *sjset_radiotap_flags;
2389 	struct slist *sjset_radiotap_tsft;
2390 	struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
2391 	struct slist *s_roundup;
2392 
2393 	if (reg_off_macpl == -1) {
2394 		/*
2395 		 * No register has been assigned to the offset of
2396 		 * the MAC-layer payload, which means nobody needs
2397 		 * it; don't bother computing it - just return
2398 		 * what we already have.
2399 		 */
2400 		return (s);
2401 	}
2402 
2403 	/*
2404 	 * This code is not compatible with the optimizer, as
2405 	 * we are generating jmp instructions within a normal
2406 	 * slist of instructions
2407 	 */
2408 	no_optimize = 1;
2409 
2410 	/*
2411 	 * If "s" is non-null, it has code to arrange that the X register
2412 	 * contains the length of the prefix preceding the link-layer
2413 	 * header.
2414 	 *
2415 	 * Otherwise, the length of the prefix preceding the link-layer
2416 	 * header is "off_ll".
2417 	 */
2418 	if (s == NULL) {
2419 		/*
2420 		 * There is no variable-length header preceding the
2421 		 * link-layer header.
2422 		 *
2423 		 * Load the length of the fixed-length prefix preceding
2424 		 * the link-layer header (if any) into the X register,
2425 		 * and store it in the reg_off_macpl register.
2426 		 * That length is off_ll.
2427 		 */
2428 		s = new_stmt(BPF_LDX|BPF_IMM);
2429 		s->s.k = off_ll;
2430 	}
2431 
2432 	/*
2433 	 * The X register contains the offset of the beginning of the
2434 	 * link-layer header; add 24, which is the minimum length
2435 	 * of the MAC header for a data frame, to that, and store it
2436 	 * in reg_off_macpl, and then load the Frame Control field,
2437 	 * which is at the offset in the X register, with an indexed load.
2438 	 */
2439 	s2 = new_stmt(BPF_MISC|BPF_TXA);
2440 	sappend(s, s2);
2441 	s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
2442 	s2->s.k = 24;
2443 	sappend(s, s2);
2444 	s2 = new_stmt(BPF_ST);
2445 	s2->s.k = reg_off_macpl;
2446 	sappend(s, s2);
2447 
2448 	s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
2449 	s2->s.k = 0;
2450 	sappend(s, s2);
2451 
2452 	/*
2453 	 * Check the Frame Control field to see if this is a data frame;
2454 	 * a data frame has the 0x08 bit (b3) in that field set and the
2455 	 * 0x04 bit (b2) clear.
2456 	 */
2457 	sjset_data_frame_1 = new_stmt(JMP(BPF_JSET));
2458 	sjset_data_frame_1->s.k = 0x08;
2459 	sappend(s, sjset_data_frame_1);
2460 
2461 	/*
2462 	 * If b3 is set, test b2, otherwise go to the first statement of
2463 	 * the rest of the program.
2464 	 */
2465 	sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(JMP(BPF_JSET));
2466 	sjset_data_frame_2->s.k = 0x04;
2467 	sappend(s, sjset_data_frame_2);
2468 	sjset_data_frame_1->s.jf = snext;
2469 
2470 	/*
2471 	 * If b2 is not set, this is a data frame; test the QoS bit.
2472 	 * Otherwise, go to the first statement of the rest of the
2473 	 * program.
2474 	 */
2475 	sjset_data_frame_2->s.jt = snext;
2476 	sjset_data_frame_2->s.jf = sjset_qos = new_stmt(JMP(BPF_JSET));
2477 	sjset_qos->s.k = 0x80;	/* QoS bit */
2478 	sappend(s, sjset_qos);
2479 
2480 	/*
2481 	 * If it's set, add 2 to reg_off_macpl, to skip the QoS
2482 	 * field.
2483 	 * Otherwise, go to the first statement of the rest of the
2484 	 * program.
2485 	 */
2486 	sjset_qos->s.jt = s2 = new_stmt(BPF_LD|BPF_MEM);
2487 	s2->s.k = reg_off_macpl;
2488 	sappend(s, s2);
2489 	s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2490 	s2->s.k = 2;
2491 	sappend(s, s2);
2492 	s2 = new_stmt(BPF_ST);
2493 	s2->s.k = reg_off_macpl;
2494 	sappend(s, s2);
2495 
2496 	/*
2497 	 * If we have a radiotap header, look at it to see whether
2498 	 * there's Atheros padding between the MAC-layer header
2499 	 * and the payload.
2500 	 *
2501 	 * Note: all of the fields in the radiotap header are
2502 	 * little-endian, so we byte-swap all of the values
2503 	 * we test against, as they will be loaded as big-endian
2504 	 * values.
2505 	 */
2506 	if (linktype == DLT_IEEE802_11_RADIO) {
2507 		/*
2508 		 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2509 		 * in the presence flag?
2510 		 */
2511 		sjset_qos->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_W);
2512 		s2->s.k = 4;
2513 		sappend(s, s2);
2514 
2515 		sjset_radiotap_flags = new_stmt(JMP(BPF_JSET));
2516 		sjset_radiotap_flags->s.k = SWAPLONG(0x00000002);
2517 		sappend(s, sjset_radiotap_flags);
2518 
2519 		/*
2520 		 * If not, skip all of this.
2521 		 */
2522 		sjset_radiotap_flags->s.jf = snext;
2523 
2524 		/*
2525 		 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2526 		 */
2527 		sjset_radiotap_tsft = sjset_radiotap_flags->s.jt =
2528 		    new_stmt(JMP(BPF_JSET));
2529 		sjset_radiotap_tsft->s.k = SWAPLONG(0x00000001);
2530 		sappend(s, sjset_radiotap_tsft);
2531 
2532 		/*
2533 		 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2534 		 * at an offset of 16 from the beginning of the raw packet
2535 		 * data (8 bytes for the radiotap header and 8 bytes for
2536 		 * the TSFT field).
2537 		 *
2538 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2539 		 * is set.
2540 		 */
2541 		sjset_radiotap_tsft->s.jt = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2542 		s2->s.k = 16;
2543 		sappend(s, s2);
2544 
2545 		sjset_tsft_datapad = new_stmt(JMP(BPF_JSET));
2546 		sjset_tsft_datapad->s.k = 0x20;
2547 		sappend(s, sjset_tsft_datapad);
2548 
2549 		/*
2550 		 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2551 		 * at an offset of 8 from the beginning of the raw packet
2552 		 * data (8 bytes for the radiotap header).
2553 		 *
2554 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2555 		 * is set.
2556 		 */
2557 		sjset_radiotap_tsft->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2558 		s2->s.k = 8;
2559 		sappend(s, s2);
2560 
2561 		sjset_notsft_datapad = new_stmt(JMP(BPF_JSET));
2562 		sjset_notsft_datapad->s.k = 0x20;
2563 		sappend(s, sjset_notsft_datapad);
2564 
2565 		/*
2566 		 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2567 		 * set, round the length of the 802.11 header to
2568 		 * a multiple of 4.  Do that by adding 3 and then
2569 		 * dividing by and multiplying by 4, which we do by
2570 		 * ANDing with ~3.
2571 		 */
2572 		s_roundup = new_stmt(BPF_LD|BPF_MEM);
2573 		s_roundup->s.k = reg_off_macpl;
2574 		sappend(s, s_roundup);
2575 		s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2576 		s2->s.k = 3;
2577 		sappend(s, s2);
2578 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_IMM);
2579 		s2->s.k = ~3;
2580 		sappend(s, s2);
2581 		s2 = new_stmt(BPF_ST);
2582 		s2->s.k = reg_off_macpl;
2583 		sappend(s, s2);
2584 
2585 		sjset_tsft_datapad->s.jt = s_roundup;
2586 		sjset_tsft_datapad->s.jf = snext;
2587 		sjset_notsft_datapad->s.jt = s_roundup;
2588 		sjset_notsft_datapad->s.jf = snext;
2589 	} else
2590 		sjset_qos->s.jf = snext;
2591 
2592 	return s;
2593 }
2594 
2595 static void
insert_compute_vloffsets(b)2596 insert_compute_vloffsets(b)
2597 	struct block *b;
2598 {
2599 	struct slist *s;
2600 
2601 	/*
2602 	 * For link-layer types that have a variable-length header
2603 	 * preceding the link-layer header, generate code to load
2604 	 * the offset of the link-layer header into the register
2605 	 * assigned to that offset, if any.
2606 	 */
2607 	switch (linktype) {
2608 
2609 	case DLT_PRISM_HEADER:
2610 		s = gen_load_prism_llprefixlen();
2611 		break;
2612 
2613 	case DLT_IEEE802_11_RADIO_AVS:
2614 		s = gen_load_avs_llprefixlen();
2615 		break;
2616 
2617 	case DLT_IEEE802_11_RADIO:
2618 		s = gen_load_radiotap_llprefixlen();
2619 		break;
2620 
2621 	case DLT_PPI:
2622 		s = gen_load_ppi_llprefixlen();
2623 		break;
2624 
2625 	default:
2626 		s = NULL;
2627 		break;
2628 	}
2629 
2630 	/*
2631 	 * For link-layer types that have a variable-length link-layer
2632 	 * header, generate code to load the offset of the MAC-layer
2633 	 * payload into the register assigned to that offset, if any.
2634 	 */
2635 	switch (linktype) {
2636 
2637 	case DLT_IEEE802_11:
2638 	case DLT_PRISM_HEADER:
2639 	case DLT_IEEE802_11_RADIO_AVS:
2640 	case DLT_IEEE802_11_RADIO:
2641 	case DLT_PPI:
2642 		s = gen_load_802_11_header_len(s, b->stmts);
2643 		break;
2644 	}
2645 
2646 	/*
2647 	 * If we have any offset-loading code, append all the
2648 	 * existing statements in the block to those statements,
2649 	 * and make the resulting list the list of statements
2650 	 * for the block.
2651 	 */
2652 	if (s != NULL) {
2653 		sappend(s, b->stmts);
2654 		b->stmts = s;
2655 	}
2656 }
2657 
2658 static struct block *
gen_ppi_dlt_check(void)2659 gen_ppi_dlt_check(void)
2660 {
2661 	struct slist *s_load_dlt;
2662 	struct block *b;
2663 
2664 	if (linktype == DLT_PPI)
2665 	{
2666 		/* Create the statements that check for the DLT
2667 		 */
2668 		s_load_dlt = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2669 		s_load_dlt->s.k = 4;
2670 
2671 		b = new_block(JMP(BPF_JEQ));
2672 
2673 		b->stmts = s_load_dlt;
2674 		b->s.k = SWAPLONG(DLT_IEEE802_11);
2675 	}
2676 	else
2677 	{
2678 		b = NULL;
2679 	}
2680 
2681 	return b;
2682 }
2683 
2684 static struct slist *
gen_prism_llprefixlen(void)2685 gen_prism_llprefixlen(void)
2686 {
2687 	struct slist *s;
2688 
2689 	if (reg_off_ll == -1) {
2690 		/*
2691 		 * We haven't yet assigned a register for the length
2692 		 * of the radio header; allocate one.
2693 		 */
2694 		reg_off_ll = alloc_reg();
2695 	}
2696 
2697 	/*
2698 	 * Load the register containing the radio length
2699 	 * into the X register.
2700 	 */
2701 	s = new_stmt(BPF_LDX|BPF_MEM);
2702 	s->s.k = reg_off_ll;
2703 	return s;
2704 }
2705 
2706 static struct slist *
gen_avs_llprefixlen(void)2707 gen_avs_llprefixlen(void)
2708 {
2709 	struct slist *s;
2710 
2711 	if (reg_off_ll == -1) {
2712 		/*
2713 		 * We haven't yet assigned a register for the length
2714 		 * of the AVS header; allocate one.
2715 		 */
2716 		reg_off_ll = alloc_reg();
2717 	}
2718 
2719 	/*
2720 	 * Load the register containing the AVS length
2721 	 * into the X register.
2722 	 */
2723 	s = new_stmt(BPF_LDX|BPF_MEM);
2724 	s->s.k = reg_off_ll;
2725 	return s;
2726 }
2727 
2728 static struct slist *
gen_radiotap_llprefixlen(void)2729 gen_radiotap_llprefixlen(void)
2730 {
2731 	struct slist *s;
2732 
2733 	if (reg_off_ll == -1) {
2734 		/*
2735 		 * We haven't yet assigned a register for the length
2736 		 * of the radiotap header; allocate one.
2737 		 */
2738 		reg_off_ll = alloc_reg();
2739 	}
2740 
2741 	/*
2742 	 * Load the register containing the radiotap length
2743 	 * into the X register.
2744 	 */
2745 	s = new_stmt(BPF_LDX|BPF_MEM);
2746 	s->s.k = reg_off_ll;
2747 	return s;
2748 }
2749 
2750 /*
2751  * At the moment we treat PPI as normal Radiotap encoded
2752  * packets. The difference is in the function that generates
2753  * the code at the beginning to compute the header length.
2754  * Since this code generator of PPI supports bare 802.11
2755  * encapsulation only (i.e. the encapsulated DLT should be
2756  * DLT_IEEE802_11) we generate code to check for this too.
2757  */
2758 static struct slist *
gen_ppi_llprefixlen(void)2759 gen_ppi_llprefixlen(void)
2760 {
2761 	struct slist *s;
2762 
2763 	if (reg_off_ll == -1) {
2764 		/*
2765 		 * We haven't yet assigned a register for the length
2766 		 * of the radiotap header; allocate one.
2767 		 */
2768 		reg_off_ll = alloc_reg();
2769 	}
2770 
2771 	/*
2772 	 * Load the register containing the PPI length
2773 	 * into the X register.
2774 	 */
2775 	s = new_stmt(BPF_LDX|BPF_MEM);
2776 	s->s.k = reg_off_ll;
2777 	return s;
2778 }
2779 
2780 /*
2781  * Generate code to compute the link-layer header length, if necessary,
2782  * putting it into the X register, and to return either a pointer to a
2783  * "struct slist" for the list of statements in that code, or NULL if
2784  * no code is necessary.
2785  */
2786 static struct slist *
gen_llprefixlen(void)2787 gen_llprefixlen(void)
2788 {
2789 	switch (linktype) {
2790 
2791 	case DLT_PRISM_HEADER:
2792 		return gen_prism_llprefixlen();
2793 
2794 	case DLT_IEEE802_11_RADIO_AVS:
2795 		return gen_avs_llprefixlen();
2796 
2797 	case DLT_IEEE802_11_RADIO:
2798 		return gen_radiotap_llprefixlen();
2799 
2800 	case DLT_PPI:
2801 		return gen_ppi_llprefixlen();
2802 
2803 	default:
2804 		return NULL;
2805 	}
2806 }
2807 
2808 /*
2809  * Generate code to load the register containing the offset of the
2810  * MAC-layer payload into the X register; if no register for that offset
2811  * has been allocated, allocate it first.
2812  */
2813 static struct slist *
gen_off_macpl(void)2814 gen_off_macpl(void)
2815 {
2816 	struct slist *s;
2817 
2818 	if (off_macpl_is_variable) {
2819 		if (reg_off_macpl == -1) {
2820 			/*
2821 			 * We haven't yet assigned a register for the offset
2822 			 * of the MAC-layer payload; allocate one.
2823 			 */
2824 			reg_off_macpl = alloc_reg();
2825 		}
2826 
2827 		/*
2828 		 * Load the register containing the offset of the MAC-layer
2829 		 * payload into the X register.
2830 		 */
2831 		s = new_stmt(BPF_LDX|BPF_MEM);
2832 		s->s.k = reg_off_macpl;
2833 		return s;
2834 	} else {
2835 		/*
2836 		 * That offset isn't variable, so we don't need to
2837 		 * generate any code.
2838 		 */
2839 		return NULL;
2840 	}
2841 }
2842 
2843 /*
2844  * Map an Ethernet type to the equivalent PPP type.
2845  */
2846 static int
ethertype_to_ppptype(proto)2847 ethertype_to_ppptype(proto)
2848 	int proto;
2849 {
2850 	switch (proto) {
2851 
2852 	case ETHERTYPE_IP:
2853 		proto = PPP_IP;
2854 		break;
2855 
2856 	case ETHERTYPE_IPV6:
2857 		proto = PPP_IPV6;
2858 		break;
2859 
2860 	case ETHERTYPE_DN:
2861 		proto = PPP_DECNET;
2862 		break;
2863 
2864 	case ETHERTYPE_ATALK:
2865 		proto = PPP_APPLE;
2866 		break;
2867 
2868 	case ETHERTYPE_NS:
2869 		proto = PPP_NS;
2870 		break;
2871 
2872 	case LLCSAP_ISONS:
2873 		proto = PPP_OSI;
2874 		break;
2875 
2876 	case LLCSAP_8021D:
2877 		/*
2878 		 * I'm assuming the "Bridging PDU"s that go
2879 		 * over PPP are Spanning Tree Protocol
2880 		 * Bridging PDUs.
2881 		 */
2882 		proto = PPP_BRPDU;
2883 		break;
2884 
2885 	case LLCSAP_IPX:
2886 		proto = PPP_IPX;
2887 		break;
2888 	}
2889 	return (proto);
2890 }
2891 
2892 /*
2893  * Generate code to match a particular packet type by matching the
2894  * link-layer type field or fields in the 802.2 LLC header.
2895  *
2896  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2897  * value, if <= ETHERMTU.
2898  */
2899 static struct block *
gen_linktype(proto)2900 gen_linktype(proto)
2901 	register int proto;
2902 {
2903 	struct block *b0, *b1, *b2;
2904 
2905 	/* are we checking MPLS-encapsulated packets? */
2906 	if (label_stack_depth > 0) {
2907 		switch (proto) {
2908 		case ETHERTYPE_IP:
2909 		case PPP_IP:
2910 			/* FIXME add other L3 proto IDs */
2911 			return gen_mpls_linktype(Q_IP);
2912 
2913 		case ETHERTYPE_IPV6:
2914 		case PPP_IPV6:
2915 			/* FIXME add other L3 proto IDs */
2916 			return gen_mpls_linktype(Q_IPV6);
2917 
2918 		default:
2919 			bpf_error("unsupported protocol over mpls");
2920 			/* NOTREACHED */
2921 		}
2922 	}
2923 
2924 	/*
2925 	 * Are we testing PPPoE packets?
2926 	 */
2927 	if (is_pppoes) {
2928 		/*
2929 		 * The PPPoE session header is part of the
2930 		 * MAC-layer payload, so all references
2931 		 * should be relative to the beginning of
2932 		 * that payload.
2933 		 */
2934 
2935 		/*
2936 		 * We use Ethernet protocol types inside libpcap;
2937 		 * map them to the corresponding PPP protocol types.
2938 		 */
2939 		proto = ethertype_to_ppptype(proto);
2940 		return gen_cmp(OR_MACPL, off_linktype, BPF_H, (bpf_int32)proto);
2941 	}
2942 
2943 	switch (linktype) {
2944 
2945 	case DLT_EN10MB:
2946 	case DLT_NETANALYZER:
2947 	case DLT_NETANALYZER_TRANSPARENT:
2948 		return gen_ether_linktype(proto);
2949 		/*NOTREACHED*/
2950 		break;
2951 
2952 	case DLT_C_HDLC:
2953 		switch (proto) {
2954 
2955 		case LLCSAP_ISONS:
2956 			proto = (proto << 8 | LLCSAP_ISONS);
2957 			/* fall through */
2958 
2959 		default:
2960 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
2961 			    (bpf_int32)proto);
2962 			/*NOTREACHED*/
2963 			break;
2964 		}
2965 		break;
2966 
2967 	case DLT_IEEE802_11:
2968 	case DLT_PRISM_HEADER:
2969 	case DLT_IEEE802_11_RADIO_AVS:
2970 	case DLT_IEEE802_11_RADIO:
2971 	case DLT_PPI:
2972 		/*
2973 		 * Check that we have a data frame.
2974 		 */
2975 		b0 = gen_check_802_11_data_frame();
2976 
2977 		/*
2978 		 * Now check for the specified link-layer type.
2979 		 */
2980 		b1 = gen_llc_linktype(proto);
2981 		gen_and(b0, b1);
2982 		return b1;
2983 		/*NOTREACHED*/
2984 		break;
2985 
2986 	case DLT_FDDI:
2987 		/*
2988 		 * XXX - check for asynchronous frames, as per RFC 1103.
2989 		 */
2990 		return gen_llc_linktype(proto);
2991 		/*NOTREACHED*/
2992 		break;
2993 
2994 	case DLT_IEEE802:
2995 		/*
2996 		 * XXX - check for LLC PDUs, as per IEEE 802.5.
2997 		 */
2998 		return gen_llc_linktype(proto);
2999 		/*NOTREACHED*/
3000 		break;
3001 
3002 	case DLT_ATM_RFC1483:
3003 	case DLT_ATM_CLIP:
3004 	case DLT_IP_OVER_FC:
3005 		return gen_llc_linktype(proto);
3006 		/*NOTREACHED*/
3007 		break;
3008 
3009 	case DLT_SUNATM:
3010 		/*
3011 		 * If "is_lane" is set, check for a LANE-encapsulated
3012 		 * version of this protocol, otherwise check for an
3013 		 * LLC-encapsulated version of this protocol.
3014 		 *
3015 		 * We assume LANE means Ethernet, not Token Ring.
3016 		 */
3017 		if (is_lane) {
3018 			/*
3019 			 * Check that the packet doesn't begin with an
3020 			 * LE Control marker.  (We've already generated
3021 			 * a test for LANE.)
3022 			 */
3023 			b0 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
3024 			    0xFF00);
3025 			gen_not(b0);
3026 
3027 			/*
3028 			 * Now generate an Ethernet test.
3029 			 */
3030 			b1 = gen_ether_linktype(proto);
3031 			gen_and(b0, b1);
3032 			return b1;
3033 		} else {
3034 			/*
3035 			 * Check for LLC encapsulation and then check the
3036 			 * protocol.
3037 			 */
3038 			b0 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
3039 			b1 = gen_llc_linktype(proto);
3040 			gen_and(b0, b1);
3041 			return b1;
3042 		}
3043 		/*NOTREACHED*/
3044 		break;
3045 
3046 	case DLT_LINUX_SLL:
3047 		return gen_linux_sll_linktype(proto);
3048 		/*NOTREACHED*/
3049 		break;
3050 
3051 	case DLT_SLIP:
3052 	case DLT_SLIP_BSDOS:
3053 	case DLT_RAW:
3054 		/*
3055 		 * These types don't provide any type field; packets
3056 		 * are always IPv4 or IPv6.
3057 		 *
3058 		 * XXX - for IPv4, check for a version number of 4, and,
3059 		 * for IPv6, check for a version number of 6?
3060 		 */
3061 		switch (proto) {
3062 
3063 		case ETHERTYPE_IP:
3064 			/* Check for a version number of 4. */
3065 			return gen_mcmp(OR_LINK, 0, BPF_B, 0x40, 0xF0);
3066 
3067 		case ETHERTYPE_IPV6:
3068 			/* Check for a version number of 6. */
3069 			return gen_mcmp(OR_LINK, 0, BPF_B, 0x60, 0xF0);
3070 
3071 		default:
3072 			return gen_false();		/* always false */
3073 		}
3074 		/*NOTREACHED*/
3075 		break;
3076 
3077 	case DLT_IPV4:
3078 		/*
3079 		 * Raw IPv4, so no type field.
3080 		 */
3081 		if (proto == ETHERTYPE_IP)
3082 			return gen_true();		/* always true */
3083 
3084 		/* Checking for something other than IPv4; always false */
3085 		return gen_false();
3086 		/*NOTREACHED*/
3087 		break;
3088 
3089 	case DLT_IPV6:
3090 		/*
3091 		 * Raw IPv6, so no type field.
3092 		 */
3093 		if (proto == ETHERTYPE_IPV6)
3094 			return gen_true();		/* always true */
3095 
3096 		/* Checking for something other than IPv6; always false */
3097 		return gen_false();
3098 		/*NOTREACHED*/
3099 		break;
3100 
3101 	case DLT_PPP:
3102 	case DLT_PPP_PPPD:
3103 	case DLT_PPP_SERIAL:
3104 	case DLT_PPP_ETHER:
3105 		/*
3106 		 * We use Ethernet protocol types inside libpcap;
3107 		 * map them to the corresponding PPP protocol types.
3108 		 */
3109 		proto = ethertype_to_ppptype(proto);
3110 		return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
3111 		/*NOTREACHED*/
3112 		break;
3113 
3114 	case DLT_PPP_BSDOS:
3115 		/*
3116 		 * We use Ethernet protocol types inside libpcap;
3117 		 * map them to the corresponding PPP protocol types.
3118 		 */
3119 		switch (proto) {
3120 
3121 		case ETHERTYPE_IP:
3122 			/*
3123 			 * Also check for Van Jacobson-compressed IP.
3124 			 * XXX - do this for other forms of PPP?
3125 			 */
3126 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_IP);
3127 			b1 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJC);
3128 			gen_or(b0, b1);
3129 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJNC);
3130 			gen_or(b1, b0);
3131 			return b0;
3132 
3133 		default:
3134 			proto = ethertype_to_ppptype(proto);
3135 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
3136 				(bpf_int32)proto);
3137 		}
3138 		/*NOTREACHED*/
3139 		break;
3140 
3141 	case DLT_NULL:
3142 	case DLT_LOOP:
3143 	case DLT_ENC:
3144 		/*
3145 		 * For DLT_NULL, the link-layer header is a 32-bit
3146 		 * word containing an AF_ value in *host* byte order,
3147 		 * and for DLT_ENC, the link-layer header begins
3148 		 * with a 32-bit work containing an AF_ value in
3149 		 * host byte order.
3150 		 *
3151 		 * In addition, if we're reading a saved capture file,
3152 		 * the host byte order in the capture may not be the
3153 		 * same as the host byte order on this machine.
3154 		 *
3155 		 * For DLT_LOOP, the link-layer header is a 32-bit
3156 		 * word containing an AF_ value in *network* byte order.
3157 		 *
3158 		 * XXX - AF_ values may, unfortunately, be platform-
3159 		 * dependent; for example, FreeBSD's AF_INET6 is 24
3160 		 * whilst NetBSD's and OpenBSD's is 26.
3161 		 *
3162 		 * This means that, when reading a capture file, just
3163 		 * checking for our AF_INET6 value won't work if the
3164 		 * capture file came from another OS.
3165 		 */
3166 		switch (proto) {
3167 
3168 		case ETHERTYPE_IP:
3169 			proto = AF_INET;
3170 			break;
3171 
3172 #ifdef INET6
3173 		case ETHERTYPE_IPV6:
3174 			proto = AF_INET6;
3175 			break;
3176 #endif
3177 
3178 		default:
3179 			/*
3180 			 * Not a type on which we support filtering.
3181 			 * XXX - support those that have AF_ values
3182 			 * #defined on this platform, at least?
3183 			 */
3184 			return gen_false();
3185 		}
3186 
3187 		if (linktype == DLT_NULL || linktype == DLT_ENC) {
3188 			/*
3189 			 * The AF_ value is in host byte order, but
3190 			 * the BPF interpreter will convert it to
3191 			 * network byte order.
3192 			 *
3193 			 * If this is a save file, and it's from a
3194 			 * machine with the opposite byte order to
3195 			 * ours, we byte-swap the AF_ value.
3196 			 *
3197 			 * Then we run it through "htonl()", and
3198 			 * generate code to compare against the result.
3199 			 */
3200 			if (bpf_pcap->rfile != NULL && bpf_pcap->swapped)
3201 				proto = SWAPLONG(proto);
3202 			proto = htonl(proto);
3203 		}
3204 		return (gen_cmp(OR_LINK, 0, BPF_W, (bpf_int32)proto));
3205 
3206 #ifdef HAVE_NET_PFVAR_H
3207 	case DLT_PFLOG:
3208 		/*
3209 		 * af field is host byte order in contrast to the rest of
3210 		 * the packet.
3211 		 */
3212 		if (proto == ETHERTYPE_IP)
3213 			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
3214 			    BPF_B, (bpf_int32)AF_INET));
3215 		else if (proto == ETHERTYPE_IPV6)
3216 			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
3217 			    BPF_B, (bpf_int32)AF_INET6));
3218 		else
3219 			return gen_false();
3220 		/*NOTREACHED*/
3221 		break;
3222 #endif /* HAVE_NET_PFVAR_H */
3223 
3224 	case DLT_ARCNET:
3225 	case DLT_ARCNET_LINUX:
3226 		/*
3227 		 * XXX should we check for first fragment if the protocol
3228 		 * uses PHDS?
3229 		 */
3230 		switch (proto) {
3231 
3232 		default:
3233 			return gen_false();
3234 
3235 		case ETHERTYPE_IPV6:
3236 			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3237 				(bpf_int32)ARCTYPE_INET6));
3238 
3239 		case ETHERTYPE_IP:
3240 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3241 				     (bpf_int32)ARCTYPE_IP);
3242 			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3243 				     (bpf_int32)ARCTYPE_IP_OLD);
3244 			gen_or(b0, b1);
3245 			return (b1);
3246 
3247 		case ETHERTYPE_ARP:
3248 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3249 				     (bpf_int32)ARCTYPE_ARP);
3250 			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3251 				     (bpf_int32)ARCTYPE_ARP_OLD);
3252 			gen_or(b0, b1);
3253 			return (b1);
3254 
3255 		case ETHERTYPE_REVARP:
3256 			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3257 					(bpf_int32)ARCTYPE_REVARP));
3258 
3259 		case ETHERTYPE_ATALK:
3260 			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3261 					(bpf_int32)ARCTYPE_ATALK));
3262 		}
3263 		/*NOTREACHED*/
3264 		break;
3265 
3266 	case DLT_LTALK:
3267 		switch (proto) {
3268 		case ETHERTYPE_ATALK:
3269 			return gen_true();
3270 		default:
3271 			return gen_false();
3272 		}
3273 		/*NOTREACHED*/
3274 		break;
3275 
3276 	case DLT_FRELAY:
3277 		/*
3278 		 * XXX - assumes a 2-byte Frame Relay header with
3279 		 * DLCI and flags.  What if the address is longer?
3280 		 */
3281 		switch (proto) {
3282 
3283 		case ETHERTYPE_IP:
3284 			/*
3285 			 * Check for the special NLPID for IP.
3286 			 */
3287 			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0xcc);
3288 
3289 		case ETHERTYPE_IPV6:
3290 			/*
3291 			 * Check for the special NLPID for IPv6.
3292 			 */
3293 			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0x8e);
3294 
3295 		case LLCSAP_ISONS:
3296 			/*
3297 			 * Check for several OSI protocols.
3298 			 *
3299 			 * Frame Relay packets typically have an OSI
3300 			 * NLPID at the beginning; we check for each
3301 			 * of them.
3302 			 *
3303 			 * What we check for is the NLPID and a frame
3304 			 * control field of UI, i.e. 0x03 followed
3305 			 * by the NLPID.
3306 			 */
3307 			b0 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3308 			b1 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3309 			b2 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3310 			gen_or(b1, b2);
3311 			gen_or(b0, b2);
3312 			return b2;
3313 
3314 		default:
3315 			return gen_false();
3316 		}
3317 		/*NOTREACHED*/
3318 		break;
3319 
3320 	case DLT_MFR:
3321 		bpf_error("Multi-link Frame Relay link-layer type filtering not implemented");
3322 
3323         case DLT_JUNIPER_MFR:
3324         case DLT_JUNIPER_MLFR:
3325         case DLT_JUNIPER_MLPPP:
3326 	case DLT_JUNIPER_ATM1:
3327 	case DLT_JUNIPER_ATM2:
3328 	case DLT_JUNIPER_PPPOE:
3329 	case DLT_JUNIPER_PPPOE_ATM:
3330         case DLT_JUNIPER_GGSN:
3331         case DLT_JUNIPER_ES:
3332         case DLT_JUNIPER_MONITOR:
3333         case DLT_JUNIPER_SERVICES:
3334         case DLT_JUNIPER_ETHER:
3335         case DLT_JUNIPER_PPP:
3336         case DLT_JUNIPER_FRELAY:
3337         case DLT_JUNIPER_CHDLC:
3338         case DLT_JUNIPER_VP:
3339         case DLT_JUNIPER_ST:
3340         case DLT_JUNIPER_ISM:
3341         case DLT_JUNIPER_VS:
3342         case DLT_JUNIPER_SRX_E2E:
3343         case DLT_JUNIPER_FIBRECHANNEL:
3344 	case DLT_JUNIPER_ATM_CEMIC:
3345 
3346 		/* just lets verify the magic number for now -
3347 		 * on ATM we may have up to 6 different encapsulations on the wire
3348 		 * and need a lot of heuristics to figure out that the payload
3349 		 * might be;
3350 		 *
3351 		 * FIXME encapsulation specific BPF_ filters
3352 		 */
3353 		return gen_mcmp(OR_LINK, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3354 
3355 	case DLT_BACNET_MS_TP:
3356 		return gen_mcmp(OR_LINK, 0, BPF_W, 0x55FF0000, 0xffff0000);
3357 
3358 	case DLT_IPNET:
3359 		return gen_ipnet_linktype(proto);
3360 
3361 	case DLT_LINUX_IRDA:
3362 		bpf_error("IrDA link-layer type filtering not implemented");
3363 
3364 	case DLT_DOCSIS:
3365 		bpf_error("DOCSIS link-layer type filtering not implemented");
3366 
3367 	case DLT_MTP2:
3368 	case DLT_MTP2_WITH_PHDR:
3369 		bpf_error("MTP2 link-layer type filtering not implemented");
3370 
3371 	case DLT_ERF:
3372 		bpf_error("ERF link-layer type filtering not implemented");
3373 
3374 	case DLT_PFSYNC:
3375 		bpf_error("PFSYNC link-layer type filtering not implemented");
3376 
3377 	case DLT_LINUX_LAPD:
3378 		bpf_error("LAPD link-layer type filtering not implemented");
3379 
3380 	case DLT_USB:
3381 	case DLT_USB_LINUX:
3382 	case DLT_USB_LINUX_MMAPPED:
3383 		bpf_error("USB link-layer type filtering not implemented");
3384 
3385 	case DLT_BLUETOOTH_HCI_H4:
3386 	case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3387 		bpf_error("Bluetooth link-layer type filtering not implemented");
3388 
3389 	case DLT_CAN20B:
3390 	case DLT_CAN_SOCKETCAN:
3391 		bpf_error("CAN link-layer type filtering not implemented");
3392 
3393 	case DLT_IEEE802_15_4:
3394 	case DLT_IEEE802_15_4_LINUX:
3395 	case DLT_IEEE802_15_4_NONASK_PHY:
3396 	case DLT_IEEE802_15_4_NOFCS:
3397 		bpf_error("IEEE 802.15.4 link-layer type filtering not implemented");
3398 
3399 	case DLT_IEEE802_16_MAC_CPS_RADIO:
3400 		bpf_error("IEEE 802.16 link-layer type filtering not implemented");
3401 
3402 	case DLT_SITA:
3403 		bpf_error("SITA link-layer type filtering not implemented");
3404 
3405 	case DLT_RAIF1:
3406 		bpf_error("RAIF1 link-layer type filtering not implemented");
3407 
3408 	case DLT_IPMB:
3409 		bpf_error("IPMB link-layer type filtering not implemented");
3410 
3411 	case DLT_AX25_KISS:
3412 		bpf_error("AX.25 link-layer type filtering not implemented");
3413 	}
3414 
3415 	/*
3416 	 * All the types that have no encapsulation should either be
3417 	 * handled as DLT_SLIP, DLT_SLIP_BSDOS, and DLT_RAW are, if
3418 	 * all packets are IP packets, or should be handled in some
3419 	 * special case, if none of them are (if some are and some
3420 	 * aren't, the lack of encapsulation is a problem, as we'd
3421 	 * have to find some other way of determining the packet type).
3422 	 *
3423 	 * Therefore, if "off_linktype" is -1, there's an error.
3424 	 */
3425 	if (off_linktype == (u_int)-1)
3426 		abort();
3427 
3428 	/*
3429 	 * Any type not handled above should always have an Ethernet
3430 	 * type at an offset of "off_linktype".
3431 	 */
3432 	return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
3433 }
3434 
3435 /*
3436  * Check for an LLC SNAP packet with a given organization code and
3437  * protocol type; we check the entire contents of the 802.2 LLC and
3438  * snap headers, checking for DSAP and SSAP of SNAP and a control
3439  * field of 0x03 in the LLC header, and for the specified organization
3440  * code and protocol type in the SNAP header.
3441  */
3442 static struct block *
gen_snap(orgcode,ptype)3443 gen_snap(orgcode, ptype)
3444 	bpf_u_int32 orgcode;
3445 	bpf_u_int32 ptype;
3446 {
3447 	u_char snapblock[8];
3448 
3449 	snapblock[0] = LLCSAP_SNAP;	/* DSAP = SNAP */
3450 	snapblock[1] = LLCSAP_SNAP;	/* SSAP = SNAP */
3451 	snapblock[2] = 0x03;		/* control = UI */
3452 	snapblock[3] = (orgcode >> 16);	/* upper 8 bits of organization code */
3453 	snapblock[4] = (orgcode >> 8);	/* middle 8 bits of organization code */
3454 	snapblock[5] = (orgcode >> 0);	/* lower 8 bits of organization code */
3455 	snapblock[6] = (ptype >> 8);	/* upper 8 bits of protocol type */
3456 	snapblock[7] = (ptype >> 0);	/* lower 8 bits of protocol type */
3457 	return gen_bcmp(OR_MACPL, 0, 8, snapblock);
3458 }
3459 
3460 /*
3461  * Generate code to match a particular packet type, for link-layer types
3462  * using 802.2 LLC headers.
3463  *
3464  * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3465  * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3466  *
3467  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3468  * value, if <= ETHERMTU.  We use that to determine whether to
3469  * match the DSAP or both DSAP and LSAP or to check the OUI and
3470  * protocol ID in a SNAP header.
3471  */
3472 static struct block *
gen_llc_linktype(proto)3473 gen_llc_linktype(proto)
3474 	int proto;
3475 {
3476 	/*
3477 	 * XXX - handle token-ring variable-length header.
3478 	 */
3479 	switch (proto) {
3480 
3481 	case LLCSAP_IP:
3482 	case LLCSAP_ISONS:
3483 	case LLCSAP_NETBEUI:
3484 		/*
3485 		 * XXX - should we check both the DSAP and the
3486 		 * SSAP, like this, or should we check just the
3487 		 * DSAP, as we do for other types <= ETHERMTU
3488 		 * (i.e., other SAP values)?
3489 		 */
3490 		return gen_cmp(OR_MACPL, 0, BPF_H, (bpf_u_int32)
3491 			     ((proto << 8) | proto));
3492 
3493 	case LLCSAP_IPX:
3494 		/*
3495 		 * XXX - are there ever SNAP frames for IPX on
3496 		 * non-Ethernet 802.x networks?
3497 		 */
3498 		return gen_cmp(OR_MACPL, 0, BPF_B,
3499 		    (bpf_int32)LLCSAP_IPX);
3500 
3501 	case ETHERTYPE_ATALK:
3502 		/*
3503 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3504 		 * SNAP packets with an organization code of
3505 		 * 0x080007 (Apple, for Appletalk) and a protocol
3506 		 * type of ETHERTYPE_ATALK (Appletalk).
3507 		 *
3508 		 * XXX - check for an organization code of
3509 		 * encapsulated Ethernet as well?
3510 		 */
3511 		return gen_snap(0x080007, ETHERTYPE_ATALK);
3512 
3513 	default:
3514 		/*
3515 		 * XXX - we don't have to check for IPX 802.3
3516 		 * here, but should we check for the IPX Ethertype?
3517 		 */
3518 		if (proto <= ETHERMTU) {
3519 			/*
3520 			 * This is an LLC SAP value, so check
3521 			 * the DSAP.
3522 			 */
3523 			return gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)proto);
3524 		} else {
3525 			/*
3526 			 * This is an Ethernet type; we assume that it's
3527 			 * unlikely that it'll appear in the right place
3528 			 * at random, and therefore check only the
3529 			 * location that would hold the Ethernet type
3530 			 * in a SNAP frame with an organization code of
3531 			 * 0x000000 (encapsulated Ethernet).
3532 			 *
3533 			 * XXX - if we were to check for the SNAP DSAP and
3534 			 * LSAP, as per XXX, and were also to check for an
3535 			 * organization code of 0x000000 (encapsulated
3536 			 * Ethernet), we'd do
3537 			 *
3538 			 *	return gen_snap(0x000000, proto);
3539 			 *
3540 			 * here; for now, we don't, as per the above.
3541 			 * I don't know whether it's worth the extra CPU
3542 			 * time to do the right check or not.
3543 			 */
3544 			return gen_cmp(OR_MACPL, 6, BPF_H, (bpf_int32)proto);
3545 		}
3546 	}
3547 }
3548 
3549 static struct block *
gen_hostop(addr,mask,dir,proto,src_off,dst_off)3550 gen_hostop(addr, mask, dir, proto, src_off, dst_off)
3551 	bpf_u_int32 addr;
3552 	bpf_u_int32 mask;
3553 	int dir, proto;
3554 	u_int src_off, dst_off;
3555 {
3556 	struct block *b0, *b1;
3557 	u_int offset;
3558 
3559 	switch (dir) {
3560 
3561 	case Q_SRC:
3562 		offset = src_off;
3563 		break;
3564 
3565 	case Q_DST:
3566 		offset = dst_off;
3567 		break;
3568 
3569 	case Q_AND:
3570 		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3571 		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3572 		gen_and(b0, b1);
3573 		return b1;
3574 
3575 	case Q_OR:
3576 	case Q_DEFAULT:
3577 		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3578 		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3579 		gen_or(b0, b1);
3580 		return b1;
3581 
3582 	default:
3583 		abort();
3584 	}
3585 	b0 = gen_linktype(proto);
3586 	b1 = gen_mcmp(OR_NET, offset, BPF_W, (bpf_int32)addr, mask);
3587 	gen_and(b0, b1);
3588 	return b1;
3589 }
3590 
3591 #ifdef INET6
3592 static struct block *
gen_hostop6(addr,mask,dir,proto,src_off,dst_off)3593 gen_hostop6(addr, mask, dir, proto, src_off, dst_off)
3594 	struct in6_addr *addr;
3595 	struct in6_addr *mask;
3596 	int dir, proto;
3597 	u_int src_off, dst_off;
3598 {
3599 	struct block *b0, *b1;
3600 	u_int offset;
3601 	u_int32_t *a, *m;
3602 
3603 	switch (dir) {
3604 
3605 	case Q_SRC:
3606 		offset = src_off;
3607 		break;
3608 
3609 	case Q_DST:
3610 		offset = dst_off;
3611 		break;
3612 
3613 	case Q_AND:
3614 		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3615 		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3616 		gen_and(b0, b1);
3617 		return b1;
3618 
3619 	case Q_OR:
3620 	case Q_DEFAULT:
3621 		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3622 		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3623 		gen_or(b0, b1);
3624 		return b1;
3625 
3626 	default:
3627 		abort();
3628 	}
3629 	/* this order is important */
3630 	a = (u_int32_t *)addr;
3631 	m = (u_int32_t *)mask;
3632 	b1 = gen_mcmp(OR_NET, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
3633 	b0 = gen_mcmp(OR_NET, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
3634 	gen_and(b0, b1);
3635 	b0 = gen_mcmp(OR_NET, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
3636 	gen_and(b0, b1);
3637 	b0 = gen_mcmp(OR_NET, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
3638 	gen_and(b0, b1);
3639 	b0 = gen_linktype(proto);
3640 	gen_and(b0, b1);
3641 	return b1;
3642 }
3643 #endif
3644 
3645 static struct block *
gen_ehostop(eaddr,dir)3646 gen_ehostop(eaddr, dir)
3647 	register const u_char *eaddr;
3648 	register int dir;
3649 {
3650 	register struct block *b0, *b1;
3651 
3652 	switch (dir) {
3653 	case Q_SRC:
3654 		return gen_bcmp(OR_LINK, off_mac + 6, 6, eaddr);
3655 
3656 	case Q_DST:
3657 		return gen_bcmp(OR_LINK, off_mac + 0, 6, eaddr);
3658 
3659 	case Q_AND:
3660 		b0 = gen_ehostop(eaddr, Q_SRC);
3661 		b1 = gen_ehostop(eaddr, Q_DST);
3662 		gen_and(b0, b1);
3663 		return b1;
3664 
3665 	case Q_DEFAULT:
3666 	case Q_OR:
3667 		b0 = gen_ehostop(eaddr, Q_SRC);
3668 		b1 = gen_ehostop(eaddr, Q_DST);
3669 		gen_or(b0, b1);
3670 		return b1;
3671 
3672 	case Q_ADDR1:
3673 		bpf_error("'addr1' is only supported on 802.11 with 802.11 headers");
3674 		break;
3675 
3676 	case Q_ADDR2:
3677 		bpf_error("'addr2' is only supported on 802.11 with 802.11 headers");
3678 		break;
3679 
3680 	case Q_ADDR3:
3681 		bpf_error("'addr3' is only supported on 802.11 with 802.11 headers");
3682 		break;
3683 
3684 	case Q_ADDR4:
3685 		bpf_error("'addr4' is only supported on 802.11 with 802.11 headers");
3686 		break;
3687 
3688 	case Q_RA:
3689 		bpf_error("'ra' is only supported on 802.11 with 802.11 headers");
3690 		break;
3691 
3692 	case Q_TA:
3693 		bpf_error("'ta' is only supported on 802.11 with 802.11 headers");
3694 		break;
3695 	}
3696 	abort();
3697 	/* NOTREACHED */
3698 }
3699 
3700 /*
3701  * Like gen_ehostop, but for DLT_FDDI
3702  */
3703 static struct block *
gen_fhostop(eaddr,dir)3704 gen_fhostop(eaddr, dir)
3705 	register const u_char *eaddr;
3706 	register int dir;
3707 {
3708 	struct block *b0, *b1;
3709 
3710 	switch (dir) {
3711 	case Q_SRC:
3712 		return gen_bcmp(OR_LINK, 6 + 1 + pcap_fddipad, 6, eaddr);
3713 
3714 	case Q_DST:
3715 		return gen_bcmp(OR_LINK, 0 + 1 + pcap_fddipad, 6, eaddr);
3716 
3717 	case Q_AND:
3718 		b0 = gen_fhostop(eaddr, Q_SRC);
3719 		b1 = gen_fhostop(eaddr, Q_DST);
3720 		gen_and(b0, b1);
3721 		return b1;
3722 
3723 	case Q_DEFAULT:
3724 	case Q_OR:
3725 		b0 = gen_fhostop(eaddr, Q_SRC);
3726 		b1 = gen_fhostop(eaddr, Q_DST);
3727 		gen_or(b0, b1);
3728 		return b1;
3729 
3730 	case Q_ADDR1:
3731 		bpf_error("'addr1' is only supported on 802.11");
3732 		break;
3733 
3734 	case Q_ADDR2:
3735 		bpf_error("'addr2' is only supported on 802.11");
3736 		break;
3737 
3738 	case Q_ADDR3:
3739 		bpf_error("'addr3' is only supported on 802.11");
3740 		break;
3741 
3742 	case Q_ADDR4:
3743 		bpf_error("'addr4' is only supported on 802.11");
3744 		break;
3745 
3746 	case Q_RA:
3747 		bpf_error("'ra' is only supported on 802.11");
3748 		break;
3749 
3750 	case Q_TA:
3751 		bpf_error("'ta' is only supported on 802.11");
3752 		break;
3753 	}
3754 	abort();
3755 	/* NOTREACHED */
3756 }
3757 
3758 /*
3759  * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
3760  */
3761 static struct block *
gen_thostop(eaddr,dir)3762 gen_thostop(eaddr, dir)
3763 	register const u_char *eaddr;
3764 	register int dir;
3765 {
3766 	register struct block *b0, *b1;
3767 
3768 	switch (dir) {
3769 	case Q_SRC:
3770 		return gen_bcmp(OR_LINK, 8, 6, eaddr);
3771 
3772 	case Q_DST:
3773 		return gen_bcmp(OR_LINK, 2, 6, eaddr);
3774 
3775 	case Q_AND:
3776 		b0 = gen_thostop(eaddr, Q_SRC);
3777 		b1 = gen_thostop(eaddr, Q_DST);
3778 		gen_and(b0, b1);
3779 		return b1;
3780 
3781 	case Q_DEFAULT:
3782 	case Q_OR:
3783 		b0 = gen_thostop(eaddr, Q_SRC);
3784 		b1 = gen_thostop(eaddr, Q_DST);
3785 		gen_or(b0, b1);
3786 		return b1;
3787 
3788 	case Q_ADDR1:
3789 		bpf_error("'addr1' is only supported on 802.11");
3790 		break;
3791 
3792 	case Q_ADDR2:
3793 		bpf_error("'addr2' is only supported on 802.11");
3794 		break;
3795 
3796 	case Q_ADDR3:
3797 		bpf_error("'addr3' is only supported on 802.11");
3798 		break;
3799 
3800 	case Q_ADDR4:
3801 		bpf_error("'addr4' is only supported on 802.11");
3802 		break;
3803 
3804 	case Q_RA:
3805 		bpf_error("'ra' is only supported on 802.11");
3806 		break;
3807 
3808 	case Q_TA:
3809 		bpf_error("'ta' is only supported on 802.11");
3810 		break;
3811 	}
3812 	abort();
3813 	/* NOTREACHED */
3814 }
3815 
3816 /*
3817  * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
3818  * various 802.11 + radio headers.
3819  */
3820 static struct block *
gen_wlanhostop(eaddr,dir)3821 gen_wlanhostop(eaddr, dir)
3822 	register const u_char *eaddr;
3823 	register int dir;
3824 {
3825 	register struct block *b0, *b1, *b2;
3826 	register struct slist *s;
3827 
3828 #ifdef ENABLE_WLAN_FILTERING_PATCH
3829 	/*
3830 	 * TODO GV 20070613
3831 	 * We need to disable the optimizer because the optimizer is buggy
3832 	 * and wipes out some LD instructions generated by the below
3833 	 * code to validate the Frame Control bits
3834 	 */
3835 	no_optimize = 1;
3836 #endif /* ENABLE_WLAN_FILTERING_PATCH */
3837 
3838 	switch (dir) {
3839 	case Q_SRC:
3840 		/*
3841 		 * Oh, yuk.
3842 		 *
3843 		 *	For control frames, there is no SA.
3844 		 *
3845 		 *	For management frames, SA is at an
3846 		 *	offset of 10 from the beginning of
3847 		 *	the packet.
3848 		 *
3849 		 *	For data frames, SA is at an offset
3850 		 *	of 10 from the beginning of the packet
3851 		 *	if From DS is clear, at an offset of
3852 		 *	16 from the beginning of the packet
3853 		 *	if From DS is set and To DS is clear,
3854 		 *	and an offset of 24 from the beginning
3855 		 *	of the packet if From DS is set and To DS
3856 		 *	is set.
3857 		 */
3858 
3859 		/*
3860 		 * Generate the tests to be done for data frames
3861 		 * with From DS set.
3862 		 *
3863 		 * First, check for To DS set, i.e. check "link[1] & 0x01".
3864 		 */
3865 		s = gen_load_a(OR_LINK, 1, BPF_B);
3866 		b1 = new_block(JMP(BPF_JSET));
3867 		b1->s.k = 0x01;	/* To DS */
3868 		b1->stmts = s;
3869 
3870 		/*
3871 		 * If To DS is set, the SA is at 24.
3872 		 */
3873 		b0 = gen_bcmp(OR_LINK, 24, 6, eaddr);
3874 		gen_and(b1, b0);
3875 
3876 		/*
3877 		 * Now, check for To DS not set, i.e. check
3878 		 * "!(link[1] & 0x01)".
3879 		 */
3880 		s = gen_load_a(OR_LINK, 1, BPF_B);
3881 		b2 = new_block(JMP(BPF_JSET));
3882 		b2->s.k = 0x01;	/* To DS */
3883 		b2->stmts = s;
3884 		gen_not(b2);
3885 
3886 		/*
3887 		 * If To DS is not set, the SA is at 16.
3888 		 */
3889 		b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
3890 		gen_and(b2, b1);
3891 
3892 		/*
3893 		 * Now OR together the last two checks.  That gives
3894 		 * the complete set of checks for data frames with
3895 		 * From DS set.
3896 		 */
3897 		gen_or(b1, b0);
3898 
3899 		/*
3900 		 * Now check for From DS being set, and AND that with
3901 		 * the ORed-together checks.
3902 		 */
3903 		s = gen_load_a(OR_LINK, 1, BPF_B);
3904 		b1 = new_block(JMP(BPF_JSET));
3905 		b1->s.k = 0x02;	/* From DS */
3906 		b1->stmts = s;
3907 		gen_and(b1, b0);
3908 
3909 		/*
3910 		 * Now check for data frames with From DS not set.
3911 		 */
3912 		s = gen_load_a(OR_LINK, 1, BPF_B);
3913 		b2 = new_block(JMP(BPF_JSET));
3914 		b2->s.k = 0x02;	/* From DS */
3915 		b2->stmts = s;
3916 		gen_not(b2);
3917 
3918 		/*
3919 		 * If From DS isn't set, the SA is at 10.
3920 		 */
3921 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
3922 		gen_and(b2, b1);
3923 
3924 		/*
3925 		 * Now OR together the checks for data frames with
3926 		 * From DS not set and for data frames with From DS
3927 		 * set; that gives the checks done for data frames.
3928 		 */
3929 		gen_or(b1, b0);
3930 
3931 		/*
3932 		 * Now check for a data frame.
3933 		 * I.e, check "link[0] & 0x08".
3934 		 */
3935 		s = gen_load_a(OR_LINK, 0, BPF_B);
3936 		b1 = new_block(JMP(BPF_JSET));
3937 		b1->s.k = 0x08;
3938 		b1->stmts = s;
3939 
3940 		/*
3941 		 * AND that with the checks done for data frames.
3942 		 */
3943 		gen_and(b1, b0);
3944 
3945 		/*
3946 		 * If the high-order bit of the type value is 0, this
3947 		 * is a management frame.
3948 		 * I.e, check "!(link[0] & 0x08)".
3949 		 */
3950 		s = gen_load_a(OR_LINK, 0, BPF_B);
3951 		b2 = new_block(JMP(BPF_JSET));
3952 		b2->s.k = 0x08;
3953 		b2->stmts = s;
3954 		gen_not(b2);
3955 
3956 		/*
3957 		 * For management frames, the SA is at 10.
3958 		 */
3959 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
3960 		gen_and(b2, b1);
3961 
3962 		/*
3963 		 * OR that with the checks done for data frames.
3964 		 * That gives the checks done for management and
3965 		 * data frames.
3966 		 */
3967 		gen_or(b1, b0);
3968 
3969 		/*
3970 		 * If the low-order bit of the type value is 1,
3971 		 * this is either a control frame or a frame
3972 		 * with a reserved type, and thus not a
3973 		 * frame with an SA.
3974 		 *
3975 		 * I.e., check "!(link[0] & 0x04)".
3976 		 */
3977 		s = gen_load_a(OR_LINK, 0, BPF_B);
3978 		b1 = new_block(JMP(BPF_JSET));
3979 		b1->s.k = 0x04;
3980 		b1->stmts = s;
3981 		gen_not(b1);
3982 
3983 		/*
3984 		 * AND that with the checks for data and management
3985 		 * frames.
3986 		 */
3987 		gen_and(b1, b0);
3988 		return b0;
3989 
3990 	case Q_DST:
3991 		/*
3992 		 * Oh, yuk.
3993 		 *
3994 		 *	For control frames, there is no DA.
3995 		 *
3996 		 *	For management frames, DA is at an
3997 		 *	offset of 4 from the beginning of
3998 		 *	the packet.
3999 		 *
4000 		 *	For data frames, DA is at an offset
4001 		 *	of 4 from the beginning of the packet
4002 		 *	if To DS is clear and at an offset of
4003 		 *	16 from the beginning of the packet
4004 		 *	if To DS is set.
4005 		 */
4006 
4007 		/*
4008 		 * Generate the tests to be done for data frames.
4009 		 *
4010 		 * First, check for To DS set, i.e. "link[1] & 0x01".
4011 		 */
4012 		s = gen_load_a(OR_LINK, 1, BPF_B);
4013 		b1 = new_block(JMP(BPF_JSET));
4014 		b1->s.k = 0x01;	/* To DS */
4015 		b1->stmts = s;
4016 
4017 		/*
4018 		 * If To DS is set, the DA is at 16.
4019 		 */
4020 		b0 = gen_bcmp(OR_LINK, 16, 6, eaddr);
4021 		gen_and(b1, b0);
4022 
4023 		/*
4024 		 * Now, check for To DS not set, i.e. check
4025 		 * "!(link[1] & 0x01)".
4026 		 */
4027 		s = gen_load_a(OR_LINK, 1, BPF_B);
4028 		b2 = new_block(JMP(BPF_JSET));
4029 		b2->s.k = 0x01;	/* To DS */
4030 		b2->stmts = s;
4031 		gen_not(b2);
4032 
4033 		/*
4034 		 * If To DS is not set, the DA is at 4.
4035 		 */
4036 		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4037 		gen_and(b2, b1);
4038 
4039 		/*
4040 		 * Now OR together the last two checks.  That gives
4041 		 * the complete set of checks for data frames.
4042 		 */
4043 		gen_or(b1, b0);
4044 
4045 		/*
4046 		 * Now check for a data frame.
4047 		 * I.e, check "link[0] & 0x08".
4048 		 */
4049 		s = gen_load_a(OR_LINK, 0, BPF_B);
4050 		b1 = new_block(JMP(BPF_JSET));
4051 		b1->s.k = 0x08;
4052 		b1->stmts = s;
4053 
4054 		/*
4055 		 * AND that with the checks done for data frames.
4056 		 */
4057 		gen_and(b1, b0);
4058 
4059 		/*
4060 		 * If the high-order bit of the type value is 0, this
4061 		 * is a management frame.
4062 		 * I.e, check "!(link[0] & 0x08)".
4063 		 */
4064 		s = gen_load_a(OR_LINK, 0, BPF_B);
4065 		b2 = new_block(JMP(BPF_JSET));
4066 		b2->s.k = 0x08;
4067 		b2->stmts = s;
4068 		gen_not(b2);
4069 
4070 		/*
4071 		 * For management frames, the DA is at 4.
4072 		 */
4073 		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4074 		gen_and(b2, b1);
4075 
4076 		/*
4077 		 * OR that with the checks done for data frames.
4078 		 * That gives the checks done for management and
4079 		 * data frames.
4080 		 */
4081 		gen_or(b1, b0);
4082 
4083 		/*
4084 		 * If the low-order bit of the type value is 1,
4085 		 * this is either a control frame or a frame
4086 		 * with a reserved type, and thus not a
4087 		 * frame with an SA.
4088 		 *
4089 		 * I.e., check "!(link[0] & 0x04)".
4090 		 */
4091 		s = gen_load_a(OR_LINK, 0, BPF_B);
4092 		b1 = new_block(JMP(BPF_JSET));
4093 		b1->s.k = 0x04;
4094 		b1->stmts = s;
4095 		gen_not(b1);
4096 
4097 		/*
4098 		 * AND that with the checks for data and management
4099 		 * frames.
4100 		 */
4101 		gen_and(b1, b0);
4102 		return b0;
4103 
4104 	case Q_RA:
4105 		/*
4106 		 * Not present in management frames; addr1 in other
4107 		 * frames.
4108 		 */
4109 
4110 		/*
4111 		 * If the high-order bit of the type value is 0, this
4112 		 * is a management frame.
4113 		 * I.e, check "(link[0] & 0x08)".
4114 		 */
4115 		s = gen_load_a(OR_LINK, 0, BPF_B);
4116 		b1 = new_block(JMP(BPF_JSET));
4117 		b1->s.k = 0x08;
4118 		b1->stmts = s;
4119 
4120 		/*
4121 		 * Check addr1.
4122 		 */
4123 		b0 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4124 
4125 		/*
4126 		 * AND that with the check of addr1.
4127 		 */
4128 		gen_and(b1, b0);
4129 		return (b0);
4130 
4131 	case Q_TA:
4132 		/*
4133 		 * Not present in management frames; addr2, if present,
4134 		 * in other frames.
4135 		 */
4136 
4137 		/*
4138 		 * Not present in CTS or ACK control frames.
4139 		 */
4140 		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4141 			IEEE80211_FC0_TYPE_MASK);
4142 		gen_not(b0);
4143 		b1 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4144 			IEEE80211_FC0_SUBTYPE_MASK);
4145 		gen_not(b1);
4146 		b2 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4147 			IEEE80211_FC0_SUBTYPE_MASK);
4148 		gen_not(b2);
4149 		gen_and(b1, b2);
4150 		gen_or(b0, b2);
4151 
4152 		/*
4153 		 * If the high-order bit of the type value is 0, this
4154 		 * is a management frame.
4155 		 * I.e, check "(link[0] & 0x08)".
4156 		 */
4157 		s = gen_load_a(OR_LINK, 0, BPF_B);
4158 		b1 = new_block(JMP(BPF_JSET));
4159 		b1->s.k = 0x08;
4160 		b1->stmts = s;
4161 
4162 		/*
4163 		 * AND that with the check for frames other than
4164 		 * CTS and ACK frames.
4165 		 */
4166 		gen_and(b1, b2);
4167 
4168 		/*
4169 		 * Check addr2.
4170 		 */
4171 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
4172 		gen_and(b2, b1);
4173 		return b1;
4174 
4175 	/*
4176 	 * XXX - add BSSID keyword?
4177 	 */
4178 	case Q_ADDR1:
4179 		return (gen_bcmp(OR_LINK, 4, 6, eaddr));
4180 
4181 	case Q_ADDR2:
4182 		/*
4183 		 * Not present in CTS or ACK control frames.
4184 		 */
4185 		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4186 			IEEE80211_FC0_TYPE_MASK);
4187 		gen_not(b0);
4188 		b1 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4189 			IEEE80211_FC0_SUBTYPE_MASK);
4190 		gen_not(b1);
4191 		b2 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4192 			IEEE80211_FC0_SUBTYPE_MASK);
4193 		gen_not(b2);
4194 		gen_and(b1, b2);
4195 		gen_or(b0, b2);
4196 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
4197 		gen_and(b2, b1);
4198 		return b1;
4199 
4200 	case Q_ADDR3:
4201 		/*
4202 		 * Not present in control frames.
4203 		 */
4204 		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4205 			IEEE80211_FC0_TYPE_MASK);
4206 		gen_not(b0);
4207 		b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
4208 		gen_and(b0, b1);
4209 		return b1;
4210 
4211 	case Q_ADDR4:
4212 		/*
4213 		 * Present only if the direction mask has both "From DS"
4214 		 * and "To DS" set.  Neither control frames nor management
4215 		 * frames should have both of those set, so we don't
4216 		 * check the frame type.
4217 		 */
4218 		b0 = gen_mcmp(OR_LINK, 1, BPF_B,
4219 			IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4220 		b1 = gen_bcmp(OR_LINK, 24, 6, eaddr);
4221 		gen_and(b0, b1);
4222 		return b1;
4223 
4224 	case Q_AND:
4225 		b0 = gen_wlanhostop(eaddr, Q_SRC);
4226 		b1 = gen_wlanhostop(eaddr, Q_DST);
4227 		gen_and(b0, b1);
4228 		return b1;
4229 
4230 	case Q_DEFAULT:
4231 	case Q_OR:
4232 		b0 = gen_wlanhostop(eaddr, Q_SRC);
4233 		b1 = gen_wlanhostop(eaddr, Q_DST);
4234 		gen_or(b0, b1);
4235 		return b1;
4236 	}
4237 	abort();
4238 	/* NOTREACHED */
4239 }
4240 
4241 /*
4242  * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4243  * (We assume that the addresses are IEEE 48-bit MAC addresses,
4244  * as the RFC states.)
4245  */
4246 static struct block *
gen_ipfchostop(eaddr,dir)4247 gen_ipfchostop(eaddr, dir)
4248 	register const u_char *eaddr;
4249 	register int dir;
4250 {
4251 	register struct block *b0, *b1;
4252 
4253 	switch (dir) {
4254 	case Q_SRC:
4255 		return gen_bcmp(OR_LINK, 10, 6, eaddr);
4256 
4257 	case Q_DST:
4258 		return gen_bcmp(OR_LINK, 2, 6, eaddr);
4259 
4260 	case Q_AND:
4261 		b0 = gen_ipfchostop(eaddr, Q_SRC);
4262 		b1 = gen_ipfchostop(eaddr, Q_DST);
4263 		gen_and(b0, b1);
4264 		return b1;
4265 
4266 	case Q_DEFAULT:
4267 	case Q_OR:
4268 		b0 = gen_ipfchostop(eaddr, Q_SRC);
4269 		b1 = gen_ipfchostop(eaddr, Q_DST);
4270 		gen_or(b0, b1);
4271 		return b1;
4272 
4273 	case Q_ADDR1:
4274 		bpf_error("'addr1' is only supported on 802.11");
4275 		break;
4276 
4277 	case Q_ADDR2:
4278 		bpf_error("'addr2' is only supported on 802.11");
4279 		break;
4280 
4281 	case Q_ADDR3:
4282 		bpf_error("'addr3' is only supported on 802.11");
4283 		break;
4284 
4285 	case Q_ADDR4:
4286 		bpf_error("'addr4' is only supported on 802.11");
4287 		break;
4288 
4289 	case Q_RA:
4290 		bpf_error("'ra' is only supported on 802.11");
4291 		break;
4292 
4293 	case Q_TA:
4294 		bpf_error("'ta' is only supported on 802.11");
4295 		break;
4296 	}
4297 	abort();
4298 	/* NOTREACHED */
4299 }
4300 
4301 /*
4302  * This is quite tricky because there may be pad bytes in front of the
4303  * DECNET header, and then there are two possible data packet formats that
4304  * carry both src and dst addresses, plus 5 packet types in a format that
4305  * carries only the src node, plus 2 types that use a different format and
4306  * also carry just the src node.
4307  *
4308  * Yuck.
4309  *
4310  * Instead of doing those all right, we just look for data packets with
4311  * 0 or 1 bytes of padding.  If you want to look at other packets, that
4312  * will require a lot more hacking.
4313  *
4314  * To add support for filtering on DECNET "areas" (network numbers)
4315  * one would want to add a "mask" argument to this routine.  That would
4316  * make the filter even more inefficient, although one could be clever
4317  * and not generate masking instructions if the mask is 0xFFFF.
4318  */
4319 static struct block *
gen_dnhostop(addr,dir)4320 gen_dnhostop(addr, dir)
4321 	bpf_u_int32 addr;
4322 	int dir;
4323 {
4324 	struct block *b0, *b1, *b2, *tmp;
4325 	u_int offset_lh;	/* offset if long header is received */
4326 	u_int offset_sh;	/* offset if short header is received */
4327 
4328 	switch (dir) {
4329 
4330 	case Q_DST:
4331 		offset_sh = 1;	/* follows flags */
4332 		offset_lh = 7;	/* flgs,darea,dsubarea,HIORD */
4333 		break;
4334 
4335 	case Q_SRC:
4336 		offset_sh = 3;	/* follows flags, dstnode */
4337 		offset_lh = 15;	/* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4338 		break;
4339 
4340 	case Q_AND:
4341 		/* Inefficient because we do our Calvinball dance twice */
4342 		b0 = gen_dnhostop(addr, Q_SRC);
4343 		b1 = gen_dnhostop(addr, Q_DST);
4344 		gen_and(b0, b1);
4345 		return b1;
4346 
4347 	case Q_OR:
4348 	case Q_DEFAULT:
4349 		/* Inefficient because we do our Calvinball dance twice */
4350 		b0 = gen_dnhostop(addr, Q_SRC);
4351 		b1 = gen_dnhostop(addr, Q_DST);
4352 		gen_or(b0, b1);
4353 		return b1;
4354 
4355 	case Q_ISO:
4356 		bpf_error("ISO host filtering not implemented");
4357 
4358 	default:
4359 		abort();
4360 	}
4361 	b0 = gen_linktype(ETHERTYPE_DN);
4362 	/* Check for pad = 1, long header case */
4363 	tmp = gen_mcmp(OR_NET, 2, BPF_H,
4364 	    (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
4365 	b1 = gen_cmp(OR_NET, 2 + 1 + offset_lh,
4366 	    BPF_H, (bpf_int32)ntohs((u_short)addr));
4367 	gen_and(tmp, b1);
4368 	/* Check for pad = 0, long header case */
4369 	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
4370 	b2 = gen_cmp(OR_NET, 2 + offset_lh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4371 	gen_and(tmp, b2);
4372 	gen_or(b2, b1);
4373 	/* Check for pad = 1, short header case */
4374 	tmp = gen_mcmp(OR_NET, 2, BPF_H,
4375 	    (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
4376 	b2 = gen_cmp(OR_NET, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4377 	gen_and(tmp, b2);
4378 	gen_or(b2, b1);
4379 	/* Check for pad = 0, short header case */
4380 	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
4381 	b2 = gen_cmp(OR_NET, 2 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4382 	gen_and(tmp, b2);
4383 	gen_or(b2, b1);
4384 
4385 	/* Combine with test for linktype */
4386 	gen_and(b0, b1);
4387 	return b1;
4388 }
4389 
4390 /*
4391  * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4392  * test the bottom-of-stack bit, and then check the version number
4393  * field in the IP header.
4394  */
4395 static struct block *
gen_mpls_linktype(proto)4396 gen_mpls_linktype(proto)
4397 	int proto;
4398 {
4399 	struct block *b0, *b1;
4400 
4401         switch (proto) {
4402 
4403         case Q_IP:
4404                 /* match the bottom-of-stack bit */
4405                 b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
4406                 /* match the IPv4 version number */
4407                 b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x40, 0xf0);
4408                 gen_and(b0, b1);
4409                 return b1;
4410 
4411        case Q_IPV6:
4412                 /* match the bottom-of-stack bit */
4413                 b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
4414                 /* match the IPv4 version number */
4415                 b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x60, 0xf0);
4416                 gen_and(b0, b1);
4417                 return b1;
4418 
4419        default:
4420                 abort();
4421         }
4422 }
4423 
4424 static struct block *
gen_host(addr,mask,proto,dir,type)4425 gen_host(addr, mask, proto, dir, type)
4426 	bpf_u_int32 addr;
4427 	bpf_u_int32 mask;
4428 	int proto;
4429 	int dir;
4430 	int type;
4431 {
4432 	struct block *b0, *b1;
4433 	const char *typestr;
4434 
4435 	if (type == Q_NET)
4436 		typestr = "net";
4437 	else
4438 		typestr = "host";
4439 
4440 	switch (proto) {
4441 
4442 	case Q_DEFAULT:
4443 		b0 = gen_host(addr, mask, Q_IP, dir, type);
4444 		/*
4445 		 * Only check for non-IPv4 addresses if we're not
4446 		 * checking MPLS-encapsulated packets.
4447 		 */
4448 		if (label_stack_depth == 0) {
4449 			b1 = gen_host(addr, mask, Q_ARP, dir, type);
4450 			gen_or(b0, b1);
4451 			b0 = gen_host(addr, mask, Q_RARP, dir, type);
4452 			gen_or(b1, b0);
4453 		}
4454 		return b0;
4455 
4456 	case Q_IP:
4457 		return gen_hostop(addr, mask, dir, ETHERTYPE_IP, 12, 16);
4458 
4459 	case Q_RARP:
4460 		return gen_hostop(addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
4461 
4462 	case Q_ARP:
4463 		return gen_hostop(addr, mask, dir, ETHERTYPE_ARP, 14, 24);
4464 
4465 	case Q_TCP:
4466 		bpf_error("'tcp' modifier applied to %s", typestr);
4467 
4468 	case Q_SCTP:
4469 		bpf_error("'sctp' modifier applied to %s", typestr);
4470 
4471 	case Q_UDP:
4472 		bpf_error("'udp' modifier applied to %s", typestr);
4473 
4474 	case Q_ICMP:
4475 		bpf_error("'icmp' modifier applied to %s", typestr);
4476 
4477 	case Q_IGMP:
4478 		bpf_error("'igmp' modifier applied to %s", typestr);
4479 
4480 	case Q_IGRP:
4481 		bpf_error("'igrp' modifier applied to %s", typestr);
4482 
4483 	case Q_PIM:
4484 		bpf_error("'pim' modifier applied to %s", typestr);
4485 
4486 	case Q_VRRP:
4487 		bpf_error("'vrrp' modifier applied to %s", typestr);
4488 
4489 	case Q_CARP:
4490 		bpf_error("'carp' modifier applied to %s", typestr);
4491 
4492 	case Q_ATALK:
4493 		bpf_error("ATALK host filtering not implemented");
4494 
4495 	case Q_AARP:
4496 		bpf_error("AARP host filtering not implemented");
4497 
4498 	case Q_DECNET:
4499 		return gen_dnhostop(addr, dir);
4500 
4501 	case Q_SCA:
4502 		bpf_error("SCA host filtering not implemented");
4503 
4504 	case Q_LAT:
4505 		bpf_error("LAT host filtering not implemented");
4506 
4507 	case Q_MOPDL:
4508 		bpf_error("MOPDL host filtering not implemented");
4509 
4510 	case Q_MOPRC:
4511 		bpf_error("MOPRC host filtering not implemented");
4512 
4513 	case Q_IPV6:
4514 		bpf_error("'ip6' modifier applied to ip host");
4515 
4516 	case Q_ICMPV6:
4517 		bpf_error("'icmp6' modifier applied to %s", typestr);
4518 
4519 	case Q_AH:
4520 		bpf_error("'ah' modifier applied to %s", typestr);
4521 
4522 	case Q_ESP:
4523 		bpf_error("'esp' modifier applied to %s", typestr);
4524 
4525 	case Q_ISO:
4526 		bpf_error("ISO host filtering not implemented");
4527 
4528 	case Q_ESIS:
4529 		bpf_error("'esis' modifier applied to %s", typestr);
4530 
4531 	case Q_ISIS:
4532 		bpf_error("'isis' modifier applied to %s", typestr);
4533 
4534 	case Q_CLNP:
4535 		bpf_error("'clnp' modifier applied to %s", typestr);
4536 
4537 	case Q_STP:
4538 		bpf_error("'stp' modifier applied to %s", typestr);
4539 
4540 	case Q_IPX:
4541 		bpf_error("IPX host filtering not implemented");
4542 
4543 	case Q_NETBEUI:
4544 		bpf_error("'netbeui' modifier applied to %s", typestr);
4545 
4546 	case Q_RADIO:
4547 		bpf_error("'radio' modifier applied to %s", typestr);
4548 
4549 	default:
4550 		abort();
4551 	}
4552 	/* NOTREACHED */
4553 }
4554 
4555 #ifdef INET6
4556 static struct block *
gen_host6(addr,mask,proto,dir,type)4557 gen_host6(addr, mask, proto, dir, type)
4558 	struct in6_addr *addr;
4559 	struct in6_addr *mask;
4560 	int proto;
4561 	int dir;
4562 	int type;
4563 {
4564 	const char *typestr;
4565 
4566 	if (type == Q_NET)
4567 		typestr = "net";
4568 	else
4569 		typestr = "host";
4570 
4571 	switch (proto) {
4572 
4573 	case Q_DEFAULT:
4574 		return gen_host6(addr, mask, Q_IPV6, dir, type);
4575 
4576 	case Q_LINK:
4577 		bpf_error("link-layer modifier applied to ip6 %s", typestr);
4578 
4579 	case Q_IP:
4580 		bpf_error("'ip' modifier applied to ip6 %s", typestr);
4581 
4582 	case Q_RARP:
4583 		bpf_error("'rarp' modifier applied to ip6 %s", typestr);
4584 
4585 	case Q_ARP:
4586 		bpf_error("'arp' modifier applied to ip6 %s", typestr);
4587 
4588 	case Q_SCTP:
4589 		bpf_error("'sctp' modifier applied to %s", typestr);
4590 
4591 	case Q_TCP:
4592 		bpf_error("'tcp' modifier applied to %s", typestr);
4593 
4594 	case Q_UDP:
4595 		bpf_error("'udp' modifier applied to %s", typestr);
4596 
4597 	case Q_ICMP:
4598 		bpf_error("'icmp' modifier applied to %s", typestr);
4599 
4600 	case Q_IGMP:
4601 		bpf_error("'igmp' modifier applied to %s", typestr);
4602 
4603 	case Q_IGRP:
4604 		bpf_error("'igrp' modifier applied to %s", typestr);
4605 
4606 	case Q_PIM:
4607 		bpf_error("'pim' modifier applied to %s", typestr);
4608 
4609 	case Q_VRRP:
4610 		bpf_error("'vrrp' modifier applied to %s", typestr);
4611 
4612 	case Q_CARP:
4613 		bpf_error("'carp' modifier applied to %s", typestr);
4614 
4615 	case Q_ATALK:
4616 		bpf_error("ATALK host filtering not implemented");
4617 
4618 	case Q_AARP:
4619 		bpf_error("AARP host filtering not implemented");
4620 
4621 	case Q_DECNET:
4622 		bpf_error("'decnet' modifier applied to ip6 %s", typestr);
4623 
4624 	case Q_SCA:
4625 		bpf_error("SCA host filtering not implemented");
4626 
4627 	case Q_LAT:
4628 		bpf_error("LAT host filtering not implemented");
4629 
4630 	case Q_MOPDL:
4631 		bpf_error("MOPDL host filtering not implemented");
4632 
4633 	case Q_MOPRC:
4634 		bpf_error("MOPRC host filtering not implemented");
4635 
4636 	case Q_IPV6:
4637 		return gen_hostop6(addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
4638 
4639 	case Q_ICMPV6:
4640 		bpf_error("'icmp6' modifier applied to %s", typestr);
4641 
4642 	case Q_AH:
4643 		bpf_error("'ah' modifier applied to %s", typestr);
4644 
4645 	case Q_ESP:
4646 		bpf_error("'esp' modifier applied to %s", typestr);
4647 
4648 	case Q_ISO:
4649 		bpf_error("ISO host filtering not implemented");
4650 
4651 	case Q_ESIS:
4652 		bpf_error("'esis' modifier applied to %s", typestr);
4653 
4654 	case Q_ISIS:
4655 		bpf_error("'isis' modifier applied to %s", typestr);
4656 
4657 	case Q_CLNP:
4658 		bpf_error("'clnp' modifier applied to %s", typestr);
4659 
4660 	case Q_STP:
4661 		bpf_error("'stp' modifier applied to %s", typestr);
4662 
4663 	case Q_IPX:
4664 		bpf_error("IPX host filtering not implemented");
4665 
4666 	case Q_NETBEUI:
4667 		bpf_error("'netbeui' modifier applied to %s", typestr);
4668 
4669 	case Q_RADIO:
4670 		bpf_error("'radio' modifier applied to %s", typestr);
4671 
4672 	default:
4673 		abort();
4674 	}
4675 	/* NOTREACHED */
4676 }
4677 #endif
4678 
4679 #ifndef INET6
4680 static struct block *
gen_gateway(eaddr,alist,proto,dir)4681 gen_gateway(eaddr, alist, proto, dir)
4682 	const u_char *eaddr;
4683 	bpf_u_int32 **alist;
4684 	int proto;
4685 	int dir;
4686 {
4687 	struct block *b0, *b1, *tmp;
4688 
4689 	if (dir != 0)
4690 		bpf_error("direction applied to 'gateway'");
4691 
4692 	switch (proto) {
4693 	case Q_DEFAULT:
4694 	case Q_IP:
4695 	case Q_ARP:
4696 	case Q_RARP:
4697 		switch (linktype) {
4698 		case DLT_EN10MB:
4699 		case DLT_NETANALYZER:
4700 		case DLT_NETANALYZER_TRANSPARENT:
4701 			b0 = gen_ehostop(eaddr, Q_OR);
4702 			break;
4703 		case DLT_FDDI:
4704 			b0 = gen_fhostop(eaddr, Q_OR);
4705 			break;
4706 		case DLT_IEEE802:
4707 			b0 = gen_thostop(eaddr, Q_OR);
4708 			break;
4709 		case DLT_IEEE802_11:
4710 		case DLT_PRISM_HEADER:
4711 		case DLT_IEEE802_11_RADIO_AVS:
4712 		case DLT_IEEE802_11_RADIO:
4713 		case DLT_PPI:
4714 			b0 = gen_wlanhostop(eaddr, Q_OR);
4715 			break;
4716 		case DLT_SUNATM:
4717 			if (!is_lane)
4718 				bpf_error(
4719 				    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4720 			/*
4721 			 * Check that the packet doesn't begin with an
4722 			 * LE Control marker.  (We've already generated
4723 			 * a test for LANE.)
4724 			 */
4725 			b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
4726 			    BPF_H, 0xFF00);
4727 			gen_not(b1);
4728 
4729 			/*
4730 			 * Now check the MAC address.
4731 			 */
4732 			b0 = gen_ehostop(eaddr, Q_OR);
4733 			gen_and(b1, b0);
4734 			break;
4735 		case DLT_IP_OVER_FC:
4736 			b0 = gen_ipfchostop(eaddr, Q_OR);
4737 			break;
4738 		default:
4739 			bpf_error(
4740 			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4741 		}
4742 		b1 = gen_host(**alist++, 0xffffffff, proto, Q_OR, Q_HOST);
4743 		while (*alist) {
4744 			tmp = gen_host(**alist++, 0xffffffff, proto, Q_OR,
4745 			    Q_HOST);
4746 			gen_or(b1, tmp);
4747 			b1 = tmp;
4748 		}
4749 		gen_not(b1);
4750 		gen_and(b0, b1);
4751 		return b1;
4752 	}
4753 	bpf_error("illegal modifier of 'gateway'");
4754 	/* NOTREACHED */
4755 }
4756 #endif
4757 
4758 struct block *
gen_proto_abbrev(proto)4759 gen_proto_abbrev(proto)
4760 	int proto;
4761 {
4762 	struct block *b0;
4763 	struct block *b1;
4764 
4765 	switch (proto) {
4766 
4767 	case Q_SCTP:
4768 		b1 = gen_proto(IPPROTO_SCTP, Q_IP, Q_DEFAULT);
4769 		b0 = gen_proto(IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
4770 		gen_or(b0, b1);
4771 		break;
4772 
4773 	case Q_TCP:
4774 		b1 = gen_proto(IPPROTO_TCP, Q_IP, Q_DEFAULT);
4775 		b0 = gen_proto(IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
4776 		gen_or(b0, b1);
4777 		break;
4778 
4779 	case Q_UDP:
4780 		b1 = gen_proto(IPPROTO_UDP, Q_IP, Q_DEFAULT);
4781 		b0 = gen_proto(IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
4782 		gen_or(b0, b1);
4783 		break;
4784 
4785 	case Q_ICMP:
4786 		b1 = gen_proto(IPPROTO_ICMP, Q_IP, Q_DEFAULT);
4787 		break;
4788 
4789 #ifndef	IPPROTO_IGMP
4790 #define	IPPROTO_IGMP	2
4791 #endif
4792 
4793 	case Q_IGMP:
4794 		b1 = gen_proto(IPPROTO_IGMP, Q_IP, Q_DEFAULT);
4795 		break;
4796 
4797 #ifndef	IPPROTO_IGRP
4798 #define	IPPROTO_IGRP	9
4799 #endif
4800 	case Q_IGRP:
4801 		b1 = gen_proto(IPPROTO_IGRP, Q_IP, Q_DEFAULT);
4802 		break;
4803 
4804 #ifndef IPPROTO_PIM
4805 #define IPPROTO_PIM	103
4806 #endif
4807 
4808 	case Q_PIM:
4809 		b1 = gen_proto(IPPROTO_PIM, Q_IP, Q_DEFAULT);
4810 		b0 = gen_proto(IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
4811 		gen_or(b0, b1);
4812 		break;
4813 
4814 #ifndef IPPROTO_VRRP
4815 #define IPPROTO_VRRP	112
4816 #endif
4817 
4818 	case Q_VRRP:
4819 		b1 = gen_proto(IPPROTO_VRRP, Q_IP, Q_DEFAULT);
4820 		break;
4821 
4822 #ifndef IPPROTO_CARP
4823 #define IPPROTO_CARP	112
4824 #endif
4825 
4826 	case Q_CARP:
4827 		b1 = gen_proto(IPPROTO_CARP, Q_IP, Q_DEFAULT);
4828 		break;
4829 
4830 	case Q_IP:
4831 		b1 =  gen_linktype(ETHERTYPE_IP);
4832 		break;
4833 
4834 	case Q_ARP:
4835 		b1 =  gen_linktype(ETHERTYPE_ARP);
4836 		break;
4837 
4838 	case Q_RARP:
4839 		b1 =  gen_linktype(ETHERTYPE_REVARP);
4840 		break;
4841 
4842 	case Q_LINK:
4843 		bpf_error("link layer applied in wrong context");
4844 
4845 	case Q_ATALK:
4846 		b1 =  gen_linktype(ETHERTYPE_ATALK);
4847 		break;
4848 
4849 	case Q_AARP:
4850 		b1 =  gen_linktype(ETHERTYPE_AARP);
4851 		break;
4852 
4853 	case Q_DECNET:
4854 		b1 =  gen_linktype(ETHERTYPE_DN);
4855 		break;
4856 
4857 	case Q_SCA:
4858 		b1 =  gen_linktype(ETHERTYPE_SCA);
4859 		break;
4860 
4861 	case Q_LAT:
4862 		b1 =  gen_linktype(ETHERTYPE_LAT);
4863 		break;
4864 
4865 	case Q_MOPDL:
4866 		b1 =  gen_linktype(ETHERTYPE_MOPDL);
4867 		break;
4868 
4869 	case Q_MOPRC:
4870 		b1 =  gen_linktype(ETHERTYPE_MOPRC);
4871 		break;
4872 
4873 	case Q_IPV6:
4874 		b1 = gen_linktype(ETHERTYPE_IPV6);
4875 		break;
4876 
4877 #ifndef IPPROTO_ICMPV6
4878 #define IPPROTO_ICMPV6	58
4879 #endif
4880 	case Q_ICMPV6:
4881 		b1 = gen_proto(IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
4882 		break;
4883 
4884 #ifndef IPPROTO_AH
4885 #define IPPROTO_AH	51
4886 #endif
4887 	case Q_AH:
4888 		b1 = gen_proto(IPPROTO_AH, Q_IP, Q_DEFAULT);
4889 		b0 = gen_proto(IPPROTO_AH, Q_IPV6, Q_DEFAULT);
4890 		gen_or(b0, b1);
4891 		break;
4892 
4893 #ifndef IPPROTO_ESP
4894 #define IPPROTO_ESP	50
4895 #endif
4896 	case Q_ESP:
4897 		b1 = gen_proto(IPPROTO_ESP, Q_IP, Q_DEFAULT);
4898 		b0 = gen_proto(IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
4899 		gen_or(b0, b1);
4900 		break;
4901 
4902 	case Q_ISO:
4903 		b1 = gen_linktype(LLCSAP_ISONS);
4904 		break;
4905 
4906 	case Q_ESIS:
4907 		b1 = gen_proto(ISO9542_ESIS, Q_ISO, Q_DEFAULT);
4908 		break;
4909 
4910 	case Q_ISIS:
4911 		b1 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
4912 		break;
4913 
4914 	case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
4915 		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
4916 		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
4917 		gen_or(b0, b1);
4918 		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
4919 		gen_or(b0, b1);
4920 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4921 		gen_or(b0, b1);
4922 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4923 		gen_or(b0, b1);
4924 		break;
4925 
4926 	case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
4927 		b0 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
4928 		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
4929 		gen_or(b0, b1);
4930 		b0 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
4931 		gen_or(b0, b1);
4932 		b0 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4933 		gen_or(b0, b1);
4934 		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4935 		gen_or(b0, b1);
4936 		break;
4937 
4938 	case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
4939 		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
4940 		b1 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
4941 		gen_or(b0, b1);
4942 		b0 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
4943 		gen_or(b0, b1);
4944 		break;
4945 
4946 	case Q_ISIS_LSP:
4947 		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
4948 		b1 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
4949 		gen_or(b0, b1);
4950 		break;
4951 
4952 	case Q_ISIS_SNP:
4953 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4954 		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4955 		gen_or(b0, b1);
4956 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4957 		gen_or(b0, b1);
4958 		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4959 		gen_or(b0, b1);
4960 		break;
4961 
4962 	case Q_ISIS_CSNP:
4963 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4964 		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4965 		gen_or(b0, b1);
4966 		break;
4967 
4968 	case Q_ISIS_PSNP:
4969 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4970 		b1 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4971 		gen_or(b0, b1);
4972 		break;
4973 
4974 	case Q_CLNP:
4975 		b1 = gen_proto(ISO8473_CLNP, Q_ISO, Q_DEFAULT);
4976 		break;
4977 
4978 	case Q_STP:
4979 		b1 = gen_linktype(LLCSAP_8021D);
4980 		break;
4981 
4982 	case Q_IPX:
4983 		b1 = gen_linktype(LLCSAP_IPX);
4984 		break;
4985 
4986 	case Q_NETBEUI:
4987 		b1 = gen_linktype(LLCSAP_NETBEUI);
4988 		break;
4989 
4990 	case Q_RADIO:
4991 		bpf_error("'radio' is not a valid protocol type");
4992 
4993 	default:
4994 		abort();
4995 	}
4996 	return b1;
4997 }
4998 
4999 static struct block *
gen_ipfrag()5000 gen_ipfrag()
5001 {
5002 	struct slist *s;
5003 	struct block *b;
5004 
5005 	/* not IPv4 frag other than the first frag */
5006 	s = gen_load_a(OR_NET, 6, BPF_H);
5007 	b = new_block(JMP(BPF_JSET));
5008 	b->s.k = 0x1fff;
5009 	b->stmts = s;
5010 	gen_not(b);
5011 
5012 	return b;
5013 }
5014 
5015 /*
5016  * Generate a comparison to a port value in the transport-layer header
5017  * at the specified offset from the beginning of that header.
5018  *
5019  * XXX - this handles a variable-length prefix preceding the link-layer
5020  * header, such as the radiotap or AVS radio prefix, but doesn't handle
5021  * variable-length link-layer headers (such as Token Ring or 802.11
5022  * headers).
5023  */
5024 static struct block *
gen_portatom(off,v)5025 gen_portatom(off, v)
5026 	int off;
5027 	bpf_int32 v;
5028 {
5029 	return gen_cmp(OR_TRAN_IPV4, off, BPF_H, v);
5030 }
5031 
5032 static struct block *
gen_portatom6(off,v)5033 gen_portatom6(off, v)
5034 	int off;
5035 	bpf_int32 v;
5036 {
5037 	return gen_cmp(OR_TRAN_IPV6, off, BPF_H, v);
5038 }
5039 
5040 struct block *
gen_portop(port,proto,dir)5041 gen_portop(port, proto, dir)
5042 	int port, proto, dir;
5043 {
5044 	struct block *b0, *b1, *tmp;
5045 
5046 	/* ip proto 'proto' and not a fragment other than the first fragment */
5047 	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
5048 	b0 = gen_ipfrag();
5049 	gen_and(tmp, b0);
5050 
5051 	switch (dir) {
5052 	case Q_SRC:
5053 		b1 = gen_portatom(0, (bpf_int32)port);
5054 		break;
5055 
5056 	case Q_DST:
5057 		b1 = gen_portatom(2, (bpf_int32)port);
5058 		break;
5059 
5060 	case Q_OR:
5061 	case Q_DEFAULT:
5062 		tmp = gen_portatom(0, (bpf_int32)port);
5063 		b1 = gen_portatom(2, (bpf_int32)port);
5064 		gen_or(tmp, b1);
5065 		break;
5066 
5067 	case Q_AND:
5068 		tmp = gen_portatom(0, (bpf_int32)port);
5069 		b1 = gen_portatom(2, (bpf_int32)port);
5070 		gen_and(tmp, b1);
5071 		break;
5072 
5073 	default:
5074 		abort();
5075 	}
5076 	gen_and(b0, b1);
5077 
5078 	return b1;
5079 }
5080 
5081 static struct block *
gen_port(port,ip_proto,dir)5082 gen_port(port, ip_proto, dir)
5083 	int port;
5084 	int ip_proto;
5085 	int dir;
5086 {
5087 	struct block *b0, *b1, *tmp;
5088 
5089 	/*
5090 	 * ether proto ip
5091 	 *
5092 	 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5093 	 * not LLC encapsulation with LLCSAP_IP.
5094 	 *
5095 	 * For IEEE 802 networks - which includes 802.5 token ring
5096 	 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5097 	 * says that SNAP encapsulation is used, not LLC encapsulation
5098 	 * with LLCSAP_IP.
5099 	 *
5100 	 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5101 	 * RFC 2225 say that SNAP encapsulation is used, not LLC
5102 	 * encapsulation with LLCSAP_IP.
5103 	 *
5104 	 * So we always check for ETHERTYPE_IP.
5105 	 */
5106 	b0 =  gen_linktype(ETHERTYPE_IP);
5107 
5108 	switch (ip_proto) {
5109 	case IPPROTO_UDP:
5110 	case IPPROTO_TCP:
5111 	case IPPROTO_SCTP:
5112 		b1 = gen_portop(port, ip_proto, dir);
5113 		break;
5114 
5115 	case PROTO_UNDEF:
5116 		tmp = gen_portop(port, IPPROTO_TCP, dir);
5117 		b1 = gen_portop(port, IPPROTO_UDP, dir);
5118 		gen_or(tmp, b1);
5119 		tmp = gen_portop(port, IPPROTO_SCTP, dir);
5120 		gen_or(tmp, b1);
5121 		break;
5122 
5123 	default:
5124 		abort();
5125 	}
5126 	gen_and(b0, b1);
5127 	return b1;
5128 }
5129 
5130 struct block *
gen_portop6(port,proto,dir)5131 gen_portop6(port, proto, dir)
5132 	int port, proto, dir;
5133 {
5134 	struct block *b0, *b1, *tmp;
5135 
5136 	/* ip6 proto 'proto' */
5137 	/* XXX - catch the first fragment of a fragmented packet? */
5138 	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
5139 
5140 	switch (dir) {
5141 	case Q_SRC:
5142 		b1 = gen_portatom6(0, (bpf_int32)port);
5143 		break;
5144 
5145 	case Q_DST:
5146 		b1 = gen_portatom6(2, (bpf_int32)port);
5147 		break;
5148 
5149 	case Q_OR:
5150 	case Q_DEFAULT:
5151 		tmp = gen_portatom6(0, (bpf_int32)port);
5152 		b1 = gen_portatom6(2, (bpf_int32)port);
5153 		gen_or(tmp, b1);
5154 		break;
5155 
5156 	case Q_AND:
5157 		tmp = gen_portatom6(0, (bpf_int32)port);
5158 		b1 = gen_portatom6(2, (bpf_int32)port);
5159 		gen_and(tmp, b1);
5160 		break;
5161 
5162 	default:
5163 		abort();
5164 	}
5165 	gen_and(b0, b1);
5166 
5167 	return b1;
5168 }
5169 
5170 static struct block *
gen_port6(port,ip_proto,dir)5171 gen_port6(port, ip_proto, dir)
5172 	int port;
5173 	int ip_proto;
5174 	int dir;
5175 {
5176 	struct block *b0, *b1, *tmp;
5177 
5178 	/* link proto ip6 */
5179 	b0 =  gen_linktype(ETHERTYPE_IPV6);
5180 
5181 	switch (ip_proto) {
5182 	case IPPROTO_UDP:
5183 	case IPPROTO_TCP:
5184 	case IPPROTO_SCTP:
5185 		b1 = gen_portop6(port, ip_proto, dir);
5186 		break;
5187 
5188 	case PROTO_UNDEF:
5189 		tmp = gen_portop6(port, IPPROTO_TCP, dir);
5190 		b1 = gen_portop6(port, IPPROTO_UDP, dir);
5191 		gen_or(tmp, b1);
5192 		tmp = gen_portop6(port, IPPROTO_SCTP, dir);
5193 		gen_or(tmp, b1);
5194 		break;
5195 
5196 	default:
5197 		abort();
5198 	}
5199 	gen_and(b0, b1);
5200 	return b1;
5201 }
5202 
5203 /* gen_portrange code */
5204 static struct block *
gen_portrangeatom(off,v1,v2)5205 gen_portrangeatom(off, v1, v2)
5206 	int off;
5207 	bpf_int32 v1, v2;
5208 {
5209 	struct block *b1, *b2;
5210 
5211 	if (v1 > v2) {
5212 		/*
5213 		 * Reverse the order of the ports, so v1 is the lower one.
5214 		 */
5215 		bpf_int32 vtemp;
5216 
5217 		vtemp = v1;
5218 		v1 = v2;
5219 		v2 = vtemp;
5220 	}
5221 
5222 	b1 = gen_cmp_ge(OR_TRAN_IPV4, off, BPF_H, v1);
5223 	b2 = gen_cmp_le(OR_TRAN_IPV4, off, BPF_H, v2);
5224 
5225 	gen_and(b1, b2);
5226 
5227 	return b2;
5228 }
5229 
5230 struct block *
gen_portrangeop(port1,port2,proto,dir)5231 gen_portrangeop(port1, port2, proto, dir)
5232 	int port1, port2;
5233 	int proto;
5234 	int dir;
5235 {
5236 	struct block *b0, *b1, *tmp;
5237 
5238 	/* ip proto 'proto' and not a fragment other than the first fragment */
5239 	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
5240 	b0 = gen_ipfrag();
5241 	gen_and(tmp, b0);
5242 
5243 	switch (dir) {
5244 	case Q_SRC:
5245 		b1 = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5246 		break;
5247 
5248 	case Q_DST:
5249 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5250 		break;
5251 
5252 	case Q_OR:
5253 	case Q_DEFAULT:
5254 		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5255 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5256 		gen_or(tmp, b1);
5257 		break;
5258 
5259 	case Q_AND:
5260 		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5261 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5262 		gen_and(tmp, b1);
5263 		break;
5264 
5265 	default:
5266 		abort();
5267 	}
5268 	gen_and(b0, b1);
5269 
5270 	return b1;
5271 }
5272 
5273 static struct block *
gen_portrange(port1,port2,ip_proto,dir)5274 gen_portrange(port1, port2, ip_proto, dir)
5275 	int port1, port2;
5276 	int ip_proto;
5277 	int dir;
5278 {
5279 	struct block *b0, *b1, *tmp;
5280 
5281 	/* link proto ip */
5282 	b0 =  gen_linktype(ETHERTYPE_IP);
5283 
5284 	switch (ip_proto) {
5285 	case IPPROTO_UDP:
5286 	case IPPROTO_TCP:
5287 	case IPPROTO_SCTP:
5288 		b1 = gen_portrangeop(port1, port2, ip_proto, dir);
5289 		break;
5290 
5291 	case PROTO_UNDEF:
5292 		tmp = gen_portrangeop(port1, port2, IPPROTO_TCP, dir);
5293 		b1 = gen_portrangeop(port1, port2, IPPROTO_UDP, dir);
5294 		gen_or(tmp, b1);
5295 		tmp = gen_portrangeop(port1, port2, IPPROTO_SCTP, dir);
5296 		gen_or(tmp, b1);
5297 		break;
5298 
5299 	default:
5300 		abort();
5301 	}
5302 	gen_and(b0, b1);
5303 	return b1;
5304 }
5305 
5306 static struct block *
gen_portrangeatom6(off,v1,v2)5307 gen_portrangeatom6(off, v1, v2)
5308 	int off;
5309 	bpf_int32 v1, v2;
5310 {
5311 	struct block *b1, *b2;
5312 
5313 	if (v1 > v2) {
5314 		/*
5315 		 * Reverse the order of the ports, so v1 is the lower one.
5316 		 */
5317 		bpf_int32 vtemp;
5318 
5319 		vtemp = v1;
5320 		v1 = v2;
5321 		v2 = vtemp;
5322 	}
5323 
5324 	b1 = gen_cmp_ge(OR_TRAN_IPV6, off, BPF_H, v1);
5325 	b2 = gen_cmp_le(OR_TRAN_IPV6, off, BPF_H, v2);
5326 
5327 	gen_and(b1, b2);
5328 
5329 	return b2;
5330 }
5331 
5332 struct block *
gen_portrangeop6(port1,port2,proto,dir)5333 gen_portrangeop6(port1, port2, proto, dir)
5334 	int port1, port2;
5335 	int proto;
5336 	int dir;
5337 {
5338 	struct block *b0, *b1, *tmp;
5339 
5340 	/* ip6 proto 'proto' */
5341 	/* XXX - catch the first fragment of a fragmented packet? */
5342 	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
5343 
5344 	switch (dir) {
5345 	case Q_SRC:
5346 		b1 = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5347 		break;
5348 
5349 	case Q_DST:
5350 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5351 		break;
5352 
5353 	case Q_OR:
5354 	case Q_DEFAULT:
5355 		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5356 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5357 		gen_or(tmp, b1);
5358 		break;
5359 
5360 	case Q_AND:
5361 		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5362 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5363 		gen_and(tmp, b1);
5364 		break;
5365 
5366 	default:
5367 		abort();
5368 	}
5369 	gen_and(b0, b1);
5370 
5371 	return b1;
5372 }
5373 
5374 static struct block *
gen_portrange6(port1,port2,ip_proto,dir)5375 gen_portrange6(port1, port2, ip_proto, dir)
5376 	int port1, port2;
5377 	int ip_proto;
5378 	int dir;
5379 {
5380 	struct block *b0, *b1, *tmp;
5381 
5382 	/* link proto ip6 */
5383 	b0 =  gen_linktype(ETHERTYPE_IPV6);
5384 
5385 	switch (ip_proto) {
5386 	case IPPROTO_UDP:
5387 	case IPPROTO_TCP:
5388 	case IPPROTO_SCTP:
5389 		b1 = gen_portrangeop6(port1, port2, ip_proto, dir);
5390 		break;
5391 
5392 	case PROTO_UNDEF:
5393 		tmp = gen_portrangeop6(port1, port2, IPPROTO_TCP, dir);
5394 		b1 = gen_portrangeop6(port1, port2, IPPROTO_UDP, dir);
5395 		gen_or(tmp, b1);
5396 		tmp = gen_portrangeop6(port1, port2, IPPROTO_SCTP, dir);
5397 		gen_or(tmp, b1);
5398 		break;
5399 
5400 	default:
5401 		abort();
5402 	}
5403 	gen_and(b0, b1);
5404 	return b1;
5405 }
5406 
5407 static int
lookup_proto(name,proto)5408 lookup_proto(name, proto)
5409 	register const char *name;
5410 	register int proto;
5411 {
5412 	register int v;
5413 
5414 	switch (proto) {
5415 
5416 	case Q_DEFAULT:
5417 	case Q_IP:
5418 	case Q_IPV6:
5419 		v = pcap_nametoproto(name);
5420 		if (v == PROTO_UNDEF)
5421 			bpf_error("unknown ip proto '%s'", name);
5422 		break;
5423 
5424 	case Q_LINK:
5425 		/* XXX should look up h/w protocol type based on linktype */
5426 		v = pcap_nametoeproto(name);
5427 		if (v == PROTO_UNDEF) {
5428 			v = pcap_nametollc(name);
5429 			if (v == PROTO_UNDEF)
5430 				bpf_error("unknown ether proto '%s'", name);
5431 		}
5432 		break;
5433 
5434 	case Q_ISO:
5435 		if (strcmp(name, "esis") == 0)
5436 			v = ISO9542_ESIS;
5437 		else if (strcmp(name, "isis") == 0)
5438 			v = ISO10589_ISIS;
5439 		else if (strcmp(name, "clnp") == 0)
5440 			v = ISO8473_CLNP;
5441 		else
5442 			bpf_error("unknown osi proto '%s'", name);
5443 		break;
5444 
5445 	default:
5446 		v = PROTO_UNDEF;
5447 		break;
5448 	}
5449 	return v;
5450 }
5451 
5452 #if 0
5453 struct stmt *
5454 gen_joinsp(s, n)
5455 	struct stmt **s;
5456 	int n;
5457 {
5458 	return NULL;
5459 }
5460 #endif
5461 
5462 static struct block *
gen_protochain(v,proto,dir)5463 gen_protochain(v, proto, dir)
5464 	int v;
5465 	int proto;
5466 	int dir;
5467 {
5468 #ifdef NO_PROTOCHAIN
5469 	return gen_proto(v, proto, dir);
5470 #else
5471 	struct block *b0, *b;
5472 	struct slist *s[100];
5473 	int fix2, fix3, fix4, fix5;
5474 	int ahcheck, again, end;
5475 	int i, max;
5476 	int reg2 = alloc_reg();
5477 
5478 	memset(s, 0, sizeof(s));
5479 	fix2 = fix3 = fix4 = fix5 = 0;
5480 
5481 	switch (proto) {
5482 	case Q_IP:
5483 	case Q_IPV6:
5484 		break;
5485 	case Q_DEFAULT:
5486 		b0 = gen_protochain(v, Q_IP, dir);
5487 		b = gen_protochain(v, Q_IPV6, dir);
5488 		gen_or(b0, b);
5489 		return b;
5490 	default:
5491 		bpf_error("bad protocol applied for 'protochain'");
5492 		/*NOTREACHED*/
5493 	}
5494 
5495 	/*
5496 	 * We don't handle variable-length prefixes before the link-layer
5497 	 * header, or variable-length link-layer headers, here yet.
5498 	 * We might want to add BPF instructions to do the protochain
5499 	 * work, to simplify that and, on platforms that have a BPF
5500 	 * interpreter with the new instructions, let the filtering
5501 	 * be done in the kernel.  (We already require a modified BPF
5502 	 * engine to do the protochain stuff, to support backward
5503 	 * branches, and backward branch support is unlikely to appear
5504 	 * in kernel BPF engines.)
5505 	 */
5506 	switch (linktype) {
5507 
5508 	case DLT_IEEE802_11:
5509 	case DLT_PRISM_HEADER:
5510 	case DLT_IEEE802_11_RADIO_AVS:
5511 	case DLT_IEEE802_11_RADIO:
5512 	case DLT_PPI:
5513 		bpf_error("'protochain' not supported with 802.11");
5514 	}
5515 
5516 	no_optimize = 1; /*this code is not compatible with optimzer yet */
5517 
5518 	/*
5519 	 * s[0] is a dummy entry to protect other BPF insn from damage
5520 	 * by s[fix] = foo with uninitialized variable "fix".  It is somewhat
5521 	 * hard to find interdependency made by jump table fixup.
5522 	 */
5523 	i = 0;
5524 	s[i] = new_stmt(0);	/*dummy*/
5525 	i++;
5526 
5527 	switch (proto) {
5528 	case Q_IP:
5529 		b0 = gen_linktype(ETHERTYPE_IP);
5530 
5531 		/* A = ip->ip_p */
5532 		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5533 		s[i]->s.k = off_macpl + off_nl + 9;
5534 		i++;
5535 		/* X = ip->ip_hl << 2 */
5536 		s[i] = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
5537 		s[i]->s.k = off_macpl + off_nl;
5538 		i++;
5539 		break;
5540 
5541 	case Q_IPV6:
5542 		b0 = gen_linktype(ETHERTYPE_IPV6);
5543 
5544 		/* A = ip6->ip_nxt */
5545 		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5546 		s[i]->s.k = off_macpl + off_nl + 6;
5547 		i++;
5548 		/* X = sizeof(struct ip6_hdr) */
5549 		s[i] = new_stmt(BPF_LDX|BPF_IMM);
5550 		s[i]->s.k = 40;
5551 		i++;
5552 		break;
5553 
5554 	default:
5555 		bpf_error("unsupported proto to gen_protochain");
5556 		/*NOTREACHED*/
5557 	}
5558 
5559 	/* again: if (A == v) goto end; else fall through; */
5560 	again = i;
5561 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5562 	s[i]->s.k = v;
5563 	s[i]->s.jt = NULL;		/*later*/
5564 	s[i]->s.jf = NULL;		/*update in next stmt*/
5565 	fix5 = i;
5566 	i++;
5567 
5568 #ifndef IPPROTO_NONE
5569 #define IPPROTO_NONE	59
5570 #endif
5571 	/* if (A == IPPROTO_NONE) goto end */
5572 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5573 	s[i]->s.jt = NULL;	/*later*/
5574 	s[i]->s.jf = NULL;	/*update in next stmt*/
5575 	s[i]->s.k = IPPROTO_NONE;
5576 	s[fix5]->s.jf = s[i];
5577 	fix2 = i;
5578 	i++;
5579 
5580 	if (proto == Q_IPV6) {
5581 		int v6start, v6end, v6advance, j;
5582 
5583 		v6start = i;
5584 		/* if (A == IPPROTO_HOPOPTS) goto v6advance */
5585 		s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5586 		s[i]->s.jt = NULL;	/*later*/
5587 		s[i]->s.jf = NULL;	/*update in next stmt*/
5588 		s[i]->s.k = IPPROTO_HOPOPTS;
5589 		s[fix2]->s.jf = s[i];
5590 		i++;
5591 		/* if (A == IPPROTO_DSTOPTS) goto v6advance */
5592 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5593 		s[i]->s.jt = NULL;	/*later*/
5594 		s[i]->s.jf = NULL;	/*update in next stmt*/
5595 		s[i]->s.k = IPPROTO_DSTOPTS;
5596 		i++;
5597 		/* if (A == IPPROTO_ROUTING) goto v6advance */
5598 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5599 		s[i]->s.jt = NULL;	/*later*/
5600 		s[i]->s.jf = NULL;	/*update in next stmt*/
5601 		s[i]->s.k = IPPROTO_ROUTING;
5602 		i++;
5603 		/* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
5604 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5605 		s[i]->s.jt = NULL;	/*later*/
5606 		s[i]->s.jf = NULL;	/*later*/
5607 		s[i]->s.k = IPPROTO_FRAGMENT;
5608 		fix3 = i;
5609 		v6end = i;
5610 		i++;
5611 
5612 		/* v6advance: */
5613 		v6advance = i;
5614 
5615 		/*
5616 		 * in short,
5617 		 * A = P[X + packet head];
5618 		 * X = X + (P[X + packet head + 1] + 1) * 8;
5619 		 */
5620 		/* A = P[X + packet head] */
5621 		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5622 		s[i]->s.k = off_macpl + off_nl;
5623 		i++;
5624 		/* MEM[reg2] = A */
5625 		s[i] = new_stmt(BPF_ST);
5626 		s[i]->s.k = reg2;
5627 		i++;
5628 		/* A = P[X + packet head + 1]; */
5629 		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5630 		s[i]->s.k = off_macpl + off_nl + 1;
5631 		i++;
5632 		/* A += 1 */
5633 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5634 		s[i]->s.k = 1;
5635 		i++;
5636 		/* A *= 8 */
5637 		s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5638 		s[i]->s.k = 8;
5639 		i++;
5640 		/* A += X */
5641 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_X);
5642 		s[i]->s.k = 0;
5643 		i++;
5644 		/* X = A; */
5645 		s[i] = new_stmt(BPF_MISC|BPF_TAX);
5646 		i++;
5647 		/* A = MEM[reg2] */
5648 		s[i] = new_stmt(BPF_LD|BPF_MEM);
5649 		s[i]->s.k = reg2;
5650 		i++;
5651 
5652 		/* goto again; (must use BPF_JA for backward jump) */
5653 		s[i] = new_stmt(BPF_JMP|BPF_JA);
5654 		s[i]->s.k = again - i - 1;
5655 		s[i - 1]->s.jf = s[i];
5656 		i++;
5657 
5658 		/* fixup */
5659 		for (j = v6start; j <= v6end; j++)
5660 			s[j]->s.jt = s[v6advance];
5661 	} else {
5662 		/* nop */
5663 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5664 		s[i]->s.k = 0;
5665 		s[fix2]->s.jf = s[i];
5666 		i++;
5667 	}
5668 
5669 	/* ahcheck: */
5670 	ahcheck = i;
5671 	/* if (A == IPPROTO_AH) then fall through; else goto end; */
5672 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5673 	s[i]->s.jt = NULL;	/*later*/
5674 	s[i]->s.jf = NULL;	/*later*/
5675 	s[i]->s.k = IPPROTO_AH;
5676 	if (fix3)
5677 		s[fix3]->s.jf = s[ahcheck];
5678 	fix4 = i;
5679 	i++;
5680 
5681 	/*
5682 	 * in short,
5683 	 * A = P[X];
5684 	 * X = X + (P[X + 1] + 2) * 4;
5685 	 */
5686 	/* A = X */
5687 	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5688 	i++;
5689 	/* A = P[X + packet head]; */
5690 	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5691 	s[i]->s.k = off_macpl + off_nl;
5692 	i++;
5693 	/* MEM[reg2] = A */
5694 	s[i] = new_stmt(BPF_ST);
5695 	s[i]->s.k = reg2;
5696 	i++;
5697 	/* A = X */
5698 	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5699 	i++;
5700 	/* A += 1 */
5701 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5702 	s[i]->s.k = 1;
5703 	i++;
5704 	/* X = A */
5705 	s[i] = new_stmt(BPF_MISC|BPF_TAX);
5706 	i++;
5707 	/* A = P[X + packet head] */
5708 	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5709 	s[i]->s.k = off_macpl + off_nl;
5710 	i++;
5711 	/* A += 2 */
5712 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5713 	s[i]->s.k = 2;
5714 	i++;
5715 	/* A *= 4 */
5716 	s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5717 	s[i]->s.k = 4;
5718 	i++;
5719 	/* X = A; */
5720 	s[i] = new_stmt(BPF_MISC|BPF_TAX);
5721 	i++;
5722 	/* A = MEM[reg2] */
5723 	s[i] = new_stmt(BPF_LD|BPF_MEM);
5724 	s[i]->s.k = reg2;
5725 	i++;
5726 
5727 	/* goto again; (must use BPF_JA for backward jump) */
5728 	s[i] = new_stmt(BPF_JMP|BPF_JA);
5729 	s[i]->s.k = again - i - 1;
5730 	i++;
5731 
5732 	/* end: nop */
5733 	end = i;
5734 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5735 	s[i]->s.k = 0;
5736 	s[fix2]->s.jt = s[end];
5737 	s[fix4]->s.jf = s[end];
5738 	s[fix5]->s.jt = s[end];
5739 	i++;
5740 
5741 	/*
5742 	 * make slist chain
5743 	 */
5744 	max = i;
5745 	for (i = 0; i < max - 1; i++)
5746 		s[i]->next = s[i + 1];
5747 	s[max - 1]->next = NULL;
5748 
5749 	/*
5750 	 * emit final check
5751 	 */
5752 	b = new_block(JMP(BPF_JEQ));
5753 	b->stmts = s[1];	/*remember, s[0] is dummy*/
5754 	b->s.k = v;
5755 
5756 	free_reg(reg2);
5757 
5758 	gen_and(b0, b);
5759 	return b;
5760 #endif
5761 }
5762 
5763 static struct block *
gen_check_802_11_data_frame()5764 gen_check_802_11_data_frame()
5765 {
5766 	struct slist *s;
5767 	struct block *b0, *b1;
5768 
5769 	/*
5770 	 * A data frame has the 0x08 bit (b3) in the frame control field set
5771 	 * and the 0x04 bit (b2) clear.
5772 	 */
5773 	s = gen_load_a(OR_LINK, 0, BPF_B);
5774 	b0 = new_block(JMP(BPF_JSET));
5775 	b0->s.k = 0x08;
5776 	b0->stmts = s;
5777 
5778 	s = gen_load_a(OR_LINK, 0, BPF_B);
5779 	b1 = new_block(JMP(BPF_JSET));
5780 	b1->s.k = 0x04;
5781 	b1->stmts = s;
5782 	gen_not(b1);
5783 
5784 	gen_and(b1, b0);
5785 
5786 	return b0;
5787 }
5788 
5789 /*
5790  * Generate code that checks whether the packet is a packet for protocol
5791  * <proto> and whether the type field in that protocol's header has
5792  * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
5793  * IP packet and checks the protocol number in the IP header against <v>.
5794  *
5795  * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
5796  * against Q_IP and Q_IPV6.
5797  */
5798 static struct block *
gen_proto(v,proto,dir)5799 gen_proto(v, proto, dir)
5800 	int v;
5801 	int proto;
5802 	int dir;
5803 {
5804 	struct block *b0, *b1;
5805 #ifndef CHASE_CHAIN
5806 	struct block *b2;
5807 #endif
5808 
5809 	if (dir != Q_DEFAULT)
5810 		bpf_error("direction applied to 'proto'");
5811 
5812 	switch (proto) {
5813 	case Q_DEFAULT:
5814 		b0 = gen_proto(v, Q_IP, dir);
5815 		b1 = gen_proto(v, Q_IPV6, dir);
5816 		gen_or(b0, b1);
5817 		return b1;
5818 
5819 	case Q_IP:
5820 		/*
5821 		 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5822 		 * not LLC encapsulation with LLCSAP_IP.
5823 		 *
5824 		 * For IEEE 802 networks - which includes 802.5 token ring
5825 		 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5826 		 * says that SNAP encapsulation is used, not LLC encapsulation
5827 		 * with LLCSAP_IP.
5828 		 *
5829 		 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5830 		 * RFC 2225 say that SNAP encapsulation is used, not LLC
5831 		 * encapsulation with LLCSAP_IP.
5832 		 *
5833 		 * So we always check for ETHERTYPE_IP.
5834 		 */
5835 		b0 = gen_linktype(ETHERTYPE_IP);
5836 #ifndef CHASE_CHAIN
5837 		b1 = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)v);
5838 #else
5839 		b1 = gen_protochain(v, Q_IP);
5840 #endif
5841 		gen_and(b0, b1);
5842 		return b1;
5843 
5844 	case Q_ISO:
5845 		switch (linktype) {
5846 
5847 		case DLT_FRELAY:
5848 			/*
5849 			 * Frame Relay packets typically have an OSI
5850 			 * NLPID at the beginning; "gen_linktype(LLCSAP_ISONS)"
5851 			 * generates code to check for all the OSI
5852 			 * NLPIDs, so calling it and then adding a check
5853 			 * for the particular NLPID for which we're
5854 			 * looking is bogus, as we can just check for
5855 			 * the NLPID.
5856 			 *
5857 			 * What we check for is the NLPID and a frame
5858 			 * control field value of UI, i.e. 0x03 followed
5859 			 * by the NLPID.
5860 			 *
5861 			 * XXX - assumes a 2-byte Frame Relay header with
5862 			 * DLCI and flags.  What if the address is longer?
5863 			 *
5864 			 * XXX - what about SNAP-encapsulated frames?
5865 			 */
5866 			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | v);
5867 			/*NOTREACHED*/
5868 			break;
5869 
5870 		case DLT_C_HDLC:
5871 			/*
5872 			 * Cisco uses an Ethertype lookalike - for OSI,
5873 			 * it's 0xfefe.
5874 			 */
5875 			b0 = gen_linktype(LLCSAP_ISONS<<8 | LLCSAP_ISONS);
5876 			/* OSI in C-HDLC is stuffed with a fudge byte */
5877 			b1 = gen_cmp(OR_NET_NOSNAP, 1, BPF_B, (long)v);
5878 			gen_and(b0, b1);
5879 			return b1;
5880 
5881 		default:
5882 			b0 = gen_linktype(LLCSAP_ISONS);
5883 			b1 = gen_cmp(OR_NET_NOSNAP, 0, BPF_B, (long)v);
5884 			gen_and(b0, b1);
5885 			return b1;
5886 		}
5887 
5888 	case Q_ISIS:
5889 		b0 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5890 		/*
5891 		 * 4 is the offset of the PDU type relative to the IS-IS
5892 		 * header.
5893 		 */
5894 		b1 = gen_cmp(OR_NET_NOSNAP, 4, BPF_B, (long)v);
5895 		gen_and(b0, b1);
5896 		return b1;
5897 
5898 	case Q_ARP:
5899 		bpf_error("arp does not encapsulate another protocol");
5900 		/* NOTREACHED */
5901 
5902 	case Q_RARP:
5903 		bpf_error("rarp does not encapsulate another protocol");
5904 		/* NOTREACHED */
5905 
5906 	case Q_ATALK:
5907 		bpf_error("atalk encapsulation is not specifiable");
5908 		/* NOTREACHED */
5909 
5910 	case Q_DECNET:
5911 		bpf_error("decnet encapsulation is not specifiable");
5912 		/* NOTREACHED */
5913 
5914 	case Q_SCA:
5915 		bpf_error("sca does not encapsulate another protocol");
5916 		/* NOTREACHED */
5917 
5918 	case Q_LAT:
5919 		bpf_error("lat does not encapsulate another protocol");
5920 		/* NOTREACHED */
5921 
5922 	case Q_MOPRC:
5923 		bpf_error("moprc does not encapsulate another protocol");
5924 		/* NOTREACHED */
5925 
5926 	case Q_MOPDL:
5927 		bpf_error("mopdl does not encapsulate another protocol");
5928 		/* NOTREACHED */
5929 
5930 	case Q_LINK:
5931 		return gen_linktype(v);
5932 
5933 	case Q_UDP:
5934 		bpf_error("'udp proto' is bogus");
5935 		/* NOTREACHED */
5936 
5937 	case Q_TCP:
5938 		bpf_error("'tcp proto' is bogus");
5939 		/* NOTREACHED */
5940 
5941 	case Q_SCTP:
5942 		bpf_error("'sctp proto' is bogus");
5943 		/* NOTREACHED */
5944 
5945 	case Q_ICMP:
5946 		bpf_error("'icmp proto' is bogus");
5947 		/* NOTREACHED */
5948 
5949 	case Q_IGMP:
5950 		bpf_error("'igmp proto' is bogus");
5951 		/* NOTREACHED */
5952 
5953 	case Q_IGRP:
5954 		bpf_error("'igrp proto' is bogus");
5955 		/* NOTREACHED */
5956 
5957 	case Q_PIM:
5958 		bpf_error("'pim proto' is bogus");
5959 		/* NOTREACHED */
5960 
5961 	case Q_VRRP:
5962 		bpf_error("'vrrp proto' is bogus");
5963 		/* NOTREACHED */
5964 
5965 	case Q_CARP:
5966 		bpf_error("'carp proto' is bogus");
5967 		/* NOTREACHED */
5968 
5969 	case Q_IPV6:
5970 		b0 = gen_linktype(ETHERTYPE_IPV6);
5971 #ifndef CHASE_CHAIN
5972 		/*
5973 		 * Also check for a fragment header before the final
5974 		 * header.
5975 		 */
5976 		b2 = gen_cmp(OR_NET, 6, BPF_B, IPPROTO_FRAGMENT);
5977 		b1 = gen_cmp(OR_NET, 40, BPF_B, (bpf_int32)v);
5978 		gen_and(b2, b1);
5979 		b2 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)v);
5980 		gen_or(b2, b1);
5981 #else
5982 		b1 = gen_protochain(v, Q_IPV6);
5983 #endif
5984 		gen_and(b0, b1);
5985 		return b1;
5986 
5987 	case Q_ICMPV6:
5988 		bpf_error("'icmp6 proto' is bogus");
5989 
5990 	case Q_AH:
5991 		bpf_error("'ah proto' is bogus");
5992 
5993 	case Q_ESP:
5994 		bpf_error("'ah proto' is bogus");
5995 
5996 	case Q_STP:
5997 		bpf_error("'stp proto' is bogus");
5998 
5999 	case Q_IPX:
6000 		bpf_error("'ipx proto' is bogus");
6001 
6002 	case Q_NETBEUI:
6003 		bpf_error("'netbeui proto' is bogus");
6004 
6005 	case Q_RADIO:
6006 		bpf_error("'radio proto' is bogus");
6007 
6008 	default:
6009 		abort();
6010 		/* NOTREACHED */
6011 	}
6012 	/* NOTREACHED */
6013 }
6014 
6015 struct block *
gen_scode(name,q)6016 gen_scode(name, q)
6017 	register const char *name;
6018 	struct qual q;
6019 {
6020 	int proto = q.proto;
6021 	int dir = q.dir;
6022 	int tproto;
6023 	u_char *eaddr;
6024 	bpf_u_int32 mask, addr;
6025 #ifndef INET6
6026 	bpf_u_int32 **alist;
6027 #else
6028 	int tproto6;
6029 	struct sockaddr_in *sin4;
6030 	struct sockaddr_in6 *sin6;
6031 	struct addrinfo *res, *res0;
6032 	struct in6_addr mask128;
6033 #endif /*INET6*/
6034 	struct block *b, *tmp;
6035 	int port, real_proto;
6036 	int port1, port2;
6037 
6038 	switch (q.addr) {
6039 
6040 	case Q_NET:
6041 		addr = pcap_nametonetaddr(name);
6042 		if (addr == 0)
6043 			bpf_error("unknown network '%s'", name);
6044 		/* Left justify network addr and calculate its network mask */
6045 		mask = 0xffffffff;
6046 		while (addr && (addr & 0xff000000) == 0) {
6047 			addr <<= 8;
6048 			mask <<= 8;
6049 		}
6050 		return gen_host(addr, mask, proto, dir, q.addr);
6051 
6052 	case Q_DEFAULT:
6053 	case Q_HOST:
6054 		if (proto == Q_LINK) {
6055 			switch (linktype) {
6056 
6057 			case DLT_EN10MB:
6058 			case DLT_NETANALYZER:
6059 			case DLT_NETANALYZER_TRANSPARENT:
6060 				eaddr = pcap_ether_hostton(name);
6061 				if (eaddr == NULL)
6062 					bpf_error(
6063 					    "unknown ether host '%s'", name);
6064 				b = gen_ehostop(eaddr, dir);
6065 				free(eaddr);
6066 				return b;
6067 
6068 			case DLT_FDDI:
6069 				eaddr = pcap_ether_hostton(name);
6070 				if (eaddr == NULL)
6071 					bpf_error(
6072 					    "unknown FDDI host '%s'", name);
6073 				b = gen_fhostop(eaddr, dir);
6074 				free(eaddr);
6075 				return b;
6076 
6077 			case DLT_IEEE802:
6078 				eaddr = pcap_ether_hostton(name);
6079 				if (eaddr == NULL)
6080 					bpf_error(
6081 					    "unknown token ring host '%s'", name);
6082 				b = gen_thostop(eaddr, dir);
6083 				free(eaddr);
6084 				return b;
6085 
6086 			case DLT_IEEE802_11:
6087 			case DLT_PRISM_HEADER:
6088 			case DLT_IEEE802_11_RADIO_AVS:
6089 			case DLT_IEEE802_11_RADIO:
6090 			case DLT_PPI:
6091 				eaddr = pcap_ether_hostton(name);
6092 				if (eaddr == NULL)
6093 					bpf_error(
6094 					    "unknown 802.11 host '%s'", name);
6095 				b = gen_wlanhostop(eaddr, dir);
6096 				free(eaddr);
6097 				return b;
6098 
6099 			case DLT_IP_OVER_FC:
6100 				eaddr = pcap_ether_hostton(name);
6101 				if (eaddr == NULL)
6102 					bpf_error(
6103 					    "unknown Fibre Channel host '%s'", name);
6104 				b = gen_ipfchostop(eaddr, dir);
6105 				free(eaddr);
6106 				return b;
6107 
6108 			case DLT_SUNATM:
6109 				if (!is_lane)
6110 					break;
6111 
6112 				/*
6113 				 * Check that the packet doesn't begin
6114 				 * with an LE Control marker.  (We've
6115 				 * already generated a test for LANE.)
6116 				 */
6117 				tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
6118 				    BPF_H, 0xFF00);
6119 				gen_not(tmp);
6120 
6121 				eaddr = pcap_ether_hostton(name);
6122 				if (eaddr == NULL)
6123 					bpf_error(
6124 					    "unknown ether host '%s'", name);
6125 				b = gen_ehostop(eaddr, dir);
6126 				gen_and(tmp, b);
6127 				free(eaddr);
6128 				return b;
6129 			}
6130 
6131 			bpf_error("only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6132 		} else if (proto == Q_DECNET) {
6133 			unsigned short dn_addr = __pcap_nametodnaddr(name);
6134 			/*
6135 			 * I don't think DECNET hosts can be multihomed, so
6136 			 * there is no need to build up a list of addresses
6137 			 */
6138 			return (gen_host(dn_addr, 0, proto, dir, q.addr));
6139 		} else {
6140 #ifndef INET6
6141 			alist = pcap_nametoaddr(name);
6142 			if (alist == NULL || *alist == NULL)
6143 				bpf_error("unknown host '%s'", name);
6144 			tproto = proto;
6145 			if (off_linktype == (u_int)-1 && tproto == Q_DEFAULT)
6146 				tproto = Q_IP;
6147 			b = gen_host(**alist++, 0xffffffff, tproto, dir, q.addr);
6148 			while (*alist) {
6149 				tmp = gen_host(**alist++, 0xffffffff,
6150 					       tproto, dir, q.addr);
6151 				gen_or(b, tmp);
6152 				b = tmp;
6153 			}
6154 			return b;
6155 #else
6156 			memset(&mask128, 0xff, sizeof(mask128));
6157 			res0 = res = pcap_nametoaddrinfo(name);
6158 			if (res == NULL)
6159 				bpf_error("unknown host '%s'", name);
6160 			ai = res;
6161 			b = tmp = NULL;
6162 			tproto = tproto6 = proto;
6163 			if (off_linktype == -1 && tproto == Q_DEFAULT) {
6164 				tproto = Q_IP;
6165 				tproto6 = Q_IPV6;
6166 			}
6167 			for (res = res0; res; res = res->ai_next) {
6168 				switch (res->ai_family) {
6169 				case AF_INET:
6170 					if (tproto == Q_IPV6)
6171 						continue;
6172 
6173 					sin4 = (struct sockaddr_in *)
6174 						res->ai_addr;
6175 					tmp = gen_host(ntohl(sin4->sin_addr.s_addr),
6176 						0xffffffff, tproto, dir, q.addr);
6177 					break;
6178 				case AF_INET6:
6179 					if (tproto6 == Q_IP)
6180 						continue;
6181 
6182 					sin6 = (struct sockaddr_in6 *)
6183 						res->ai_addr;
6184 					tmp = gen_host6(&sin6->sin6_addr,
6185 						&mask128, tproto6, dir, q.addr);
6186 					break;
6187 				default:
6188 					continue;
6189 				}
6190 				if (b)
6191 					gen_or(b, tmp);
6192 				b = tmp;
6193 			}
6194 			ai = NULL;
6195 			freeaddrinfo(res0);
6196 			if (b == NULL) {
6197 				bpf_error("unknown host '%s'%s", name,
6198 				    (proto == Q_DEFAULT)
6199 					? ""
6200 					: " for specified address family");
6201 			}
6202 			return b;
6203 #endif /*INET6*/
6204 		}
6205 
6206 	case Q_PORT:
6207 		if (proto != Q_DEFAULT &&
6208 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6209 			bpf_error("illegal qualifier of 'port'");
6210 		if (pcap_nametoport(name, &port, &real_proto) == 0)
6211 			bpf_error("unknown port '%s'", name);
6212 		if (proto == Q_UDP) {
6213 			if (real_proto == IPPROTO_TCP)
6214 				bpf_error("port '%s' is tcp", name);
6215 			else if (real_proto == IPPROTO_SCTP)
6216 				bpf_error("port '%s' is sctp", name);
6217 			else
6218 				/* override PROTO_UNDEF */
6219 				real_proto = IPPROTO_UDP;
6220 		}
6221 		if (proto == Q_TCP) {
6222 			if (real_proto == IPPROTO_UDP)
6223 				bpf_error("port '%s' is udp", name);
6224 
6225 			else if (real_proto == IPPROTO_SCTP)
6226 				bpf_error("port '%s' is sctp", name);
6227 			else
6228 				/* override PROTO_UNDEF */
6229 				real_proto = IPPROTO_TCP;
6230 		}
6231 		if (proto == Q_SCTP) {
6232 			if (real_proto == IPPROTO_UDP)
6233 				bpf_error("port '%s' is udp", name);
6234 
6235 			else if (real_proto == IPPROTO_TCP)
6236 				bpf_error("port '%s' is tcp", name);
6237 			else
6238 				/* override PROTO_UNDEF */
6239 				real_proto = IPPROTO_SCTP;
6240 		}
6241 		if (port < 0)
6242 			bpf_error("illegal port number %d < 0", port);
6243 		if (port > 65535)
6244 			bpf_error("illegal port number %d > 65535", port);
6245 		b = gen_port(port, real_proto, dir);
6246 		gen_or(gen_port6(port, real_proto, dir), b);
6247 		return b;
6248 
6249 	case Q_PORTRANGE:
6250 		if (proto != Q_DEFAULT &&
6251 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6252 			bpf_error("illegal qualifier of 'portrange'");
6253 		if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
6254 			bpf_error("unknown port in range '%s'", name);
6255 		if (proto == Q_UDP) {
6256 			if (real_proto == IPPROTO_TCP)
6257 				bpf_error("port in range '%s' is tcp", name);
6258 			else if (real_proto == IPPROTO_SCTP)
6259 				bpf_error("port in range '%s' is sctp", name);
6260 			else
6261 				/* override PROTO_UNDEF */
6262 				real_proto = IPPROTO_UDP;
6263 		}
6264 		if (proto == Q_TCP) {
6265 			if (real_proto == IPPROTO_UDP)
6266 				bpf_error("port in range '%s' is udp", name);
6267 			else if (real_proto == IPPROTO_SCTP)
6268 				bpf_error("port in range '%s' is sctp", name);
6269 			else
6270 				/* override PROTO_UNDEF */
6271 				real_proto = IPPROTO_TCP;
6272 		}
6273 		if (proto == Q_SCTP) {
6274 			if (real_proto == IPPROTO_UDP)
6275 				bpf_error("port in range '%s' is udp", name);
6276 			else if (real_proto == IPPROTO_TCP)
6277 				bpf_error("port in range '%s' is tcp", name);
6278 			else
6279 				/* override PROTO_UNDEF */
6280 				real_proto = IPPROTO_SCTP;
6281 		}
6282 		if (port1 < 0)
6283 			bpf_error("illegal port number %d < 0", port1);
6284 		if (port1 > 65535)
6285 			bpf_error("illegal port number %d > 65535", port1);
6286 		if (port2 < 0)
6287 			bpf_error("illegal port number %d < 0", port2);
6288 		if (port2 > 65535)
6289 			bpf_error("illegal port number %d > 65535", port2);
6290 
6291 		b = gen_portrange(port1, port2, real_proto, dir);
6292 		gen_or(gen_portrange6(port1, port2, real_proto, dir), b);
6293 		return b;
6294 
6295 	case Q_GATEWAY:
6296 #ifndef INET6
6297 		eaddr = pcap_ether_hostton(name);
6298 		if (eaddr == NULL)
6299 			bpf_error("unknown ether host: %s", name);
6300 
6301 		alist = pcap_nametoaddr(name);
6302 		if (alist == NULL || *alist == NULL)
6303 			bpf_error("unknown host '%s'", name);
6304 		b = gen_gateway(eaddr, alist, proto, dir);
6305 		free(eaddr);
6306 		return b;
6307 #else
6308 		bpf_error("'gateway' not supported in this configuration");
6309 #endif /*INET6*/
6310 
6311 	case Q_PROTO:
6312 		real_proto = lookup_proto(name, proto);
6313 		if (real_proto >= 0)
6314 			return gen_proto(real_proto, proto, dir);
6315 		else
6316 			bpf_error("unknown protocol: %s", name);
6317 
6318 	case Q_PROTOCHAIN:
6319 		real_proto = lookup_proto(name, proto);
6320 		if (real_proto >= 0)
6321 			return gen_protochain(real_proto, proto, dir);
6322 		else
6323 			bpf_error("unknown protocol: %s", name);
6324 
6325 	case Q_UNDEF:
6326 		syntax();
6327 		/* NOTREACHED */
6328 	}
6329 	abort();
6330 	/* NOTREACHED */
6331 }
6332 
6333 struct block *
gen_mcode(s1,s2,masklen,q)6334 gen_mcode(s1, s2, masklen, q)
6335 	register const char *s1, *s2;
6336 	register int masklen;
6337 	struct qual q;
6338 {
6339 	register int nlen, mlen;
6340 	bpf_u_int32 n, m;
6341 
6342 	nlen = __pcap_atoin(s1, &n);
6343 	/* Promote short ipaddr */
6344 	n <<= 32 - nlen;
6345 
6346 	if (s2 != NULL) {
6347 		mlen = __pcap_atoin(s2, &m);
6348 		/* Promote short ipaddr */
6349 		m <<= 32 - mlen;
6350 		if ((n & ~m) != 0)
6351 			bpf_error("non-network bits set in \"%s mask %s\"",
6352 			    s1, s2);
6353 	} else {
6354 		/* Convert mask len to mask */
6355 		if (masklen > 32)
6356 			bpf_error("mask length must be <= 32");
6357 		if (masklen == 0) {
6358 			/*
6359 			 * X << 32 is not guaranteed by C to be 0; it's
6360 			 * undefined.
6361 			 */
6362 			m = 0;
6363 		} else
6364 			m = 0xffffffff << (32 - masklen);
6365 		if ((n & ~m) != 0)
6366 			bpf_error("non-network bits set in \"%s/%d\"",
6367 			    s1, masklen);
6368 	}
6369 
6370 	switch (q.addr) {
6371 
6372 	case Q_NET:
6373 		return gen_host(n, m, q.proto, q.dir, q.addr);
6374 
6375 	default:
6376 		bpf_error("Mask syntax for networks only");
6377 		/* NOTREACHED */
6378 	}
6379 	/* NOTREACHED */
6380 	return NULL;
6381 }
6382 
6383 struct block *
gen_ncode(s,v,q)6384 gen_ncode(s, v, q)
6385 	register const char *s;
6386 	bpf_u_int32 v;
6387 	struct qual q;
6388 {
6389 	bpf_u_int32 mask;
6390 	int proto = q.proto;
6391 	int dir = q.dir;
6392 	register int vlen;
6393 
6394 	if (s == NULL)
6395 		vlen = 32;
6396 	else if (q.proto == Q_DECNET)
6397 		vlen = __pcap_atodn(s, &v);
6398 	else
6399 		vlen = __pcap_atoin(s, &v);
6400 
6401 	switch (q.addr) {
6402 
6403 	case Q_DEFAULT:
6404 	case Q_HOST:
6405 	case Q_NET:
6406 		if (proto == Q_DECNET)
6407 			return gen_host(v, 0, proto, dir, q.addr);
6408 		else if (proto == Q_LINK) {
6409 			bpf_error("illegal link layer address");
6410 		} else {
6411 			mask = 0xffffffff;
6412 			if (s == NULL && q.addr == Q_NET) {
6413 				/* Promote short net number */
6414 				while (v && (v & 0xff000000) == 0) {
6415 					v <<= 8;
6416 					mask <<= 8;
6417 				}
6418 			} else {
6419 				/* Promote short ipaddr */
6420 				v <<= 32 - vlen;
6421 				mask <<= 32 - vlen;
6422 			}
6423 			return gen_host(v, mask, proto, dir, q.addr);
6424 		}
6425 
6426 	case Q_PORT:
6427 		if (proto == Q_UDP)
6428 			proto = IPPROTO_UDP;
6429 		else if (proto == Q_TCP)
6430 			proto = IPPROTO_TCP;
6431 		else if (proto == Q_SCTP)
6432 			proto = IPPROTO_SCTP;
6433 		else if (proto == Q_DEFAULT)
6434 			proto = PROTO_UNDEF;
6435 		else
6436 			bpf_error("illegal qualifier of 'port'");
6437 
6438 		if (v > 65535)
6439 			bpf_error("illegal port number %u > 65535", v);
6440 
6441 	    {
6442 		struct block *b;
6443 		b = gen_port((int)v, proto, dir);
6444 		gen_or(gen_port6((int)v, proto, dir), b);
6445 		return b;
6446 	    }
6447 
6448 	case Q_PORTRANGE:
6449 		if (proto == Q_UDP)
6450 			proto = IPPROTO_UDP;
6451 		else if (proto == Q_TCP)
6452 			proto = IPPROTO_TCP;
6453 		else if (proto == Q_SCTP)
6454 			proto = IPPROTO_SCTP;
6455 		else if (proto == Q_DEFAULT)
6456 			proto = PROTO_UNDEF;
6457 		else
6458 			bpf_error("illegal qualifier of 'portrange'");
6459 
6460 		if (v > 65535)
6461 			bpf_error("illegal port number %u > 65535", v);
6462 
6463 	    {
6464 		struct block *b;
6465 		b = gen_portrange((int)v, (int)v, proto, dir);
6466 		gen_or(gen_portrange6((int)v, (int)v, proto, dir), b);
6467 		return b;
6468 	    }
6469 
6470 	case Q_GATEWAY:
6471 		bpf_error("'gateway' requires a name");
6472 		/* NOTREACHED */
6473 
6474 	case Q_PROTO:
6475 		return gen_proto((int)v, proto, dir);
6476 
6477 	case Q_PROTOCHAIN:
6478 		return gen_protochain((int)v, proto, dir);
6479 
6480 	case Q_UNDEF:
6481 		syntax();
6482 		/* NOTREACHED */
6483 
6484 	default:
6485 		abort();
6486 		/* NOTREACHED */
6487 	}
6488 	/* NOTREACHED */
6489 }
6490 
6491 #ifdef INET6
6492 struct block *
gen_mcode6(s1,s2,masklen,q)6493 gen_mcode6(s1, s2, masklen, q)
6494 	register const char *s1, *s2;
6495 	register int masklen;
6496 	struct qual q;
6497 {
6498 	struct addrinfo *res;
6499 	struct in6_addr *addr;
6500 	struct in6_addr mask;
6501 	struct block *b;
6502 	u_int32_t *a, *m;
6503 
6504 	if (s2)
6505 		bpf_error("no mask %s supported", s2);
6506 
6507 	res = pcap_nametoaddrinfo(s1);
6508 	if (!res)
6509 		bpf_error("invalid ip6 address %s", s1);
6510 	ai = res;
6511 	if (res->ai_next)
6512 		bpf_error("%s resolved to multiple address", s1);
6513 	addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
6514 
6515 	if (sizeof(mask) * 8 < masklen)
6516 		bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
6517 	memset(&mask, 0, sizeof(mask));
6518 	memset(&mask, 0xff, masklen / 8);
6519 	if (masklen % 8) {
6520 		mask.s6_addr[masklen / 8] =
6521 			(0xff << (8 - masklen % 8)) & 0xff;
6522 	}
6523 
6524 	a = (u_int32_t *)addr;
6525 	m = (u_int32_t *)&mask;
6526 	if ((a[0] & ~m[0]) || (a[1] & ~m[1])
6527 	 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
6528 		bpf_error("non-network bits set in \"%s/%d\"", s1, masklen);
6529 	}
6530 
6531 	switch (q.addr) {
6532 
6533 	case Q_DEFAULT:
6534 	case Q_HOST:
6535 		if (masklen != 128)
6536 			bpf_error("Mask syntax for networks only");
6537 		/* FALLTHROUGH */
6538 
6539 	case Q_NET:
6540 		b = gen_host6(addr, &mask, q.proto, q.dir, q.addr);
6541 		ai = NULL;
6542 		freeaddrinfo(res);
6543 		return b;
6544 
6545 	default:
6546 		bpf_error("invalid qualifier against IPv6 address");
6547 		/* NOTREACHED */
6548 	}
6549 	return NULL;
6550 }
6551 #endif /*INET6*/
6552 
6553 struct block *
gen_ecode(eaddr,q)6554 gen_ecode(eaddr, q)
6555 	register const u_char *eaddr;
6556 	struct qual q;
6557 {
6558 	struct block *b, *tmp;
6559 
6560 	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
6561 		switch (linktype) {
6562 		case DLT_EN10MB:
6563 		case DLT_NETANALYZER:
6564 		case DLT_NETANALYZER_TRANSPARENT:
6565 			return gen_ehostop(eaddr, (int)q.dir);
6566 		case DLT_FDDI:
6567 			return gen_fhostop(eaddr, (int)q.dir);
6568 		case DLT_IEEE802:
6569 			return gen_thostop(eaddr, (int)q.dir);
6570 		case DLT_IEEE802_11:
6571 		case DLT_PRISM_HEADER:
6572 		case DLT_IEEE802_11_RADIO_AVS:
6573 		case DLT_IEEE802_11_RADIO:
6574 		case DLT_PPI:
6575 			return gen_wlanhostop(eaddr, (int)q.dir);
6576 		case DLT_SUNATM:
6577 			if (is_lane) {
6578 				/*
6579 				 * Check that the packet doesn't begin with an
6580 				 * LE Control marker.  (We've already generated
6581 				 * a test for LANE.)
6582 				 */
6583 				tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
6584 					0xFF00);
6585 				gen_not(tmp);
6586 
6587 				/*
6588 				 * Now check the MAC address.
6589 				 */
6590 				b = gen_ehostop(eaddr, (int)q.dir);
6591 				gen_and(tmp, b);
6592 				return b;
6593 			}
6594 			break;
6595 		case DLT_IP_OVER_FC:
6596 			return gen_ipfchostop(eaddr, (int)q.dir);
6597 		default:
6598 			bpf_error("ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
6599 			break;
6600 		}
6601 	}
6602 	bpf_error("ethernet address used in non-ether expression");
6603 	/* NOTREACHED */
6604 	return NULL;
6605 }
6606 
6607 void
sappend(s0,s1)6608 sappend(s0, s1)
6609 	struct slist *s0, *s1;
6610 {
6611 	/*
6612 	 * This is definitely not the best way to do this, but the
6613 	 * lists will rarely get long.
6614 	 */
6615 	while (s0->next)
6616 		s0 = s0->next;
6617 	s0->next = s1;
6618 }
6619 
6620 static struct slist *
xfer_to_x(a)6621 xfer_to_x(a)
6622 	struct arth *a;
6623 {
6624 	struct slist *s;
6625 
6626 	s = new_stmt(BPF_LDX|BPF_MEM);
6627 	s->s.k = a->regno;
6628 	return s;
6629 }
6630 
6631 static struct slist *
xfer_to_a(a)6632 xfer_to_a(a)
6633 	struct arth *a;
6634 {
6635 	struct slist *s;
6636 
6637 	s = new_stmt(BPF_LD|BPF_MEM);
6638 	s->s.k = a->regno;
6639 	return s;
6640 }
6641 
6642 /*
6643  * Modify "index" to use the value stored into its register as an
6644  * offset relative to the beginning of the header for the protocol
6645  * "proto", and allocate a register and put an item "size" bytes long
6646  * (1, 2, or 4) at that offset into that register, making it the register
6647  * for "index".
6648  */
6649 struct arth *
gen_load(proto,inst,size)6650 gen_load(proto, inst, size)
6651 	int proto;
6652 	struct arth *inst;
6653 	int size;
6654 {
6655 	struct slist *s, *tmp;
6656 	struct block *b;
6657 	int regno = alloc_reg();
6658 
6659 	free_reg(inst->regno);
6660 	switch (size) {
6661 
6662 	default:
6663 		bpf_error("data size must be 1, 2, or 4");
6664 
6665 	case 1:
6666 		size = BPF_B;
6667 		break;
6668 
6669 	case 2:
6670 		size = BPF_H;
6671 		break;
6672 
6673 	case 4:
6674 		size = BPF_W;
6675 		break;
6676 	}
6677 	switch (proto) {
6678 	default:
6679 		bpf_error("unsupported index operation");
6680 
6681 	case Q_RADIO:
6682 		/*
6683 		 * The offset is relative to the beginning of the packet
6684 		 * data, if we have a radio header.  (If we don't, this
6685 		 * is an error.)
6686 		 */
6687 		if (linktype != DLT_IEEE802_11_RADIO_AVS &&
6688 		    linktype != DLT_IEEE802_11_RADIO &&
6689 		    linktype != DLT_PRISM_HEADER)
6690 			bpf_error("radio information not present in capture");
6691 
6692 		/*
6693 		 * Load into the X register the offset computed into the
6694 		 * register specified by "index".
6695 		 */
6696 		s = xfer_to_x(inst);
6697 
6698 		/*
6699 		 * Load the item at that offset.
6700 		 */
6701 		tmp = new_stmt(BPF_LD|BPF_IND|size);
6702 		sappend(s, tmp);
6703 		sappend(inst->s, s);
6704 		break;
6705 
6706 	case Q_LINK:
6707 		/*
6708 		 * The offset is relative to the beginning of
6709 		 * the link-layer header.
6710 		 *
6711 		 * XXX - what about ATM LANE?  Should the index be
6712 		 * relative to the beginning of the AAL5 frame, so
6713 		 * that 0 refers to the beginning of the LE Control
6714 		 * field, or relative to the beginning of the LAN
6715 		 * frame, so that 0 refers, for Ethernet LANE, to
6716 		 * the beginning of the destination address?
6717 		 */
6718 		s = gen_llprefixlen();
6719 
6720 		/*
6721 		 * If "s" is non-null, it has code to arrange that the
6722 		 * X register contains the length of the prefix preceding
6723 		 * the link-layer header.  Add to it the offset computed
6724 		 * into the register specified by "index", and move that
6725 		 * into the X register.  Otherwise, just load into the X
6726 		 * register the offset computed into the register specified
6727 		 * by "index".
6728 		 */
6729 		if (s != NULL) {
6730 			sappend(s, xfer_to_a(inst));
6731 			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6732 			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6733 		} else
6734 			s = xfer_to_x(inst);
6735 
6736 		/*
6737 		 * Load the item at the sum of the offset we've put in the
6738 		 * X register and the offset of the start of the link
6739 		 * layer header (which is 0 if the radio header is
6740 		 * variable-length; that header length is what we put
6741 		 * into the X register and then added to the index).
6742 		 */
6743 		tmp = new_stmt(BPF_LD|BPF_IND|size);
6744 		tmp->s.k = off_ll;
6745 		sappend(s, tmp);
6746 		sappend(inst->s, s);
6747 		break;
6748 
6749 	case Q_IP:
6750 	case Q_ARP:
6751 	case Q_RARP:
6752 	case Q_ATALK:
6753 	case Q_DECNET:
6754 	case Q_SCA:
6755 	case Q_LAT:
6756 	case Q_MOPRC:
6757 	case Q_MOPDL:
6758 	case Q_IPV6:
6759 		/*
6760 		 * The offset is relative to the beginning of
6761 		 * the network-layer header.
6762 		 * XXX - are there any cases where we want
6763 		 * off_nl_nosnap?
6764 		 */
6765 		s = gen_off_macpl();
6766 
6767 		/*
6768 		 * If "s" is non-null, it has code to arrange that the
6769 		 * X register contains the offset of the MAC-layer
6770 		 * payload.  Add to it the offset computed into the
6771 		 * register specified by "index", and move that into
6772 		 * the X register.  Otherwise, just load into the X
6773 		 * register the offset computed into the register specified
6774 		 * by "index".
6775 		 */
6776 		if (s != NULL) {
6777 			sappend(s, xfer_to_a(inst));
6778 			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6779 			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6780 		} else
6781 			s = xfer_to_x(inst);
6782 
6783 		/*
6784 		 * Load the item at the sum of the offset we've put in the
6785 		 * X register, the offset of the start of the network
6786 		 * layer header from the beginning of the MAC-layer
6787 		 * payload, and the purported offset of the start of the
6788 		 * MAC-layer payload (which might be 0 if there's a
6789 		 * variable-length prefix before the link-layer header
6790 		 * or the link-layer header itself is variable-length;
6791 		 * the variable-length offset of the start of the
6792 		 * MAC-layer payload is what we put into the X register
6793 		 * and then added to the index).
6794 		 */
6795 		tmp = new_stmt(BPF_LD|BPF_IND|size);
6796 		tmp->s.k = off_macpl + off_nl;
6797 		sappend(s, tmp);
6798 		sappend(inst->s, s);
6799 
6800 		/*
6801 		 * Do the computation only if the packet contains
6802 		 * the protocol in question.
6803 		 */
6804 		b = gen_proto_abbrev(proto);
6805 		if (inst->b)
6806 			gen_and(inst->b, b);
6807 		inst->b = b;
6808 		break;
6809 
6810 	case Q_SCTP:
6811 	case Q_TCP:
6812 	case Q_UDP:
6813 	case Q_ICMP:
6814 	case Q_IGMP:
6815 	case Q_IGRP:
6816 	case Q_PIM:
6817 	case Q_VRRP:
6818 	case Q_CARP:
6819 		/*
6820 		 * The offset is relative to the beginning of
6821 		 * the transport-layer header.
6822 		 *
6823 		 * Load the X register with the length of the IPv4 header
6824 		 * (plus the offset of the link-layer header, if it's
6825 		 * a variable-length header), in bytes.
6826 		 *
6827 		 * XXX - are there any cases where we want
6828 		 * off_nl_nosnap?
6829 		 * XXX - we should, if we're built with
6830 		 * IPv6 support, generate code to load either
6831 		 * IPv4, IPv6, or both, as appropriate.
6832 		 */
6833 		s = gen_loadx_iphdrlen();
6834 
6835 		/*
6836 		 * The X register now contains the sum of the length
6837 		 * of any variable-length header preceding the link-layer
6838 		 * header, any variable-length link-layer header, and the
6839 		 * length of the network-layer header.
6840 		 *
6841 		 * Load into the A register the offset relative to
6842 		 * the beginning of the transport layer header,
6843 		 * add the X register to that, move that to the
6844 		 * X register, and load with an offset from the
6845 		 * X register equal to the offset of the network
6846 		 * layer header relative to the beginning of
6847 		 * the MAC-layer payload plus the fixed-length
6848 		 * portion of the offset of the MAC-layer payload
6849 		 * from the beginning of the raw packet data.
6850 		 */
6851 		sappend(s, xfer_to_a(inst));
6852 		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6853 		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6854 		sappend(s, tmp = new_stmt(BPF_LD|BPF_IND|size));
6855 		tmp->s.k = off_macpl + off_nl;
6856 		sappend(inst->s, s);
6857 
6858 		/*
6859 		 * Do the computation only if the packet contains
6860 		 * the protocol in question - which is true only
6861 		 * if this is an IP datagram and is the first or
6862 		 * only fragment of that datagram.
6863 		 */
6864 		gen_and(gen_proto_abbrev(proto), b = gen_ipfrag());
6865 		if (inst->b)
6866 			gen_and(inst->b, b);
6867 		gen_and(gen_proto_abbrev(Q_IP), b);
6868 		inst->b = b;
6869 		break;
6870 	case Q_ICMPV6:
6871 		bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
6872 		/*NOTREACHED*/
6873 	}
6874 	inst->regno = regno;
6875 	s = new_stmt(BPF_ST);
6876 	s->s.k = regno;
6877 	sappend(inst->s, s);
6878 
6879 	return inst;
6880 }
6881 
6882 struct block *
gen_relation(code,a0,a1,reversed)6883 gen_relation(code, a0, a1, reversed)
6884 	int code;
6885 	struct arth *a0, *a1;
6886 	int reversed;
6887 {
6888 	struct slist *s0, *s1, *s2;
6889 	struct block *b, *tmp;
6890 
6891 	s0 = xfer_to_x(a1);
6892 	s1 = xfer_to_a(a0);
6893 	if (code == BPF_JEQ) {
6894 		s2 = new_stmt(BPF_ALU|BPF_SUB|BPF_X);
6895 		b = new_block(JMP(code));
6896 		sappend(s1, s2);
6897 	}
6898 	else
6899 		b = new_block(BPF_JMP|code|BPF_X);
6900 	if (reversed)
6901 		gen_not(b);
6902 
6903 	sappend(s0, s1);
6904 	sappend(a1->s, s0);
6905 	sappend(a0->s, a1->s);
6906 
6907 	b->stmts = a0->s;
6908 
6909 	free_reg(a0->regno);
6910 	free_reg(a1->regno);
6911 
6912 	/* 'and' together protocol checks */
6913 	if (a0->b) {
6914 		if (a1->b) {
6915 			gen_and(a0->b, tmp = a1->b);
6916 		}
6917 		else
6918 			tmp = a0->b;
6919 	} else
6920 		tmp = a1->b;
6921 
6922 	if (tmp)
6923 		gen_and(tmp, b);
6924 
6925 	return b;
6926 }
6927 
6928 struct arth *
gen_loadlen()6929 gen_loadlen()
6930 {
6931 	int regno = alloc_reg();
6932 	struct arth *a = (struct arth *)newchunk(sizeof(*a));
6933 	struct slist *s;
6934 
6935 	s = new_stmt(BPF_LD|BPF_LEN);
6936 	s->next = new_stmt(BPF_ST);
6937 	s->next->s.k = regno;
6938 	a->s = s;
6939 	a->regno = regno;
6940 
6941 	return a;
6942 }
6943 
6944 struct arth *
gen_loadi(val)6945 gen_loadi(val)
6946 	int val;
6947 {
6948 	struct arth *a;
6949 	struct slist *s;
6950 	int reg;
6951 
6952 	a = (struct arth *)newchunk(sizeof(*a));
6953 
6954 	reg = alloc_reg();
6955 
6956 	s = new_stmt(BPF_LD|BPF_IMM);
6957 	s->s.k = val;
6958 	s->next = new_stmt(BPF_ST);
6959 	s->next->s.k = reg;
6960 	a->s = s;
6961 	a->regno = reg;
6962 
6963 	return a;
6964 }
6965 
6966 struct arth *
gen_neg(a)6967 gen_neg(a)
6968 	struct arth *a;
6969 {
6970 	struct slist *s;
6971 
6972 	s = xfer_to_a(a);
6973 	sappend(a->s, s);
6974 	s = new_stmt(BPF_ALU|BPF_NEG);
6975 	s->s.k = 0;
6976 	sappend(a->s, s);
6977 	s = new_stmt(BPF_ST);
6978 	s->s.k = a->regno;
6979 	sappend(a->s, s);
6980 
6981 	return a;
6982 }
6983 
6984 struct arth *
gen_arth(code,a0,a1)6985 gen_arth(code, a0, a1)
6986 	int code;
6987 	struct arth *a0, *a1;
6988 {
6989 	struct slist *s0, *s1, *s2;
6990 
6991 	s0 = xfer_to_x(a1);
6992 	s1 = xfer_to_a(a0);
6993 	s2 = new_stmt(BPF_ALU|BPF_X|code);
6994 
6995 	sappend(s1, s2);
6996 	sappend(s0, s1);
6997 	sappend(a1->s, s0);
6998 	sappend(a0->s, a1->s);
6999 
7000 	free_reg(a0->regno);
7001 	free_reg(a1->regno);
7002 
7003 	s0 = new_stmt(BPF_ST);
7004 	a0->regno = s0->s.k = alloc_reg();
7005 	sappend(a0->s, s0);
7006 
7007 	return a0;
7008 }
7009 
7010 /*
7011  * Here we handle simple allocation of the scratch registers.
7012  * If too many registers are alloc'd, the allocator punts.
7013  */
7014 static int regused[BPF_MEMWORDS];
7015 static int curreg;
7016 
7017 /*
7018  * Initialize the table of used registers and the current register.
7019  */
7020 static void
init_regs()7021 init_regs()
7022 {
7023 	curreg = 0;
7024 	memset(regused, 0, sizeof regused);
7025 }
7026 
7027 /*
7028  * Return the next free register.
7029  */
7030 static int
alloc_reg()7031 alloc_reg()
7032 {
7033 	int n = BPF_MEMWORDS;
7034 
7035 	while (--n >= 0) {
7036 		if (regused[curreg])
7037 			curreg = (curreg + 1) % BPF_MEMWORDS;
7038 		else {
7039 			regused[curreg] = 1;
7040 			return curreg;
7041 		}
7042 	}
7043 	bpf_error("too many registers needed to evaluate expression");
7044 	/* NOTREACHED */
7045 	return 0;
7046 }
7047 
7048 /*
7049  * Return a register to the table so it can
7050  * be used later.
7051  */
7052 static void
free_reg(n)7053 free_reg(n)
7054 	int n;
7055 {
7056 	regused[n] = 0;
7057 }
7058 
7059 static struct block *
gen_len(jmp,n)7060 gen_len(jmp, n)
7061 	int jmp, n;
7062 {
7063 	struct slist *s;
7064 	struct block *b;
7065 
7066 	s = new_stmt(BPF_LD|BPF_LEN);
7067 	b = new_block(JMP(jmp));
7068 	b->stmts = s;
7069 	b->s.k = n;
7070 
7071 	return b;
7072 }
7073 
7074 struct block *
gen_greater(n)7075 gen_greater(n)
7076 	int n;
7077 {
7078 	return gen_len(BPF_JGE, n);
7079 }
7080 
7081 /*
7082  * Actually, this is less than or equal.
7083  */
7084 struct block *
gen_less(n)7085 gen_less(n)
7086 	int n;
7087 {
7088 	struct block *b;
7089 
7090 	b = gen_len(BPF_JGT, n);
7091 	gen_not(b);
7092 
7093 	return b;
7094 }
7095 
7096 /*
7097  * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7098  * the beginning of the link-layer header.
7099  * XXX - that means you can't test values in the radiotap header, but
7100  * as that header is difficult if not impossible to parse generally
7101  * without a loop, that might not be a severe problem.  A new keyword
7102  * "radio" could be added for that, although what you'd really want
7103  * would be a way of testing particular radio header values, which
7104  * would generate code appropriate to the radio header in question.
7105  */
7106 struct block *
gen_byteop(op,idx,val)7107 gen_byteop(op, idx, val)
7108 	int op, idx, val;
7109 {
7110 	struct block *b;
7111 	struct slist *s;
7112 
7113 	switch (op) {
7114 	default:
7115 		abort();
7116 
7117 	case '=':
7118 		return gen_cmp(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7119 
7120 	case '<':
7121 		b = gen_cmp_lt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7122 		return b;
7123 
7124 	case '>':
7125 		b = gen_cmp_gt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7126 		return b;
7127 
7128 	case '|':
7129 		s = new_stmt(BPF_ALU|BPF_OR|BPF_K);
7130 		break;
7131 
7132 	case '&':
7133 		s = new_stmt(BPF_ALU|BPF_AND|BPF_K);
7134 		break;
7135 	}
7136 	s->s.k = val;
7137 	b = new_block(JMP(BPF_JEQ));
7138 	b->stmts = s;
7139 	gen_not(b);
7140 
7141 	return b;
7142 }
7143 
7144 static u_char abroadcast[] = { 0x0 };
7145 
7146 struct block *
gen_broadcast(proto)7147 gen_broadcast(proto)
7148 	int proto;
7149 {
7150 	bpf_u_int32 hostmask;
7151 	struct block *b0, *b1, *b2;
7152 	static u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7153 
7154 	switch (proto) {
7155 
7156 	case Q_DEFAULT:
7157 	case Q_LINK:
7158 		switch (linktype) {
7159 		case DLT_ARCNET:
7160 		case DLT_ARCNET_LINUX:
7161 			return gen_ahostop(abroadcast, Q_DST);
7162 		case DLT_EN10MB:
7163 		case DLT_NETANALYZER:
7164 		case DLT_NETANALYZER_TRANSPARENT:
7165 			return gen_ehostop(ebroadcast, Q_DST);
7166 		case DLT_FDDI:
7167 			return gen_fhostop(ebroadcast, Q_DST);
7168 		case DLT_IEEE802:
7169 			return gen_thostop(ebroadcast, Q_DST);
7170 		case DLT_IEEE802_11:
7171 		case DLT_PRISM_HEADER:
7172 		case DLT_IEEE802_11_RADIO_AVS:
7173 		case DLT_IEEE802_11_RADIO:
7174 		case DLT_PPI:
7175 			return gen_wlanhostop(ebroadcast, Q_DST);
7176 		case DLT_IP_OVER_FC:
7177 			return gen_ipfchostop(ebroadcast, Q_DST);
7178 		case DLT_SUNATM:
7179 			if (is_lane) {
7180 				/*
7181 				 * Check that the packet doesn't begin with an
7182 				 * LE Control marker.  (We've already generated
7183 				 * a test for LANE.)
7184 				 */
7185 				b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
7186 				    BPF_H, 0xFF00);
7187 				gen_not(b1);
7188 
7189 				/*
7190 				 * Now check the MAC address.
7191 				 */
7192 				b0 = gen_ehostop(ebroadcast, Q_DST);
7193 				gen_and(b1, b0);
7194 				return b0;
7195 			}
7196 			break;
7197 		default:
7198 			bpf_error("not a broadcast link");
7199 		}
7200 		break;
7201 
7202 	case Q_IP:
7203 		/*
7204 		 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
7205 		 * as an indication that we don't know the netmask, and fail
7206 		 * in that case.
7207 		 */
7208 		if (netmask == PCAP_NETMASK_UNKNOWN)
7209 			bpf_error("netmask not known, so 'ip broadcast' not supported");
7210 		b0 = gen_linktype(ETHERTYPE_IP);
7211 		hostmask = ~netmask;
7212 		b1 = gen_mcmp(OR_NET, 16, BPF_W, (bpf_int32)0, hostmask);
7213 		b2 = gen_mcmp(OR_NET, 16, BPF_W,
7214 			      (bpf_int32)(~0 & hostmask), hostmask);
7215 		gen_or(b1, b2);
7216 		gen_and(b0, b2);
7217 		return b2;
7218 	}
7219 	bpf_error("only link-layer/IP broadcast filters supported");
7220 	/* NOTREACHED */
7221 	return NULL;
7222 }
7223 
7224 /*
7225  * Generate code to test the low-order bit of a MAC address (that's
7226  * the bottom bit of the *first* byte).
7227  */
7228 static struct block *
gen_mac_multicast(offset)7229 gen_mac_multicast(offset)
7230 	int offset;
7231 {
7232 	register struct block *b0;
7233 	register struct slist *s;
7234 
7235 	/* link[offset] & 1 != 0 */
7236 	s = gen_load_a(OR_LINK, offset, BPF_B);
7237 	b0 = new_block(JMP(BPF_JSET));
7238 	b0->s.k = 1;
7239 	b0->stmts = s;
7240 	return b0;
7241 }
7242 
7243 struct block *
gen_multicast(proto)7244 gen_multicast(proto)
7245 	int proto;
7246 {
7247 	register struct block *b0, *b1, *b2;
7248 	register struct slist *s;
7249 
7250 	switch (proto) {
7251 
7252 	case Q_DEFAULT:
7253 	case Q_LINK:
7254 		switch (linktype) {
7255 		case DLT_ARCNET:
7256 		case DLT_ARCNET_LINUX:
7257 			/* all ARCnet multicasts use the same address */
7258 			return gen_ahostop(abroadcast, Q_DST);
7259 		case DLT_EN10MB:
7260 		case DLT_NETANALYZER:
7261 		case DLT_NETANALYZER_TRANSPARENT:
7262 			/* ether[0] & 1 != 0 */
7263 			return gen_mac_multicast(0);
7264 		case DLT_FDDI:
7265 			/*
7266 			 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
7267 			 *
7268 			 * XXX - was that referring to bit-order issues?
7269 			 */
7270 			/* fddi[1] & 1 != 0 */
7271 			return gen_mac_multicast(1);
7272 		case DLT_IEEE802:
7273 			/* tr[2] & 1 != 0 */
7274 			return gen_mac_multicast(2);
7275 		case DLT_IEEE802_11:
7276 		case DLT_PRISM_HEADER:
7277 		case DLT_IEEE802_11_RADIO_AVS:
7278 		case DLT_IEEE802_11_RADIO:
7279 		case DLT_PPI:
7280 			/*
7281 			 * Oh, yuk.
7282 			 *
7283 			 *	For control frames, there is no DA.
7284 			 *
7285 			 *	For management frames, DA is at an
7286 			 *	offset of 4 from the beginning of
7287 			 *	the packet.
7288 			 *
7289 			 *	For data frames, DA is at an offset
7290 			 *	of 4 from the beginning of the packet
7291 			 *	if To DS is clear and at an offset of
7292 			 *	16 from the beginning of the packet
7293 			 *	if To DS is set.
7294 			 */
7295 
7296 			/*
7297 			 * Generate the tests to be done for data frames.
7298 			 *
7299 			 * First, check for To DS set, i.e. "link[1] & 0x01".
7300 			 */
7301 			s = gen_load_a(OR_LINK, 1, BPF_B);
7302 			b1 = new_block(JMP(BPF_JSET));
7303 			b1->s.k = 0x01;	/* To DS */
7304 			b1->stmts = s;
7305 
7306 			/*
7307 			 * If To DS is set, the DA is at 16.
7308 			 */
7309 			b0 = gen_mac_multicast(16);
7310 			gen_and(b1, b0);
7311 
7312 			/*
7313 			 * Now, check for To DS not set, i.e. check
7314 			 * "!(link[1] & 0x01)".
7315 			 */
7316 			s = gen_load_a(OR_LINK, 1, BPF_B);
7317 			b2 = new_block(JMP(BPF_JSET));
7318 			b2->s.k = 0x01;	/* To DS */
7319 			b2->stmts = s;
7320 			gen_not(b2);
7321 
7322 			/*
7323 			 * If To DS is not set, the DA is at 4.
7324 			 */
7325 			b1 = gen_mac_multicast(4);
7326 			gen_and(b2, b1);
7327 
7328 			/*
7329 			 * Now OR together the last two checks.  That gives
7330 			 * the complete set of checks for data frames.
7331 			 */
7332 			gen_or(b1, b0);
7333 
7334 			/*
7335 			 * Now check for a data frame.
7336 			 * I.e, check "link[0] & 0x08".
7337 			 */
7338 			s = gen_load_a(OR_LINK, 0, BPF_B);
7339 			b1 = new_block(JMP(BPF_JSET));
7340 			b1->s.k = 0x08;
7341 			b1->stmts = s;
7342 
7343 			/*
7344 			 * AND that with the checks done for data frames.
7345 			 */
7346 			gen_and(b1, b0);
7347 
7348 			/*
7349 			 * If the high-order bit of the type value is 0, this
7350 			 * is a management frame.
7351 			 * I.e, check "!(link[0] & 0x08)".
7352 			 */
7353 			s = gen_load_a(OR_LINK, 0, BPF_B);
7354 			b2 = new_block(JMP(BPF_JSET));
7355 			b2->s.k = 0x08;
7356 			b2->stmts = s;
7357 			gen_not(b2);
7358 
7359 			/*
7360 			 * For management frames, the DA is at 4.
7361 			 */
7362 			b1 = gen_mac_multicast(4);
7363 			gen_and(b2, b1);
7364 
7365 			/*
7366 			 * OR that with the checks done for data frames.
7367 			 * That gives the checks done for management and
7368 			 * data frames.
7369 			 */
7370 			gen_or(b1, b0);
7371 
7372 			/*
7373 			 * If the low-order bit of the type value is 1,
7374 			 * this is either a control frame or a frame
7375 			 * with a reserved type, and thus not a
7376 			 * frame with an SA.
7377 			 *
7378 			 * I.e., check "!(link[0] & 0x04)".
7379 			 */
7380 			s = gen_load_a(OR_LINK, 0, BPF_B);
7381 			b1 = new_block(JMP(BPF_JSET));
7382 			b1->s.k = 0x04;
7383 			b1->stmts = s;
7384 			gen_not(b1);
7385 
7386 			/*
7387 			 * AND that with the checks for data and management
7388 			 * frames.
7389 			 */
7390 			gen_and(b1, b0);
7391 			return b0;
7392 		case DLT_IP_OVER_FC:
7393 			b0 = gen_mac_multicast(2);
7394 			return b0;
7395 		case DLT_SUNATM:
7396 			if (is_lane) {
7397 				/*
7398 				 * Check that the packet doesn't begin with an
7399 				 * LE Control marker.  (We've already generated
7400 				 * a test for LANE.)
7401 				 */
7402 				b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
7403 				    BPF_H, 0xFF00);
7404 				gen_not(b1);
7405 
7406 				/* ether[off_mac] & 1 != 0 */
7407 				b0 = gen_mac_multicast(off_mac);
7408 				gen_and(b1, b0);
7409 				return b0;
7410 			}
7411 			break;
7412 		default:
7413 			break;
7414 		}
7415 		/* Link not known to support multicasts */
7416 		break;
7417 
7418 	case Q_IP:
7419 		b0 = gen_linktype(ETHERTYPE_IP);
7420 		b1 = gen_cmp_ge(OR_NET, 16, BPF_B, (bpf_int32)224);
7421 		gen_and(b0, b1);
7422 		return b1;
7423 
7424 	case Q_IPV6:
7425 		b0 = gen_linktype(ETHERTYPE_IPV6);
7426 		b1 = gen_cmp(OR_NET, 24, BPF_B, (bpf_int32)255);
7427 		gen_and(b0, b1);
7428 		return b1;
7429 	}
7430 	bpf_error("link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
7431 	/* NOTREACHED */
7432 	return NULL;
7433 }
7434 
7435 /*
7436  * Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
7437  * Outbound traffic is sent by this machine, while inbound traffic is
7438  * sent by a remote machine (and may include packets destined for a
7439  * unicast or multicast link-layer address we are not subscribing to).
7440  * These are the same definitions implemented by pcap_setdirection().
7441  * Capturing only unicast traffic destined for this host is probably
7442  * better accomplished using a higher-layer filter.
7443  */
7444 struct block *
gen_inbound(dir)7445 gen_inbound(dir)
7446 	int dir;
7447 {
7448 	register struct block *b0;
7449 
7450 	/*
7451 	 * Only some data link types support inbound/outbound qualifiers.
7452 	 */
7453 	switch (linktype) {
7454 	case DLT_SLIP:
7455 		b0 = gen_relation(BPF_JEQ,
7456 			  gen_load(Q_LINK, gen_loadi(0), 1),
7457 			  gen_loadi(0),
7458 			  dir);
7459 		break;
7460 
7461 	case DLT_IPNET:
7462 		if (dir) {
7463 			/* match outgoing packets */
7464 			b0 = gen_cmp(OR_LINK, 2, BPF_H, IPNET_OUTBOUND);
7465 		} else {
7466 			/* match incoming packets */
7467 			b0 = gen_cmp(OR_LINK, 2, BPF_H, IPNET_INBOUND);
7468 		}
7469 		break;
7470 
7471 	case DLT_LINUX_SLL:
7472 		/* match outgoing packets */
7473 		b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_OUTGOING);
7474 		if (!dir) {
7475 			/* to filter on inbound traffic, invert the match */
7476 			gen_not(b0);
7477 		}
7478 		break;
7479 
7480 #ifdef HAVE_NET_PFVAR_H
7481 	case DLT_PFLOG:
7482 		b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, dir), BPF_B,
7483 		    (bpf_int32)((dir == 0) ? PF_IN : PF_OUT));
7484 		break;
7485 #endif
7486 
7487 	case DLT_PPP_PPPD:
7488 		if (dir) {
7489 			/* match outgoing packets */
7490 			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_OUT);
7491 		} else {
7492 			/* match incoming packets */
7493 			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_IN);
7494 		}
7495 		break;
7496 
7497         case DLT_JUNIPER_MFR:
7498         case DLT_JUNIPER_MLFR:
7499         case DLT_JUNIPER_MLPPP:
7500 	case DLT_JUNIPER_ATM1:
7501 	case DLT_JUNIPER_ATM2:
7502 	case DLT_JUNIPER_PPPOE:
7503 	case DLT_JUNIPER_PPPOE_ATM:
7504         case DLT_JUNIPER_GGSN:
7505         case DLT_JUNIPER_ES:
7506         case DLT_JUNIPER_MONITOR:
7507         case DLT_JUNIPER_SERVICES:
7508         case DLT_JUNIPER_ETHER:
7509         case DLT_JUNIPER_PPP:
7510         case DLT_JUNIPER_FRELAY:
7511         case DLT_JUNIPER_CHDLC:
7512         case DLT_JUNIPER_VP:
7513         case DLT_JUNIPER_ST:
7514         case DLT_JUNIPER_ISM:
7515         case DLT_JUNIPER_VS:
7516         case DLT_JUNIPER_SRX_E2E:
7517         case DLT_JUNIPER_FIBRECHANNEL:
7518 	case DLT_JUNIPER_ATM_CEMIC:
7519 
7520 		/* juniper flags (including direction) are stored
7521 		 * the byte after the 3-byte magic number */
7522 		if (dir) {
7523 			/* match outgoing packets */
7524 			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 0, 0x01);
7525 		} else {
7526 			/* match incoming packets */
7527 			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 1, 0x01);
7528 		}
7529 		break;
7530 
7531 	default:
7532 		/*
7533 		 * If we have packet meta-data indicating a direction,
7534 		 * check it, otherwise give up as this link-layer type
7535 		 * has nothing in the packet data.
7536 		 */
7537 #if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
7538 		/*
7539 		 * This is Linux with PF_PACKET support.
7540 		 * If this is a *live* capture, we can look at
7541 		 * special meta-data in the filter expression;
7542 		 * if it's a savefile, we can't.
7543 		 */
7544 		if (bpf_pcap->rfile != NULL) {
7545 			/* We have a FILE *, so this is a savefile */
7546 			bpf_error("inbound/outbound not supported on linktype %d when reading savefiles",
7547 			    linktype);
7548 			b0 = NULL;
7549 			/* NOTREACHED */
7550 		}
7551 		/* match outgoing packets */
7552 		b0 = gen_cmp(OR_LINK, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H,
7553 		             PACKET_OUTGOING);
7554 		if (!dir) {
7555 			/* to filter on inbound traffic, invert the match */
7556 			gen_not(b0);
7557 		}
7558 #else /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7559 		bpf_error("inbound/outbound not supported on linktype %d",
7560 		    linktype);
7561 		b0 = NULL;
7562 		/* NOTREACHED */
7563 #endif /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7564 	}
7565 	return (b0);
7566 }
7567 
7568 #ifdef HAVE_NET_PFVAR_H
7569 /* PF firewall log matched interface */
7570 struct block *
gen_pf_ifname(const char * ifname)7571 gen_pf_ifname(const char *ifname)
7572 {
7573 	struct block *b0;
7574 	u_int len, off;
7575 
7576 	if (linktype != DLT_PFLOG) {
7577 		bpf_error("ifname supported only on PF linktype");
7578 		/* NOTREACHED */
7579 	}
7580 	len = sizeof(((struct pfloghdr *)0)->ifname);
7581 	off = offsetof(struct pfloghdr, ifname);
7582 	if (strlen(ifname) >= len) {
7583 		bpf_error("ifname interface names can only be %d characters",
7584 		    len-1);
7585 		/* NOTREACHED */
7586 	}
7587 	b0 = gen_bcmp(OR_LINK, off, strlen(ifname), (const u_char *)ifname);
7588 	return (b0);
7589 }
7590 
7591 /* PF firewall log ruleset name */
7592 struct block *
gen_pf_ruleset(char * ruleset)7593 gen_pf_ruleset(char *ruleset)
7594 {
7595 	struct block *b0;
7596 
7597 	if (linktype != DLT_PFLOG) {
7598 		bpf_error("ruleset supported only on PF linktype");
7599 		/* NOTREACHED */
7600 	}
7601 
7602 	if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
7603 		bpf_error("ruleset names can only be %ld characters",
7604 		    (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
7605 		/* NOTREACHED */
7606 	}
7607 
7608 	b0 = gen_bcmp(OR_LINK, offsetof(struct pfloghdr, ruleset),
7609 	    strlen(ruleset), (const u_char *)ruleset);
7610 	return (b0);
7611 }
7612 
7613 /* PF firewall log rule number */
7614 struct block *
gen_pf_rnr(int rnr)7615 gen_pf_rnr(int rnr)
7616 {
7617 	struct block *b0;
7618 
7619 	if (linktype != DLT_PFLOG) {
7620 		bpf_error("rnr supported only on PF linktype");
7621 		/* NOTREACHED */
7622 	}
7623 
7624 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, rulenr), BPF_W,
7625 		 (bpf_int32)rnr);
7626 	return (b0);
7627 }
7628 
7629 /* PF firewall log sub-rule number */
7630 struct block *
gen_pf_srnr(int srnr)7631 gen_pf_srnr(int srnr)
7632 {
7633 	struct block *b0;
7634 
7635 	if (linktype != DLT_PFLOG) {
7636 		bpf_error("srnr supported only on PF linktype");
7637 		/* NOTREACHED */
7638 	}
7639 
7640 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, subrulenr), BPF_W,
7641 	    (bpf_int32)srnr);
7642 	return (b0);
7643 }
7644 
7645 /* PF firewall log reason code */
7646 struct block *
gen_pf_reason(int reason)7647 gen_pf_reason(int reason)
7648 {
7649 	struct block *b0;
7650 
7651 	if (linktype != DLT_PFLOG) {
7652 		bpf_error("reason supported only on PF linktype");
7653 		/* NOTREACHED */
7654 	}
7655 
7656 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, reason), BPF_B,
7657 	    (bpf_int32)reason);
7658 	return (b0);
7659 }
7660 
7661 /* PF firewall log action */
7662 struct block *
gen_pf_action(int action)7663 gen_pf_action(int action)
7664 {
7665 	struct block *b0;
7666 
7667 	if (linktype != DLT_PFLOG) {
7668 		bpf_error("action supported only on PF linktype");
7669 		/* NOTREACHED */
7670 	}
7671 
7672 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, action), BPF_B,
7673 	    (bpf_int32)action);
7674 	return (b0);
7675 }
7676 #else /* !HAVE_NET_PFVAR_H */
7677 struct block *
gen_pf_ifname(const char * ifname)7678 gen_pf_ifname(const char *ifname)
7679 {
7680 	bpf_error("libpcap was compiled without pf support");
7681 	/* NOTREACHED */
7682 	return (NULL);
7683 }
7684 
7685 struct block *
gen_pf_ruleset(char * ruleset)7686 gen_pf_ruleset(char *ruleset)
7687 {
7688 	bpf_error("libpcap was compiled on a machine without pf support");
7689 	/* NOTREACHED */
7690 	return (NULL);
7691 }
7692 
7693 struct block *
gen_pf_rnr(int rnr)7694 gen_pf_rnr(int rnr)
7695 {
7696 	bpf_error("libpcap was compiled on a machine without pf support");
7697 	/* NOTREACHED */
7698 	return (NULL);
7699 }
7700 
7701 struct block *
gen_pf_srnr(int srnr)7702 gen_pf_srnr(int srnr)
7703 {
7704 	bpf_error("libpcap was compiled on a machine without pf support");
7705 	/* NOTREACHED */
7706 	return (NULL);
7707 }
7708 
7709 struct block *
gen_pf_reason(int reason)7710 gen_pf_reason(int reason)
7711 {
7712 	bpf_error("libpcap was compiled on a machine without pf support");
7713 	/* NOTREACHED */
7714 	return (NULL);
7715 }
7716 
7717 struct block *
gen_pf_action(int action)7718 gen_pf_action(int action)
7719 {
7720 	bpf_error("libpcap was compiled on a machine without pf support");
7721 	/* NOTREACHED */
7722 	return (NULL);
7723 }
7724 #endif /* HAVE_NET_PFVAR_H */
7725 
7726 /* IEEE 802.11 wireless header */
7727 struct block *
gen_p80211_type(int type,int mask)7728 gen_p80211_type(int type, int mask)
7729 {
7730 	struct block *b0;
7731 
7732 	switch (linktype) {
7733 
7734 	case DLT_IEEE802_11:
7735 	case DLT_PRISM_HEADER:
7736 	case DLT_IEEE802_11_RADIO_AVS:
7737 	case DLT_IEEE802_11_RADIO:
7738 		b0 = gen_mcmp(OR_LINK, 0, BPF_B, (bpf_int32)type,
7739 		    (bpf_int32)mask);
7740 		break;
7741 
7742 	default:
7743 		bpf_error("802.11 link-layer types supported only on 802.11");
7744 		/* NOTREACHED */
7745 	}
7746 
7747 	return (b0);
7748 }
7749 
7750 struct block *
gen_p80211_fcdir(int fcdir)7751 gen_p80211_fcdir(int fcdir)
7752 {
7753 	struct block *b0;
7754 
7755 	switch (linktype) {
7756 
7757 	case DLT_IEEE802_11:
7758 	case DLT_PRISM_HEADER:
7759 	case DLT_IEEE802_11_RADIO_AVS:
7760 	case DLT_IEEE802_11_RADIO:
7761 		break;
7762 
7763 	default:
7764 		bpf_error("frame direction supported only with 802.11 headers");
7765 		/* NOTREACHED */
7766 	}
7767 
7768 	b0 = gen_mcmp(OR_LINK, 1, BPF_B, (bpf_int32)fcdir,
7769 		(bpf_u_int32)IEEE80211_FC1_DIR_MASK);
7770 
7771 	return (b0);
7772 }
7773 
7774 struct block *
gen_acode(eaddr,q)7775 gen_acode(eaddr, q)
7776 	register const u_char *eaddr;
7777 	struct qual q;
7778 {
7779 	switch (linktype) {
7780 
7781 	case DLT_ARCNET:
7782 	case DLT_ARCNET_LINUX:
7783 		if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
7784 		    q.proto == Q_LINK)
7785 			return (gen_ahostop(eaddr, (int)q.dir));
7786 		else {
7787 			bpf_error("ARCnet address used in non-arc expression");
7788 			/* NOTREACHED */
7789 		}
7790 		break;
7791 
7792 	default:
7793 		bpf_error("aid supported only on ARCnet");
7794 		/* NOTREACHED */
7795 	}
7796 	bpf_error("ARCnet address used in non-arc expression");
7797 	/* NOTREACHED */
7798 	return NULL;
7799 }
7800 
7801 static struct block *
gen_ahostop(eaddr,dir)7802 gen_ahostop(eaddr, dir)
7803 	register const u_char *eaddr;
7804 	register int dir;
7805 {
7806 	register struct block *b0, *b1;
7807 
7808 	switch (dir) {
7809 	/* src comes first, different from Ethernet */
7810 	case Q_SRC:
7811 		return gen_bcmp(OR_LINK, 0, 1, eaddr);
7812 
7813 	case Q_DST:
7814 		return gen_bcmp(OR_LINK, 1, 1, eaddr);
7815 
7816 	case Q_AND:
7817 		b0 = gen_ahostop(eaddr, Q_SRC);
7818 		b1 = gen_ahostop(eaddr, Q_DST);
7819 		gen_and(b0, b1);
7820 		return b1;
7821 
7822 	case Q_DEFAULT:
7823 	case Q_OR:
7824 		b0 = gen_ahostop(eaddr, Q_SRC);
7825 		b1 = gen_ahostop(eaddr, Q_DST);
7826 		gen_or(b0, b1);
7827 		return b1;
7828 
7829 	case Q_ADDR1:
7830 		bpf_error("'addr1' is only supported on 802.11");
7831 		break;
7832 
7833 	case Q_ADDR2:
7834 		bpf_error("'addr2' is only supported on 802.11");
7835 		break;
7836 
7837 	case Q_ADDR3:
7838 		bpf_error("'addr3' is only supported on 802.11");
7839 		break;
7840 
7841 	case Q_ADDR4:
7842 		bpf_error("'addr4' is only supported on 802.11");
7843 		break;
7844 
7845 	case Q_RA:
7846 		bpf_error("'ra' is only supported on 802.11");
7847 		break;
7848 
7849 	case Q_TA:
7850 		bpf_error("'ta' is only supported on 802.11");
7851 		break;
7852 	}
7853 	abort();
7854 	/* NOTREACHED */
7855 }
7856 
7857 /*
7858  * support IEEE 802.1Q VLAN trunk over ethernet
7859  */
7860 struct block *
gen_vlan(vlan_num)7861 gen_vlan(vlan_num)
7862 	int vlan_num;
7863 {
7864 	struct	block	*b0, *b1;
7865 
7866 	/* can't check for VLAN-encapsulated packets inside MPLS */
7867 	if (label_stack_depth > 0)
7868 		bpf_error("no VLAN match after MPLS");
7869 
7870 	/*
7871 	 * Check for a VLAN packet, and then change the offsets to point
7872 	 * to the type and data fields within the VLAN packet.  Just
7873 	 * increment the offsets, so that we can support a hierarchy, e.g.
7874 	 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
7875 	 * VLAN 100.
7876 	 *
7877 	 * XXX - this is a bit of a kludge.  If we were to split the
7878 	 * compiler into a parser that parses an expression and
7879 	 * generates an expression tree, and a code generator that
7880 	 * takes an expression tree (which could come from our
7881 	 * parser or from some other parser) and generates BPF code,
7882 	 * we could perhaps make the offsets parameters of routines
7883 	 * and, in the handler for an "AND" node, pass to subnodes
7884 	 * other than the VLAN node the adjusted offsets.
7885 	 *
7886 	 * This would mean that "vlan" would, instead of changing the
7887 	 * behavior of *all* tests after it, change only the behavior
7888 	 * of tests ANDed with it.  That would change the documented
7889 	 * semantics of "vlan", which might break some expressions.
7890 	 * However, it would mean that "(vlan and ip) or ip" would check
7891 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
7892 	 * checking only for VLAN-encapsulated IP, so that could still
7893 	 * be considered worth doing; it wouldn't break expressions
7894 	 * that are of the form "vlan and ..." or "vlan N and ...",
7895 	 * which I suspect are the most common expressions involving
7896 	 * "vlan".  "vlan or ..." doesn't necessarily do what the user
7897 	 * would really want, now, as all the "or ..." tests would
7898 	 * be done assuming a VLAN, even though the "or" could be viewed
7899 	 * as meaning "or, if this isn't a VLAN packet...".
7900 	 */
7901 	orig_nl = off_nl;
7902 
7903 	switch (linktype) {
7904 
7905 	case DLT_EN10MB:
7906 	case DLT_NETANALYZER:
7907 	case DLT_NETANALYZER_TRANSPARENT:
7908 		/* check for VLAN, including QinQ */
7909 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
7910 		    (bpf_int32)ETHERTYPE_8021Q);
7911 		b1 = gen_cmp(OR_LINK, off_linktype, BPF_H,
7912 		    (bpf_int32)ETHERTYPE_8021QINQ);
7913 		gen_or(b0,b1);
7914 		b0 = b1;
7915 
7916 		/* If a specific VLAN is requested, check VLAN id */
7917 		if (vlan_num >= 0) {
7918 			b1 = gen_mcmp(OR_MACPL, 0, BPF_H,
7919 			    (bpf_int32)vlan_num, 0x0fff);
7920 			gen_and(b0, b1);
7921 			b0 = b1;
7922 		}
7923 
7924 		off_macpl += 4;
7925 		off_linktype += 4;
7926 #if 0
7927 		off_nl_nosnap += 4;
7928 		off_nl += 4;
7929 #endif
7930 		break;
7931 
7932 	default:
7933 		bpf_error("no VLAN support for data link type %d",
7934 		      linktype);
7935 		/*NOTREACHED*/
7936 	}
7937 
7938 	return (b0);
7939 }
7940 
7941 /*
7942  * support for MPLS
7943  */
7944 struct block *
gen_mpls(label_num)7945 gen_mpls(label_num)
7946 	int label_num;
7947 {
7948 	struct	block	*b0,*b1;
7949 
7950 	/*
7951 	 * Change the offsets to point to the type and data fields within
7952 	 * the MPLS packet.  Just increment the offsets, so that we
7953 	 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
7954 	 * capture packets with an outer label of 100000 and an inner
7955 	 * label of 1024.
7956 	 *
7957 	 * XXX - this is a bit of a kludge.  See comments in gen_vlan().
7958 	 */
7959         orig_nl = off_nl;
7960 
7961         if (label_stack_depth > 0) {
7962             /* just match the bottom-of-stack bit clear */
7963             b0 = gen_mcmp(OR_MACPL, orig_nl-2, BPF_B, 0, 0x01);
7964         } else {
7965             /*
7966              * Indicate that we're checking MPLS-encapsulated headers,
7967              * to make sure higher level code generators don't try to
7968              * match against IP-related protocols such as Q_ARP, Q_RARP
7969              * etc.
7970              */
7971             switch (linktype) {
7972 
7973             case DLT_C_HDLC: /* fall through */
7974             case DLT_EN10MB:
7975             case DLT_NETANALYZER:
7976             case DLT_NETANALYZER_TRANSPARENT:
7977                     b0 = gen_linktype(ETHERTYPE_MPLS);
7978                     break;
7979 
7980             case DLT_PPP:
7981                     b0 = gen_linktype(PPP_MPLS_UCAST);
7982                     break;
7983 
7984                     /* FIXME add other DLT_s ...
7985                      * for Frame-Relay/and ATM this may get messy due to SNAP headers
7986                      * leave it for now */
7987 
7988             default:
7989                     bpf_error("no MPLS support for data link type %d",
7990                           linktype);
7991                     b0 = NULL;
7992                     /*NOTREACHED*/
7993                     break;
7994             }
7995         }
7996 
7997 	/* If a specific MPLS label is requested, check it */
7998 	if (label_num >= 0) {
7999 		label_num = label_num << 12; /* label is shifted 12 bits on the wire */
8000 		b1 = gen_mcmp(OR_MACPL, orig_nl, BPF_W, (bpf_int32)label_num,
8001 		    0xfffff000); /* only compare the first 20 bits */
8002 		gen_and(b0, b1);
8003 		b0 = b1;
8004 	}
8005 
8006         off_nl_nosnap += 4;
8007         off_nl += 4;
8008         label_stack_depth++;
8009 	return (b0);
8010 }
8011 
8012 /*
8013  * Support PPPOE discovery and session.
8014  */
8015 struct block *
gen_pppoed()8016 gen_pppoed()
8017 {
8018 	/* check for PPPoE discovery */
8019 	return gen_linktype((bpf_int32)ETHERTYPE_PPPOED);
8020 }
8021 
8022 struct block *
gen_pppoes(sess_num)8023 gen_pppoes(sess_num)
8024 	int sess_num;
8025 {
8026 	struct block *b0, *b1;
8027 
8028 	/*
8029 	 * Test against the PPPoE session link-layer type.
8030 	 */
8031 	b0 = gen_linktype((bpf_int32)ETHERTYPE_PPPOES);
8032 
8033 	/*
8034 	 * Change the offsets to point to the type and data fields within
8035 	 * the PPP packet, and note that this is PPPoE rather than
8036 	 * raw PPP.
8037 	 *
8038 	 * XXX - this is a bit of a kludge.  If we were to split the
8039 	 * compiler into a parser that parses an expression and
8040 	 * generates an expression tree, and a code generator that
8041 	 * takes an expression tree (which could come from our
8042 	 * parser or from some other parser) and generates BPF code,
8043 	 * we could perhaps make the offsets parameters of routines
8044 	 * and, in the handler for an "AND" node, pass to subnodes
8045 	 * other than the PPPoE node the adjusted offsets.
8046 	 *
8047 	 * This would mean that "pppoes" would, instead of changing the
8048 	 * behavior of *all* tests after it, change only the behavior
8049 	 * of tests ANDed with it.  That would change the documented
8050 	 * semantics of "pppoes", which might break some expressions.
8051 	 * However, it would mean that "(pppoes and ip) or ip" would check
8052 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8053 	 * checking only for VLAN-encapsulated IP, so that could still
8054 	 * be considered worth doing; it wouldn't break expressions
8055 	 * that are of the form "pppoes and ..." which I suspect are the
8056 	 * most common expressions involving "pppoes".  "pppoes or ..."
8057 	 * doesn't necessarily do what the user would really want, now,
8058 	 * as all the "or ..." tests would be done assuming PPPoE, even
8059 	 * though the "or" could be viewed as meaning "or, if this isn't
8060 	 * a PPPoE packet...".
8061 	 */
8062 	orig_linktype = off_linktype;	/* save original values */
8063 	orig_nl = off_nl;
8064 	is_pppoes = 1;
8065 
8066 	/* If a specific session is requested, check PPPoE session id */
8067 	if (sess_num >= 0) {
8068 		b1 = gen_mcmp(OR_MACPL, orig_nl, BPF_W,
8069 		    (bpf_int32)sess_num, 0x0000ffff);
8070 		gen_and(b0, b1);
8071 		b0 = b1;
8072 	}
8073 
8074 	/*
8075 	 * The "network-layer" protocol is PPPoE, which has a 6-byte
8076 	 * PPPoE header, followed by a PPP packet.
8077 	 *
8078 	 * There is no HDLC encapsulation for the PPP packet (it's
8079 	 * encapsulated in PPPoES instead), so the link-layer type
8080 	 * starts at the first byte of the PPP packet.  For PPPoE,
8081 	 * that offset is relative to the beginning of the total
8082 	 * link-layer payload, including any 802.2 LLC header, so
8083 	 * it's 6 bytes past off_nl.
8084 	 */
8085 	off_linktype = off_nl + 6;
8086 
8087 	/*
8088 	 * The network-layer offsets are relative to the beginning
8089 	 * of the MAC-layer payload; that's past the 6-byte
8090 	 * PPPoE header and the 2-byte PPP header.
8091 	 */
8092 	off_nl = 6+2;
8093 	off_nl_nosnap = 6+2;
8094 
8095 	return b0;
8096 }
8097 
8098 struct block *
gen_atmfield_code(atmfield,jvalue,jtype,reverse)8099 gen_atmfield_code(atmfield, jvalue, jtype, reverse)
8100 	int atmfield;
8101 	bpf_int32 jvalue;
8102 	bpf_u_int32 jtype;
8103 	int reverse;
8104 {
8105 	struct block *b0;
8106 
8107 	switch (atmfield) {
8108 
8109 	case A_VPI:
8110 		if (!is_atm)
8111 			bpf_error("'vpi' supported only on raw ATM");
8112 		if (off_vpi == (u_int)-1)
8113 			abort();
8114 		b0 = gen_ncmp(OR_LINK, off_vpi, BPF_B, 0xffffffff, jtype,
8115 		    reverse, jvalue);
8116 		break;
8117 
8118 	case A_VCI:
8119 		if (!is_atm)
8120 			bpf_error("'vci' supported only on raw ATM");
8121 		if (off_vci == (u_int)-1)
8122 			abort();
8123 		b0 = gen_ncmp(OR_LINK, off_vci, BPF_H, 0xffffffff, jtype,
8124 		    reverse, jvalue);
8125 		break;
8126 
8127 	case A_PROTOTYPE:
8128 		if (off_proto == (u_int)-1)
8129 			abort();	/* XXX - this isn't on FreeBSD */
8130 		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0x0f, jtype,
8131 		    reverse, jvalue);
8132 		break;
8133 
8134 	case A_MSGTYPE:
8135 		if (off_payload == (u_int)-1)
8136 			abort();
8137 		b0 = gen_ncmp(OR_LINK, off_payload + MSG_TYPE_POS, BPF_B,
8138 		    0xffffffff, jtype, reverse, jvalue);
8139 		break;
8140 
8141 	case A_CALLREFTYPE:
8142 		if (!is_atm)
8143 			bpf_error("'callref' supported only on raw ATM");
8144 		if (off_proto == (u_int)-1)
8145 			abort();
8146 		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0xffffffff,
8147 		    jtype, reverse, jvalue);
8148 		break;
8149 
8150 	default:
8151 		abort();
8152 	}
8153 	return b0;
8154 }
8155 
8156 struct block *
gen_atmtype_abbrev(type)8157 gen_atmtype_abbrev(type)
8158 	int type;
8159 {
8160 	struct block *b0, *b1;
8161 
8162 	switch (type) {
8163 
8164 	case A_METAC:
8165 		/* Get all packets in Meta signalling Circuit */
8166 		if (!is_atm)
8167 			bpf_error("'metac' supported only on raw ATM");
8168 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8169 		b1 = gen_atmfield_code(A_VCI, 1, BPF_JEQ, 0);
8170 		gen_and(b0, b1);
8171 		break;
8172 
8173 	case A_BCC:
8174 		/* Get all packets in Broadcast Circuit*/
8175 		if (!is_atm)
8176 			bpf_error("'bcc' supported only on raw ATM");
8177 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8178 		b1 = gen_atmfield_code(A_VCI, 2, BPF_JEQ, 0);
8179 		gen_and(b0, b1);
8180 		break;
8181 
8182 	case A_OAMF4SC:
8183 		/* Get all cells in Segment OAM F4 circuit*/
8184 		if (!is_atm)
8185 			bpf_error("'oam4sc' supported only on raw ATM");
8186 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8187 		b1 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
8188 		gen_and(b0, b1);
8189 		break;
8190 
8191 	case A_OAMF4EC:
8192 		/* Get all cells in End-to-End OAM F4 Circuit*/
8193 		if (!is_atm)
8194 			bpf_error("'oam4ec' supported only on raw ATM");
8195 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8196 		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
8197 		gen_and(b0, b1);
8198 		break;
8199 
8200 	case A_SC:
8201 		/*  Get all packets in connection Signalling Circuit */
8202 		if (!is_atm)
8203 			bpf_error("'sc' supported only on raw ATM");
8204 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8205 		b1 = gen_atmfield_code(A_VCI, 5, BPF_JEQ, 0);
8206 		gen_and(b0, b1);
8207 		break;
8208 
8209 	case A_ILMIC:
8210 		/* Get all packets in ILMI Circuit */
8211 		if (!is_atm)
8212 			bpf_error("'ilmic' supported only on raw ATM");
8213 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8214 		b1 = gen_atmfield_code(A_VCI, 16, BPF_JEQ, 0);
8215 		gen_and(b0, b1);
8216 		break;
8217 
8218 	case A_LANE:
8219 		/* Get all LANE packets */
8220 		if (!is_atm)
8221 			bpf_error("'lane' supported only on raw ATM");
8222 		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
8223 
8224 		/*
8225 		 * Arrange that all subsequent tests assume LANE
8226 		 * rather than LLC-encapsulated packets, and set
8227 		 * the offsets appropriately for LANE-encapsulated
8228 		 * Ethernet.
8229 		 *
8230 		 * "off_mac" is the offset of the Ethernet header,
8231 		 * which is 2 bytes past the ATM pseudo-header
8232 		 * (skipping the pseudo-header and 2-byte LE Client
8233 		 * field).  The other offsets are Ethernet offsets
8234 		 * relative to "off_mac".
8235 		 */
8236 		is_lane = 1;
8237 		off_mac = off_payload + 2;	/* MAC header */
8238 		off_linktype = off_mac + 12;
8239 		off_macpl = off_mac + 14;	/* Ethernet */
8240 		off_nl = 0;			/* Ethernet II */
8241 		off_nl_nosnap = 3;		/* 802.3+802.2 */
8242 		break;
8243 
8244 	case A_LLC:
8245 		/* Get all LLC-encapsulated packets */
8246 		if (!is_atm)
8247 			bpf_error("'llc' supported only on raw ATM");
8248 		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
8249 		is_lane = 0;
8250 		break;
8251 
8252 	default:
8253 		abort();
8254 	}
8255 	return b1;
8256 }
8257 
8258 /*
8259  * Filtering for MTP2 messages based on li value
8260  * FISU, length is null
8261  * LSSU, length is 1 or 2
8262  * MSU, length is 3 or more
8263  * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
8264  */
8265 struct block *
gen_mtp2type_abbrev(type)8266 gen_mtp2type_abbrev(type)
8267 	int type;
8268 {
8269 	struct block *b0, *b1;
8270 
8271 	switch (type) {
8272 
8273 	case M_FISU:
8274 		if ( (linktype != DLT_MTP2) &&
8275 		     (linktype != DLT_ERF) &&
8276 		     (linktype != DLT_MTP2_WITH_PHDR) )
8277 			bpf_error("'fisu' supported only on MTP2");
8278 		/* gen_ncmp(offrel, offset, size, mask, jtype, reverse, value) */
8279 		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JEQ, 0, 0);
8280 		break;
8281 
8282 	case M_LSSU:
8283 		if ( (linktype != DLT_MTP2) &&
8284 		     (linktype != DLT_ERF) &&
8285 		     (linktype != DLT_MTP2_WITH_PHDR) )
8286 			bpf_error("'lssu' supported only on MTP2");
8287 		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 1, 2);
8288 		b1 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 0);
8289 		gen_and(b1, b0);
8290 		break;
8291 
8292 	case M_MSU:
8293 		if ( (linktype != DLT_MTP2) &&
8294 		     (linktype != DLT_ERF) &&
8295 		     (linktype != DLT_MTP2_WITH_PHDR) )
8296 			bpf_error("'msu' supported only on MTP2");
8297 		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 2);
8298 		break;
8299 
8300 	case MH_FISU:
8301 		if ( (linktype != DLT_MTP2) &&
8302 		     (linktype != DLT_ERF) &&
8303 		     (linktype != DLT_MTP2_WITH_PHDR) )
8304 			bpf_error("'hfisu' supported only on MTP2_HSL");
8305 		/* gen_ncmp(offrel, offset, size, mask, jtype, reverse, value) */
8306 		b0 = gen_ncmp(OR_PACKET, off_li_hsl, BPF_H, 0xff80, BPF_JEQ, 0, 0);
8307 		break;
8308 
8309 	case MH_LSSU:
8310 		if ( (linktype != DLT_MTP2) &&
8311 		     (linktype != DLT_ERF) &&
8312 		     (linktype != DLT_MTP2_WITH_PHDR) )
8313 			bpf_error("'hlssu' supported only on MTP2_HSL");
8314 		b0 = gen_ncmp(OR_PACKET, off_li_hsl, BPF_H, 0xff80, BPF_JGT, 1, 0x0100);
8315 		b1 = gen_ncmp(OR_PACKET, off_li_hsl, BPF_H, 0xff80, BPF_JGT, 0, 0);
8316 		gen_and(b1, b0);
8317 		break;
8318 
8319 	case MH_MSU:
8320 		if ( (linktype != DLT_MTP2) &&
8321 		     (linktype != DLT_ERF) &&
8322 		     (linktype != DLT_MTP2_WITH_PHDR) )
8323 			bpf_error("'hmsu' supported only on MTP2_HSL");
8324 		b0 = gen_ncmp(OR_PACKET, off_li_hsl, BPF_H, 0xff80, BPF_JGT, 0, 0x0100);
8325 		break;
8326 
8327 	default:
8328 		abort();
8329 	}
8330 	return b0;
8331 }
8332 
8333 struct block *
gen_mtp3field_code(mtp3field,jvalue,jtype,reverse)8334 gen_mtp3field_code(mtp3field, jvalue, jtype, reverse)
8335 	int mtp3field;
8336 	bpf_u_int32 jvalue;
8337 	bpf_u_int32 jtype;
8338 	int reverse;
8339 {
8340 	struct block *b0;
8341 	bpf_u_int32 val1 , val2 , val3;
8342 	u_int newoff_sio=off_sio;
8343 	u_int newoff_opc=off_opc;
8344 	u_int newoff_dpc=off_dpc;
8345 	u_int newoff_sls=off_sls;
8346 
8347 	switch (mtp3field) {
8348 
8349 	case MH_SIO:
8350 		newoff_sio += 3; /* offset for MTP2_HSL */
8351 		/* FALLTHROUGH */
8352 
8353 	case M_SIO:
8354 		if (off_sio == (u_int)-1)
8355 			bpf_error("'sio' supported only on SS7");
8356 		/* sio coded on 1 byte so max value 255 */
8357 		if(jvalue > 255)
8358 		        bpf_error("sio value %u too big; max value = 255",
8359 		            jvalue);
8360 		b0 = gen_ncmp(OR_PACKET, newoff_sio, BPF_B, 0xffffffff,
8361 		    (u_int)jtype, reverse, (u_int)jvalue);
8362 		break;
8363 
8364 	case MH_OPC:
8365 		newoff_opc+=3;
8366         case M_OPC:
8367 	        if (off_opc == (u_int)-1)
8368 			bpf_error("'opc' supported only on SS7");
8369 		/* opc coded on 14 bits so max value 16383 */
8370 		if (jvalue > 16383)
8371 		        bpf_error("opc value %u too big; max value = 16383",
8372 		            jvalue);
8373 		/* the following instructions are made to convert jvalue
8374 		 * to the form used to write opc in an ss7 message*/
8375 		val1 = jvalue & 0x00003c00;
8376 		val1 = val1 >>10;
8377 		val2 = jvalue & 0x000003fc;
8378 		val2 = val2 <<6;
8379 		val3 = jvalue & 0x00000003;
8380 		val3 = val3 <<22;
8381 		jvalue = val1 + val2 + val3;
8382 		b0 = gen_ncmp(OR_PACKET, newoff_opc, BPF_W, 0x00c0ff0f,
8383 		    (u_int)jtype, reverse, (u_int)jvalue);
8384 		break;
8385 
8386 	case MH_DPC:
8387 		newoff_dpc += 3;
8388 		/* FALLTHROUGH */
8389 
8390 	case M_DPC:
8391 	        if (off_dpc == (u_int)-1)
8392 			bpf_error("'dpc' supported only on SS7");
8393 		/* dpc coded on 14 bits so max value 16383 */
8394 		if (jvalue > 16383)
8395 		        bpf_error("dpc value %u too big; max value = 16383",
8396 		            jvalue);
8397 		/* the following instructions are made to convert jvalue
8398 		 * to the forme used to write dpc in an ss7 message*/
8399 		val1 = jvalue & 0x000000ff;
8400 		val1 = val1 << 24;
8401 		val2 = jvalue & 0x00003f00;
8402 		val2 = val2 << 8;
8403 		jvalue = val1 + val2;
8404 		b0 = gen_ncmp(OR_PACKET, newoff_dpc, BPF_W, 0xff3f0000,
8405 		    (u_int)jtype, reverse, (u_int)jvalue);
8406 		break;
8407 
8408 	case MH_SLS:
8409 	  newoff_sls+=3;
8410 	case M_SLS:
8411 	        if (off_sls == (u_int)-1)
8412 			bpf_error("'sls' supported only on SS7");
8413 		/* sls coded on 4 bits so max value 15 */
8414 		if (jvalue > 15)
8415 		         bpf_error("sls value %u too big; max value = 15",
8416 		             jvalue);
8417 		/* the following instruction is made to convert jvalue
8418 		 * to the forme used to write sls in an ss7 message*/
8419 		jvalue = jvalue << 4;
8420 		b0 = gen_ncmp(OR_PACKET, newoff_sls, BPF_B, 0xf0,
8421 		    (u_int)jtype,reverse, (u_int)jvalue);
8422 		break;
8423 
8424 	default:
8425 		abort();
8426 	}
8427 	return b0;
8428 }
8429 
8430 static struct block *
gen_msg_abbrev(type)8431 gen_msg_abbrev(type)
8432 	int type;
8433 {
8434 	struct block *b1;
8435 
8436 	/*
8437 	 * Q.2931 signalling protocol messages for handling virtual circuits
8438 	 * establishment and teardown
8439 	 */
8440 	switch (type) {
8441 
8442 	case A_SETUP:
8443 		b1 = gen_atmfield_code(A_MSGTYPE, SETUP, BPF_JEQ, 0);
8444 		break;
8445 
8446 	case A_CALLPROCEED:
8447 		b1 = gen_atmfield_code(A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
8448 		break;
8449 
8450 	case A_CONNECT:
8451 		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT, BPF_JEQ, 0);
8452 		break;
8453 
8454 	case A_CONNECTACK:
8455 		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
8456 		break;
8457 
8458 	case A_RELEASE:
8459 		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE, BPF_JEQ, 0);
8460 		break;
8461 
8462 	case A_RELEASE_DONE:
8463 		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
8464 		break;
8465 
8466 	default:
8467 		abort();
8468 	}
8469 	return b1;
8470 }
8471 
8472 struct block *
gen_atmmulti_abbrev(type)8473 gen_atmmulti_abbrev(type)
8474 	int type;
8475 {
8476 	struct block *b0, *b1;
8477 
8478 	switch (type) {
8479 
8480 	case A_OAM:
8481 		if (!is_atm)
8482 			bpf_error("'oam' supported only on raw ATM");
8483 		b1 = gen_atmmulti_abbrev(A_OAMF4);
8484 		break;
8485 
8486 	case A_OAMF4:
8487 		if (!is_atm)
8488 			bpf_error("'oamf4' supported only on raw ATM");
8489 		/* OAM F4 type */
8490 		b0 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
8491 		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
8492 		gen_or(b0, b1);
8493 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8494 		gen_and(b0, b1);
8495 		break;
8496 
8497 	case A_CONNECTMSG:
8498 		/*
8499 		 * Get Q.2931 signalling messages for switched
8500 		 * virtual connection
8501 		 */
8502 		if (!is_atm)
8503 			bpf_error("'connectmsg' supported only on raw ATM");
8504 		b0 = gen_msg_abbrev(A_SETUP);
8505 		b1 = gen_msg_abbrev(A_CALLPROCEED);
8506 		gen_or(b0, b1);
8507 		b0 = gen_msg_abbrev(A_CONNECT);
8508 		gen_or(b0, b1);
8509 		b0 = gen_msg_abbrev(A_CONNECTACK);
8510 		gen_or(b0, b1);
8511 		b0 = gen_msg_abbrev(A_RELEASE);
8512 		gen_or(b0, b1);
8513 		b0 = gen_msg_abbrev(A_RELEASE_DONE);
8514 		gen_or(b0, b1);
8515 		b0 = gen_atmtype_abbrev(A_SC);
8516 		gen_and(b0, b1);
8517 		break;
8518 
8519 	case A_METACONNECT:
8520 		if (!is_atm)
8521 			bpf_error("'metaconnect' supported only on raw ATM");
8522 		b0 = gen_msg_abbrev(A_SETUP);
8523 		b1 = gen_msg_abbrev(A_CALLPROCEED);
8524 		gen_or(b0, b1);
8525 		b0 = gen_msg_abbrev(A_CONNECT);
8526 		gen_or(b0, b1);
8527 		b0 = gen_msg_abbrev(A_RELEASE);
8528 		gen_or(b0, b1);
8529 		b0 = gen_msg_abbrev(A_RELEASE_DONE);
8530 		gen_or(b0, b1);
8531 		b0 = gen_atmtype_abbrev(A_METAC);
8532 		gen_and(b0, b1);
8533 		break;
8534 
8535 	default:
8536 		abort();
8537 	}
8538 	return b1;
8539 }
8540