1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PPCISelLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "PPCISelLowering.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPCMachineFunctionInfo.h"
17 #include "PPCPerfectShuffle.h"
18 #include "PPCTargetMachine.h"
19 #include "PPCTargetObjectFile.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/StringSwitch.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/SelectionDAG.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Target/TargetOptions.h"
40 using namespace llvm;
41
42 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
43 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
44
45 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
46 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
47
48 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
49 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
50
51 // FIXME: Remove this once the bug has been fixed!
52 extern cl::opt<bool> ANDIGlueBug;
53
createTLOF(const Triple & TT)54 static TargetLoweringObjectFile *createTLOF(const Triple &TT) {
55 // If it isn't a Mach-O file then it's going to be a linux ELF
56 // object file.
57 if (TT.isOSDarwin())
58 return new TargetLoweringObjectFileMachO();
59
60 return new PPC64LinuxTargetObjectFile();
61 }
62
PPCTargetLowering(PPCTargetMachine & TM)63 PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
64 : TargetLowering(TM, createTLOF(Triple(TM.getTargetTriple()))),
65 Subtarget(*TM.getSubtargetImpl()) {
66 setPow2DivIsCheap();
67
68 // Use _setjmp/_longjmp instead of setjmp/longjmp.
69 setUseUnderscoreSetJmp(true);
70 setUseUnderscoreLongJmp(true);
71
72 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
73 // arguments are at least 4/8 bytes aligned.
74 bool isPPC64 = Subtarget.isPPC64();
75 setMinStackArgumentAlignment(isPPC64 ? 8:4);
76
77 // Set up the register classes.
78 addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
79 addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
80 addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
81
82 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
83 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
84 setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
85
86 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
87
88 // PowerPC has pre-inc load and store's.
89 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
90 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
91 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
92 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
93 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
94 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
95 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
96 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
97 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
98 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
99
100 if (Subtarget.useCRBits()) {
101 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
102
103 if (isPPC64 || Subtarget.hasFPCVT()) {
104 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
105 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
106 isPPC64 ? MVT::i64 : MVT::i32);
107 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
108 AddPromotedToType (ISD::UINT_TO_FP, MVT::i1,
109 isPPC64 ? MVT::i64 : MVT::i32);
110 } else {
111 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
112 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
113 }
114
115 // PowerPC does not support direct load / store of condition registers
116 setOperationAction(ISD::LOAD, MVT::i1, Custom);
117 setOperationAction(ISD::STORE, MVT::i1, Custom);
118
119 // FIXME: Remove this once the ANDI glue bug is fixed:
120 if (ANDIGlueBug)
121 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
122
123 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
124 setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
125 setTruncStoreAction(MVT::i64, MVT::i1, Expand);
126 setTruncStoreAction(MVT::i32, MVT::i1, Expand);
127 setTruncStoreAction(MVT::i16, MVT::i1, Expand);
128 setTruncStoreAction(MVT::i8, MVT::i1, Expand);
129
130 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
131 }
132
133 // This is used in the ppcf128->int sequence. Note it has different semantics
134 // from FP_ROUND: that rounds to nearest, this rounds to zero.
135 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
136
137 // We do not currently implement these libm ops for PowerPC.
138 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
139 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand);
140 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
141 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand);
142 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
143 setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
144
145 // PowerPC has no SREM/UREM instructions
146 setOperationAction(ISD::SREM, MVT::i32, Expand);
147 setOperationAction(ISD::UREM, MVT::i32, Expand);
148 setOperationAction(ISD::SREM, MVT::i64, Expand);
149 setOperationAction(ISD::UREM, MVT::i64, Expand);
150
151 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
152 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
153 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
154 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
155 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
156 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
157 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
158 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
159 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
160
161 // We don't support sin/cos/sqrt/fmod/pow
162 setOperationAction(ISD::FSIN , MVT::f64, Expand);
163 setOperationAction(ISD::FCOS , MVT::f64, Expand);
164 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
165 setOperationAction(ISD::FREM , MVT::f64, Expand);
166 setOperationAction(ISD::FPOW , MVT::f64, Expand);
167 setOperationAction(ISD::FMA , MVT::f64, Legal);
168 setOperationAction(ISD::FSIN , MVT::f32, Expand);
169 setOperationAction(ISD::FCOS , MVT::f32, Expand);
170 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
171 setOperationAction(ISD::FREM , MVT::f32, Expand);
172 setOperationAction(ISD::FPOW , MVT::f32, Expand);
173 setOperationAction(ISD::FMA , MVT::f32, Legal);
174
175 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
176
177 // If we're enabling GP optimizations, use hardware square root
178 if (!Subtarget.hasFSQRT() &&
179 !(TM.Options.UnsafeFPMath &&
180 Subtarget.hasFRSQRTE() && Subtarget.hasFRE()))
181 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
182
183 if (!Subtarget.hasFSQRT() &&
184 !(TM.Options.UnsafeFPMath &&
185 Subtarget.hasFRSQRTES() && Subtarget.hasFRES()))
186 setOperationAction(ISD::FSQRT, MVT::f32, Expand);
187
188 if (Subtarget.hasFCPSGN()) {
189 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
190 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
191 } else {
192 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
193 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
194 }
195
196 if (Subtarget.hasFPRND()) {
197 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
198 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
199 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
200 setOperationAction(ISD::FROUND, MVT::f64, Legal);
201
202 setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
203 setOperationAction(ISD::FCEIL, MVT::f32, Legal);
204 setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
205 setOperationAction(ISD::FROUND, MVT::f32, Legal);
206 }
207
208 // PowerPC does not have BSWAP, CTPOP or CTTZ
209 setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
210 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
211 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
212 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
213 setOperationAction(ISD::BSWAP, MVT::i64 , Expand);
214 setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
215 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
216 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
217
218 if (Subtarget.hasPOPCNTD()) {
219 setOperationAction(ISD::CTPOP, MVT::i32 , Legal);
220 setOperationAction(ISD::CTPOP, MVT::i64 , Legal);
221 } else {
222 setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
223 setOperationAction(ISD::CTPOP, MVT::i64 , Expand);
224 }
225
226 // PowerPC does not have ROTR
227 setOperationAction(ISD::ROTR, MVT::i32 , Expand);
228 setOperationAction(ISD::ROTR, MVT::i64 , Expand);
229
230 if (!Subtarget.useCRBits()) {
231 // PowerPC does not have Select
232 setOperationAction(ISD::SELECT, MVT::i32, Expand);
233 setOperationAction(ISD::SELECT, MVT::i64, Expand);
234 setOperationAction(ISD::SELECT, MVT::f32, Expand);
235 setOperationAction(ISD::SELECT, MVT::f64, Expand);
236 }
237
238 // PowerPC wants to turn select_cc of FP into fsel when possible.
239 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
240 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
241
242 // PowerPC wants to optimize integer setcc a bit
243 if (!Subtarget.useCRBits())
244 setOperationAction(ISD::SETCC, MVT::i32, Custom);
245
246 // PowerPC does not have BRCOND which requires SetCC
247 if (!Subtarget.useCRBits())
248 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
249
250 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
251
252 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
253 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
254
255 // PowerPC does not have [U|S]INT_TO_FP
256 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
257 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
258
259 setOperationAction(ISD::BITCAST, MVT::f32, Expand);
260 setOperationAction(ISD::BITCAST, MVT::i32, Expand);
261 setOperationAction(ISD::BITCAST, MVT::i64, Expand);
262 setOperationAction(ISD::BITCAST, MVT::f64, Expand);
263
264 // We cannot sextinreg(i1). Expand to shifts.
265 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
266
267 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
268 // SjLj exception handling but a light-weight setjmp/longjmp replacement to
269 // support continuation, user-level threading, and etc.. As a result, no
270 // other SjLj exception interfaces are implemented and please don't build
271 // your own exception handling based on them.
272 // LLVM/Clang supports zero-cost DWARF exception handling.
273 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
274 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
275
276 // We want to legalize GlobalAddress and ConstantPool nodes into the
277 // appropriate instructions to materialize the address.
278 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
279 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
280 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
281 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
282 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
283 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
284 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
285 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
286 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
287 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
288
289 // TRAP is legal.
290 setOperationAction(ISD::TRAP, MVT::Other, Legal);
291
292 // TRAMPOLINE is custom lowered.
293 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
294 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
295
296 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
297 setOperationAction(ISD::VASTART , MVT::Other, Custom);
298
299 if (Subtarget.isSVR4ABI()) {
300 if (isPPC64) {
301 // VAARG always uses double-word chunks, so promote anything smaller.
302 setOperationAction(ISD::VAARG, MVT::i1, Promote);
303 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
304 setOperationAction(ISD::VAARG, MVT::i8, Promote);
305 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
306 setOperationAction(ISD::VAARG, MVT::i16, Promote);
307 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
308 setOperationAction(ISD::VAARG, MVT::i32, Promote);
309 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
310 setOperationAction(ISD::VAARG, MVT::Other, Expand);
311 } else {
312 // VAARG is custom lowered with the 32-bit SVR4 ABI.
313 setOperationAction(ISD::VAARG, MVT::Other, Custom);
314 setOperationAction(ISD::VAARG, MVT::i64, Custom);
315 }
316 } else
317 setOperationAction(ISD::VAARG, MVT::Other, Expand);
318
319 if (Subtarget.isSVR4ABI() && !isPPC64)
320 // VACOPY is custom lowered with the 32-bit SVR4 ABI.
321 setOperationAction(ISD::VACOPY , MVT::Other, Custom);
322 else
323 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
324
325 // Use the default implementation.
326 setOperationAction(ISD::VAEND , MVT::Other, Expand);
327 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
328 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom);
329 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
330 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom);
331
332 // We want to custom lower some of our intrinsics.
333 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
334
335 // To handle counter-based loop conditions.
336 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
337
338 // Comparisons that require checking two conditions.
339 setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
340 setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
341 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
342 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
343 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
344 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
345 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
346 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
347 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
348 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
349 setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
350 setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
351
352 if (Subtarget.has64BitSupport()) {
353 // They also have instructions for converting between i64 and fp.
354 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
355 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
356 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
357 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
358 // This is just the low 32 bits of a (signed) fp->i64 conversion.
359 // We cannot do this with Promote because i64 is not a legal type.
360 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
361
362 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
363 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
364 } else {
365 // PowerPC does not have FP_TO_UINT on 32-bit implementations.
366 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
367 }
368
369 // With the instructions enabled under FPCVT, we can do everything.
370 if (Subtarget.hasFPCVT()) {
371 if (Subtarget.has64BitSupport()) {
372 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
373 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
374 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
375 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
376 }
377
378 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
379 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
380 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
381 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
382 }
383
384 if (Subtarget.use64BitRegs()) {
385 // 64-bit PowerPC implementations can support i64 types directly
386 addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
387 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
388 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
389 // 64-bit PowerPC wants to expand i128 shifts itself.
390 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
391 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
392 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
393 } else {
394 // 32-bit PowerPC wants to expand i64 shifts itself.
395 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
396 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
397 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
398 }
399
400 if (Subtarget.hasAltivec()) {
401 // First set operation action for all vector types to expand. Then we
402 // will selectively turn on ones that can be effectively codegen'd.
403 for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
404 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
405 MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
406
407 // add/sub are legal for all supported vector VT's.
408 setOperationAction(ISD::ADD , VT, Legal);
409 setOperationAction(ISD::SUB , VT, Legal);
410
411 // We promote all shuffles to v16i8.
412 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
413 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
414
415 // We promote all non-typed operations to v4i32.
416 setOperationAction(ISD::AND , VT, Promote);
417 AddPromotedToType (ISD::AND , VT, MVT::v4i32);
418 setOperationAction(ISD::OR , VT, Promote);
419 AddPromotedToType (ISD::OR , VT, MVT::v4i32);
420 setOperationAction(ISD::XOR , VT, Promote);
421 AddPromotedToType (ISD::XOR , VT, MVT::v4i32);
422 setOperationAction(ISD::LOAD , VT, Promote);
423 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32);
424 setOperationAction(ISD::SELECT, VT, Promote);
425 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
426 setOperationAction(ISD::STORE, VT, Promote);
427 AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
428
429 // No other operations are legal.
430 setOperationAction(ISD::MUL , VT, Expand);
431 setOperationAction(ISD::SDIV, VT, Expand);
432 setOperationAction(ISD::SREM, VT, Expand);
433 setOperationAction(ISD::UDIV, VT, Expand);
434 setOperationAction(ISD::UREM, VT, Expand);
435 setOperationAction(ISD::FDIV, VT, Expand);
436 setOperationAction(ISD::FREM, VT, Expand);
437 setOperationAction(ISD::FNEG, VT, Expand);
438 setOperationAction(ISD::FSQRT, VT, Expand);
439 setOperationAction(ISD::FLOG, VT, Expand);
440 setOperationAction(ISD::FLOG10, VT, Expand);
441 setOperationAction(ISD::FLOG2, VT, Expand);
442 setOperationAction(ISD::FEXP, VT, Expand);
443 setOperationAction(ISD::FEXP2, VT, Expand);
444 setOperationAction(ISD::FSIN, VT, Expand);
445 setOperationAction(ISD::FCOS, VT, Expand);
446 setOperationAction(ISD::FABS, VT, Expand);
447 setOperationAction(ISD::FPOWI, VT, Expand);
448 setOperationAction(ISD::FFLOOR, VT, Expand);
449 setOperationAction(ISD::FCEIL, VT, Expand);
450 setOperationAction(ISD::FTRUNC, VT, Expand);
451 setOperationAction(ISD::FRINT, VT, Expand);
452 setOperationAction(ISD::FNEARBYINT, VT, Expand);
453 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
454 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
455 setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
456 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
457 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
458 setOperationAction(ISD::UDIVREM, VT, Expand);
459 setOperationAction(ISD::SDIVREM, VT, Expand);
460 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
461 setOperationAction(ISD::FPOW, VT, Expand);
462 setOperationAction(ISD::BSWAP, VT, Expand);
463 setOperationAction(ISD::CTPOP, VT, Expand);
464 setOperationAction(ISD::CTLZ, VT, Expand);
465 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
466 setOperationAction(ISD::CTTZ, VT, Expand);
467 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
468 setOperationAction(ISD::VSELECT, VT, Expand);
469 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
470
471 for (unsigned j = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
472 j <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++j) {
473 MVT::SimpleValueType InnerVT = (MVT::SimpleValueType)j;
474 setTruncStoreAction(VT, InnerVT, Expand);
475 }
476 setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
477 setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
478 setLoadExtAction(ISD::EXTLOAD, VT, Expand);
479 }
480
481 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
482 // with merges, splats, etc.
483 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
484
485 setOperationAction(ISD::AND , MVT::v4i32, Legal);
486 setOperationAction(ISD::OR , MVT::v4i32, Legal);
487 setOperationAction(ISD::XOR , MVT::v4i32, Legal);
488 setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
489 setOperationAction(ISD::SELECT, MVT::v4i32,
490 Subtarget.useCRBits() ? Legal : Expand);
491 setOperationAction(ISD::STORE , MVT::v4i32, Legal);
492 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
493 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
494 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
495 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
496 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
497 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
498 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
499 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
500
501 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
502 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
503 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
504 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
505
506 setOperationAction(ISD::MUL, MVT::v4f32, Legal);
507 setOperationAction(ISD::FMA, MVT::v4f32, Legal);
508
509 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
510 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
511 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
512 }
513
514 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
515 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
516 setOperationAction(ISD::MUL, MVT::v16i8, Custom);
517
518 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
519 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
520
521 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
522 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
523 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
524 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
525
526 // Altivec does not contain unordered floating-point compare instructions
527 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
528 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
529 setCondCodeAction(ISD::SETUGT, MVT::v4f32, Expand);
530 setCondCodeAction(ISD::SETUGE, MVT::v4f32, Expand);
531 setCondCodeAction(ISD::SETULT, MVT::v4f32, Expand);
532 setCondCodeAction(ISD::SETULE, MVT::v4f32, Expand);
533
534 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand);
535 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
536
537 if (Subtarget.hasVSX()) {
538 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
539 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
540
541 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
542 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
543 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
544 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
545 setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
546
547 setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
548
549 setOperationAction(ISD::MUL, MVT::v2f64, Legal);
550 setOperationAction(ISD::FMA, MVT::v2f64, Legal);
551
552 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
553 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
554
555 setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
556 setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
557 setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
558 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
559 setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
560
561 // Share the Altivec comparison restrictions.
562 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
563 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
564 setCondCodeAction(ISD::SETUGT, MVT::v2f64, Expand);
565 setCondCodeAction(ISD::SETUGE, MVT::v2f64, Expand);
566 setCondCodeAction(ISD::SETULT, MVT::v2f64, Expand);
567 setCondCodeAction(ISD::SETULE, MVT::v2f64, Expand);
568
569 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand);
570 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
571
572 setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
573 setOperationAction(ISD::STORE, MVT::v2f64, Legal);
574
575 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
576
577 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
578
579 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
580 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
581
582 // VSX v2i64 only supports non-arithmetic operations.
583 setOperationAction(ISD::ADD, MVT::v2i64, Expand);
584 setOperationAction(ISD::SUB, MVT::v2i64, Expand);
585
586 setOperationAction(ISD::SHL, MVT::v2i64, Expand);
587 setOperationAction(ISD::SRA, MVT::v2i64, Expand);
588 setOperationAction(ISD::SRL, MVT::v2i64, Expand);
589
590 setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
591
592 setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
593 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
594 setOperationAction(ISD::STORE, MVT::v2i64, Promote);
595 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
596
597 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
598
599 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
600 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
601 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
602 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
603
604 // Vector operation legalization checks the result type of
605 // SIGN_EXTEND_INREG, overall legalization checks the inner type.
606 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
607 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
608 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
609 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
610
611 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
612 }
613 }
614
615 if (Subtarget.has64BitSupport()) {
616 setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
617 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
618 }
619
620 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand);
621 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
622 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand);
623 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
624
625 setBooleanContents(ZeroOrOneBooleanContent);
626 // Altivec instructions set fields to all zeros or all ones.
627 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
628
629 if (isPPC64) {
630 setStackPointerRegisterToSaveRestore(PPC::X1);
631 setExceptionPointerRegister(PPC::X3);
632 setExceptionSelectorRegister(PPC::X4);
633 } else {
634 setStackPointerRegisterToSaveRestore(PPC::R1);
635 setExceptionPointerRegister(PPC::R3);
636 setExceptionSelectorRegister(PPC::R4);
637 }
638
639 // We have target-specific dag combine patterns for the following nodes:
640 setTargetDAGCombine(ISD::SINT_TO_FP);
641 setTargetDAGCombine(ISD::LOAD);
642 setTargetDAGCombine(ISD::STORE);
643 setTargetDAGCombine(ISD::BR_CC);
644 if (Subtarget.useCRBits())
645 setTargetDAGCombine(ISD::BRCOND);
646 setTargetDAGCombine(ISD::BSWAP);
647 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
648
649 setTargetDAGCombine(ISD::SIGN_EXTEND);
650 setTargetDAGCombine(ISD::ZERO_EXTEND);
651 setTargetDAGCombine(ISD::ANY_EXTEND);
652
653 if (Subtarget.useCRBits()) {
654 setTargetDAGCombine(ISD::TRUNCATE);
655 setTargetDAGCombine(ISD::SETCC);
656 setTargetDAGCombine(ISD::SELECT_CC);
657 }
658
659 // Use reciprocal estimates.
660 if (TM.Options.UnsafeFPMath) {
661 setTargetDAGCombine(ISD::FDIV);
662 setTargetDAGCombine(ISD::FSQRT);
663 }
664
665 // Darwin long double math library functions have $LDBL128 appended.
666 if (Subtarget.isDarwin()) {
667 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
668 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
669 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
670 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
671 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
672 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
673 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
674 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
675 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
676 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
677 }
678
679 // With 32 condition bits, we don't need to sink (and duplicate) compares
680 // aggressively in CodeGenPrep.
681 if (Subtarget.useCRBits())
682 setHasMultipleConditionRegisters();
683
684 setMinFunctionAlignment(2);
685 if (Subtarget.isDarwin())
686 setPrefFunctionAlignment(4);
687
688 if (isPPC64 && Subtarget.isJITCodeModel())
689 // Temporary workaround for the inability of PPC64 JIT to handle jump
690 // tables.
691 setSupportJumpTables(false);
692
693 setInsertFencesForAtomic(true);
694
695 if (Subtarget.enableMachineScheduler())
696 setSchedulingPreference(Sched::Source);
697 else
698 setSchedulingPreference(Sched::Hybrid);
699
700 computeRegisterProperties();
701
702 // The Freescale cores does better with aggressive inlining of memcpy and
703 // friends. Gcc uses same threshold of 128 bytes (= 32 word stores).
704 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
705 Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
706 MaxStoresPerMemset = 32;
707 MaxStoresPerMemsetOptSize = 16;
708 MaxStoresPerMemcpy = 32;
709 MaxStoresPerMemcpyOptSize = 8;
710 MaxStoresPerMemmove = 32;
711 MaxStoresPerMemmoveOptSize = 8;
712
713 setPrefFunctionAlignment(4);
714 }
715 }
716
717 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
718 /// the desired ByVal argument alignment.
getMaxByValAlign(Type * Ty,unsigned & MaxAlign,unsigned MaxMaxAlign)719 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
720 unsigned MaxMaxAlign) {
721 if (MaxAlign == MaxMaxAlign)
722 return;
723 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
724 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
725 MaxAlign = 32;
726 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
727 MaxAlign = 16;
728 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
729 unsigned EltAlign = 0;
730 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
731 if (EltAlign > MaxAlign)
732 MaxAlign = EltAlign;
733 } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
734 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
735 unsigned EltAlign = 0;
736 getMaxByValAlign(STy->getElementType(i), EltAlign, MaxMaxAlign);
737 if (EltAlign > MaxAlign)
738 MaxAlign = EltAlign;
739 if (MaxAlign == MaxMaxAlign)
740 break;
741 }
742 }
743 }
744
745 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
746 /// function arguments in the caller parameter area.
getByValTypeAlignment(Type * Ty) const747 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
748 // Darwin passes everything on 4 byte boundary.
749 if (Subtarget.isDarwin())
750 return 4;
751
752 // 16byte and wider vectors are passed on 16byte boundary.
753 // The rest is 8 on PPC64 and 4 on PPC32 boundary.
754 unsigned Align = Subtarget.isPPC64() ? 8 : 4;
755 if (Subtarget.hasAltivec() || Subtarget.hasQPX())
756 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
757 return Align;
758 }
759
getTargetNodeName(unsigned Opcode) const760 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
761 switch (Opcode) {
762 default: return nullptr;
763 case PPCISD::FSEL: return "PPCISD::FSEL";
764 case PPCISD::FCFID: return "PPCISD::FCFID";
765 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
766 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
767 case PPCISD::FRE: return "PPCISD::FRE";
768 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE";
769 case PPCISD::STFIWX: return "PPCISD::STFIWX";
770 case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
771 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
772 case PPCISD::VPERM: return "PPCISD::VPERM";
773 case PPCISD::Hi: return "PPCISD::Hi";
774 case PPCISD::Lo: return "PPCISD::Lo";
775 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY";
776 case PPCISD::LOAD: return "PPCISD::LOAD";
777 case PPCISD::LOAD_TOC: return "PPCISD::LOAD_TOC";
778 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC";
779 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
780 case PPCISD::SRL: return "PPCISD::SRL";
781 case PPCISD::SRA: return "PPCISD::SRA";
782 case PPCISD::SHL: return "PPCISD::SHL";
783 case PPCISD::CALL: return "PPCISD::CALL";
784 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP";
785 case PPCISD::MTCTR: return "PPCISD::MTCTR";
786 case PPCISD::BCTRL: return "PPCISD::BCTRL";
787 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
788 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP";
789 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
790 case PPCISD::MFOCRF: return "PPCISD::MFOCRF";
791 case PPCISD::VCMP: return "PPCISD::VCMP";
792 case PPCISD::VCMPo: return "PPCISD::VCMPo";
793 case PPCISD::LBRX: return "PPCISD::LBRX";
794 case PPCISD::STBRX: return "PPCISD::STBRX";
795 case PPCISD::LARX: return "PPCISD::LARX";
796 case PPCISD::STCX: return "PPCISD::STCX";
797 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
798 case PPCISD::BDNZ: return "PPCISD::BDNZ";
799 case PPCISD::BDZ: return "PPCISD::BDZ";
800 case PPCISD::MFFS: return "PPCISD::MFFS";
801 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ";
802 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN";
803 case PPCISD::CR6SET: return "PPCISD::CR6SET";
804 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET";
805 case PPCISD::ADDIS_TOC_HA: return "PPCISD::ADDIS_TOC_HA";
806 case PPCISD::LD_TOC_L: return "PPCISD::LD_TOC_L";
807 case PPCISD::ADDI_TOC_L: return "PPCISD::ADDI_TOC_L";
808 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT";
809 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
810 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L";
811 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS";
812 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA";
813 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L";
814 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR";
815 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA";
816 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L";
817 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR";
818 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
819 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L";
820 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT";
821 case PPCISD::SC: return "PPCISD::SC";
822 }
823 }
824
getSetCCResultType(LLVMContext &,EVT VT) const825 EVT PPCTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
826 if (!VT.isVector())
827 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
828 return VT.changeVectorElementTypeToInteger();
829 }
830
831 //===----------------------------------------------------------------------===//
832 // Node matching predicates, for use by the tblgen matching code.
833 //===----------------------------------------------------------------------===//
834
835 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
isFloatingPointZero(SDValue Op)836 static bool isFloatingPointZero(SDValue Op) {
837 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
838 return CFP->getValueAPF().isZero();
839 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
840 // Maybe this has already been legalized into the constant pool?
841 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
842 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
843 return CFP->getValueAPF().isZero();
844 }
845 return false;
846 }
847
848 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
849 /// true if Op is undef or if it matches the specified value.
isConstantOrUndef(int Op,int Val)850 static bool isConstantOrUndef(int Op, int Val) {
851 return Op < 0 || Op == Val;
852 }
853
854 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
855 /// VPKUHUM instruction.
isVPKUHUMShuffleMask(ShuffleVectorSDNode * N,bool isUnary,SelectionDAG & DAG)856 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary,
857 SelectionDAG &DAG) {
858 unsigned j = DAG.getTarget().getDataLayout()->isLittleEndian() ? 0 : 1;
859 if (!isUnary) {
860 for (unsigned i = 0; i != 16; ++i)
861 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j))
862 return false;
863 } else {
864 for (unsigned i = 0; i != 8; ++i)
865 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) ||
866 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j))
867 return false;
868 }
869 return true;
870 }
871
872 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
873 /// VPKUWUM instruction.
isVPKUWUMShuffleMask(ShuffleVectorSDNode * N,bool isUnary,SelectionDAG & DAG)874 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary,
875 SelectionDAG &DAG) {
876 unsigned j, k;
877 if (DAG.getTarget().getDataLayout()->isLittleEndian()) {
878 j = 0;
879 k = 1;
880 } else {
881 j = 2;
882 k = 3;
883 }
884 if (!isUnary) {
885 for (unsigned i = 0; i != 16; i += 2)
886 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) ||
887 !isConstantOrUndef(N->getMaskElt(i+1), i*2+k))
888 return false;
889 } else {
890 for (unsigned i = 0; i != 8; i += 2)
891 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) ||
892 !isConstantOrUndef(N->getMaskElt(i+1), i*2+k) ||
893 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) ||
894 !isConstantOrUndef(N->getMaskElt(i+9), i*2+k))
895 return false;
896 }
897 return true;
898 }
899
900 /// isVMerge - Common function, used to match vmrg* shuffles.
901 ///
isVMerge(ShuffleVectorSDNode * N,unsigned UnitSize,unsigned LHSStart,unsigned RHSStart)902 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
903 unsigned LHSStart, unsigned RHSStart) {
904 if (N->getValueType(0) != MVT::v16i8)
905 return false;
906 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
907 "Unsupported merge size!");
908
909 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
910 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
911 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
912 LHSStart+j+i*UnitSize) ||
913 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
914 RHSStart+j+i*UnitSize))
915 return false;
916 }
917 return true;
918 }
919
920 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
921 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
isVMRGLShuffleMask(ShuffleVectorSDNode * N,unsigned UnitSize,bool isUnary,SelectionDAG & DAG)922 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
923 bool isUnary, SelectionDAG &DAG) {
924 if (DAG.getTarget().getDataLayout()->isLittleEndian()) {
925 if (!isUnary)
926 return isVMerge(N, UnitSize, 0, 16);
927 return isVMerge(N, UnitSize, 0, 0);
928 } else {
929 if (!isUnary)
930 return isVMerge(N, UnitSize, 8, 24);
931 return isVMerge(N, UnitSize, 8, 8);
932 }
933 }
934
935 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
936 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
isVMRGHShuffleMask(ShuffleVectorSDNode * N,unsigned UnitSize,bool isUnary,SelectionDAG & DAG)937 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
938 bool isUnary, SelectionDAG &DAG) {
939 if (DAG.getTarget().getDataLayout()->isLittleEndian()) {
940 if (!isUnary)
941 return isVMerge(N, UnitSize, 8, 24);
942 return isVMerge(N, UnitSize, 8, 8);
943 } else {
944 if (!isUnary)
945 return isVMerge(N, UnitSize, 0, 16);
946 return isVMerge(N, UnitSize, 0, 0);
947 }
948 }
949
950
951 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
952 /// amount, otherwise return -1.
isVSLDOIShuffleMask(SDNode * N,bool isUnary,SelectionDAG & DAG)953 int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary, SelectionDAG &DAG) {
954 if (N->getValueType(0) != MVT::v16i8)
955 return -1;
956
957 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
958
959 // Find the first non-undef value in the shuffle mask.
960 unsigned i;
961 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
962 /*search*/;
963
964 if (i == 16) return -1; // all undef.
965
966 // Otherwise, check to see if the rest of the elements are consecutively
967 // numbered from this value.
968 unsigned ShiftAmt = SVOp->getMaskElt(i);
969 if (ShiftAmt < i) return -1;
970
971 if (DAG.getTarget().getDataLayout()->isLittleEndian()) {
972
973 ShiftAmt += i;
974
975 if (!isUnary) {
976 // Check the rest of the elements to see if they are consecutive.
977 for (++i; i != 16; ++i)
978 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt - i))
979 return -1;
980 } else {
981 // Check the rest of the elements to see if they are consecutive.
982 for (++i; i != 16; ++i)
983 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt - i) & 15))
984 return -1;
985 }
986
987 } else { // Big Endian
988
989 ShiftAmt -= i;
990
991 if (!isUnary) {
992 // Check the rest of the elements to see if they are consecutive.
993 for (++i; i != 16; ++i)
994 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
995 return -1;
996 } else {
997 // Check the rest of the elements to see if they are consecutive.
998 for (++i; i != 16; ++i)
999 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1000 return -1;
1001 }
1002 }
1003 return ShiftAmt;
1004 }
1005
1006 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1007 /// specifies a splat of a single element that is suitable for input to
1008 /// VSPLTB/VSPLTH/VSPLTW.
isSplatShuffleMask(ShuffleVectorSDNode * N,unsigned EltSize)1009 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1010 assert(N->getValueType(0) == MVT::v16i8 &&
1011 (EltSize == 1 || EltSize == 2 || EltSize == 4));
1012
1013 // This is a splat operation if each element of the permute is the same, and
1014 // if the value doesn't reference the second vector.
1015 unsigned ElementBase = N->getMaskElt(0);
1016
1017 // FIXME: Handle UNDEF elements too!
1018 if (ElementBase >= 16)
1019 return false;
1020
1021 // Check that the indices are consecutive, in the case of a multi-byte element
1022 // splatted with a v16i8 mask.
1023 for (unsigned i = 1; i != EltSize; ++i)
1024 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1025 return false;
1026
1027 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1028 if (N->getMaskElt(i) < 0) continue;
1029 for (unsigned j = 0; j != EltSize; ++j)
1030 if (N->getMaskElt(i+j) != N->getMaskElt(j))
1031 return false;
1032 }
1033 return true;
1034 }
1035
1036 /// isAllNegativeZeroVector - Returns true if all elements of build_vector
1037 /// are -0.0.
isAllNegativeZeroVector(SDNode * N)1038 bool PPC::isAllNegativeZeroVector(SDNode *N) {
1039 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
1040
1041 APInt APVal, APUndef;
1042 unsigned BitSize;
1043 bool HasAnyUndefs;
1044
1045 if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
1046 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
1047 return CFP->getValueAPF().isNegZero();
1048
1049 return false;
1050 }
1051
1052 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
1053 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
getVSPLTImmediate(SDNode * N,unsigned EltSize,SelectionDAG & DAG)1054 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
1055 SelectionDAG &DAG) {
1056 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1057 assert(isSplatShuffleMask(SVOp, EltSize));
1058 if (DAG.getTarget().getDataLayout()->isLittleEndian())
1059 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
1060 else
1061 return SVOp->getMaskElt(0) / EltSize;
1062 }
1063
1064 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
1065 /// by using a vspltis[bhw] instruction of the specified element size, return
1066 /// the constant being splatted. The ByteSize field indicates the number of
1067 /// bytes of each element [124] -> [bhw].
get_VSPLTI_elt(SDNode * N,unsigned ByteSize,SelectionDAG & DAG)1068 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
1069 SDValue OpVal(nullptr, 0);
1070
1071 // If ByteSize of the splat is bigger than the element size of the
1072 // build_vector, then we have a case where we are checking for a splat where
1073 // multiple elements of the buildvector are folded together into a single
1074 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
1075 unsigned EltSize = 16/N->getNumOperands();
1076 if (EltSize < ByteSize) {
1077 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
1078 SDValue UniquedVals[4];
1079 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
1080
1081 // See if all of the elements in the buildvector agree across.
1082 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1083 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1084 // If the element isn't a constant, bail fully out.
1085 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
1086
1087
1088 if (!UniquedVals[i&(Multiple-1)].getNode())
1089 UniquedVals[i&(Multiple-1)] = N->getOperand(i);
1090 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
1091 return SDValue(); // no match.
1092 }
1093
1094 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
1095 // either constant or undef values that are identical for each chunk. See
1096 // if these chunks can form into a larger vspltis*.
1097
1098 // Check to see if all of the leading entries are either 0 or -1. If
1099 // neither, then this won't fit into the immediate field.
1100 bool LeadingZero = true;
1101 bool LeadingOnes = true;
1102 for (unsigned i = 0; i != Multiple-1; ++i) {
1103 if (!UniquedVals[i].getNode()) continue; // Must have been undefs.
1104
1105 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
1106 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
1107 }
1108 // Finally, check the least significant entry.
1109 if (LeadingZero) {
1110 if (!UniquedVals[Multiple-1].getNode())
1111 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
1112 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
1113 if (Val < 16)
1114 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
1115 }
1116 if (LeadingOnes) {
1117 if (!UniquedVals[Multiple-1].getNode())
1118 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
1119 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
1120 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
1121 return DAG.getTargetConstant(Val, MVT::i32);
1122 }
1123
1124 return SDValue();
1125 }
1126
1127 // Check to see if this buildvec has a single non-undef value in its elements.
1128 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1129 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1130 if (!OpVal.getNode())
1131 OpVal = N->getOperand(i);
1132 else if (OpVal != N->getOperand(i))
1133 return SDValue();
1134 }
1135
1136 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def.
1137
1138 unsigned ValSizeInBytes = EltSize;
1139 uint64_t Value = 0;
1140 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
1141 Value = CN->getZExtValue();
1142 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
1143 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
1144 Value = FloatToBits(CN->getValueAPF().convertToFloat());
1145 }
1146
1147 // If the splat value is larger than the element value, then we can never do
1148 // this splat. The only case that we could fit the replicated bits into our
1149 // immediate field for would be zero, and we prefer to use vxor for it.
1150 if (ValSizeInBytes < ByteSize) return SDValue();
1151
1152 // If the element value is larger than the splat value, cut it in half and
1153 // check to see if the two halves are equal. Continue doing this until we
1154 // get to ByteSize. This allows us to handle 0x01010101 as 0x01.
1155 while (ValSizeInBytes > ByteSize) {
1156 ValSizeInBytes >>= 1;
1157
1158 // If the top half equals the bottom half, we're still ok.
1159 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
1160 (Value & ((1 << (8*ValSizeInBytes))-1)))
1161 return SDValue();
1162 }
1163
1164 // Properly sign extend the value.
1165 int MaskVal = SignExtend32(Value, ByteSize * 8);
1166
1167 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
1168 if (MaskVal == 0) return SDValue();
1169
1170 // Finally, if this value fits in a 5 bit sext field, return it
1171 if (SignExtend32<5>(MaskVal) == MaskVal)
1172 return DAG.getTargetConstant(MaskVal, MVT::i32);
1173 return SDValue();
1174 }
1175
1176 //===----------------------------------------------------------------------===//
1177 // Addressing Mode Selection
1178 //===----------------------------------------------------------------------===//
1179
1180 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
1181 /// or 64-bit immediate, and if the value can be accurately represented as a
1182 /// sign extension from a 16-bit value. If so, this returns true and the
1183 /// immediate.
isIntS16Immediate(SDNode * N,short & Imm)1184 static bool isIntS16Immediate(SDNode *N, short &Imm) {
1185 if (!isa<ConstantSDNode>(N))
1186 return false;
1187
1188 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
1189 if (N->getValueType(0) == MVT::i32)
1190 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
1191 else
1192 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
1193 }
isIntS16Immediate(SDValue Op,short & Imm)1194 static bool isIntS16Immediate(SDValue Op, short &Imm) {
1195 return isIntS16Immediate(Op.getNode(), Imm);
1196 }
1197
1198
1199 /// SelectAddressRegReg - Given the specified addressed, check to see if it
1200 /// can be represented as an indexed [r+r] operation. Returns false if it
1201 /// can be more efficiently represented with [r+imm].
SelectAddressRegReg(SDValue N,SDValue & Base,SDValue & Index,SelectionDAG & DAG) const1202 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
1203 SDValue &Index,
1204 SelectionDAG &DAG) const {
1205 short imm = 0;
1206 if (N.getOpcode() == ISD::ADD) {
1207 if (isIntS16Immediate(N.getOperand(1), imm))
1208 return false; // r+i
1209 if (N.getOperand(1).getOpcode() == PPCISD::Lo)
1210 return false; // r+i
1211
1212 Base = N.getOperand(0);
1213 Index = N.getOperand(1);
1214 return true;
1215 } else if (N.getOpcode() == ISD::OR) {
1216 if (isIntS16Immediate(N.getOperand(1), imm))
1217 return false; // r+i can fold it if we can.
1218
1219 // If this is an or of disjoint bitfields, we can codegen this as an add
1220 // (for better address arithmetic) if the LHS and RHS of the OR are provably
1221 // disjoint.
1222 APInt LHSKnownZero, LHSKnownOne;
1223 APInt RHSKnownZero, RHSKnownOne;
1224 DAG.computeKnownBits(N.getOperand(0),
1225 LHSKnownZero, LHSKnownOne);
1226
1227 if (LHSKnownZero.getBoolValue()) {
1228 DAG.computeKnownBits(N.getOperand(1),
1229 RHSKnownZero, RHSKnownOne);
1230 // If all of the bits are known zero on the LHS or RHS, the add won't
1231 // carry.
1232 if (~(LHSKnownZero | RHSKnownZero) == 0) {
1233 Base = N.getOperand(0);
1234 Index = N.getOperand(1);
1235 return true;
1236 }
1237 }
1238 }
1239
1240 return false;
1241 }
1242
1243 // If we happen to be doing an i64 load or store into a stack slot that has
1244 // less than a 4-byte alignment, then the frame-index elimination may need to
1245 // use an indexed load or store instruction (because the offset may not be a
1246 // multiple of 4). The extra register needed to hold the offset comes from the
1247 // register scavenger, and it is possible that the scavenger will need to use
1248 // an emergency spill slot. As a result, we need to make sure that a spill slot
1249 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
1250 // stack slot.
fixupFuncForFI(SelectionDAG & DAG,int FrameIdx,EVT VT)1251 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
1252 // FIXME: This does not handle the LWA case.
1253 if (VT != MVT::i64)
1254 return;
1255
1256 // NOTE: We'll exclude negative FIs here, which come from argument
1257 // lowering, because there are no known test cases triggering this problem
1258 // using packed structures (or similar). We can remove this exclusion if
1259 // we find such a test case. The reason why this is so test-case driven is
1260 // because this entire 'fixup' is only to prevent crashes (from the
1261 // register scavenger) on not-really-valid inputs. For example, if we have:
1262 // %a = alloca i1
1263 // %b = bitcast i1* %a to i64*
1264 // store i64* a, i64 b
1265 // then the store should really be marked as 'align 1', but is not. If it
1266 // were marked as 'align 1' then the indexed form would have been
1267 // instruction-selected initially, and the problem this 'fixup' is preventing
1268 // won't happen regardless.
1269 if (FrameIdx < 0)
1270 return;
1271
1272 MachineFunction &MF = DAG.getMachineFunction();
1273 MachineFrameInfo *MFI = MF.getFrameInfo();
1274
1275 unsigned Align = MFI->getObjectAlignment(FrameIdx);
1276 if (Align >= 4)
1277 return;
1278
1279 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1280 FuncInfo->setHasNonRISpills();
1281 }
1282
1283 /// Returns true if the address N can be represented by a base register plus
1284 /// a signed 16-bit displacement [r+imm], and if it is not better
1285 /// represented as reg+reg. If Aligned is true, only accept displacements
1286 /// suitable for STD and friends, i.e. multiples of 4.
SelectAddressRegImm(SDValue N,SDValue & Disp,SDValue & Base,SelectionDAG & DAG,bool Aligned) const1287 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
1288 SDValue &Base,
1289 SelectionDAG &DAG,
1290 bool Aligned) const {
1291 // FIXME dl should come from parent load or store, not from address
1292 SDLoc dl(N);
1293 // If this can be more profitably realized as r+r, fail.
1294 if (SelectAddressRegReg(N, Disp, Base, DAG))
1295 return false;
1296
1297 if (N.getOpcode() == ISD::ADD) {
1298 short imm = 0;
1299 if (isIntS16Immediate(N.getOperand(1), imm) &&
1300 (!Aligned || (imm & 3) == 0)) {
1301 Disp = DAG.getTargetConstant(imm, N.getValueType());
1302 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1303 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1304 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1305 } else {
1306 Base = N.getOperand(0);
1307 }
1308 return true; // [r+i]
1309 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1310 // Match LOAD (ADD (X, Lo(G))).
1311 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1312 && "Cannot handle constant offsets yet!");
1313 Disp = N.getOperand(1).getOperand(0); // The global address.
1314 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1315 Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
1316 Disp.getOpcode() == ISD::TargetConstantPool ||
1317 Disp.getOpcode() == ISD::TargetJumpTable);
1318 Base = N.getOperand(0);
1319 return true; // [&g+r]
1320 }
1321 } else if (N.getOpcode() == ISD::OR) {
1322 short imm = 0;
1323 if (isIntS16Immediate(N.getOperand(1), imm) &&
1324 (!Aligned || (imm & 3) == 0)) {
1325 // If this is an or of disjoint bitfields, we can codegen this as an add
1326 // (for better address arithmetic) if the LHS and RHS of the OR are
1327 // provably disjoint.
1328 APInt LHSKnownZero, LHSKnownOne;
1329 DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1330
1331 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1332 // If all of the bits are known zero on the LHS or RHS, the add won't
1333 // carry.
1334 Base = N.getOperand(0);
1335 Disp = DAG.getTargetConstant(imm, N.getValueType());
1336 return true;
1337 }
1338 }
1339 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1340 // Loading from a constant address.
1341
1342 // If this address fits entirely in a 16-bit sext immediate field, codegen
1343 // this as "d, 0"
1344 short Imm;
1345 if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) {
1346 Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
1347 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1348 CN->getValueType(0));
1349 return true;
1350 }
1351
1352 // Handle 32-bit sext immediates with LIS + addr mode.
1353 if ((CN->getValueType(0) == MVT::i32 ||
1354 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
1355 (!Aligned || (CN->getZExtValue() & 3) == 0)) {
1356 int Addr = (int)CN->getZExtValue();
1357
1358 // Otherwise, break this down into an LIS + disp.
1359 Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
1360
1361 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
1362 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1363 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
1364 return true;
1365 }
1366 }
1367
1368 Disp = DAG.getTargetConstant(0, getPointerTy());
1369 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
1370 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1371 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1372 } else
1373 Base = N;
1374 return true; // [r+0]
1375 }
1376
1377 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
1378 /// represented as an indexed [r+r] operation.
SelectAddressRegRegOnly(SDValue N,SDValue & Base,SDValue & Index,SelectionDAG & DAG) const1379 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
1380 SDValue &Index,
1381 SelectionDAG &DAG) const {
1382 // Check to see if we can easily represent this as an [r+r] address. This
1383 // will fail if it thinks that the address is more profitably represented as
1384 // reg+imm, e.g. where imm = 0.
1385 if (SelectAddressRegReg(N, Base, Index, DAG))
1386 return true;
1387
1388 // If the operand is an addition, always emit this as [r+r], since this is
1389 // better (for code size, and execution, as the memop does the add for free)
1390 // than emitting an explicit add.
1391 if (N.getOpcode() == ISD::ADD) {
1392 Base = N.getOperand(0);
1393 Index = N.getOperand(1);
1394 return true;
1395 }
1396
1397 // Otherwise, do it the hard way, using R0 as the base register.
1398 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1399 N.getValueType());
1400 Index = N;
1401 return true;
1402 }
1403
1404 /// getPreIndexedAddressParts - returns true by value, base pointer and
1405 /// offset pointer and addressing mode by reference if the node's address
1406 /// can be legally represented as pre-indexed load / store address.
getPreIndexedAddressParts(SDNode * N,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const1407 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1408 SDValue &Offset,
1409 ISD::MemIndexedMode &AM,
1410 SelectionDAG &DAG) const {
1411 if (DisablePPCPreinc) return false;
1412
1413 bool isLoad = true;
1414 SDValue Ptr;
1415 EVT VT;
1416 unsigned Alignment;
1417 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1418 Ptr = LD->getBasePtr();
1419 VT = LD->getMemoryVT();
1420 Alignment = LD->getAlignment();
1421 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1422 Ptr = ST->getBasePtr();
1423 VT = ST->getMemoryVT();
1424 Alignment = ST->getAlignment();
1425 isLoad = false;
1426 } else
1427 return false;
1428
1429 // PowerPC doesn't have preinc load/store instructions for vectors.
1430 if (VT.isVector())
1431 return false;
1432
1433 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
1434
1435 // Common code will reject creating a pre-inc form if the base pointer
1436 // is a frame index, or if N is a store and the base pointer is either
1437 // the same as or a predecessor of the value being stored. Check for
1438 // those situations here, and try with swapped Base/Offset instead.
1439 bool Swap = false;
1440
1441 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
1442 Swap = true;
1443 else if (!isLoad) {
1444 SDValue Val = cast<StoreSDNode>(N)->getValue();
1445 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
1446 Swap = true;
1447 }
1448
1449 if (Swap)
1450 std::swap(Base, Offset);
1451
1452 AM = ISD::PRE_INC;
1453 return true;
1454 }
1455
1456 // LDU/STU can only handle immediates that are a multiple of 4.
1457 if (VT != MVT::i64) {
1458 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false))
1459 return false;
1460 } else {
1461 // LDU/STU need an address with at least 4-byte alignment.
1462 if (Alignment < 4)
1463 return false;
1464
1465 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true))
1466 return false;
1467 }
1468
1469 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1470 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
1471 // sext i32 to i64 when addr mode is r+i.
1472 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1473 LD->getExtensionType() == ISD::SEXTLOAD &&
1474 isa<ConstantSDNode>(Offset))
1475 return false;
1476 }
1477
1478 AM = ISD::PRE_INC;
1479 return true;
1480 }
1481
1482 //===----------------------------------------------------------------------===//
1483 // LowerOperation implementation
1484 //===----------------------------------------------------------------------===//
1485
1486 /// GetLabelAccessInfo - Return true if we should reference labels using a
1487 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
GetLabelAccessInfo(const TargetMachine & TM,unsigned & HiOpFlags,unsigned & LoOpFlags,const GlobalValue * GV=nullptr)1488 static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
1489 unsigned &LoOpFlags,
1490 const GlobalValue *GV = nullptr) {
1491 HiOpFlags = PPCII::MO_HA;
1492 LoOpFlags = PPCII::MO_LO;
1493
1494 // Don't use the pic base if not in PIC relocation model. Or if we are on a
1495 // non-darwin platform. We don't support PIC on other platforms yet.
1496 bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
1497 TM.getSubtarget<PPCSubtarget>().isDarwin();
1498 if (isPIC) {
1499 HiOpFlags |= PPCII::MO_PIC_FLAG;
1500 LoOpFlags |= PPCII::MO_PIC_FLAG;
1501 }
1502
1503 // If this is a reference to a global value that requires a non-lazy-ptr, make
1504 // sure that instruction lowering adds it.
1505 if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
1506 HiOpFlags |= PPCII::MO_NLP_FLAG;
1507 LoOpFlags |= PPCII::MO_NLP_FLAG;
1508
1509 if (GV->hasHiddenVisibility()) {
1510 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1511 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1512 }
1513 }
1514
1515 return isPIC;
1516 }
1517
LowerLabelRef(SDValue HiPart,SDValue LoPart,bool isPIC,SelectionDAG & DAG)1518 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1519 SelectionDAG &DAG) {
1520 EVT PtrVT = HiPart.getValueType();
1521 SDValue Zero = DAG.getConstant(0, PtrVT);
1522 SDLoc DL(HiPart);
1523
1524 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1525 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1526
1527 // With PIC, the first instruction is actually "GR+hi(&G)".
1528 if (isPIC)
1529 Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1530 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
1531
1532 // Generate non-pic code that has direct accesses to the constant pool.
1533 // The address of the global is just (hi(&g)+lo(&g)).
1534 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1535 }
1536
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const1537 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1538 SelectionDAG &DAG) const {
1539 EVT PtrVT = Op.getValueType();
1540 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1541 const Constant *C = CP->getConstVal();
1542
1543 // 64-bit SVR4 ABI code is always position-independent.
1544 // The actual address of the GlobalValue is stored in the TOC.
1545 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
1546 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
1547 return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(CP), MVT::i64, GA,
1548 DAG.getRegister(PPC::X2, MVT::i64));
1549 }
1550
1551 unsigned MOHiFlag, MOLoFlag;
1552 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1553 SDValue CPIHi =
1554 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
1555 SDValue CPILo =
1556 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
1557 return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
1558 }
1559
LowerJumpTable(SDValue Op,SelectionDAG & DAG) const1560 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1561 EVT PtrVT = Op.getValueType();
1562 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1563
1564 // 64-bit SVR4 ABI code is always position-independent.
1565 // The actual address of the GlobalValue is stored in the TOC.
1566 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
1567 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1568 return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(JT), MVT::i64, GA,
1569 DAG.getRegister(PPC::X2, MVT::i64));
1570 }
1571
1572 unsigned MOHiFlag, MOLoFlag;
1573 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1574 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
1575 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
1576 return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
1577 }
1578
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const1579 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1580 SelectionDAG &DAG) const {
1581 EVT PtrVT = Op.getValueType();
1582
1583 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1584
1585 unsigned MOHiFlag, MOLoFlag;
1586 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1587 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
1588 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
1589 return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
1590 }
1591
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const1592 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1593 SelectionDAG &DAG) const {
1594
1595 // FIXME: TLS addresses currently use medium model code sequences,
1596 // which is the most useful form. Eventually support for small and
1597 // large models could be added if users need it, at the cost of
1598 // additional complexity.
1599 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1600 SDLoc dl(GA);
1601 const GlobalValue *GV = GA->getGlobal();
1602 EVT PtrVT = getPointerTy();
1603 bool is64bit = Subtarget.isPPC64();
1604
1605 TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
1606
1607 if (Model == TLSModel::LocalExec) {
1608 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1609 PPCII::MO_TPREL_HA);
1610 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1611 PPCII::MO_TPREL_LO);
1612 SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
1613 is64bit ? MVT::i64 : MVT::i32);
1614 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
1615 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
1616 }
1617
1618 if (Model == TLSModel::InitialExec) {
1619 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1620 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1621 PPCII::MO_TLS);
1622 SDValue GOTPtr;
1623 if (is64bit) {
1624 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1625 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
1626 PtrVT, GOTReg, TGA);
1627 } else
1628 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
1629 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
1630 PtrVT, TGA, GOTPtr);
1631 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
1632 }
1633
1634 if (Model == TLSModel::GeneralDynamic) {
1635 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1636 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1637 SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
1638 GOTReg, TGA);
1639 SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSGD_L, dl, PtrVT,
1640 GOTEntryHi, TGA);
1641
1642 // We need a chain node, and don't have one handy. The underlying
1643 // call has no side effects, so using the function entry node
1644 // suffices.
1645 SDValue Chain = DAG.getEntryNode();
1646 Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
1647 SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
1648 SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLS_ADDR, dl,
1649 PtrVT, ParmReg, TGA);
1650 // The return value from GET_TLS_ADDR really is in X3 already, but
1651 // some hacks are needed here to tie everything together. The extra
1652 // copies dissolve during subsequent transforms.
1653 Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
1654 return DAG.getCopyFromReg(Chain, dl, PPC::X3, PtrVT);
1655 }
1656
1657 if (Model == TLSModel::LocalDynamic) {
1658 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1659 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1660 SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
1661 GOTReg, TGA);
1662 SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSLD_L, dl, PtrVT,
1663 GOTEntryHi, TGA);
1664
1665 // We need a chain node, and don't have one handy. The underlying
1666 // call has no side effects, so using the function entry node
1667 // suffices.
1668 SDValue Chain = DAG.getEntryNode();
1669 Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
1670 SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
1671 SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLSLD_ADDR, dl,
1672 PtrVT, ParmReg, TGA);
1673 // The return value from GET_TLSLD_ADDR really is in X3 already, but
1674 // some hacks are needed here to tie everything together. The extra
1675 // copies dissolve during subsequent transforms.
1676 Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
1677 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, PtrVT,
1678 Chain, ParmReg, TGA);
1679 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
1680 }
1681
1682 llvm_unreachable("Unknown TLS model!");
1683 }
1684
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const1685 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1686 SelectionDAG &DAG) const {
1687 EVT PtrVT = Op.getValueType();
1688 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1689 SDLoc DL(GSDN);
1690 const GlobalValue *GV = GSDN->getGlobal();
1691
1692 // 64-bit SVR4 ABI code is always position-independent.
1693 // The actual address of the GlobalValue is stored in the TOC.
1694 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
1695 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
1696 return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
1697 DAG.getRegister(PPC::X2, MVT::i64));
1698 }
1699
1700 unsigned MOHiFlag, MOLoFlag;
1701 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
1702
1703 SDValue GAHi =
1704 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
1705 SDValue GALo =
1706 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
1707
1708 SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
1709
1710 // If the global reference is actually to a non-lazy-pointer, we have to do an
1711 // extra load to get the address of the global.
1712 if (MOHiFlag & PPCII::MO_NLP_FLAG)
1713 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
1714 false, false, false, 0);
1715 return Ptr;
1716 }
1717
LowerSETCC(SDValue Op,SelectionDAG & DAG) const1718 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1719 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1720 SDLoc dl(Op);
1721
1722 if (Op.getValueType() == MVT::v2i64) {
1723 // When the operands themselves are v2i64 values, we need to do something
1724 // special because VSX has no underlying comparison operations for these.
1725 if (Op.getOperand(0).getValueType() == MVT::v2i64) {
1726 // Equality can be handled by casting to the legal type for Altivec
1727 // comparisons, everything else needs to be expanded.
1728 if (CC == ISD::SETEQ || CC == ISD::SETNE) {
1729 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
1730 DAG.getSetCC(dl, MVT::v4i32,
1731 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
1732 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
1733 CC));
1734 }
1735
1736 return SDValue();
1737 }
1738
1739 // We handle most of these in the usual way.
1740 return Op;
1741 }
1742
1743 // If we're comparing for equality to zero, expose the fact that this is
1744 // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1745 // fold the new nodes.
1746 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1747 if (C->isNullValue() && CC == ISD::SETEQ) {
1748 EVT VT = Op.getOperand(0).getValueType();
1749 SDValue Zext = Op.getOperand(0);
1750 if (VT.bitsLT(MVT::i32)) {
1751 VT = MVT::i32;
1752 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1753 }
1754 unsigned Log2b = Log2_32(VT.getSizeInBits());
1755 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1756 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1757 DAG.getConstant(Log2b, MVT::i32));
1758 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1759 }
1760 // Leave comparisons against 0 and -1 alone for now, since they're usually
1761 // optimized. FIXME: revisit this when we can custom lower all setcc
1762 // optimizations.
1763 if (C->isAllOnesValue() || C->isNullValue())
1764 return SDValue();
1765 }
1766
1767 // If we have an integer seteq/setne, turn it into a compare against zero
1768 // by xor'ing the rhs with the lhs, which is faster than setting a
1769 // condition register, reading it back out, and masking the correct bit. The
1770 // normal approach here uses sub to do this instead of xor. Using xor exposes
1771 // the result to other bit-twiddling opportunities.
1772 EVT LHSVT = Op.getOperand(0).getValueType();
1773 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1774 EVT VT = Op.getValueType();
1775 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1776 Op.getOperand(1));
1777 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1778 }
1779 return SDValue();
1780 }
1781
LowerVAARG(SDValue Op,SelectionDAG & DAG,const PPCSubtarget & Subtarget) const1782 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1783 const PPCSubtarget &Subtarget) const {
1784 SDNode *Node = Op.getNode();
1785 EVT VT = Node->getValueType(0);
1786 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1787 SDValue InChain = Node->getOperand(0);
1788 SDValue VAListPtr = Node->getOperand(1);
1789 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1790 SDLoc dl(Node);
1791
1792 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
1793
1794 // gpr_index
1795 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1796 VAListPtr, MachinePointerInfo(SV), MVT::i8,
1797 false, false, 0);
1798 InChain = GprIndex.getValue(1);
1799
1800 if (VT == MVT::i64) {
1801 // Check if GprIndex is even
1802 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
1803 DAG.getConstant(1, MVT::i32));
1804 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
1805 DAG.getConstant(0, MVT::i32), ISD::SETNE);
1806 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
1807 DAG.getConstant(1, MVT::i32));
1808 // Align GprIndex to be even if it isn't
1809 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
1810 GprIndex);
1811 }
1812
1813 // fpr index is 1 byte after gpr
1814 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1815 DAG.getConstant(1, MVT::i32));
1816
1817 // fpr
1818 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1819 FprPtr, MachinePointerInfo(SV), MVT::i8,
1820 false, false, 0);
1821 InChain = FprIndex.getValue(1);
1822
1823 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1824 DAG.getConstant(8, MVT::i32));
1825
1826 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1827 DAG.getConstant(4, MVT::i32));
1828
1829 // areas
1830 SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
1831 MachinePointerInfo(), false, false,
1832 false, 0);
1833 InChain = OverflowArea.getValue(1);
1834
1835 SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
1836 MachinePointerInfo(), false, false,
1837 false, 0);
1838 InChain = RegSaveArea.getValue(1);
1839
1840 // select overflow_area if index > 8
1841 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
1842 DAG.getConstant(8, MVT::i32), ISD::SETLT);
1843
1844 // adjustment constant gpr_index * 4/8
1845 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
1846 VT.isInteger() ? GprIndex : FprIndex,
1847 DAG.getConstant(VT.isInteger() ? 4 : 8,
1848 MVT::i32));
1849
1850 // OurReg = RegSaveArea + RegConstant
1851 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
1852 RegConstant);
1853
1854 // Floating types are 32 bytes into RegSaveArea
1855 if (VT.isFloatingPoint())
1856 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
1857 DAG.getConstant(32, MVT::i32));
1858
1859 // increase {f,g}pr_index by 1 (or 2 if VT is i64)
1860 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
1861 VT.isInteger() ? GprIndex : FprIndex,
1862 DAG.getConstant(VT == MVT::i64 ? 2 : 1,
1863 MVT::i32));
1864
1865 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
1866 VT.isInteger() ? VAListPtr : FprPtr,
1867 MachinePointerInfo(SV),
1868 MVT::i8, false, false, 0);
1869
1870 // determine if we should load from reg_save_area or overflow_area
1871 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
1872
1873 // increase overflow_area by 4/8 if gpr/fpr > 8
1874 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
1875 DAG.getConstant(VT.isInteger() ? 4 : 8,
1876 MVT::i32));
1877
1878 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
1879 OverflowAreaPlusN);
1880
1881 InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
1882 OverflowAreaPtr,
1883 MachinePointerInfo(),
1884 MVT::i32, false, false, 0);
1885
1886 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
1887 false, false, false, 0);
1888 }
1889
LowerVACOPY(SDValue Op,SelectionDAG & DAG,const PPCSubtarget & Subtarget) const1890 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG,
1891 const PPCSubtarget &Subtarget) const {
1892 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
1893
1894 // We have to copy the entire va_list struct:
1895 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
1896 return DAG.getMemcpy(Op.getOperand(0), Op,
1897 Op.getOperand(1), Op.getOperand(2),
1898 DAG.getConstant(12, MVT::i32), 8, false, true,
1899 MachinePointerInfo(), MachinePointerInfo());
1900 }
1901
LowerADJUST_TRAMPOLINE(SDValue Op,SelectionDAG & DAG) const1902 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
1903 SelectionDAG &DAG) const {
1904 return Op.getOperand(0);
1905 }
1906
LowerINIT_TRAMPOLINE(SDValue Op,SelectionDAG & DAG) const1907 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
1908 SelectionDAG &DAG) const {
1909 SDValue Chain = Op.getOperand(0);
1910 SDValue Trmp = Op.getOperand(1); // trampoline
1911 SDValue FPtr = Op.getOperand(2); // nested function
1912 SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1913 SDLoc dl(Op);
1914
1915 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1916 bool isPPC64 = (PtrVT == MVT::i64);
1917 Type *IntPtrTy =
1918 DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType(
1919 *DAG.getContext());
1920
1921 TargetLowering::ArgListTy Args;
1922 TargetLowering::ArgListEntry Entry;
1923
1924 Entry.Ty = IntPtrTy;
1925 Entry.Node = Trmp; Args.push_back(Entry);
1926
1927 // TrampSize == (isPPC64 ? 48 : 40);
1928 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1929 isPPC64 ? MVT::i64 : MVT::i32);
1930 Args.push_back(Entry);
1931
1932 Entry.Node = FPtr; Args.push_back(Entry);
1933 Entry.Node = Nest; Args.push_back(Entry);
1934
1935 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1936 TargetLowering::CallLoweringInfo CLI(DAG);
1937 CLI.setDebugLoc(dl).setChain(Chain)
1938 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
1939 DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1940 std::move(Args), 0);
1941
1942 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1943 return CallResult.second;
1944 }
1945
LowerVASTART(SDValue Op,SelectionDAG & DAG,const PPCSubtarget & Subtarget) const1946 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1947 const PPCSubtarget &Subtarget) const {
1948 MachineFunction &MF = DAG.getMachineFunction();
1949 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1950
1951 SDLoc dl(Op);
1952
1953 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1954 // vastart just stores the address of the VarArgsFrameIndex slot into the
1955 // memory location argument.
1956 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1957 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1958 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1959 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
1960 MachinePointerInfo(SV),
1961 false, false, 0);
1962 }
1963
1964 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1965 // We suppose the given va_list is already allocated.
1966 //
1967 // typedef struct {
1968 // char gpr; /* index into the array of 8 GPRs
1969 // * stored in the register save area
1970 // * gpr=0 corresponds to r3,
1971 // * gpr=1 to r4, etc.
1972 // */
1973 // char fpr; /* index into the array of 8 FPRs
1974 // * stored in the register save area
1975 // * fpr=0 corresponds to f1,
1976 // * fpr=1 to f2, etc.
1977 // */
1978 // char *overflow_arg_area;
1979 // /* location on stack that holds
1980 // * the next overflow argument
1981 // */
1982 // char *reg_save_area;
1983 // /* where r3:r10 and f1:f8 (if saved)
1984 // * are stored
1985 // */
1986 // } va_list[1];
1987
1988
1989 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
1990 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
1991
1992
1993 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1994
1995 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
1996 PtrVT);
1997 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1998 PtrVT);
1999
2000 uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
2001 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
2002
2003 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
2004 SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
2005
2006 uint64_t FPROffset = 1;
2007 SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
2008
2009 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2010
2011 // Store first byte : number of int regs
2012 SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
2013 Op.getOperand(1),
2014 MachinePointerInfo(SV),
2015 MVT::i8, false, false, 0);
2016 uint64_t nextOffset = FPROffset;
2017 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
2018 ConstFPROffset);
2019
2020 // Store second byte : number of float regs
2021 SDValue secondStore =
2022 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
2023 MachinePointerInfo(SV, nextOffset), MVT::i8,
2024 false, false, 0);
2025 nextOffset += StackOffset;
2026 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
2027
2028 // Store second word : arguments given on stack
2029 SDValue thirdStore =
2030 DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
2031 MachinePointerInfo(SV, nextOffset),
2032 false, false, 0);
2033 nextOffset += FrameOffset;
2034 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
2035
2036 // Store third word : arguments given in registers
2037 return DAG.getStore(thirdStore, dl, FR, nextPtr,
2038 MachinePointerInfo(SV, nextOffset),
2039 false, false, 0);
2040
2041 }
2042
2043 #include "PPCGenCallingConv.inc"
2044
2045 // Function whose sole purpose is to kill compiler warnings
2046 // stemming from unused functions included from PPCGenCallingConv.inc.
useFastISelCCs(unsigned Flag) const2047 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
2048 return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
2049 }
2050
CC_PPC32_SVR4_Custom_Dummy(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)2051 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
2052 CCValAssign::LocInfo &LocInfo,
2053 ISD::ArgFlagsTy &ArgFlags,
2054 CCState &State) {
2055 return true;
2056 }
2057
CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)2058 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
2059 MVT &LocVT,
2060 CCValAssign::LocInfo &LocInfo,
2061 ISD::ArgFlagsTy &ArgFlags,
2062 CCState &State) {
2063 static const MCPhysReg ArgRegs[] = {
2064 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2065 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2066 };
2067 const unsigned NumArgRegs = array_lengthof(ArgRegs);
2068
2069 unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
2070
2071 // Skip one register if the first unallocated register has an even register
2072 // number and there are still argument registers available which have not been
2073 // allocated yet. RegNum is actually an index into ArgRegs, which means we
2074 // need to skip a register if RegNum is odd.
2075 if (RegNum != NumArgRegs && RegNum % 2 == 1) {
2076 State.AllocateReg(ArgRegs[RegNum]);
2077 }
2078
2079 // Always return false here, as this function only makes sure that the first
2080 // unallocated register has an odd register number and does not actually
2081 // allocate a register for the current argument.
2082 return false;
2083 }
2084
CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)2085 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
2086 MVT &LocVT,
2087 CCValAssign::LocInfo &LocInfo,
2088 ISD::ArgFlagsTy &ArgFlags,
2089 CCState &State) {
2090 static const MCPhysReg ArgRegs[] = {
2091 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2092 PPC::F8
2093 };
2094
2095 const unsigned NumArgRegs = array_lengthof(ArgRegs);
2096
2097 unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
2098
2099 // If there is only one Floating-point register left we need to put both f64
2100 // values of a split ppc_fp128 value on the stack.
2101 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
2102 State.AllocateReg(ArgRegs[RegNum]);
2103 }
2104
2105 // Always return false here, as this function only makes sure that the two f64
2106 // values a ppc_fp128 value is split into are both passed in registers or both
2107 // passed on the stack and does not actually allocate a register for the
2108 // current argument.
2109 return false;
2110 }
2111
2112 /// GetFPR - Get the set of FP registers that should be allocated for arguments,
2113 /// on Darwin.
GetFPR()2114 static const MCPhysReg *GetFPR() {
2115 static const MCPhysReg FPR[] = {
2116 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2117 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
2118 };
2119
2120 return FPR;
2121 }
2122
2123 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
2124 /// the stack.
CalculateStackSlotSize(EVT ArgVT,ISD::ArgFlagsTy Flags,unsigned PtrByteSize)2125 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
2126 unsigned PtrByteSize) {
2127 unsigned ArgSize = ArgVT.getStoreSize();
2128 if (Flags.isByVal())
2129 ArgSize = Flags.getByValSize();
2130 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2131
2132 return ArgSize;
2133 }
2134
2135 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
2136 /// on the stack.
CalculateStackSlotAlignment(EVT ArgVT,ISD::ArgFlagsTy Flags,unsigned PtrByteSize)2137 static unsigned CalculateStackSlotAlignment(EVT ArgVT, ISD::ArgFlagsTy Flags,
2138 unsigned PtrByteSize) {
2139 unsigned Align = PtrByteSize;
2140
2141 // Altivec parameters are padded to a 16 byte boundary.
2142 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
2143 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
2144 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64)
2145 Align = 16;
2146
2147 // ByVal parameters are aligned as requested.
2148 if (Flags.isByVal()) {
2149 unsigned BVAlign = Flags.getByValAlign();
2150 if (BVAlign > PtrByteSize) {
2151 if (BVAlign % PtrByteSize != 0)
2152 llvm_unreachable(
2153 "ByVal alignment is not a multiple of the pointer size");
2154
2155 Align = BVAlign;
2156 }
2157 }
2158
2159 return Align;
2160 }
2161
2162 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
2163 /// ensure minimum alignment required for target.
EnsureStackAlignment(const TargetMachine & Target,unsigned NumBytes)2164 static unsigned EnsureStackAlignment(const TargetMachine &Target,
2165 unsigned NumBytes) {
2166 unsigned TargetAlign = Target.getFrameLowering()->getStackAlignment();
2167 unsigned AlignMask = TargetAlign - 1;
2168 NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2169 return NumBytes;
2170 }
2171
2172 SDValue
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const2173 PPCTargetLowering::LowerFormalArguments(SDValue Chain,
2174 CallingConv::ID CallConv, bool isVarArg,
2175 const SmallVectorImpl<ISD::InputArg>
2176 &Ins,
2177 SDLoc dl, SelectionDAG &DAG,
2178 SmallVectorImpl<SDValue> &InVals)
2179 const {
2180 if (Subtarget.isSVR4ABI()) {
2181 if (Subtarget.isPPC64())
2182 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
2183 dl, DAG, InVals);
2184 else
2185 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
2186 dl, DAG, InVals);
2187 } else {
2188 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
2189 dl, DAG, InVals);
2190 }
2191 }
2192
2193 SDValue
LowerFormalArguments_32SVR4(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const2194 PPCTargetLowering::LowerFormalArguments_32SVR4(
2195 SDValue Chain,
2196 CallingConv::ID CallConv, bool isVarArg,
2197 const SmallVectorImpl<ISD::InputArg>
2198 &Ins,
2199 SDLoc dl, SelectionDAG &DAG,
2200 SmallVectorImpl<SDValue> &InVals) const {
2201
2202 // 32-bit SVR4 ABI Stack Frame Layout:
2203 // +-----------------------------------+
2204 // +--> | Back chain |
2205 // | +-----------------------------------+
2206 // | | Floating-point register save area |
2207 // | +-----------------------------------+
2208 // | | General register save area |
2209 // | +-----------------------------------+
2210 // | | CR save word |
2211 // | +-----------------------------------+
2212 // | | VRSAVE save word |
2213 // | +-----------------------------------+
2214 // | | Alignment padding |
2215 // | +-----------------------------------+
2216 // | | Vector register save area |
2217 // | +-----------------------------------+
2218 // | | Local variable space |
2219 // | +-----------------------------------+
2220 // | | Parameter list area |
2221 // | +-----------------------------------+
2222 // | | LR save word |
2223 // | +-----------------------------------+
2224 // SP--> +--- | Back chain |
2225 // +-----------------------------------+
2226 //
2227 // Specifications:
2228 // System V Application Binary Interface PowerPC Processor Supplement
2229 // AltiVec Technology Programming Interface Manual
2230
2231 MachineFunction &MF = DAG.getMachineFunction();
2232 MachineFrameInfo *MFI = MF.getFrameInfo();
2233 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2234
2235 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2236 // Potential tail calls could cause overwriting of argument stack slots.
2237 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2238 (CallConv == CallingConv::Fast));
2239 unsigned PtrByteSize = 4;
2240
2241 // Assign locations to all of the incoming arguments.
2242 SmallVector<CCValAssign, 16> ArgLocs;
2243 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2244 getTargetMachine(), ArgLocs, *DAG.getContext());
2245
2246 // Reserve space for the linkage area on the stack.
2247 unsigned LinkageSize = PPCFrameLowering::getLinkageSize(false, false);
2248 CCInfo.AllocateStack(LinkageSize, PtrByteSize);
2249
2250 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
2251
2252 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2253 CCValAssign &VA = ArgLocs[i];
2254
2255 // Arguments stored in registers.
2256 if (VA.isRegLoc()) {
2257 const TargetRegisterClass *RC;
2258 EVT ValVT = VA.getValVT();
2259
2260 switch (ValVT.getSimpleVT().SimpleTy) {
2261 default:
2262 llvm_unreachable("ValVT not supported by formal arguments Lowering");
2263 case MVT::i1:
2264 case MVT::i32:
2265 RC = &PPC::GPRCRegClass;
2266 break;
2267 case MVT::f32:
2268 RC = &PPC::F4RCRegClass;
2269 break;
2270 case MVT::f64:
2271 if (Subtarget.hasVSX())
2272 RC = &PPC::VSFRCRegClass;
2273 else
2274 RC = &PPC::F8RCRegClass;
2275 break;
2276 case MVT::v16i8:
2277 case MVT::v8i16:
2278 case MVT::v4i32:
2279 case MVT::v4f32:
2280 RC = &PPC::VRRCRegClass;
2281 break;
2282 case MVT::v2f64:
2283 case MVT::v2i64:
2284 RC = &PPC::VSHRCRegClass;
2285 break;
2286 }
2287
2288 // Transform the arguments stored in physical registers into virtual ones.
2289 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2290 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
2291 ValVT == MVT::i1 ? MVT::i32 : ValVT);
2292
2293 if (ValVT == MVT::i1)
2294 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
2295
2296 InVals.push_back(ArgValue);
2297 } else {
2298 // Argument stored in memory.
2299 assert(VA.isMemLoc());
2300
2301 unsigned ArgSize = VA.getLocVT().getStoreSize();
2302 int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
2303 isImmutable);
2304
2305 // Create load nodes to retrieve arguments from the stack.
2306 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2307 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2308 MachinePointerInfo(),
2309 false, false, false, 0));
2310 }
2311 }
2312
2313 // Assign locations to all of the incoming aggregate by value arguments.
2314 // Aggregates passed by value are stored in the local variable space of the
2315 // caller's stack frame, right above the parameter list area.
2316 SmallVector<CCValAssign, 16> ByValArgLocs;
2317 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2318 getTargetMachine(), ByValArgLocs, *DAG.getContext());
2319
2320 // Reserve stack space for the allocations in CCInfo.
2321 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2322
2323 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
2324
2325 // Area that is at least reserved in the caller of this function.
2326 unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
2327 MinReservedArea = std::max(MinReservedArea, LinkageSize);
2328
2329 // Set the size that is at least reserved in caller of this function. Tail
2330 // call optimized function's reserved stack space needs to be aligned so that
2331 // taking the difference between two stack areas will result in an aligned
2332 // stack.
2333 MinReservedArea = EnsureStackAlignment(MF.getTarget(), MinReservedArea);
2334 FuncInfo->setMinReservedArea(MinReservedArea);
2335
2336 SmallVector<SDValue, 8> MemOps;
2337
2338 // If the function takes variable number of arguments, make a frame index for
2339 // the start of the first vararg value... for expansion of llvm.va_start.
2340 if (isVarArg) {
2341 static const MCPhysReg GPArgRegs[] = {
2342 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2343 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2344 };
2345 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
2346
2347 static const MCPhysReg FPArgRegs[] = {
2348 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2349 PPC::F8
2350 };
2351 const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
2352
2353 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
2354 NumGPArgRegs));
2355 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
2356 NumFPArgRegs));
2357
2358 // Make room for NumGPArgRegs and NumFPArgRegs.
2359 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
2360 NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
2361
2362 FuncInfo->setVarArgsStackOffset(
2363 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2364 CCInfo.getNextStackOffset(), true));
2365
2366 FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
2367 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2368
2369 // The fixed integer arguments of a variadic function are stored to the
2370 // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
2371 // the result of va_next.
2372 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
2373 // Get an existing live-in vreg, or add a new one.
2374 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
2375 if (!VReg)
2376 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
2377
2378 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2379 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2380 MachinePointerInfo(), false, false, 0);
2381 MemOps.push_back(Store);
2382 // Increment the address by four for the next argument to store
2383 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2384 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2385 }
2386
2387 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
2388 // is set.
2389 // The double arguments are stored to the VarArgsFrameIndex
2390 // on the stack.
2391 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
2392 // Get an existing live-in vreg, or add a new one.
2393 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
2394 if (!VReg)
2395 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
2396
2397 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
2398 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2399 MachinePointerInfo(), false, false, 0);
2400 MemOps.push_back(Store);
2401 // Increment the address by eight for the next argument to store
2402 SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
2403 PtrVT);
2404 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2405 }
2406 }
2407
2408 if (!MemOps.empty())
2409 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
2410
2411 return Chain;
2412 }
2413
2414 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2415 // value to MVT::i64 and then truncate to the correct register size.
2416 SDValue
extendArgForPPC64(ISD::ArgFlagsTy Flags,EVT ObjectVT,SelectionDAG & DAG,SDValue ArgVal,SDLoc dl) const2417 PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
2418 SelectionDAG &DAG, SDValue ArgVal,
2419 SDLoc dl) const {
2420 if (Flags.isSExt())
2421 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
2422 DAG.getValueType(ObjectVT));
2423 else if (Flags.isZExt())
2424 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
2425 DAG.getValueType(ObjectVT));
2426
2427 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
2428 }
2429
2430 SDValue
LowerFormalArguments_64SVR4(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const2431 PPCTargetLowering::LowerFormalArguments_64SVR4(
2432 SDValue Chain,
2433 CallingConv::ID CallConv, bool isVarArg,
2434 const SmallVectorImpl<ISD::InputArg>
2435 &Ins,
2436 SDLoc dl, SelectionDAG &DAG,
2437 SmallVectorImpl<SDValue> &InVals) const {
2438 // TODO: add description of PPC stack frame format, or at least some docs.
2439 //
2440 bool isLittleEndian = Subtarget.isLittleEndian();
2441 MachineFunction &MF = DAG.getMachineFunction();
2442 MachineFrameInfo *MFI = MF.getFrameInfo();
2443 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2444
2445 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2446 // Potential tail calls could cause overwriting of argument stack slots.
2447 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2448 (CallConv == CallingConv::Fast));
2449 unsigned PtrByteSize = 8;
2450
2451 unsigned LinkageSize = PPCFrameLowering::getLinkageSize(true, false);
2452 unsigned ArgOffset = LinkageSize;
2453
2454 static const MCPhysReg GPR[] = {
2455 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2456 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2457 };
2458
2459 static const MCPhysReg *FPR = GetFPR();
2460
2461 static const MCPhysReg VR[] = {
2462 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2463 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2464 };
2465 static const MCPhysReg VSRH[] = {
2466 PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
2467 PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
2468 };
2469
2470 const unsigned Num_GPR_Regs = array_lengthof(GPR);
2471 const unsigned Num_FPR_Regs = 13;
2472 const unsigned Num_VR_Regs = array_lengthof(VR);
2473
2474 unsigned GPR_idx, FPR_idx = 0, VR_idx = 0;
2475
2476 // Add DAG nodes to load the arguments or copy them out of registers. On
2477 // entry to a function on PPC, the arguments start after the linkage area,
2478 // although the first ones are often in registers.
2479
2480 SmallVector<SDValue, 8> MemOps;
2481 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2482 unsigned CurArgIdx = 0;
2483 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
2484 SDValue ArgVal;
2485 bool needsLoad = false;
2486 EVT ObjectVT = Ins[ArgNo].VT;
2487 unsigned ObjSize = ObjectVT.getStoreSize();
2488 unsigned ArgSize = ObjSize;
2489 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2490 std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
2491 CurArgIdx = Ins[ArgNo].OrigArgIndex;
2492
2493 /* Respect alignment of argument on the stack. */
2494 unsigned Align =
2495 CalculateStackSlotAlignment(ObjectVT, Flags, PtrByteSize);
2496 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
2497 unsigned CurArgOffset = ArgOffset;
2498
2499 /* Compute GPR index associated with argument offset. */
2500 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
2501 GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
2502
2503 // FIXME the codegen can be much improved in some cases.
2504 // We do not have to keep everything in memory.
2505 if (Flags.isByVal()) {
2506 // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2507 ObjSize = Flags.getByValSize();
2508 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2509 // Empty aggregate parameters do not take up registers. Examples:
2510 // struct { } a;
2511 // union { } b;
2512 // int c[0];
2513 // etc. However, we have to provide a place-holder in InVals, so
2514 // pretend we have an 8-byte item at the current address for that
2515 // purpose.
2516 if (!ObjSize) {
2517 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2518 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2519 InVals.push_back(FIN);
2520 continue;
2521 }
2522
2523 // All aggregates smaller than 8 bytes must be passed right-justified.
2524 if (ObjSize < PtrByteSize && !isLittleEndian)
2525 CurArgOffset = CurArgOffset + (PtrByteSize - ObjSize);
2526 // The value of the object is its address.
2527 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2528 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2529 InVals.push_back(FIN);
2530
2531 if (ObjSize < 8) {
2532 if (GPR_idx != Num_GPR_Regs) {
2533 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2534 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2535 SDValue Store;
2536
2537 if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
2538 EVT ObjType = (ObjSize == 1 ? MVT::i8 :
2539 (ObjSize == 2 ? MVT::i16 : MVT::i32));
2540 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2541 MachinePointerInfo(FuncArg),
2542 ObjType, false, false, 0);
2543 } else {
2544 // For sizes that don't fit a truncating store (3, 5, 6, 7),
2545 // store the whole register as-is to the parameter save area
2546 // slot. The address of the parameter was already calculated
2547 // above (InVals.push_back(FIN)) to be the right-justified
2548 // offset within the slot. For this store, we need a new
2549 // frame index that points at the beginning of the slot.
2550 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2551 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2552 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2553 MachinePointerInfo(FuncArg),
2554 false, false, 0);
2555 }
2556
2557 MemOps.push_back(Store);
2558 }
2559 // Whether we copied from a register or not, advance the offset
2560 // into the parameter save area by a full doubleword.
2561 ArgOffset += PtrByteSize;
2562 continue;
2563 }
2564
2565 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2566 // Store whatever pieces of the object are in registers
2567 // to memory. ArgOffset will be the address of the beginning
2568 // of the object.
2569 if (GPR_idx != Num_GPR_Regs) {
2570 unsigned VReg;
2571 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2572 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2573 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2574 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2575 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2576 MachinePointerInfo(FuncArg, j),
2577 false, false, 0);
2578 MemOps.push_back(Store);
2579 ++GPR_idx;
2580 ArgOffset += PtrByteSize;
2581 } else {
2582 ArgOffset += ArgSize - j;
2583 break;
2584 }
2585 }
2586 continue;
2587 }
2588
2589 switch (ObjectVT.getSimpleVT().SimpleTy) {
2590 default: llvm_unreachable("Unhandled argument type!");
2591 case MVT::i1:
2592 case MVT::i32:
2593 case MVT::i64:
2594 if (GPR_idx != Num_GPR_Regs) {
2595 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2596 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2597
2598 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
2599 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2600 // value to MVT::i64 and then truncate to the correct register size.
2601 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
2602 } else {
2603 needsLoad = true;
2604 ArgSize = PtrByteSize;
2605 }
2606 ArgOffset += 8;
2607 break;
2608
2609 case MVT::f32:
2610 case MVT::f64:
2611 if (FPR_idx != Num_FPR_Regs) {
2612 unsigned VReg;
2613
2614 if (ObjectVT == MVT::f32)
2615 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2616 else
2617 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() ?
2618 &PPC::VSFRCRegClass :
2619 &PPC::F8RCRegClass);
2620
2621 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2622 ++FPR_idx;
2623 } else {
2624 needsLoad = true;
2625 ArgSize = PtrByteSize;
2626 }
2627
2628 ArgOffset += 8;
2629 break;
2630 case MVT::v4f32:
2631 case MVT::v4i32:
2632 case MVT::v8i16:
2633 case MVT::v16i8:
2634 case MVT::v2f64:
2635 case MVT::v2i64:
2636 if (VR_idx != Num_VR_Regs) {
2637 unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ?
2638 MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) :
2639 MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2640 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2641 ++VR_idx;
2642 } else {
2643 needsLoad = true;
2644 }
2645 ArgOffset += 16;
2646 break;
2647 }
2648
2649 // We need to load the argument to a virtual register if we determined
2650 // above that we ran out of physical registers of the appropriate type.
2651 if (needsLoad) {
2652 if (ObjSize < ArgSize && !isLittleEndian)
2653 CurArgOffset += ArgSize - ObjSize;
2654 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
2655 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2656 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2657 false, false, false, 0);
2658 }
2659
2660 InVals.push_back(ArgVal);
2661 }
2662
2663 // Area that is at least reserved in the caller of this function.
2664 unsigned MinReservedArea;
2665 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
2666
2667 // Set the size that is at least reserved in caller of this function. Tail
2668 // call optimized functions' reserved stack space needs to be aligned so that
2669 // taking the difference between two stack areas will result in an aligned
2670 // stack.
2671 MinReservedArea = EnsureStackAlignment(MF.getTarget(), MinReservedArea);
2672 FuncInfo->setMinReservedArea(MinReservedArea);
2673
2674 // If the function takes variable number of arguments, make a frame index for
2675 // the start of the first vararg value... for expansion of llvm.va_start.
2676 if (isVarArg) {
2677 int Depth = ArgOffset;
2678
2679 FuncInfo->setVarArgsFrameIndex(
2680 MFI->CreateFixedObject(PtrByteSize, Depth, true));
2681 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2682
2683 // If this function is vararg, store any remaining integer argument regs
2684 // to their spots on the stack so that they may be loaded by deferencing the
2685 // result of va_next.
2686 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
2687 GPR_idx < Num_GPR_Regs; ++GPR_idx) {
2688 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2689 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2690 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2691 MachinePointerInfo(), false, false, 0);
2692 MemOps.push_back(Store);
2693 // Increment the address by four for the next argument to store
2694 SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT);
2695 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2696 }
2697 }
2698
2699 if (!MemOps.empty())
2700 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
2701
2702 return Chain;
2703 }
2704
2705 SDValue
LowerFormalArguments_Darwin(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const2706 PPCTargetLowering::LowerFormalArguments_Darwin(
2707 SDValue Chain,
2708 CallingConv::ID CallConv, bool isVarArg,
2709 const SmallVectorImpl<ISD::InputArg>
2710 &Ins,
2711 SDLoc dl, SelectionDAG &DAG,
2712 SmallVectorImpl<SDValue> &InVals) const {
2713 // TODO: add description of PPC stack frame format, or at least some docs.
2714 //
2715 MachineFunction &MF = DAG.getMachineFunction();
2716 MachineFrameInfo *MFI = MF.getFrameInfo();
2717 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2718
2719 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2720 bool isPPC64 = PtrVT == MVT::i64;
2721 // Potential tail calls could cause overwriting of argument stack slots.
2722 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2723 (CallConv == CallingConv::Fast));
2724 unsigned PtrByteSize = isPPC64 ? 8 : 4;
2725
2726 unsigned LinkageSize = PPCFrameLowering::getLinkageSize(isPPC64, true);
2727 unsigned ArgOffset = LinkageSize;
2728 // Area that is at least reserved in caller of this function.
2729 unsigned MinReservedArea = ArgOffset;
2730
2731 static const MCPhysReg GPR_32[] = { // 32-bit registers.
2732 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2733 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2734 };
2735 static const MCPhysReg GPR_64[] = { // 64-bit registers.
2736 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2737 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2738 };
2739
2740 static const MCPhysReg *FPR = GetFPR();
2741
2742 static const MCPhysReg VR[] = {
2743 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2744 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2745 };
2746
2747 const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
2748 const unsigned Num_FPR_Regs = 13;
2749 const unsigned Num_VR_Regs = array_lengthof( VR);
2750
2751 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2752
2753 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
2754
2755 // In 32-bit non-varargs functions, the stack space for vectors is after the
2756 // stack space for non-vectors. We do not use this space unless we have
2757 // too many vectors to fit in registers, something that only occurs in
2758 // constructed examples:), but we have to walk the arglist to figure
2759 // that out...for the pathological case, compute VecArgOffset as the
2760 // start of the vector parameter area. Computing VecArgOffset is the
2761 // entire point of the following loop.
2762 unsigned VecArgOffset = ArgOffset;
2763 if (!isVarArg && !isPPC64) {
2764 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
2765 ++ArgNo) {
2766 EVT ObjectVT = Ins[ArgNo].VT;
2767 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2768
2769 if (Flags.isByVal()) {
2770 // ObjSize is the true size, ArgSize rounded up to multiple of regs.
2771 unsigned ObjSize = Flags.getByValSize();
2772 unsigned ArgSize =
2773 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2774 VecArgOffset += ArgSize;
2775 continue;
2776 }
2777
2778 switch(ObjectVT.getSimpleVT().SimpleTy) {
2779 default: llvm_unreachable("Unhandled argument type!");
2780 case MVT::i1:
2781 case MVT::i32:
2782 case MVT::f32:
2783 VecArgOffset += 4;
2784 break;
2785 case MVT::i64: // PPC64
2786 case MVT::f64:
2787 // FIXME: We are guaranteed to be !isPPC64 at this point.
2788 // Does MVT::i64 apply?
2789 VecArgOffset += 8;
2790 break;
2791 case MVT::v4f32:
2792 case MVT::v4i32:
2793 case MVT::v8i16:
2794 case MVT::v16i8:
2795 // Nothing to do, we're only looking at Nonvector args here.
2796 break;
2797 }
2798 }
2799 }
2800 // We've found where the vector parameter area in memory is. Skip the
2801 // first 12 parameters; these don't use that memory.
2802 VecArgOffset = ((VecArgOffset+15)/16)*16;
2803 VecArgOffset += 12*16;
2804
2805 // Add DAG nodes to load the arguments or copy them out of registers. On
2806 // entry to a function on PPC, the arguments start after the linkage area,
2807 // although the first ones are often in registers.
2808
2809 SmallVector<SDValue, 8> MemOps;
2810 unsigned nAltivecParamsAtEnd = 0;
2811 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2812 unsigned CurArgIdx = 0;
2813 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
2814 SDValue ArgVal;
2815 bool needsLoad = false;
2816 EVT ObjectVT = Ins[ArgNo].VT;
2817 unsigned ObjSize = ObjectVT.getSizeInBits()/8;
2818 unsigned ArgSize = ObjSize;
2819 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2820 std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
2821 CurArgIdx = Ins[ArgNo].OrigArgIndex;
2822
2823 unsigned CurArgOffset = ArgOffset;
2824
2825 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
2826 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
2827 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
2828 if (isVarArg || isPPC64) {
2829 MinReservedArea = ((MinReservedArea+15)/16)*16;
2830 MinReservedArea += CalculateStackSlotSize(ObjectVT,
2831 Flags,
2832 PtrByteSize);
2833 } else nAltivecParamsAtEnd++;
2834 } else
2835 // Calculate min reserved area.
2836 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
2837 Flags,
2838 PtrByteSize);
2839
2840 // FIXME the codegen can be much improved in some cases.
2841 // We do not have to keep everything in memory.
2842 if (Flags.isByVal()) {
2843 // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2844 ObjSize = Flags.getByValSize();
2845 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2846 // Objects of size 1 and 2 are right justified, everything else is
2847 // left justified. This means the memory address is adjusted forwards.
2848 if (ObjSize==1 || ObjSize==2) {
2849 CurArgOffset = CurArgOffset + (4 - ObjSize);
2850 }
2851 // The value of the object is its address.
2852 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2853 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2854 InVals.push_back(FIN);
2855 if (ObjSize==1 || ObjSize==2) {
2856 if (GPR_idx != Num_GPR_Regs) {
2857 unsigned VReg;
2858 if (isPPC64)
2859 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2860 else
2861 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2862 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2863 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
2864 SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2865 MachinePointerInfo(FuncArg),
2866 ObjType, false, false, 0);
2867 MemOps.push_back(Store);
2868 ++GPR_idx;
2869 }
2870
2871 ArgOffset += PtrByteSize;
2872
2873 continue;
2874 }
2875 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2876 // Store whatever pieces of the object are in registers
2877 // to memory. ArgOffset will be the address of the beginning
2878 // of the object.
2879 if (GPR_idx != Num_GPR_Regs) {
2880 unsigned VReg;
2881 if (isPPC64)
2882 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2883 else
2884 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2885 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2886 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2887 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2888 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2889 MachinePointerInfo(FuncArg, j),
2890 false, false, 0);
2891 MemOps.push_back(Store);
2892 ++GPR_idx;
2893 ArgOffset += PtrByteSize;
2894 } else {
2895 ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
2896 break;
2897 }
2898 }
2899 continue;
2900 }
2901
2902 switch (ObjectVT.getSimpleVT().SimpleTy) {
2903 default: llvm_unreachable("Unhandled argument type!");
2904 case MVT::i1:
2905 case MVT::i32:
2906 if (!isPPC64) {
2907 if (GPR_idx != Num_GPR_Regs) {
2908 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2909 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2910
2911 if (ObjectVT == MVT::i1)
2912 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
2913
2914 ++GPR_idx;
2915 } else {
2916 needsLoad = true;
2917 ArgSize = PtrByteSize;
2918 }
2919 // All int arguments reserve stack space in the Darwin ABI.
2920 ArgOffset += PtrByteSize;
2921 break;
2922 }
2923 // FALLTHROUGH
2924 case MVT::i64: // PPC64
2925 if (GPR_idx != Num_GPR_Regs) {
2926 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2927 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2928
2929 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
2930 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2931 // value to MVT::i64 and then truncate to the correct register size.
2932 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
2933
2934 ++GPR_idx;
2935 } else {
2936 needsLoad = true;
2937 ArgSize = PtrByteSize;
2938 }
2939 // All int arguments reserve stack space in the Darwin ABI.
2940 ArgOffset += 8;
2941 break;
2942
2943 case MVT::f32:
2944 case MVT::f64:
2945 // Every 4 bytes of argument space consumes one of the GPRs available for
2946 // argument passing.
2947 if (GPR_idx != Num_GPR_Regs) {
2948 ++GPR_idx;
2949 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
2950 ++GPR_idx;
2951 }
2952 if (FPR_idx != Num_FPR_Regs) {
2953 unsigned VReg;
2954
2955 if (ObjectVT == MVT::f32)
2956 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2957 else
2958 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2959
2960 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2961 ++FPR_idx;
2962 } else {
2963 needsLoad = true;
2964 }
2965
2966 // All FP arguments reserve stack space in the Darwin ABI.
2967 ArgOffset += isPPC64 ? 8 : ObjSize;
2968 break;
2969 case MVT::v4f32:
2970 case MVT::v4i32:
2971 case MVT::v8i16:
2972 case MVT::v16i8:
2973 // Note that vector arguments in registers don't reserve stack space,
2974 // except in varargs functions.
2975 if (VR_idx != Num_VR_Regs) {
2976 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2977 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2978 if (isVarArg) {
2979 while ((ArgOffset % 16) != 0) {
2980 ArgOffset += PtrByteSize;
2981 if (GPR_idx != Num_GPR_Regs)
2982 GPR_idx++;
2983 }
2984 ArgOffset += 16;
2985 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2986 }
2987 ++VR_idx;
2988 } else {
2989 if (!isVarArg && !isPPC64) {
2990 // Vectors go after all the nonvectors.
2991 CurArgOffset = VecArgOffset;
2992 VecArgOffset += 16;
2993 } else {
2994 // Vectors are aligned.
2995 ArgOffset = ((ArgOffset+15)/16)*16;
2996 CurArgOffset = ArgOffset;
2997 ArgOffset += 16;
2998 }
2999 needsLoad = true;
3000 }
3001 break;
3002 }
3003
3004 // We need to load the argument to a virtual register if we determined above
3005 // that we ran out of physical registers of the appropriate type.
3006 if (needsLoad) {
3007 int FI = MFI->CreateFixedObject(ObjSize,
3008 CurArgOffset + (ArgSize - ObjSize),
3009 isImmutable);
3010 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3011 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
3012 false, false, false, 0);
3013 }
3014
3015 InVals.push_back(ArgVal);
3016 }
3017
3018 // Allow for Altivec parameters at the end, if needed.
3019 if (nAltivecParamsAtEnd) {
3020 MinReservedArea = ((MinReservedArea+15)/16)*16;
3021 MinReservedArea += 16*nAltivecParamsAtEnd;
3022 }
3023
3024 // Area that is at least reserved in the caller of this function.
3025 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
3026
3027 // Set the size that is at least reserved in caller of this function. Tail
3028 // call optimized functions' reserved stack space needs to be aligned so that
3029 // taking the difference between two stack areas will result in an aligned
3030 // stack.
3031 MinReservedArea = EnsureStackAlignment(MF.getTarget(), MinReservedArea);
3032 FuncInfo->setMinReservedArea(MinReservedArea);
3033
3034 // If the function takes variable number of arguments, make a frame index for
3035 // the start of the first vararg value... for expansion of llvm.va_start.
3036 if (isVarArg) {
3037 int Depth = ArgOffset;
3038
3039 FuncInfo->setVarArgsFrameIndex(
3040 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
3041 Depth, true));
3042 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3043
3044 // If this function is vararg, store any remaining integer argument regs
3045 // to their spots on the stack so that they may be loaded by deferencing the
3046 // result of va_next.
3047 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
3048 unsigned VReg;
3049
3050 if (isPPC64)
3051 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3052 else
3053 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3054
3055 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3056 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3057 MachinePointerInfo(), false, false, 0);
3058 MemOps.push_back(Store);
3059 // Increment the address by four for the next argument to store
3060 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
3061 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3062 }
3063 }
3064
3065 if (!MemOps.empty())
3066 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3067
3068 return Chain;
3069 }
3070
3071 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
3072 /// adjusted to accommodate the arguments for the tailcall.
CalculateTailCallSPDiff(SelectionDAG & DAG,bool isTailCall,unsigned ParamSize)3073 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
3074 unsigned ParamSize) {
3075
3076 if (!isTailCall) return 0;
3077
3078 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
3079 unsigned CallerMinReservedArea = FI->getMinReservedArea();
3080 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
3081 // Remember only if the new adjustement is bigger.
3082 if (SPDiff < FI->getTailCallSPDelta())
3083 FI->setTailCallSPDelta(SPDiff);
3084
3085 return SPDiff;
3086 }
3087
3088 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
3089 /// for tail call optimization. Targets which want to do tail call
3090 /// optimization should implement this function.
3091 bool
IsEligibleForTailCallOptimization(SDValue Callee,CallingConv::ID CalleeCC,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG) const3092 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
3093 CallingConv::ID CalleeCC,
3094 bool isVarArg,
3095 const SmallVectorImpl<ISD::InputArg> &Ins,
3096 SelectionDAG& DAG) const {
3097 if (!getTargetMachine().Options.GuaranteedTailCallOpt)
3098 return false;
3099
3100 // Variable argument functions are not supported.
3101 if (isVarArg)
3102 return false;
3103
3104 MachineFunction &MF = DAG.getMachineFunction();
3105 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
3106 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
3107 // Functions containing by val parameters are not supported.
3108 for (unsigned i = 0; i != Ins.size(); i++) {
3109 ISD::ArgFlagsTy Flags = Ins[i].Flags;
3110 if (Flags.isByVal()) return false;
3111 }
3112
3113 // Non-PIC/GOT tail calls are supported.
3114 if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
3115 return true;
3116
3117 // At the moment we can only do local tail calls (in same module, hidden
3118 // or protected) if we are generating PIC.
3119 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
3120 return G->getGlobal()->hasHiddenVisibility()
3121 || G->getGlobal()->hasProtectedVisibility();
3122 }
3123
3124 return false;
3125 }
3126
3127 /// isCallCompatibleAddress - Return the immediate to use if the specified
3128 /// 32-bit value is representable in the immediate field of a BxA instruction.
isBLACompatibleAddress(SDValue Op,SelectionDAG & DAG)3129 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
3130 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
3131 if (!C) return nullptr;
3132
3133 int Addr = C->getZExtValue();
3134 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
3135 SignExtend32<26>(Addr) != Addr)
3136 return nullptr; // Top 6 bits have to be sext of immediate.
3137
3138 return DAG.getConstant((int)C->getZExtValue() >> 2,
3139 DAG.getTargetLoweringInfo().getPointerTy()).getNode();
3140 }
3141
3142 namespace {
3143
3144 struct TailCallArgumentInfo {
3145 SDValue Arg;
3146 SDValue FrameIdxOp;
3147 int FrameIdx;
3148
TailCallArgumentInfo__anonefded0920111::TailCallArgumentInfo3149 TailCallArgumentInfo() : FrameIdx(0) {}
3150 };
3151
3152 }
3153
3154 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
3155 static void
StoreTailCallArgumentsToStackSlot(SelectionDAG & DAG,SDValue Chain,const SmallVectorImpl<TailCallArgumentInfo> & TailCallArgs,SmallVectorImpl<SDValue> & MemOpChains,SDLoc dl)3156 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
3157 SDValue Chain,
3158 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
3159 SmallVectorImpl<SDValue> &MemOpChains,
3160 SDLoc dl) {
3161 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
3162 SDValue Arg = TailCallArgs[i].Arg;
3163 SDValue FIN = TailCallArgs[i].FrameIdxOp;
3164 int FI = TailCallArgs[i].FrameIdx;
3165 // Store relative to framepointer.
3166 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
3167 MachinePointerInfo::getFixedStack(FI),
3168 false, false, 0));
3169 }
3170 }
3171
3172 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
3173 /// the appropriate stack slot for the tail call optimized function call.
EmitTailCallStoreFPAndRetAddr(SelectionDAG & DAG,MachineFunction & MF,SDValue Chain,SDValue OldRetAddr,SDValue OldFP,int SPDiff,bool isPPC64,bool isDarwinABI,SDLoc dl)3174 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
3175 MachineFunction &MF,
3176 SDValue Chain,
3177 SDValue OldRetAddr,
3178 SDValue OldFP,
3179 int SPDiff,
3180 bool isPPC64,
3181 bool isDarwinABI,
3182 SDLoc dl) {
3183 if (SPDiff) {
3184 // Calculate the new stack slot for the return address.
3185 int SlotSize = isPPC64 ? 8 : 4;
3186 int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
3187 isDarwinABI);
3188 int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
3189 NewRetAddrLoc, true);
3190 EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
3191 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
3192 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
3193 MachinePointerInfo::getFixedStack(NewRetAddr),
3194 false, false, 0);
3195
3196 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
3197 // slot as the FP is never overwritten.
3198 if (isDarwinABI) {
3199 int NewFPLoc =
3200 SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
3201 int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
3202 true);
3203 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
3204 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
3205 MachinePointerInfo::getFixedStack(NewFPIdx),
3206 false, false, 0);
3207 }
3208 }
3209 return Chain;
3210 }
3211
3212 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
3213 /// the position of the argument.
3214 static void
CalculateTailCallArgDest(SelectionDAG & DAG,MachineFunction & MF,bool isPPC64,SDValue Arg,int SPDiff,unsigned ArgOffset,SmallVectorImpl<TailCallArgumentInfo> & TailCallArguments)3215 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
3216 SDValue Arg, int SPDiff, unsigned ArgOffset,
3217 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
3218 int Offset = ArgOffset + SPDiff;
3219 uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
3220 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
3221 EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
3222 SDValue FIN = DAG.getFrameIndex(FI, VT);
3223 TailCallArgumentInfo Info;
3224 Info.Arg = Arg;
3225 Info.FrameIdxOp = FIN;
3226 Info.FrameIdx = FI;
3227 TailCallArguments.push_back(Info);
3228 }
3229
3230 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
3231 /// stack slot. Returns the chain as result and the loaded frame pointers in
3232 /// LROpOut/FPOpout. Used when tail calling.
EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,int SPDiff,SDValue Chain,SDValue & LROpOut,SDValue & FPOpOut,bool isDarwinABI,SDLoc dl) const3233 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
3234 int SPDiff,
3235 SDValue Chain,
3236 SDValue &LROpOut,
3237 SDValue &FPOpOut,
3238 bool isDarwinABI,
3239 SDLoc dl) const {
3240 if (SPDiff) {
3241 // Load the LR and FP stack slot for later adjusting.
3242 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
3243 LROpOut = getReturnAddrFrameIndex(DAG);
3244 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
3245 false, false, false, 0);
3246 Chain = SDValue(LROpOut.getNode(), 1);
3247
3248 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
3249 // slot as the FP is never overwritten.
3250 if (isDarwinABI) {
3251 FPOpOut = getFramePointerFrameIndex(DAG);
3252 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
3253 false, false, false, 0);
3254 Chain = SDValue(FPOpOut.getNode(), 1);
3255 }
3256 }
3257 return Chain;
3258 }
3259
3260 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
3261 /// by "Src" to address "Dst" of size "Size". Alignment information is
3262 /// specified by the specific parameter attribute. The copy will be passed as
3263 /// a byval function parameter.
3264 /// Sometimes what we are copying is the end of a larger object, the part that
3265 /// does not fit in registers.
3266 static SDValue
CreateCopyOfByValArgument(SDValue Src,SDValue Dst,SDValue Chain,ISD::ArgFlagsTy Flags,SelectionDAG & DAG,SDLoc dl)3267 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
3268 ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
3269 SDLoc dl) {
3270 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
3271 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
3272 false, false, MachinePointerInfo(),
3273 MachinePointerInfo());
3274 }
3275
3276 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
3277 /// tail calls.
3278 static void
LowerMemOpCallTo(SelectionDAG & DAG,MachineFunction & MF,SDValue Chain,SDValue Arg,SDValue PtrOff,int SPDiff,unsigned ArgOffset,bool isPPC64,bool isTailCall,bool isVector,SmallVectorImpl<SDValue> & MemOpChains,SmallVectorImpl<TailCallArgumentInfo> & TailCallArguments,SDLoc dl)3279 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
3280 SDValue Arg, SDValue PtrOff, int SPDiff,
3281 unsigned ArgOffset, bool isPPC64, bool isTailCall,
3282 bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
3283 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments,
3284 SDLoc dl) {
3285 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3286 if (!isTailCall) {
3287 if (isVector) {
3288 SDValue StackPtr;
3289 if (isPPC64)
3290 StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3291 else
3292 StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3293 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3294 DAG.getConstant(ArgOffset, PtrVT));
3295 }
3296 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3297 MachinePointerInfo(), false, false, 0));
3298 // Calculate and remember argument location.
3299 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
3300 TailCallArguments);
3301 }
3302
3303 static
PrepareTailCall(SelectionDAG & DAG,SDValue & InFlag,SDValue & Chain,SDLoc dl,bool isPPC64,int SPDiff,unsigned NumBytes,SDValue LROp,SDValue FPOp,bool isDarwinABI,SmallVectorImpl<TailCallArgumentInfo> & TailCallArguments)3304 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
3305 SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
3306 SDValue LROp, SDValue FPOp, bool isDarwinABI,
3307 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
3308 MachineFunction &MF = DAG.getMachineFunction();
3309
3310 // Emit a sequence of copyto/copyfrom virtual registers for arguments that
3311 // might overwrite each other in case of tail call optimization.
3312 SmallVector<SDValue, 8> MemOpChains2;
3313 // Do not flag preceding copytoreg stuff together with the following stuff.
3314 InFlag = SDValue();
3315 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
3316 MemOpChains2, dl);
3317 if (!MemOpChains2.empty())
3318 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
3319
3320 // Store the return address to the appropriate stack slot.
3321 Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
3322 isPPC64, isDarwinABI, dl);
3323
3324 // Emit callseq_end just before tailcall node.
3325 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
3326 DAG.getIntPtrConstant(0, true), InFlag, dl);
3327 InFlag = Chain.getValue(1);
3328 }
3329
3330 static
PrepareCall(SelectionDAG & DAG,SDValue & Callee,SDValue & InFlag,SDValue & Chain,SDLoc dl,int SPDiff,bool isTailCall,SmallVectorImpl<std::pair<unsigned,SDValue>> & RegsToPass,SmallVectorImpl<SDValue> & Ops,std::vector<EVT> & NodeTys,const PPCSubtarget & Subtarget)3331 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
3332 SDValue &Chain, SDLoc dl, int SPDiff, bool isTailCall,
3333 SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass,
3334 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
3335 const PPCSubtarget &Subtarget) {
3336
3337 bool isPPC64 = Subtarget.isPPC64();
3338 bool isSVR4ABI = Subtarget.isSVR4ABI();
3339
3340 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3341 NodeTys.push_back(MVT::Other); // Returns a chain
3342 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use.
3343
3344 unsigned CallOpc = PPCISD::CALL;
3345
3346 bool needIndirectCall = true;
3347 if (!isSVR4ABI || !isPPC64)
3348 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
3349 // If this is an absolute destination address, use the munged value.
3350 Callee = SDValue(Dest, 0);
3351 needIndirectCall = false;
3352 }
3353
3354 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3355 // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
3356 // Use indirect calls for ALL functions calls in JIT mode, since the
3357 // far-call stubs may be outside relocation limits for a BL instruction.
3358 if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
3359 unsigned OpFlags = 0;
3360 if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
3361 (Subtarget.getTargetTriple().isMacOSX() &&
3362 Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
3363 (G->getGlobal()->isDeclaration() ||
3364 G->getGlobal()->isWeakForLinker())) {
3365 // PC-relative references to external symbols should go through $stub,
3366 // unless we're building with the leopard linker or later, which
3367 // automatically synthesizes these stubs.
3368 OpFlags = PPCII::MO_DARWIN_STUB;
3369 }
3370
3371 // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
3372 // every direct call is) turn it into a TargetGlobalAddress /
3373 // TargetExternalSymbol node so that legalize doesn't hack it.
3374 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
3375 Callee.getValueType(),
3376 0, OpFlags);
3377 needIndirectCall = false;
3378 }
3379 }
3380
3381 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3382 unsigned char OpFlags = 0;
3383
3384 if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
3385 (Subtarget.getTargetTriple().isMacOSX() &&
3386 Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
3387 // PC-relative references to external symbols should go through $stub,
3388 // unless we're building with the leopard linker or later, which
3389 // automatically synthesizes these stubs.
3390 OpFlags = PPCII::MO_DARWIN_STUB;
3391 }
3392
3393 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
3394 OpFlags);
3395 needIndirectCall = false;
3396 }
3397
3398 if (needIndirectCall) {
3399 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
3400 // to do the call, we can't use PPCISD::CALL.
3401 SDValue MTCTROps[] = {Chain, Callee, InFlag};
3402
3403 if (isSVR4ABI && isPPC64) {
3404 // Function pointers in the 64-bit SVR4 ABI do not point to the function
3405 // entry point, but to the function descriptor (the function entry point
3406 // address is part of the function descriptor though).
3407 // The function descriptor is a three doubleword structure with the
3408 // following fields: function entry point, TOC base address and
3409 // environment pointer.
3410 // Thus for a call through a function pointer, the following actions need
3411 // to be performed:
3412 // 1. Save the TOC of the caller in the TOC save area of its stack
3413 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
3414 // 2. Load the address of the function entry point from the function
3415 // descriptor.
3416 // 3. Load the TOC of the callee from the function descriptor into r2.
3417 // 4. Load the environment pointer from the function descriptor into
3418 // r11.
3419 // 5. Branch to the function entry point address.
3420 // 6. On return of the callee, the TOC of the caller needs to be
3421 // restored (this is done in FinishCall()).
3422 //
3423 // All those operations are flagged together to ensure that no other
3424 // operations can be scheduled in between. E.g. without flagging the
3425 // operations together, a TOC access in the caller could be scheduled
3426 // between the load of the callee TOC and the branch to the callee, which
3427 // results in the TOC access going through the TOC of the callee instead
3428 // of going through the TOC of the caller, which leads to incorrect code.
3429
3430 // Load the address of the function entry point from the function
3431 // descriptor.
3432 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
3433 SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs,
3434 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
3435 Chain = LoadFuncPtr.getValue(1);
3436 InFlag = LoadFuncPtr.getValue(2);
3437
3438 // Load environment pointer into r11.
3439 // Offset of the environment pointer within the function descriptor.
3440 SDValue PtrOff = DAG.getIntPtrConstant(16);
3441
3442 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
3443 SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
3444 InFlag);
3445 Chain = LoadEnvPtr.getValue(1);
3446 InFlag = LoadEnvPtr.getValue(2);
3447
3448 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
3449 InFlag);
3450 Chain = EnvVal.getValue(0);
3451 InFlag = EnvVal.getValue(1);
3452
3453 // Load TOC of the callee into r2. We are using a target-specific load
3454 // with r2 hard coded, because the result of a target-independent load
3455 // would never go directly into r2, since r2 is a reserved register (which
3456 // prevents the register allocator from allocating it), resulting in an
3457 // additional register being allocated and an unnecessary move instruction
3458 // being generated.
3459 VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3460 SDValue TOCOff = DAG.getIntPtrConstant(8);
3461 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
3462 SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
3463 AddTOC, InFlag);
3464 Chain = LoadTOCPtr.getValue(0);
3465 InFlag = LoadTOCPtr.getValue(1);
3466
3467 MTCTROps[0] = Chain;
3468 MTCTROps[1] = LoadFuncPtr;
3469 MTCTROps[2] = InFlag;
3470 }
3471
3472 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
3473 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
3474 InFlag = Chain.getValue(1);
3475
3476 NodeTys.clear();
3477 NodeTys.push_back(MVT::Other);
3478 NodeTys.push_back(MVT::Glue);
3479 Ops.push_back(Chain);
3480 CallOpc = PPCISD::BCTRL;
3481 Callee.setNode(nullptr);
3482 // Add use of X11 (holding environment pointer)
3483 if (isSVR4ABI && isPPC64)
3484 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
3485 // Add CTR register as callee so a bctr can be emitted later.
3486 if (isTailCall)
3487 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
3488 }
3489
3490 // If this is a direct call, pass the chain and the callee.
3491 if (Callee.getNode()) {
3492 Ops.push_back(Chain);
3493 Ops.push_back(Callee);
3494 }
3495 // If this is a tail call add stack pointer delta.
3496 if (isTailCall)
3497 Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
3498
3499 // Add argument registers to the end of the list so that they are known live
3500 // into the call.
3501 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
3502 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
3503 RegsToPass[i].second.getValueType()));
3504
3505 return CallOpc;
3506 }
3507
3508 static
isLocalCall(const SDValue & Callee)3509 bool isLocalCall(const SDValue &Callee)
3510 {
3511 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
3512 return !G->getGlobal()->isDeclaration() &&
3513 !G->getGlobal()->isWeakForLinker();
3514 return false;
3515 }
3516
3517 SDValue
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const3518 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
3519 CallingConv::ID CallConv, bool isVarArg,
3520 const SmallVectorImpl<ISD::InputArg> &Ins,
3521 SDLoc dl, SelectionDAG &DAG,
3522 SmallVectorImpl<SDValue> &InVals) const {
3523
3524 SmallVector<CCValAssign, 16> RVLocs;
3525 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3526 getTargetMachine(), RVLocs, *DAG.getContext());
3527 CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
3528
3529 // Copy all of the result registers out of their specified physreg.
3530 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
3531 CCValAssign &VA = RVLocs[i];
3532 assert(VA.isRegLoc() && "Can only return in registers!");
3533
3534 SDValue Val = DAG.getCopyFromReg(Chain, dl,
3535 VA.getLocReg(), VA.getLocVT(), InFlag);
3536 Chain = Val.getValue(1);
3537 InFlag = Val.getValue(2);
3538
3539 switch (VA.getLocInfo()) {
3540 default: llvm_unreachable("Unknown loc info!");
3541 case CCValAssign::Full: break;
3542 case CCValAssign::AExt:
3543 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3544 break;
3545 case CCValAssign::ZExt:
3546 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
3547 DAG.getValueType(VA.getValVT()));
3548 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3549 break;
3550 case CCValAssign::SExt:
3551 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
3552 DAG.getValueType(VA.getValVT()));
3553 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3554 break;
3555 }
3556
3557 InVals.push_back(Val);
3558 }
3559
3560 return Chain;
3561 }
3562
3563 SDValue
FinishCall(CallingConv::ID CallConv,SDLoc dl,bool isTailCall,bool isVarArg,SelectionDAG & DAG,SmallVector<std::pair<unsigned,SDValue>,8> & RegsToPass,SDValue InFlag,SDValue Chain,SDValue & Callee,int SPDiff,unsigned NumBytes,const SmallVectorImpl<ISD::InputArg> & Ins,SmallVectorImpl<SDValue> & InVals) const3564 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
3565 bool isTailCall, bool isVarArg,
3566 SelectionDAG &DAG,
3567 SmallVector<std::pair<unsigned, SDValue>, 8>
3568 &RegsToPass,
3569 SDValue InFlag, SDValue Chain,
3570 SDValue &Callee,
3571 int SPDiff, unsigned NumBytes,
3572 const SmallVectorImpl<ISD::InputArg> &Ins,
3573 SmallVectorImpl<SDValue> &InVals) const {
3574 std::vector<EVT> NodeTys;
3575 SmallVector<SDValue, 8> Ops;
3576 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
3577 isTailCall, RegsToPass, Ops, NodeTys,
3578 Subtarget);
3579
3580 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
3581 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
3582 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
3583
3584 // When performing tail call optimization the callee pops its arguments off
3585 // the stack. Account for this here so these bytes can be pushed back on in
3586 // PPCFrameLowering::eliminateCallFramePseudoInstr.
3587 int BytesCalleePops =
3588 (CallConv == CallingConv::Fast &&
3589 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
3590
3591 // Add a register mask operand representing the call-preserved registers.
3592 const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
3593 const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
3594 assert(Mask && "Missing call preserved mask for calling convention");
3595 Ops.push_back(DAG.getRegisterMask(Mask));
3596
3597 if (InFlag.getNode())
3598 Ops.push_back(InFlag);
3599
3600 // Emit tail call.
3601 if (isTailCall) {
3602 assert(((Callee.getOpcode() == ISD::Register &&
3603 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
3604 Callee.getOpcode() == ISD::TargetExternalSymbol ||
3605 Callee.getOpcode() == ISD::TargetGlobalAddress ||
3606 isa<ConstantSDNode>(Callee)) &&
3607 "Expecting an global address, external symbol, absolute value or register");
3608
3609 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
3610 }
3611
3612 // Add a NOP immediately after the branch instruction when using the 64-bit
3613 // SVR4 ABI. At link time, if caller and callee are in a different module and
3614 // thus have a different TOC, the call will be replaced with a call to a stub
3615 // function which saves the current TOC, loads the TOC of the callee and
3616 // branches to the callee. The NOP will be replaced with a load instruction
3617 // which restores the TOC of the caller from the TOC save slot of the current
3618 // stack frame. If caller and callee belong to the same module (and have the
3619 // same TOC), the NOP will remain unchanged.
3620
3621 bool needsTOCRestore = false;
3622 if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64()) {
3623 if (CallOpc == PPCISD::BCTRL) {
3624 // This is a call through a function pointer.
3625 // Restore the caller TOC from the save area into R2.
3626 // See PrepareCall() for more information about calls through function
3627 // pointers in the 64-bit SVR4 ABI.
3628 // We are using a target-specific load with r2 hard coded, because the
3629 // result of a target-independent load would never go directly into r2,
3630 // since r2 is a reserved register (which prevents the register allocator
3631 // from allocating it), resulting in an additional register being
3632 // allocated and an unnecessary move instruction being generated.
3633 needsTOCRestore = true;
3634 } else if ((CallOpc == PPCISD::CALL) &&
3635 (!isLocalCall(Callee) ||
3636 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
3637 // Otherwise insert NOP for non-local calls.
3638 CallOpc = PPCISD::CALL_NOP;
3639 }
3640 }
3641
3642 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
3643 InFlag = Chain.getValue(1);
3644
3645 if (needsTOCRestore) {
3646 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3647 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3648 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
3649 unsigned TOCSaveOffset = PPCFrameLowering::getTOCSaveOffset();
3650 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset);
3651 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
3652 Chain = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain, AddTOC, InFlag);
3653 InFlag = Chain.getValue(1);
3654 }
3655
3656 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
3657 DAG.getIntPtrConstant(BytesCalleePops, true),
3658 InFlag, dl);
3659 if (!Ins.empty())
3660 InFlag = Chain.getValue(1);
3661
3662 return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
3663 Ins, dl, DAG, InVals);
3664 }
3665
3666 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const3667 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
3668 SmallVectorImpl<SDValue> &InVals) const {
3669 SelectionDAG &DAG = CLI.DAG;
3670 SDLoc &dl = CLI.DL;
3671 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
3672 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
3673 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
3674 SDValue Chain = CLI.Chain;
3675 SDValue Callee = CLI.Callee;
3676 bool &isTailCall = CLI.IsTailCall;
3677 CallingConv::ID CallConv = CLI.CallConv;
3678 bool isVarArg = CLI.IsVarArg;
3679
3680 if (isTailCall)
3681 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
3682 Ins, DAG);
3683
3684 if (!isTailCall && CLI.CS && CLI.CS->isMustTailCall())
3685 report_fatal_error("failed to perform tail call elimination on a call "
3686 "site marked musttail");
3687
3688 if (Subtarget.isSVR4ABI()) {
3689 if (Subtarget.isPPC64())
3690 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
3691 isTailCall, Outs, OutVals, Ins,
3692 dl, DAG, InVals);
3693 else
3694 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
3695 isTailCall, Outs, OutVals, Ins,
3696 dl, DAG, InVals);
3697 }
3698
3699 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
3700 isTailCall, Outs, OutVals, Ins,
3701 dl, DAG, InVals);
3702 }
3703
3704 SDValue
LowerCall_32SVR4(SDValue Chain,SDValue Callee,CallingConv::ID CallConv,bool isVarArg,bool isTailCall,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const3705 PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
3706 CallingConv::ID CallConv, bool isVarArg,
3707 bool isTailCall,
3708 const SmallVectorImpl<ISD::OutputArg> &Outs,
3709 const SmallVectorImpl<SDValue> &OutVals,
3710 const SmallVectorImpl<ISD::InputArg> &Ins,
3711 SDLoc dl, SelectionDAG &DAG,
3712 SmallVectorImpl<SDValue> &InVals) const {
3713 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
3714 // of the 32-bit SVR4 ABI stack frame layout.
3715
3716 assert((CallConv == CallingConv::C ||
3717 CallConv == CallingConv::Fast) && "Unknown calling convention!");
3718
3719 unsigned PtrByteSize = 4;
3720
3721 MachineFunction &MF = DAG.getMachineFunction();
3722
3723 // Mark this function as potentially containing a function that contains a
3724 // tail call. As a consequence the frame pointer will be used for dynamicalloc
3725 // and restoring the callers stack pointer in this functions epilog. This is
3726 // done because by tail calling the called function might overwrite the value
3727 // in this function's (MF) stack pointer stack slot 0(SP).
3728 if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3729 CallConv == CallingConv::Fast)
3730 MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3731
3732 // Count how many bytes are to be pushed on the stack, including the linkage
3733 // area, parameter list area and the part of the local variable space which
3734 // contains copies of aggregates which are passed by value.
3735
3736 // Assign locations to all of the outgoing arguments.
3737 SmallVector<CCValAssign, 16> ArgLocs;
3738 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3739 getTargetMachine(), ArgLocs, *DAG.getContext());
3740
3741 // Reserve space for the linkage area on the stack.
3742 CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
3743
3744 if (isVarArg) {
3745 // Handle fixed and variable vector arguments differently.
3746 // Fixed vector arguments go into registers as long as registers are
3747 // available. Variable vector arguments always go into memory.
3748 unsigned NumArgs = Outs.size();
3749
3750 for (unsigned i = 0; i != NumArgs; ++i) {
3751 MVT ArgVT = Outs[i].VT;
3752 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3753 bool Result;
3754
3755 if (Outs[i].IsFixed) {
3756 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
3757 CCInfo);
3758 } else {
3759 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
3760 ArgFlags, CCInfo);
3761 }
3762
3763 if (Result) {
3764 #ifndef NDEBUG
3765 errs() << "Call operand #" << i << " has unhandled type "
3766 << EVT(ArgVT).getEVTString() << "\n";
3767 #endif
3768 llvm_unreachable(nullptr);
3769 }
3770 }
3771 } else {
3772 // All arguments are treated the same.
3773 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
3774 }
3775
3776 // Assign locations to all of the outgoing aggregate by value arguments.
3777 SmallVector<CCValAssign, 16> ByValArgLocs;
3778 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3779 getTargetMachine(), ByValArgLocs, *DAG.getContext());
3780
3781 // Reserve stack space for the allocations in CCInfo.
3782 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3783
3784 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
3785
3786 // Size of the linkage area, parameter list area and the part of the local
3787 // space variable where copies of aggregates which are passed by value are
3788 // stored.
3789 unsigned NumBytes = CCByValInfo.getNextStackOffset();
3790
3791 // Calculate by how many bytes the stack has to be adjusted in case of tail
3792 // call optimization.
3793 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3794
3795 // Adjust the stack pointer for the new arguments...
3796 // These operations are automatically eliminated by the prolog/epilog pass
3797 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
3798 dl);
3799 SDValue CallSeqStart = Chain;
3800
3801 // Load the return address and frame pointer so it can be moved somewhere else
3802 // later.
3803 SDValue LROp, FPOp;
3804 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
3805 dl);
3806
3807 // Set up a copy of the stack pointer for use loading and storing any
3808 // arguments that may not fit in the registers available for argument
3809 // passing.
3810 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3811
3812 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3813 SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3814 SmallVector<SDValue, 8> MemOpChains;
3815
3816 bool seenFloatArg = false;
3817 // Walk the register/memloc assignments, inserting copies/loads.
3818 for (unsigned i = 0, j = 0, e = ArgLocs.size();
3819 i != e;
3820 ++i) {
3821 CCValAssign &VA = ArgLocs[i];
3822 SDValue Arg = OutVals[i];
3823 ISD::ArgFlagsTy Flags = Outs[i].Flags;
3824
3825 if (Flags.isByVal()) {
3826 // Argument is an aggregate which is passed by value, thus we need to
3827 // create a copy of it in the local variable space of the current stack
3828 // frame (which is the stack frame of the caller) and pass the address of
3829 // this copy to the callee.
3830 assert((j < ByValArgLocs.size()) && "Index out of bounds!");
3831 CCValAssign &ByValVA = ByValArgLocs[j++];
3832 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
3833
3834 // Memory reserved in the local variable space of the callers stack frame.
3835 unsigned LocMemOffset = ByValVA.getLocMemOffset();
3836
3837 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3838 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3839
3840 // Create a copy of the argument in the local area of the current
3841 // stack frame.
3842 SDValue MemcpyCall =
3843 CreateCopyOfByValArgument(Arg, PtrOff,
3844 CallSeqStart.getNode()->getOperand(0),
3845 Flags, DAG, dl);
3846
3847 // This must go outside the CALLSEQ_START..END.
3848 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3849 CallSeqStart.getNode()->getOperand(1),
3850 SDLoc(MemcpyCall));
3851 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3852 NewCallSeqStart.getNode());
3853 Chain = CallSeqStart = NewCallSeqStart;
3854
3855 // Pass the address of the aggregate copy on the stack either in a
3856 // physical register or in the parameter list area of the current stack
3857 // frame to the callee.
3858 Arg = PtrOff;
3859 }
3860
3861 if (VA.isRegLoc()) {
3862 if (Arg.getValueType() == MVT::i1)
3863 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg);
3864
3865 seenFloatArg |= VA.getLocVT().isFloatingPoint();
3866 // Put argument in a physical register.
3867 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3868 } else {
3869 // Put argument in the parameter list area of the current stack frame.
3870 assert(VA.isMemLoc());
3871 unsigned LocMemOffset = VA.getLocMemOffset();
3872
3873 if (!isTailCall) {
3874 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3875 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3876
3877 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3878 MachinePointerInfo(),
3879 false, false, 0));
3880 } else {
3881 // Calculate and remember argument location.
3882 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
3883 TailCallArguments);
3884 }
3885 }
3886 }
3887
3888 if (!MemOpChains.empty())
3889 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
3890
3891 // Build a sequence of copy-to-reg nodes chained together with token chain
3892 // and flag operands which copy the outgoing args into the appropriate regs.
3893 SDValue InFlag;
3894 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3895 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3896 RegsToPass[i].second, InFlag);
3897 InFlag = Chain.getValue(1);
3898 }
3899
3900 // Set CR bit 6 to true if this is a vararg call with floating args passed in
3901 // registers.
3902 if (isVarArg) {
3903 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3904 SDValue Ops[] = { Chain, InFlag };
3905
3906 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
3907 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
3908
3909 InFlag = Chain.getValue(1);
3910 }
3911
3912 if (isTailCall)
3913 PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
3914 false, TailCallArguments);
3915
3916 return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3917 RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3918 Ins, InVals);
3919 }
3920
3921 // Copy an argument into memory, being careful to do this outside the
3922 // call sequence for the call to which the argument belongs.
3923 SDValue
createMemcpyOutsideCallSeq(SDValue Arg,SDValue PtrOff,SDValue CallSeqStart,ISD::ArgFlagsTy Flags,SelectionDAG & DAG,SDLoc dl) const3924 PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
3925 SDValue CallSeqStart,
3926 ISD::ArgFlagsTy Flags,
3927 SelectionDAG &DAG,
3928 SDLoc dl) const {
3929 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3930 CallSeqStart.getNode()->getOperand(0),
3931 Flags, DAG, dl);
3932 // The MEMCPY must go outside the CALLSEQ_START..END.
3933 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3934 CallSeqStart.getNode()->getOperand(1),
3935 SDLoc(MemcpyCall));
3936 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3937 NewCallSeqStart.getNode());
3938 return NewCallSeqStart;
3939 }
3940
3941 SDValue
LowerCall_64SVR4(SDValue Chain,SDValue Callee,CallingConv::ID CallConv,bool isVarArg,bool isTailCall,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const3942 PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
3943 CallingConv::ID CallConv, bool isVarArg,
3944 bool isTailCall,
3945 const SmallVectorImpl<ISD::OutputArg> &Outs,
3946 const SmallVectorImpl<SDValue> &OutVals,
3947 const SmallVectorImpl<ISD::InputArg> &Ins,
3948 SDLoc dl, SelectionDAG &DAG,
3949 SmallVectorImpl<SDValue> &InVals) const {
3950
3951 bool isLittleEndian = Subtarget.isLittleEndian();
3952 unsigned NumOps = Outs.size();
3953
3954 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3955 unsigned PtrByteSize = 8;
3956
3957 MachineFunction &MF = DAG.getMachineFunction();
3958
3959 // Mark this function as potentially containing a function that contains a
3960 // tail call. As a consequence the frame pointer will be used for dynamicalloc
3961 // and restoring the callers stack pointer in this functions epilog. This is
3962 // done because by tail calling the called function might overwrite the value
3963 // in this function's (MF) stack pointer stack slot 0(SP).
3964 if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3965 CallConv == CallingConv::Fast)
3966 MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3967
3968 // Count how many bytes are to be pushed on the stack, including the linkage
3969 // area, and parameter passing area. We start with at least 48 bytes, which
3970 // is reserved space for [SP][CR][LR][3 x unused].
3971 unsigned LinkageSize = PPCFrameLowering::getLinkageSize(true, false);
3972 unsigned NumBytes = LinkageSize;
3973
3974 // Add up all the space actually used.
3975 for (unsigned i = 0; i != NumOps; ++i) {
3976 ISD::ArgFlagsTy Flags = Outs[i].Flags;
3977 EVT ArgVT = Outs[i].VT;
3978
3979 /* Respect alignment of argument on the stack. */
3980 unsigned Align = CalculateStackSlotAlignment(ArgVT, Flags, PtrByteSize);
3981 NumBytes = ((NumBytes + Align - 1) / Align) * Align;
3982
3983 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3984 }
3985
3986 unsigned NumBytesActuallyUsed = NumBytes;
3987
3988 // The prolog code of the callee may store up to 8 GPR argument registers to
3989 // the stack, allowing va_start to index over them in memory if its varargs.
3990 // Because we cannot tell if this is needed on the caller side, we have to
3991 // conservatively assume that it is needed. As such, make sure we have at
3992 // least enough stack space for the caller to store the 8 GPRs.
3993 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
3994
3995 // Tail call needs the stack to be aligned.
3996 if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3997 CallConv == CallingConv::Fast)
3998 NumBytes = EnsureStackAlignment(MF.getTarget(), NumBytes);
3999
4000 // Calculate by how many bytes the stack has to be adjusted in case of tail
4001 // call optimization.
4002 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4003
4004 // To protect arguments on the stack from being clobbered in a tail call,
4005 // force all the loads to happen before doing any other lowering.
4006 if (isTailCall)
4007 Chain = DAG.getStackArgumentTokenFactor(Chain);
4008
4009 // Adjust the stack pointer for the new arguments...
4010 // These operations are automatically eliminated by the prolog/epilog pass
4011 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
4012 dl);
4013 SDValue CallSeqStart = Chain;
4014
4015 // Load the return address and frame pointer so it can be move somewhere else
4016 // later.
4017 SDValue LROp, FPOp;
4018 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
4019 dl);
4020
4021 // Set up a copy of the stack pointer for use loading and storing any
4022 // arguments that may not fit in the registers available for argument
4023 // passing.
4024 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4025
4026 // Figure out which arguments are going to go in registers, and which in
4027 // memory. Also, if this is a vararg function, floating point operations
4028 // must be stored to our stack, and loaded into integer regs as well, if
4029 // any integer regs are available for argument passing.
4030 unsigned ArgOffset = LinkageSize;
4031 unsigned GPR_idx, FPR_idx = 0, VR_idx = 0;
4032
4033 static const MCPhysReg GPR[] = {
4034 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4035 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4036 };
4037 static const MCPhysReg *FPR = GetFPR();
4038
4039 static const MCPhysReg VR[] = {
4040 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4041 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4042 };
4043 static const MCPhysReg VSRH[] = {
4044 PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
4045 PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
4046 };
4047
4048 const unsigned NumGPRs = array_lengthof(GPR);
4049 const unsigned NumFPRs = 13;
4050 const unsigned NumVRs = array_lengthof(VR);
4051
4052 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4053 SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4054
4055 SmallVector<SDValue, 8> MemOpChains;
4056 for (unsigned i = 0; i != NumOps; ++i) {
4057 SDValue Arg = OutVals[i];
4058 ISD::ArgFlagsTy Flags = Outs[i].Flags;
4059
4060 /* Respect alignment of argument on the stack. */
4061 unsigned Align =
4062 CalculateStackSlotAlignment(Outs[i].VT, Flags, PtrByteSize);
4063 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
4064
4065 /* Compute GPR index associated with argument offset. */
4066 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4067 GPR_idx = std::min(GPR_idx, NumGPRs);
4068
4069 // PtrOff will be used to store the current argument to the stack if a
4070 // register cannot be found for it.
4071 SDValue PtrOff;
4072
4073 PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
4074
4075 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4076
4077 // Promote integers to 64-bit values.
4078 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
4079 // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
4080 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4081 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
4082 }
4083
4084 // FIXME memcpy is used way more than necessary. Correctness first.
4085 // Note: "by value" is code for passing a structure by value, not
4086 // basic types.
4087 if (Flags.isByVal()) {
4088 // Note: Size includes alignment padding, so
4089 // struct x { short a; char b; }
4090 // will have Size = 4. With #pragma pack(1), it will have Size = 3.
4091 // These are the proper values we need for right-justifying the
4092 // aggregate in a parameter register.
4093 unsigned Size = Flags.getByValSize();
4094
4095 // An empty aggregate parameter takes up no storage and no
4096 // registers.
4097 if (Size == 0)
4098 continue;
4099
4100 // All aggregates smaller than 8 bytes must be passed right-justified.
4101 if (Size==1 || Size==2 || Size==4) {
4102 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
4103 if (GPR_idx != NumGPRs) {
4104 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
4105 MachinePointerInfo(), VT,
4106 false, false, 0);
4107 MemOpChains.push_back(Load.getValue(1));
4108 RegsToPass.push_back(std::make_pair(GPR[GPR_idx], Load));
4109
4110 ArgOffset += PtrByteSize;
4111 continue;
4112 }
4113 }
4114
4115 if (GPR_idx == NumGPRs && Size < 8) {
4116 SDValue AddPtr = PtrOff;
4117 if (!isLittleEndian) {
4118 SDValue Const = DAG.getConstant(PtrByteSize - Size,
4119 PtrOff.getValueType());
4120 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
4121 }
4122 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
4123 CallSeqStart,
4124 Flags, DAG, dl);
4125 ArgOffset += PtrByteSize;
4126 continue;
4127 }
4128 // Copy entire object into memory. There are cases where gcc-generated
4129 // code assumes it is there, even if it could be put entirely into
4130 // registers. (This is not what the doc says.)
4131
4132 // FIXME: The above statement is likely due to a misunderstanding of the
4133 // documents. All arguments must be copied into the parameter area BY
4134 // THE CALLEE in the event that the callee takes the address of any
4135 // formal argument. That has not yet been implemented. However, it is
4136 // reasonable to use the stack area as a staging area for the register
4137 // load.
4138
4139 // Skip this for small aggregates, as we will use the same slot for a
4140 // right-justified copy, below.
4141 if (Size >= 8)
4142 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
4143 CallSeqStart,
4144 Flags, DAG, dl);
4145
4146 // When a register is available, pass a small aggregate right-justified.
4147 if (Size < 8 && GPR_idx != NumGPRs) {
4148 // The easiest way to get this right-justified in a register
4149 // is to copy the structure into the rightmost portion of a
4150 // local variable slot, then load the whole slot into the
4151 // register.
4152 // FIXME: The memcpy seems to produce pretty awful code for
4153 // small aggregates, particularly for packed ones.
4154 // FIXME: It would be preferable to use the slot in the
4155 // parameter save area instead of a new local variable.
4156 SDValue AddPtr = PtrOff;
4157 if (!isLittleEndian) {
4158 SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType());
4159 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
4160 }
4161 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
4162 CallSeqStart,
4163 Flags, DAG, dl);
4164
4165 // Load the slot into the register.
4166 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
4167 MachinePointerInfo(),
4168 false, false, false, 0);
4169 MemOpChains.push_back(Load.getValue(1));
4170 RegsToPass.push_back(std::make_pair(GPR[GPR_idx], Load));
4171
4172 // Done with this argument.
4173 ArgOffset += PtrByteSize;
4174 continue;
4175 }
4176
4177 // For aggregates larger than PtrByteSize, copy the pieces of the
4178 // object that fit into registers from the parameter save area.
4179 for (unsigned j=0; j<Size; j+=PtrByteSize) {
4180 SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
4181 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
4182 if (GPR_idx != NumGPRs) {
4183 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
4184 MachinePointerInfo(),
4185 false, false, false, 0);
4186 MemOpChains.push_back(Load.getValue(1));
4187 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4188 ArgOffset += PtrByteSize;
4189 } else {
4190 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
4191 break;
4192 }
4193 }
4194 continue;
4195 }
4196
4197 switch (Arg.getSimpleValueType().SimpleTy) {
4198 default: llvm_unreachable("Unexpected ValueType for argument!");
4199 case MVT::i1:
4200 case MVT::i32:
4201 case MVT::i64:
4202 if (GPR_idx != NumGPRs) {
4203 RegsToPass.push_back(std::make_pair(GPR[GPR_idx], Arg));
4204 } else {
4205 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4206 true, isTailCall, false, MemOpChains,
4207 TailCallArguments, dl);
4208 }
4209 ArgOffset += PtrByteSize;
4210 break;
4211 case MVT::f32:
4212 case MVT::f64:
4213 if (FPR_idx != NumFPRs) {
4214 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
4215
4216 if (isVarArg) {
4217 // A single float or an aggregate containing only a single float
4218 // must be passed right-justified in the stack doubleword, and
4219 // in the GPR, if one is available.
4220 SDValue StoreOff;
4221 if (Arg.getSimpleValueType().SimpleTy == MVT::f32 &&
4222 !isLittleEndian) {
4223 SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
4224 StoreOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
4225 } else
4226 StoreOff = PtrOff;
4227
4228 SDValue Store = DAG.getStore(Chain, dl, Arg, StoreOff,
4229 MachinePointerInfo(), false, false, 0);
4230 MemOpChains.push_back(Store);
4231
4232 // Float varargs are always shadowed in available integer registers
4233 if (GPR_idx != NumGPRs) {
4234 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4235 MachinePointerInfo(), false, false,
4236 false, 0);
4237 MemOpChains.push_back(Load.getValue(1));
4238 RegsToPass.push_back(std::make_pair(GPR[GPR_idx], Load));
4239 }
4240 }
4241 } else {
4242 // Single-precision floating-point values are mapped to the
4243 // second (rightmost) word of the stack doubleword.
4244 if (Arg.getValueType() == MVT::f32 && !isLittleEndian) {
4245 SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
4246 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
4247 }
4248
4249 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4250 true, isTailCall, false, MemOpChains,
4251 TailCallArguments, dl);
4252 }
4253 ArgOffset += 8;
4254 break;
4255 case MVT::v4f32:
4256 case MVT::v4i32:
4257 case MVT::v8i16:
4258 case MVT::v16i8:
4259 case MVT::v2f64:
4260 case MVT::v2i64:
4261 // For a varargs call, named arguments go into VRs or on the stack as
4262 // usual; unnamed arguments always go to the stack or the corresponding
4263 // GPRs when within range. For now, we always put the value in both
4264 // locations (or even all three).
4265 if (isVarArg) {
4266 // We could elide this store in the case where the object fits
4267 // entirely in R registers. Maybe later.
4268 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4269 MachinePointerInfo(), false, false, 0);
4270 MemOpChains.push_back(Store);
4271 if (VR_idx != NumVRs) {
4272 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
4273 MachinePointerInfo(),
4274 false, false, false, 0);
4275 MemOpChains.push_back(Load.getValue(1));
4276
4277 unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
4278 Arg.getSimpleValueType() == MVT::v2i64) ?
4279 VSRH[VR_idx] : VR[VR_idx];
4280 ++VR_idx;
4281
4282 RegsToPass.push_back(std::make_pair(VReg, Load));
4283 }
4284 ArgOffset += 16;
4285 for (unsigned i=0; i<16; i+=PtrByteSize) {
4286 if (GPR_idx == NumGPRs)
4287 break;
4288 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
4289 DAG.getConstant(i, PtrVT));
4290 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
4291 false, false, false, 0);
4292 MemOpChains.push_back(Load.getValue(1));
4293 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4294 }
4295 break;
4296 }
4297
4298 // Non-varargs Altivec params go into VRs or on the stack.
4299 if (VR_idx != NumVRs) {
4300 unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
4301 Arg.getSimpleValueType() == MVT::v2i64) ?
4302 VSRH[VR_idx] : VR[VR_idx];
4303 ++VR_idx;
4304
4305 RegsToPass.push_back(std::make_pair(VReg, Arg));
4306 } else {
4307 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4308 true, isTailCall, true, MemOpChains,
4309 TailCallArguments, dl);
4310 }
4311 ArgOffset += 16;
4312 break;
4313 }
4314 }
4315
4316 assert(NumBytesActuallyUsed == ArgOffset);
4317 (void)NumBytesActuallyUsed;
4318
4319 if (!MemOpChains.empty())
4320 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
4321
4322 // Check if this is an indirect call (MTCTR/BCTRL).
4323 // See PrepareCall() for more information about calls through function
4324 // pointers in the 64-bit SVR4 ABI.
4325 if (!isTailCall &&
4326 !dyn_cast<GlobalAddressSDNode>(Callee) &&
4327 !dyn_cast<ExternalSymbolSDNode>(Callee)) {
4328 // Load r2 into a virtual register and store it to the TOC save area.
4329 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
4330 // TOC save area offset.
4331 unsigned TOCSaveOffset = PPCFrameLowering::getTOCSaveOffset();
4332 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset);
4333 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4334 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
4335 false, false, 0);
4336 }
4337
4338 // Build a sequence of copy-to-reg nodes chained together with token chain
4339 // and flag operands which copy the outgoing args into the appropriate regs.
4340 SDValue InFlag;
4341 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4342 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4343 RegsToPass[i].second, InFlag);
4344 InFlag = Chain.getValue(1);
4345 }
4346
4347 if (isTailCall)
4348 PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
4349 FPOp, true, TailCallArguments);
4350
4351 return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
4352 RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
4353 Ins, InVals);
4354 }
4355
4356 SDValue
LowerCall_Darwin(SDValue Chain,SDValue Callee,CallingConv::ID CallConv,bool isVarArg,bool isTailCall,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const4357 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
4358 CallingConv::ID CallConv, bool isVarArg,
4359 bool isTailCall,
4360 const SmallVectorImpl<ISD::OutputArg> &Outs,
4361 const SmallVectorImpl<SDValue> &OutVals,
4362 const SmallVectorImpl<ISD::InputArg> &Ins,
4363 SDLoc dl, SelectionDAG &DAG,
4364 SmallVectorImpl<SDValue> &InVals) const {
4365
4366 unsigned NumOps = Outs.size();
4367
4368 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4369 bool isPPC64 = PtrVT == MVT::i64;
4370 unsigned PtrByteSize = isPPC64 ? 8 : 4;
4371
4372 MachineFunction &MF = DAG.getMachineFunction();
4373
4374 // Mark this function as potentially containing a function that contains a
4375 // tail call. As a consequence the frame pointer will be used for dynamicalloc
4376 // and restoring the callers stack pointer in this functions epilog. This is
4377 // done because by tail calling the called function might overwrite the value
4378 // in this function's (MF) stack pointer stack slot 0(SP).
4379 if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4380 CallConv == CallingConv::Fast)
4381 MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
4382
4383 // Count how many bytes are to be pushed on the stack, including the linkage
4384 // area, and parameter passing area. We start with 24/48 bytes, which is
4385 // prereserved space for [SP][CR][LR][3 x unused].
4386 unsigned LinkageSize = PPCFrameLowering::getLinkageSize(isPPC64, true);
4387 unsigned NumBytes = LinkageSize;
4388
4389 // Add up all the space actually used.
4390 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
4391 // they all go in registers, but we must reserve stack space for them for
4392 // possible use by the caller. In varargs or 64-bit calls, parameters are
4393 // assigned stack space in order, with padding so Altivec parameters are
4394 // 16-byte aligned.
4395 unsigned nAltivecParamsAtEnd = 0;
4396 for (unsigned i = 0; i != NumOps; ++i) {
4397 ISD::ArgFlagsTy Flags = Outs[i].Flags;
4398 EVT ArgVT = Outs[i].VT;
4399 // Varargs Altivec parameters are padded to a 16 byte boundary.
4400 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
4401 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
4402 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
4403 if (!isVarArg && !isPPC64) {
4404 // Non-varargs Altivec parameters go after all the non-Altivec
4405 // parameters; handle those later so we know how much padding we need.
4406 nAltivecParamsAtEnd++;
4407 continue;
4408 }
4409 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
4410 NumBytes = ((NumBytes+15)/16)*16;
4411 }
4412 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
4413 }
4414
4415 // Allow for Altivec parameters at the end, if needed.
4416 if (nAltivecParamsAtEnd) {
4417 NumBytes = ((NumBytes+15)/16)*16;
4418 NumBytes += 16*nAltivecParamsAtEnd;
4419 }
4420
4421 // The prolog code of the callee may store up to 8 GPR argument registers to
4422 // the stack, allowing va_start to index over them in memory if its varargs.
4423 // Because we cannot tell if this is needed on the caller side, we have to
4424 // conservatively assume that it is needed. As such, make sure we have at
4425 // least enough stack space for the caller to store the 8 GPRs.
4426 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
4427
4428 // Tail call needs the stack to be aligned.
4429 if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4430 CallConv == CallingConv::Fast)
4431 NumBytes = EnsureStackAlignment(MF.getTarget(), NumBytes);
4432
4433 // Calculate by how many bytes the stack has to be adjusted in case of tail
4434 // call optimization.
4435 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4436
4437 // To protect arguments on the stack from being clobbered in a tail call,
4438 // force all the loads to happen before doing any other lowering.
4439 if (isTailCall)
4440 Chain = DAG.getStackArgumentTokenFactor(Chain);
4441
4442 // Adjust the stack pointer for the new arguments...
4443 // These operations are automatically eliminated by the prolog/epilog pass
4444 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
4445 dl);
4446 SDValue CallSeqStart = Chain;
4447
4448 // Load the return address and frame pointer so it can be move somewhere else
4449 // later.
4450 SDValue LROp, FPOp;
4451 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
4452 dl);
4453
4454 // Set up a copy of the stack pointer for use loading and storing any
4455 // arguments that may not fit in the registers available for argument
4456 // passing.
4457 SDValue StackPtr;
4458 if (isPPC64)
4459 StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4460 else
4461 StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4462
4463 // Figure out which arguments are going to go in registers, and which in
4464 // memory. Also, if this is a vararg function, floating point operations
4465 // must be stored to our stack, and loaded into integer regs as well, if
4466 // any integer regs are available for argument passing.
4467 unsigned ArgOffset = LinkageSize;
4468 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4469
4470 static const MCPhysReg GPR_32[] = { // 32-bit registers.
4471 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4472 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4473 };
4474 static const MCPhysReg GPR_64[] = { // 64-bit registers.
4475 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4476 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4477 };
4478 static const MCPhysReg *FPR = GetFPR();
4479
4480 static const MCPhysReg VR[] = {
4481 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4482 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4483 };
4484 const unsigned NumGPRs = array_lengthof(GPR_32);
4485 const unsigned NumFPRs = 13;
4486 const unsigned NumVRs = array_lengthof(VR);
4487
4488 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4489
4490 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4491 SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4492
4493 SmallVector<SDValue, 8> MemOpChains;
4494 for (unsigned i = 0; i != NumOps; ++i) {
4495 SDValue Arg = OutVals[i];
4496 ISD::ArgFlagsTy Flags = Outs[i].Flags;
4497
4498 // PtrOff will be used to store the current argument to the stack if a
4499 // register cannot be found for it.
4500 SDValue PtrOff;
4501
4502 PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
4503
4504 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4505
4506 // On PPC64, promote integers to 64-bit values.
4507 if (isPPC64 && Arg.getValueType() == MVT::i32) {
4508 // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
4509 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4510 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
4511 }
4512
4513 // FIXME memcpy is used way more than necessary. Correctness first.
4514 // Note: "by value" is code for passing a structure by value, not
4515 // basic types.
4516 if (Flags.isByVal()) {
4517 unsigned Size = Flags.getByValSize();
4518 // Very small objects are passed right-justified. Everything else is
4519 // passed left-justified.
4520 if (Size==1 || Size==2) {
4521 EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
4522 if (GPR_idx != NumGPRs) {
4523 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
4524 MachinePointerInfo(), VT,
4525 false, false, 0);
4526 MemOpChains.push_back(Load.getValue(1));
4527 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4528
4529 ArgOffset += PtrByteSize;
4530 } else {
4531 SDValue Const = DAG.getConstant(PtrByteSize - Size,
4532 PtrOff.getValueType());
4533 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
4534 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
4535 CallSeqStart,
4536 Flags, DAG, dl);
4537 ArgOffset += PtrByteSize;
4538 }
4539 continue;
4540 }
4541 // Copy entire object into memory. There are cases where gcc-generated
4542 // code assumes it is there, even if it could be put entirely into
4543 // registers. (This is not what the doc says.)
4544 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
4545 CallSeqStart,
4546 Flags, DAG, dl);
4547
4548 // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
4549 // copy the pieces of the object that fit into registers from the
4550 // parameter save area.
4551 for (unsigned j=0; j<Size; j+=PtrByteSize) {
4552 SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
4553 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
4554 if (GPR_idx != NumGPRs) {
4555 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
4556 MachinePointerInfo(),
4557 false, false, false, 0);
4558 MemOpChains.push_back(Load.getValue(1));
4559 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4560 ArgOffset += PtrByteSize;
4561 } else {
4562 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
4563 break;
4564 }
4565 }
4566 continue;
4567 }
4568
4569 switch (Arg.getSimpleValueType().SimpleTy) {
4570 default: llvm_unreachable("Unexpected ValueType for argument!");
4571 case MVT::i1:
4572 case MVT::i32:
4573 case MVT::i64:
4574 if (GPR_idx != NumGPRs) {
4575 if (Arg.getValueType() == MVT::i1)
4576 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
4577
4578 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
4579 } else {
4580 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4581 isPPC64, isTailCall, false, MemOpChains,
4582 TailCallArguments, dl);
4583 }
4584 ArgOffset += PtrByteSize;
4585 break;
4586 case MVT::f32:
4587 case MVT::f64:
4588 if (FPR_idx != NumFPRs) {
4589 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
4590
4591 if (isVarArg) {
4592 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4593 MachinePointerInfo(), false, false, 0);
4594 MemOpChains.push_back(Store);
4595
4596 // Float varargs are always shadowed in available integer registers
4597 if (GPR_idx != NumGPRs) {
4598 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4599 MachinePointerInfo(), false, false,
4600 false, 0);
4601 MemOpChains.push_back(Load.getValue(1));
4602 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4603 }
4604 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
4605 SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
4606 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
4607 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4608 MachinePointerInfo(),
4609 false, false, false, 0);
4610 MemOpChains.push_back(Load.getValue(1));
4611 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4612 }
4613 } else {
4614 // If we have any FPRs remaining, we may also have GPRs remaining.
4615 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
4616 // GPRs.
4617 if (GPR_idx != NumGPRs)
4618 ++GPR_idx;
4619 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
4620 !isPPC64) // PPC64 has 64-bit GPR's obviously :)
4621 ++GPR_idx;
4622 }
4623 } else
4624 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4625 isPPC64, isTailCall, false, MemOpChains,
4626 TailCallArguments, dl);
4627 if (isPPC64)
4628 ArgOffset += 8;
4629 else
4630 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
4631 break;
4632 case MVT::v4f32:
4633 case MVT::v4i32:
4634 case MVT::v8i16:
4635 case MVT::v16i8:
4636 if (isVarArg) {
4637 // These go aligned on the stack, or in the corresponding R registers
4638 // when within range. The Darwin PPC ABI doc claims they also go in
4639 // V registers; in fact gcc does this only for arguments that are
4640 // prototyped, not for those that match the ... We do it for all
4641 // arguments, seems to work.
4642 while (ArgOffset % 16 !=0) {
4643 ArgOffset += PtrByteSize;
4644 if (GPR_idx != NumGPRs)
4645 GPR_idx++;
4646 }
4647 // We could elide this store in the case where the object fits
4648 // entirely in R registers. Maybe later.
4649 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4650 DAG.getConstant(ArgOffset, PtrVT));
4651 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4652 MachinePointerInfo(), false, false, 0);
4653 MemOpChains.push_back(Store);
4654 if (VR_idx != NumVRs) {
4655 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
4656 MachinePointerInfo(),
4657 false, false, false, 0);
4658 MemOpChains.push_back(Load.getValue(1));
4659 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
4660 }
4661 ArgOffset += 16;
4662 for (unsigned i=0; i<16; i+=PtrByteSize) {
4663 if (GPR_idx == NumGPRs)
4664 break;
4665 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
4666 DAG.getConstant(i, PtrVT));
4667 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
4668 false, false, false, 0);
4669 MemOpChains.push_back(Load.getValue(1));
4670 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4671 }
4672 break;
4673 }
4674
4675 // Non-varargs Altivec params generally go in registers, but have
4676 // stack space allocated at the end.
4677 if (VR_idx != NumVRs) {
4678 // Doesn't have GPR space allocated.
4679 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
4680 } else if (nAltivecParamsAtEnd==0) {
4681 // We are emitting Altivec params in order.
4682 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4683 isPPC64, isTailCall, true, MemOpChains,
4684 TailCallArguments, dl);
4685 ArgOffset += 16;
4686 }
4687 break;
4688 }
4689 }
4690 // If all Altivec parameters fit in registers, as they usually do,
4691 // they get stack space following the non-Altivec parameters. We
4692 // don't track this here because nobody below needs it.
4693 // If there are more Altivec parameters than fit in registers emit
4694 // the stores here.
4695 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
4696 unsigned j = 0;
4697 // Offset is aligned; skip 1st 12 params which go in V registers.
4698 ArgOffset = ((ArgOffset+15)/16)*16;
4699 ArgOffset += 12*16;
4700 for (unsigned i = 0; i != NumOps; ++i) {
4701 SDValue Arg = OutVals[i];
4702 EVT ArgType = Outs[i].VT;
4703 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
4704 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
4705 if (++j > NumVRs) {
4706 SDValue PtrOff;
4707 // We are emitting Altivec params in order.
4708 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4709 isPPC64, isTailCall, true, MemOpChains,
4710 TailCallArguments, dl);
4711 ArgOffset += 16;
4712 }
4713 }
4714 }
4715 }
4716
4717 if (!MemOpChains.empty())
4718 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
4719
4720 // On Darwin, R12 must contain the address of an indirect callee. This does
4721 // not mean the MTCTR instruction must use R12; it's easier to model this as
4722 // an extra parameter, so do that.
4723 if (!isTailCall &&
4724 !dyn_cast<GlobalAddressSDNode>(Callee) &&
4725 !dyn_cast<ExternalSymbolSDNode>(Callee) &&
4726 !isBLACompatibleAddress(Callee, DAG))
4727 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
4728 PPC::R12), Callee));
4729
4730 // Build a sequence of copy-to-reg nodes chained together with token chain
4731 // and flag operands which copy the outgoing args into the appropriate regs.
4732 SDValue InFlag;
4733 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4734 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4735 RegsToPass[i].second, InFlag);
4736 InFlag = Chain.getValue(1);
4737 }
4738
4739 if (isTailCall)
4740 PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
4741 FPOp, true, TailCallArguments);
4742
4743 return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
4744 RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
4745 Ins, InVals);
4746 }
4747
4748 bool
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const4749 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
4750 MachineFunction &MF, bool isVarArg,
4751 const SmallVectorImpl<ISD::OutputArg> &Outs,
4752 LLVMContext &Context) const {
4753 SmallVector<CCValAssign, 16> RVLocs;
4754 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
4755 RVLocs, Context);
4756 return CCInfo.CheckReturn(Outs, RetCC_PPC);
4757 }
4758
4759 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,SDLoc dl,SelectionDAG & DAG) const4760 PPCTargetLowering::LowerReturn(SDValue Chain,
4761 CallingConv::ID CallConv, bool isVarArg,
4762 const SmallVectorImpl<ISD::OutputArg> &Outs,
4763 const SmallVectorImpl<SDValue> &OutVals,
4764 SDLoc dl, SelectionDAG &DAG) const {
4765
4766 SmallVector<CCValAssign, 16> RVLocs;
4767 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4768 getTargetMachine(), RVLocs, *DAG.getContext());
4769 CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
4770
4771 SDValue Flag;
4772 SmallVector<SDValue, 4> RetOps(1, Chain);
4773
4774 // Copy the result values into the output registers.
4775 for (unsigned i = 0; i != RVLocs.size(); ++i) {
4776 CCValAssign &VA = RVLocs[i];
4777 assert(VA.isRegLoc() && "Can only return in registers!");
4778
4779 SDValue Arg = OutVals[i];
4780
4781 switch (VA.getLocInfo()) {
4782 default: llvm_unreachable("Unknown loc info!");
4783 case CCValAssign::Full: break;
4784 case CCValAssign::AExt:
4785 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
4786 break;
4787 case CCValAssign::ZExt:
4788 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
4789 break;
4790 case CCValAssign::SExt:
4791 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
4792 break;
4793 }
4794
4795 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
4796 Flag = Chain.getValue(1);
4797 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
4798 }
4799
4800 RetOps[0] = Chain; // Update chain.
4801
4802 // Add the flag if we have it.
4803 if (Flag.getNode())
4804 RetOps.push_back(Flag);
4805
4806 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
4807 }
4808
LowerSTACKRESTORE(SDValue Op,SelectionDAG & DAG,const PPCSubtarget & Subtarget) const4809 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
4810 const PPCSubtarget &Subtarget) const {
4811 // When we pop the dynamic allocation we need to restore the SP link.
4812 SDLoc dl(Op);
4813
4814 // Get the corect type for pointers.
4815 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4816
4817 // Construct the stack pointer operand.
4818 bool isPPC64 = Subtarget.isPPC64();
4819 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
4820 SDValue StackPtr = DAG.getRegister(SP, PtrVT);
4821
4822 // Get the operands for the STACKRESTORE.
4823 SDValue Chain = Op.getOperand(0);
4824 SDValue SaveSP = Op.getOperand(1);
4825
4826 // Load the old link SP.
4827 SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
4828 MachinePointerInfo(),
4829 false, false, false, 0);
4830
4831 // Restore the stack pointer.
4832 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
4833
4834 // Store the old link SP.
4835 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
4836 false, false, 0);
4837 }
4838
4839
4840
4841 SDValue
getReturnAddrFrameIndex(SelectionDAG & DAG) const4842 PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
4843 MachineFunction &MF = DAG.getMachineFunction();
4844 bool isPPC64 = Subtarget.isPPC64();
4845 bool isDarwinABI = Subtarget.isDarwinABI();
4846 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4847
4848 // Get current frame pointer save index. The users of this index will be
4849 // primarily DYNALLOC instructions.
4850 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
4851 int RASI = FI->getReturnAddrSaveIndex();
4852
4853 // If the frame pointer save index hasn't been defined yet.
4854 if (!RASI) {
4855 // Find out what the fix offset of the frame pointer save area.
4856 int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
4857 // Allocate the frame index for frame pointer save area.
4858 RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
4859 // Save the result.
4860 FI->setReturnAddrSaveIndex(RASI);
4861 }
4862 return DAG.getFrameIndex(RASI, PtrVT);
4863 }
4864
4865 SDValue
getFramePointerFrameIndex(SelectionDAG & DAG) const4866 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
4867 MachineFunction &MF = DAG.getMachineFunction();
4868 bool isPPC64 = Subtarget.isPPC64();
4869 bool isDarwinABI = Subtarget.isDarwinABI();
4870 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4871
4872 // Get current frame pointer save index. The users of this index will be
4873 // primarily DYNALLOC instructions.
4874 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
4875 int FPSI = FI->getFramePointerSaveIndex();
4876
4877 // If the frame pointer save index hasn't been defined yet.
4878 if (!FPSI) {
4879 // Find out what the fix offset of the frame pointer save area.
4880 int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
4881 isDarwinABI);
4882
4883 // Allocate the frame index for frame pointer save area.
4884 FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
4885 // Save the result.
4886 FI->setFramePointerSaveIndex(FPSI);
4887 }
4888 return DAG.getFrameIndex(FPSI, PtrVT);
4889 }
4890
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG,const PPCSubtarget & Subtarget) const4891 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
4892 SelectionDAG &DAG,
4893 const PPCSubtarget &Subtarget) const {
4894 // Get the inputs.
4895 SDValue Chain = Op.getOperand(0);
4896 SDValue Size = Op.getOperand(1);
4897 SDLoc dl(Op);
4898
4899 // Get the corect type for pointers.
4900 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4901 // Negate the size.
4902 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
4903 DAG.getConstant(0, PtrVT), Size);
4904 // Construct a node for the frame pointer save index.
4905 SDValue FPSIdx = getFramePointerFrameIndex(DAG);
4906 // Build a DYNALLOC node.
4907 SDValue Ops[3] = { Chain, NegSize, FPSIdx };
4908 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
4909 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
4910 }
4911
lowerEH_SJLJ_SETJMP(SDValue Op,SelectionDAG & DAG) const4912 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
4913 SelectionDAG &DAG) const {
4914 SDLoc DL(Op);
4915 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
4916 DAG.getVTList(MVT::i32, MVT::Other),
4917 Op.getOperand(0), Op.getOperand(1));
4918 }
4919
lowerEH_SJLJ_LONGJMP(SDValue Op,SelectionDAG & DAG) const4920 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
4921 SelectionDAG &DAG) const {
4922 SDLoc DL(Op);
4923 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
4924 Op.getOperand(0), Op.getOperand(1));
4925 }
4926
LowerLOAD(SDValue Op,SelectionDAG & DAG) const4927 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
4928 assert(Op.getValueType() == MVT::i1 &&
4929 "Custom lowering only for i1 loads");
4930
4931 // First, load 8 bits into 32 bits, then truncate to 1 bit.
4932
4933 SDLoc dl(Op);
4934 LoadSDNode *LD = cast<LoadSDNode>(Op);
4935
4936 SDValue Chain = LD->getChain();
4937 SDValue BasePtr = LD->getBasePtr();
4938 MachineMemOperand *MMO = LD->getMemOperand();
4939
4940 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(), Chain,
4941 BasePtr, MVT::i8, MMO);
4942 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
4943
4944 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
4945 return DAG.getMergeValues(Ops, dl);
4946 }
4947
LowerSTORE(SDValue Op,SelectionDAG & DAG) const4948 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
4949 assert(Op.getOperand(1).getValueType() == MVT::i1 &&
4950 "Custom lowering only for i1 stores");
4951
4952 // First, zero extend to 32 bits, then use a truncating store to 8 bits.
4953
4954 SDLoc dl(Op);
4955 StoreSDNode *ST = cast<StoreSDNode>(Op);
4956
4957 SDValue Chain = ST->getChain();
4958 SDValue BasePtr = ST->getBasePtr();
4959 SDValue Value = ST->getValue();
4960 MachineMemOperand *MMO = ST->getMemOperand();
4961
4962 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(), Value);
4963 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
4964 }
4965
4966 // FIXME: Remove this once the ANDI glue bug is fixed:
LowerTRUNCATE(SDValue Op,SelectionDAG & DAG) const4967 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
4968 assert(Op.getValueType() == MVT::i1 &&
4969 "Custom lowering only for i1 results");
4970
4971 SDLoc DL(Op);
4972 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
4973 Op.getOperand(0));
4974 }
4975
4976 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
4977 /// possible.
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const4978 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
4979 // Not FP? Not a fsel.
4980 if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
4981 !Op.getOperand(2).getValueType().isFloatingPoint())
4982 return Op;
4983
4984 // We might be able to do better than this under some circumstances, but in
4985 // general, fsel-based lowering of select is a finite-math-only optimization.
4986 // For more information, see section F.3 of the 2.06 ISA specification.
4987 if (!DAG.getTarget().Options.NoInfsFPMath ||
4988 !DAG.getTarget().Options.NoNaNsFPMath)
4989 return Op;
4990
4991 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4992
4993 EVT ResVT = Op.getValueType();
4994 EVT CmpVT = Op.getOperand(0).getValueType();
4995 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4996 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3);
4997 SDLoc dl(Op);
4998
4999 // If the RHS of the comparison is a 0.0, we don't need to do the
5000 // subtraction at all.
5001 SDValue Sel1;
5002 if (isFloatingPointZero(RHS))
5003 switch (CC) {
5004 default: break; // SETUO etc aren't handled by fsel.
5005 case ISD::SETNE:
5006 std::swap(TV, FV);
5007 case ISD::SETEQ:
5008 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
5009 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
5010 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
5011 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits
5012 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
5013 return DAG.getNode(PPCISD::FSEL, dl, ResVT,
5014 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
5015 case ISD::SETULT:
5016 case ISD::SETLT:
5017 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
5018 case ISD::SETOGE:
5019 case ISD::SETGE:
5020 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
5021 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
5022 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
5023 case ISD::SETUGT:
5024 case ISD::SETGT:
5025 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
5026 case ISD::SETOLE:
5027 case ISD::SETLE:
5028 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
5029 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
5030 return DAG.getNode(PPCISD::FSEL, dl, ResVT,
5031 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
5032 }
5033
5034 SDValue Cmp;
5035 switch (CC) {
5036 default: break; // SETUO etc aren't handled by fsel.
5037 case ISD::SETNE:
5038 std::swap(TV, FV);
5039 case ISD::SETEQ:
5040 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
5041 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
5042 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
5043 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
5044 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits
5045 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
5046 return DAG.getNode(PPCISD::FSEL, dl, ResVT,
5047 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
5048 case ISD::SETULT:
5049 case ISD::SETLT:
5050 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
5051 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
5052 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
5053 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
5054 case ISD::SETOGE:
5055 case ISD::SETGE:
5056 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
5057 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
5058 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
5059 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
5060 case ISD::SETUGT:
5061 case ISD::SETGT:
5062 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
5063 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
5064 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
5065 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
5066 case ISD::SETOLE:
5067 case ISD::SETLE:
5068 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
5069 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
5070 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
5071 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
5072 }
5073 return Op;
5074 }
5075
5076 // FIXME: Split this code up when LegalizeDAGTypes lands.
LowerFP_TO_INT(SDValue Op,SelectionDAG & DAG,SDLoc dl) const5077 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
5078 SDLoc dl) const {
5079 assert(Op.getOperand(0).getValueType().isFloatingPoint());
5080 SDValue Src = Op.getOperand(0);
5081 if (Src.getValueType() == MVT::f32)
5082 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
5083
5084 SDValue Tmp;
5085 switch (Op.getSimpleValueType().SimpleTy) {
5086 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
5087 case MVT::i32:
5088 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
5089 (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ :
5090 PPCISD::FCTIDZ),
5091 dl, MVT::f64, Src);
5092 break;
5093 case MVT::i64:
5094 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
5095 "i64 FP_TO_UINT is supported only with FPCVT");
5096 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
5097 PPCISD::FCTIDUZ,
5098 dl, MVT::f64, Src);
5099 break;
5100 }
5101
5102 // Convert the FP value to an int value through memory.
5103 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
5104 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
5105 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
5106 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
5107 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(FI);
5108
5109 // Emit a store to the stack slot.
5110 SDValue Chain;
5111 if (i32Stack) {
5112 MachineFunction &MF = DAG.getMachineFunction();
5113 MachineMemOperand *MMO =
5114 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
5115 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
5116 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
5117 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
5118 } else
5119 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
5120 MPI, false, false, 0);
5121
5122 // Result is a load from the stack slot. If loading 4 bytes, make sure to
5123 // add in a bias.
5124 if (Op.getValueType() == MVT::i32 && !i32Stack) {
5125 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
5126 DAG.getConstant(4, FIPtr.getValueType()));
5127 MPI = MachinePointerInfo();
5128 }
5129
5130 return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MPI,
5131 false, false, false, 0);
5132 }
5133
LowerINT_TO_FP(SDValue Op,SelectionDAG & DAG) const5134 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
5135 SelectionDAG &DAG) const {
5136 SDLoc dl(Op);
5137 // Don't handle ppc_fp128 here; let it be lowered to a libcall.
5138 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
5139 return SDValue();
5140
5141 if (Op.getOperand(0).getValueType() == MVT::i1)
5142 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
5143 DAG.getConstantFP(1.0, Op.getValueType()),
5144 DAG.getConstantFP(0.0, Op.getValueType()));
5145
5146 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
5147 "UINT_TO_FP is supported only with FPCVT");
5148
5149 // If we have FCFIDS, then use it when converting to single-precision.
5150 // Otherwise, convert to double-precision and then round.
5151 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
5152 (Op.getOpcode() == ISD::UINT_TO_FP ?
5153 PPCISD::FCFIDUS : PPCISD::FCFIDS) :
5154 (Op.getOpcode() == ISD::UINT_TO_FP ?
5155 PPCISD::FCFIDU : PPCISD::FCFID);
5156 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
5157 MVT::f32 : MVT::f64;
5158
5159 if (Op.getOperand(0).getValueType() == MVT::i64) {
5160 SDValue SINT = Op.getOperand(0);
5161 // When converting to single-precision, we actually need to convert
5162 // to double-precision first and then round to single-precision.
5163 // To avoid double-rounding effects during that operation, we have
5164 // to prepare the input operand. Bits that might be truncated when
5165 // converting to double-precision are replaced by a bit that won't
5166 // be lost at this stage, but is below the single-precision rounding
5167 // position.
5168 //
5169 // However, if -enable-unsafe-fp-math is in effect, accept double
5170 // rounding to avoid the extra overhead.
5171 if (Op.getValueType() == MVT::f32 &&
5172 !Subtarget.hasFPCVT() &&
5173 !DAG.getTarget().Options.UnsafeFPMath) {
5174
5175 // Twiddle input to make sure the low 11 bits are zero. (If this
5176 // is the case, we are guaranteed the value will fit into the 53 bit
5177 // mantissa of an IEEE double-precision value without rounding.)
5178 // If any of those low 11 bits were not zero originally, make sure
5179 // bit 12 (value 2048) is set instead, so that the final rounding
5180 // to single-precision gets the correct result.
5181 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
5182 SINT, DAG.getConstant(2047, MVT::i64));
5183 Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
5184 Round, DAG.getConstant(2047, MVT::i64));
5185 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
5186 Round = DAG.getNode(ISD::AND, dl, MVT::i64,
5187 Round, DAG.getConstant(-2048, MVT::i64));
5188
5189 // However, we cannot use that value unconditionally: if the magnitude
5190 // of the input value is small, the bit-twiddling we did above might
5191 // end up visibly changing the output. Fortunately, in that case, we
5192 // don't need to twiddle bits since the original input will convert
5193 // exactly to double-precision floating-point already. Therefore,
5194 // construct a conditional to use the original value if the top 11
5195 // bits are all sign-bit copies, and use the rounded value computed
5196 // above otherwise.
5197 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
5198 SINT, DAG.getConstant(53, MVT::i32));
5199 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
5200 Cond, DAG.getConstant(1, MVT::i64));
5201 Cond = DAG.getSetCC(dl, MVT::i32,
5202 Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT);
5203
5204 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
5205 }
5206
5207 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
5208 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
5209
5210 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
5211 FP = DAG.getNode(ISD::FP_ROUND, dl,
5212 MVT::f32, FP, DAG.getIntPtrConstant(0));
5213 return FP;
5214 }
5215
5216 assert(Op.getOperand(0).getValueType() == MVT::i32 &&
5217 "Unhandled INT_TO_FP type in custom expander!");
5218 // Since we only generate this in 64-bit mode, we can take advantage of
5219 // 64-bit registers. In particular, sign extend the input value into the
5220 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
5221 // then lfd it and fcfid it.
5222 MachineFunction &MF = DAG.getMachineFunction();
5223 MachineFrameInfo *FrameInfo = MF.getFrameInfo();
5224 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5225
5226 SDValue Ld;
5227 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
5228 int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
5229 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
5230
5231 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
5232 MachinePointerInfo::getFixedStack(FrameIdx),
5233 false, false, 0);
5234
5235 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
5236 "Expected an i32 store");
5237 MachineMemOperand *MMO =
5238 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
5239 MachineMemOperand::MOLoad, 4, 4);
5240 SDValue Ops[] = { Store, FIdx };
5241 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
5242 PPCISD::LFIWZX : PPCISD::LFIWAX,
5243 dl, DAG.getVTList(MVT::f64, MVT::Other),
5244 Ops, MVT::i32, MMO);
5245 } else {
5246 assert(Subtarget.isPPC64() &&
5247 "i32->FP without LFIWAX supported only on PPC64");
5248
5249 int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
5250 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
5251
5252 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
5253 Op.getOperand(0));
5254
5255 // STD the extended value into the stack slot.
5256 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Ext64, FIdx,
5257 MachinePointerInfo::getFixedStack(FrameIdx),
5258 false, false, 0);
5259
5260 // Load the value as a double.
5261 Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx,
5262 MachinePointerInfo::getFixedStack(FrameIdx),
5263 false, false, false, 0);
5264 }
5265
5266 // FCFID it and return it.
5267 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
5268 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
5269 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
5270 return FP;
5271 }
5272
LowerFLT_ROUNDS_(SDValue Op,SelectionDAG & DAG) const5273 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
5274 SelectionDAG &DAG) const {
5275 SDLoc dl(Op);
5276 /*
5277 The rounding mode is in bits 30:31 of FPSR, and has the following
5278 settings:
5279 00 Round to nearest
5280 01 Round to 0
5281 10 Round to +inf
5282 11 Round to -inf
5283
5284 FLT_ROUNDS, on the other hand, expects the following:
5285 -1 Undefined
5286 0 Round to 0
5287 1 Round to nearest
5288 2 Round to +inf
5289 3 Round to -inf
5290
5291 To perform the conversion, we do:
5292 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
5293 */
5294
5295 MachineFunction &MF = DAG.getMachineFunction();
5296 EVT VT = Op.getValueType();
5297 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5298
5299 // Save FP Control Word to register
5300 EVT NodeTys[] = {
5301 MVT::f64, // return register
5302 MVT::Glue // unused in this context
5303 };
5304 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
5305
5306 // Save FP register to stack slot
5307 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
5308 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
5309 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
5310 StackSlot, MachinePointerInfo(), false, false,0);
5311
5312 // Load FP Control Word from low 32 bits of stack slot.
5313 SDValue Four = DAG.getConstant(4, PtrVT);
5314 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
5315 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
5316 false, false, false, 0);
5317
5318 // Transform as necessary
5319 SDValue CWD1 =
5320 DAG.getNode(ISD::AND, dl, MVT::i32,
5321 CWD, DAG.getConstant(3, MVT::i32));
5322 SDValue CWD2 =
5323 DAG.getNode(ISD::SRL, dl, MVT::i32,
5324 DAG.getNode(ISD::AND, dl, MVT::i32,
5325 DAG.getNode(ISD::XOR, dl, MVT::i32,
5326 CWD, DAG.getConstant(3, MVT::i32)),
5327 DAG.getConstant(3, MVT::i32)),
5328 DAG.getConstant(1, MVT::i32));
5329
5330 SDValue RetVal =
5331 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
5332
5333 return DAG.getNode((VT.getSizeInBits() < 16 ?
5334 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
5335 }
5336
LowerSHL_PARTS(SDValue Op,SelectionDAG & DAG) const5337 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
5338 EVT VT = Op.getValueType();
5339 unsigned BitWidth = VT.getSizeInBits();
5340 SDLoc dl(Op);
5341 assert(Op.getNumOperands() == 3 &&
5342 VT == Op.getOperand(1).getValueType() &&
5343 "Unexpected SHL!");
5344
5345 // Expand into a bunch of logical ops. Note that these ops
5346 // depend on the PPC behavior for oversized shift amounts.
5347 SDValue Lo = Op.getOperand(0);
5348 SDValue Hi = Op.getOperand(1);
5349 SDValue Amt = Op.getOperand(2);
5350 EVT AmtVT = Amt.getValueType();
5351
5352 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
5353 DAG.getConstant(BitWidth, AmtVT), Amt);
5354 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
5355 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
5356 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
5357 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
5358 DAG.getConstant(-BitWidth, AmtVT));
5359 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
5360 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
5361 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
5362 SDValue OutOps[] = { OutLo, OutHi };
5363 return DAG.getMergeValues(OutOps, dl);
5364 }
5365
LowerSRL_PARTS(SDValue Op,SelectionDAG & DAG) const5366 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
5367 EVT VT = Op.getValueType();
5368 SDLoc dl(Op);
5369 unsigned BitWidth = VT.getSizeInBits();
5370 assert(Op.getNumOperands() == 3 &&
5371 VT == Op.getOperand(1).getValueType() &&
5372 "Unexpected SRL!");
5373
5374 // Expand into a bunch of logical ops. Note that these ops
5375 // depend on the PPC behavior for oversized shift amounts.
5376 SDValue Lo = Op.getOperand(0);
5377 SDValue Hi = Op.getOperand(1);
5378 SDValue Amt = Op.getOperand(2);
5379 EVT AmtVT = Amt.getValueType();
5380
5381 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
5382 DAG.getConstant(BitWidth, AmtVT), Amt);
5383 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
5384 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
5385 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
5386 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
5387 DAG.getConstant(-BitWidth, AmtVT));
5388 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
5389 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
5390 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
5391 SDValue OutOps[] = { OutLo, OutHi };
5392 return DAG.getMergeValues(OutOps, dl);
5393 }
5394
LowerSRA_PARTS(SDValue Op,SelectionDAG & DAG) const5395 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
5396 SDLoc dl(Op);
5397 EVT VT = Op.getValueType();
5398 unsigned BitWidth = VT.getSizeInBits();
5399 assert(Op.getNumOperands() == 3 &&
5400 VT == Op.getOperand(1).getValueType() &&
5401 "Unexpected SRA!");
5402
5403 // Expand into a bunch of logical ops, followed by a select_cc.
5404 SDValue Lo = Op.getOperand(0);
5405 SDValue Hi = Op.getOperand(1);
5406 SDValue Amt = Op.getOperand(2);
5407 EVT AmtVT = Amt.getValueType();
5408
5409 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
5410 DAG.getConstant(BitWidth, AmtVT), Amt);
5411 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
5412 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
5413 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
5414 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
5415 DAG.getConstant(-BitWidth, AmtVT));
5416 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
5417 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
5418 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
5419 Tmp4, Tmp6, ISD::SETLE);
5420 SDValue OutOps[] = { OutLo, OutHi };
5421 return DAG.getMergeValues(OutOps, dl);
5422 }
5423
5424 //===----------------------------------------------------------------------===//
5425 // Vector related lowering.
5426 //
5427
5428 /// BuildSplatI - Build a canonical splati of Val with an element size of
5429 /// SplatSize. Cast the result to VT.
BuildSplatI(int Val,unsigned SplatSize,EVT VT,SelectionDAG & DAG,SDLoc dl)5430 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
5431 SelectionDAG &DAG, SDLoc dl) {
5432 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
5433
5434 static const EVT VTys[] = { // canonical VT to use for each size.
5435 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
5436 };
5437
5438 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
5439
5440 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
5441 if (Val == -1)
5442 SplatSize = 1;
5443
5444 EVT CanonicalVT = VTys[SplatSize-1];
5445
5446 // Build a canonical splat for this value.
5447 SDValue Elt = DAG.getConstant(Val, MVT::i32);
5448 SmallVector<SDValue, 8> Ops;
5449 Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
5450 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, Ops);
5451 return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
5452 }
5453
5454 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
5455 /// specified intrinsic ID.
BuildIntrinsicOp(unsigned IID,SDValue Op,SelectionDAG & DAG,SDLoc dl,EVT DestVT=MVT::Other)5456 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op,
5457 SelectionDAG &DAG, SDLoc dl,
5458 EVT DestVT = MVT::Other) {
5459 if (DestVT == MVT::Other) DestVT = Op.getValueType();
5460 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
5461 DAG.getConstant(IID, MVT::i32), Op);
5462 }
5463
5464 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
5465 /// specified intrinsic ID.
BuildIntrinsicOp(unsigned IID,SDValue LHS,SDValue RHS,SelectionDAG & DAG,SDLoc dl,EVT DestVT=MVT::Other)5466 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
5467 SelectionDAG &DAG, SDLoc dl,
5468 EVT DestVT = MVT::Other) {
5469 if (DestVT == MVT::Other) DestVT = LHS.getValueType();
5470 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
5471 DAG.getConstant(IID, MVT::i32), LHS, RHS);
5472 }
5473
5474 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
5475 /// specified intrinsic ID.
BuildIntrinsicOp(unsigned IID,SDValue Op0,SDValue Op1,SDValue Op2,SelectionDAG & DAG,SDLoc dl,EVT DestVT=MVT::Other)5476 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
5477 SDValue Op2, SelectionDAG &DAG,
5478 SDLoc dl, EVT DestVT = MVT::Other) {
5479 if (DestVT == MVT::Other) DestVT = Op0.getValueType();
5480 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
5481 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
5482 }
5483
5484
5485 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
5486 /// amount. The result has the specified value type.
BuildVSLDOI(SDValue LHS,SDValue RHS,unsigned Amt,EVT VT,SelectionDAG & DAG,SDLoc dl)5487 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
5488 EVT VT, SelectionDAG &DAG, SDLoc dl) {
5489 // Force LHS/RHS to be the right type.
5490 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
5491 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
5492
5493 int Ops[16];
5494 for (unsigned i = 0; i != 16; ++i)
5495 Ops[i] = i + Amt;
5496 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
5497 return DAG.getNode(ISD::BITCAST, dl, VT, T);
5498 }
5499
5500 // If this is a case we can't handle, return null and let the default
5501 // expansion code take care of it. If we CAN select this case, and if it
5502 // selects to a single instruction, return Op. Otherwise, if we can codegen
5503 // this case more efficiently than a constant pool load, lower it to the
5504 // sequence of ops that should be used.
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const5505 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
5506 SelectionDAG &DAG) const {
5507 SDLoc dl(Op);
5508 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
5509 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
5510
5511 // Check if this is a splat of a constant value.
5512 APInt APSplatBits, APSplatUndef;
5513 unsigned SplatBitSize;
5514 bool HasAnyUndefs;
5515 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
5516 HasAnyUndefs, 0, true) || SplatBitSize > 32)
5517 return SDValue();
5518
5519 unsigned SplatBits = APSplatBits.getZExtValue();
5520 unsigned SplatUndef = APSplatUndef.getZExtValue();
5521 unsigned SplatSize = SplatBitSize / 8;
5522
5523 // First, handle single instruction cases.
5524
5525 // All zeros?
5526 if (SplatBits == 0) {
5527 // Canonicalize all zero vectors to be v4i32.
5528 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
5529 SDValue Z = DAG.getConstant(0, MVT::i32);
5530 Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
5531 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
5532 }
5533 return Op;
5534 }
5535
5536 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
5537 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
5538 (32-SplatBitSize));
5539 if (SextVal >= -16 && SextVal <= 15)
5540 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
5541
5542
5543 // Two instruction sequences.
5544
5545 // If this value is in the range [-32,30] and is even, use:
5546 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
5547 // If this value is in the range [17,31] and is odd, use:
5548 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
5549 // If this value is in the range [-31,-17] and is odd, use:
5550 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
5551 // Note the last two are three-instruction sequences.
5552 if (SextVal >= -32 && SextVal <= 31) {
5553 // To avoid having these optimizations undone by constant folding,
5554 // we convert to a pseudo that will be expanded later into one of
5555 // the above forms.
5556 SDValue Elt = DAG.getConstant(SextVal, MVT::i32);
5557 EVT VT = (SplatSize == 1 ? MVT::v16i8 :
5558 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
5559 SDValue EltSize = DAG.getConstant(SplatSize, MVT::i32);
5560 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
5561 if (VT == Op.getValueType())
5562 return RetVal;
5563 else
5564 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
5565 }
5566
5567 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
5568 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
5569 // for fneg/fabs.
5570 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
5571 // Make -1 and vspltisw -1:
5572 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
5573
5574 // Make the VSLW intrinsic, computing 0x8000_0000.
5575 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
5576 OnesV, DAG, dl);
5577
5578 // xor by OnesV to invert it.
5579 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
5580 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5581 }
5582
5583 // The remaining cases assume either big endian element order or
5584 // a splat-size that equates to the element size of the vector
5585 // to be built. An example that doesn't work for little endian is
5586 // {0, -1, 0, -1, 0, -1, 0, -1} which has a splat size of 32 bits
5587 // and a vector element size of 16 bits. The code below will
5588 // produce the vector in big endian element order, which for little
5589 // endian is {-1, 0, -1, 0, -1, 0, -1, 0}.
5590
5591 // For now, just avoid these optimizations in that case.
5592 // FIXME: Develop correct optimizations for LE with mismatched
5593 // splat and element sizes.
5594
5595 if (Subtarget.isLittleEndian() &&
5596 SplatSize != Op.getValueType().getVectorElementType().getSizeInBits())
5597 return SDValue();
5598
5599 // Check to see if this is a wide variety of vsplti*, binop self cases.
5600 static const signed char SplatCsts[] = {
5601 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
5602 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
5603 };
5604
5605 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
5606 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
5607 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
5608 int i = SplatCsts[idx];
5609
5610 // Figure out what shift amount will be used by altivec if shifted by i in
5611 // this splat size.
5612 unsigned TypeShiftAmt = i & (SplatBitSize-1);
5613
5614 // vsplti + shl self.
5615 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
5616 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5617 static const unsigned IIDs[] = { // Intrinsic to use for each size.
5618 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
5619 Intrinsic::ppc_altivec_vslw
5620 };
5621 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5622 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5623 }
5624
5625 // vsplti + srl self.
5626 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
5627 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5628 static const unsigned IIDs[] = { // Intrinsic to use for each size.
5629 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
5630 Intrinsic::ppc_altivec_vsrw
5631 };
5632 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5633 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5634 }
5635
5636 // vsplti + sra self.
5637 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
5638 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5639 static const unsigned IIDs[] = { // Intrinsic to use for each size.
5640 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
5641 Intrinsic::ppc_altivec_vsraw
5642 };
5643 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5644 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5645 }
5646
5647 // vsplti + rol self.
5648 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
5649 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
5650 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5651 static const unsigned IIDs[] = { // Intrinsic to use for each size.
5652 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
5653 Intrinsic::ppc_altivec_vrlw
5654 };
5655 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5656 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5657 }
5658
5659 // t = vsplti c, result = vsldoi t, t, 1
5660 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
5661 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5662 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
5663 }
5664 // t = vsplti c, result = vsldoi t, t, 2
5665 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
5666 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5667 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
5668 }
5669 // t = vsplti c, result = vsldoi t, t, 3
5670 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
5671 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5672 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
5673 }
5674 }
5675
5676 return SDValue();
5677 }
5678
5679 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
5680 /// the specified operations to build the shuffle.
GeneratePerfectShuffle(unsigned PFEntry,SDValue LHS,SDValue RHS,SelectionDAG & DAG,SDLoc dl)5681 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
5682 SDValue RHS, SelectionDAG &DAG,
5683 SDLoc dl) {
5684 unsigned OpNum = (PFEntry >> 26) & 0x0F;
5685 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
5686 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
5687
5688 enum {
5689 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
5690 OP_VMRGHW,
5691 OP_VMRGLW,
5692 OP_VSPLTISW0,
5693 OP_VSPLTISW1,
5694 OP_VSPLTISW2,
5695 OP_VSPLTISW3,
5696 OP_VSLDOI4,
5697 OP_VSLDOI8,
5698 OP_VSLDOI12
5699 };
5700
5701 if (OpNum == OP_COPY) {
5702 if (LHSID == (1*9+2)*9+3) return LHS;
5703 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
5704 return RHS;
5705 }
5706
5707 SDValue OpLHS, OpRHS;
5708 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5709 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5710
5711 int ShufIdxs[16];
5712 switch (OpNum) {
5713 default: llvm_unreachable("Unknown i32 permute!");
5714 case OP_VMRGHW:
5715 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
5716 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
5717 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
5718 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
5719 break;
5720 case OP_VMRGLW:
5721 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
5722 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
5723 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
5724 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
5725 break;
5726 case OP_VSPLTISW0:
5727 for (unsigned i = 0; i != 16; ++i)
5728 ShufIdxs[i] = (i&3)+0;
5729 break;
5730 case OP_VSPLTISW1:
5731 for (unsigned i = 0; i != 16; ++i)
5732 ShufIdxs[i] = (i&3)+4;
5733 break;
5734 case OP_VSPLTISW2:
5735 for (unsigned i = 0; i != 16; ++i)
5736 ShufIdxs[i] = (i&3)+8;
5737 break;
5738 case OP_VSPLTISW3:
5739 for (unsigned i = 0; i != 16; ++i)
5740 ShufIdxs[i] = (i&3)+12;
5741 break;
5742 case OP_VSLDOI4:
5743 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
5744 case OP_VSLDOI8:
5745 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
5746 case OP_VSLDOI12:
5747 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
5748 }
5749 EVT VT = OpLHS.getValueType();
5750 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
5751 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
5752 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
5753 return DAG.getNode(ISD::BITCAST, dl, VT, T);
5754 }
5755
5756 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
5757 /// is a shuffle we can handle in a single instruction, return it. Otherwise,
5758 /// return the code it can be lowered into. Worst case, it can always be
5759 /// lowered into a vperm.
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const5760 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
5761 SelectionDAG &DAG) const {
5762 SDLoc dl(Op);
5763 SDValue V1 = Op.getOperand(0);
5764 SDValue V2 = Op.getOperand(1);
5765 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5766 EVT VT = Op.getValueType();
5767 bool isLittleEndian = Subtarget.isLittleEndian();
5768
5769 // Cases that are handled by instructions that take permute immediates
5770 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
5771 // selected by the instruction selector.
5772 if (V2.getOpcode() == ISD::UNDEF) {
5773 if (PPC::isSplatShuffleMask(SVOp, 1) ||
5774 PPC::isSplatShuffleMask(SVOp, 2) ||
5775 PPC::isSplatShuffleMask(SVOp, 4) ||
5776 PPC::isVPKUWUMShuffleMask(SVOp, true, DAG) ||
5777 PPC::isVPKUHUMShuffleMask(SVOp, true, DAG) ||
5778 PPC::isVSLDOIShuffleMask(SVOp, true, DAG) != -1 ||
5779 PPC::isVMRGLShuffleMask(SVOp, 1, true, DAG) ||
5780 PPC::isVMRGLShuffleMask(SVOp, 2, true, DAG) ||
5781 PPC::isVMRGLShuffleMask(SVOp, 4, true, DAG) ||
5782 PPC::isVMRGHShuffleMask(SVOp, 1, true, DAG) ||
5783 PPC::isVMRGHShuffleMask(SVOp, 2, true, DAG) ||
5784 PPC::isVMRGHShuffleMask(SVOp, 4, true, DAG)) {
5785 return Op;
5786 }
5787 }
5788
5789 // Altivec has a variety of "shuffle immediates" that take two vector inputs
5790 // and produce a fixed permutation. If any of these match, do not lower to
5791 // VPERM.
5792 if (PPC::isVPKUWUMShuffleMask(SVOp, false, DAG) ||
5793 PPC::isVPKUHUMShuffleMask(SVOp, false, DAG) ||
5794 PPC::isVSLDOIShuffleMask(SVOp, false, DAG) != -1 ||
5795 PPC::isVMRGLShuffleMask(SVOp, 1, false, DAG) ||
5796 PPC::isVMRGLShuffleMask(SVOp, 2, false, DAG) ||
5797 PPC::isVMRGLShuffleMask(SVOp, 4, false, DAG) ||
5798 PPC::isVMRGHShuffleMask(SVOp, 1, false, DAG) ||
5799 PPC::isVMRGHShuffleMask(SVOp, 2, false, DAG) ||
5800 PPC::isVMRGHShuffleMask(SVOp, 4, false, DAG))
5801 return Op;
5802
5803 // Check to see if this is a shuffle of 4-byte values. If so, we can use our
5804 // perfect shuffle table to emit an optimal matching sequence.
5805 ArrayRef<int> PermMask = SVOp->getMask();
5806
5807 unsigned PFIndexes[4];
5808 bool isFourElementShuffle = true;
5809 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
5810 unsigned EltNo = 8; // Start out undef.
5811 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
5812 if (PermMask[i*4+j] < 0)
5813 continue; // Undef, ignore it.
5814
5815 unsigned ByteSource = PermMask[i*4+j];
5816 if ((ByteSource & 3) != j) {
5817 isFourElementShuffle = false;
5818 break;
5819 }
5820
5821 if (EltNo == 8) {
5822 EltNo = ByteSource/4;
5823 } else if (EltNo != ByteSource/4) {
5824 isFourElementShuffle = false;
5825 break;
5826 }
5827 }
5828 PFIndexes[i] = EltNo;
5829 }
5830
5831 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
5832 // perfect shuffle vector to determine if it is cost effective to do this as
5833 // discrete instructions, or whether we should use a vperm.
5834 // For now, we skip this for little endian until such time as we have a
5835 // little-endian perfect shuffle table.
5836 if (isFourElementShuffle && !isLittleEndian) {
5837 // Compute the index in the perfect shuffle table.
5838 unsigned PFTableIndex =
5839 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
5840
5841 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5842 unsigned Cost = (PFEntry >> 30);
5843
5844 // Determining when to avoid vperm is tricky. Many things affect the cost
5845 // of vperm, particularly how many times the perm mask needs to be computed.
5846 // For example, if the perm mask can be hoisted out of a loop or is already
5847 // used (perhaps because there are multiple permutes with the same shuffle
5848 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
5849 // the loop requires an extra register.
5850 //
5851 // As a compromise, we only emit discrete instructions if the shuffle can be
5852 // generated in 3 or fewer operations. When we have loop information
5853 // available, if this block is within a loop, we should avoid using vperm
5854 // for 3-operation perms and use a constant pool load instead.
5855 if (Cost < 3)
5856 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5857 }
5858
5859 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
5860 // vector that will get spilled to the constant pool.
5861 if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
5862
5863 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
5864 // that it is in input element units, not in bytes. Convert now.
5865
5866 // For little endian, the order of the input vectors is reversed, and
5867 // the permutation mask is complemented with respect to 31. This is
5868 // necessary to produce proper semantics with the big-endian-biased vperm
5869 // instruction.
5870 EVT EltVT = V1.getValueType().getVectorElementType();
5871 unsigned BytesPerElement = EltVT.getSizeInBits()/8;
5872
5873 SmallVector<SDValue, 16> ResultMask;
5874 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5875 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
5876
5877 for (unsigned j = 0; j != BytesPerElement; ++j)
5878 if (isLittleEndian)
5879 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement+j),
5880 MVT::i32));
5881 else
5882 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
5883 MVT::i32));
5884 }
5885
5886 SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
5887 ResultMask);
5888 if (isLittleEndian)
5889 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
5890 V2, V1, VPermMask);
5891 else
5892 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
5893 V1, V2, VPermMask);
5894 }
5895
5896 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
5897 /// altivec comparison. If it is, return true and fill in Opc/isDot with
5898 /// information about the intrinsic.
getAltivecCompareInfo(SDValue Intrin,int & CompareOpc,bool & isDot)5899 static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
5900 bool &isDot) {
5901 unsigned IntrinsicID =
5902 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
5903 CompareOpc = -1;
5904 isDot = false;
5905 switch (IntrinsicID) {
5906 default: return false;
5907 // Comparison predicates.
5908 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
5909 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
5910 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
5911 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
5912 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
5913 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
5914 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
5915 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
5916 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
5917 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
5918 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
5919 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
5920 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
5921
5922 // Normal Comparisons.
5923 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
5924 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
5925 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
5926 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
5927 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
5928 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
5929 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
5930 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
5931 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
5932 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
5933 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
5934 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
5935 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
5936 }
5937 return true;
5938 }
5939
5940 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
5941 /// lower, do it, otherwise return null.
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const5942 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
5943 SelectionDAG &DAG) const {
5944 // If this is a lowered altivec predicate compare, CompareOpc is set to the
5945 // opcode number of the comparison.
5946 SDLoc dl(Op);
5947 int CompareOpc;
5948 bool isDot;
5949 if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
5950 return SDValue(); // Don't custom lower most intrinsics.
5951
5952 // If this is a non-dot comparison, make the VCMP node and we are done.
5953 if (!isDot) {
5954 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
5955 Op.getOperand(1), Op.getOperand(2),
5956 DAG.getConstant(CompareOpc, MVT::i32));
5957 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
5958 }
5959
5960 // Create the PPCISD altivec 'dot' comparison node.
5961 SDValue Ops[] = {
5962 Op.getOperand(2), // LHS
5963 Op.getOperand(3), // RHS
5964 DAG.getConstant(CompareOpc, MVT::i32)
5965 };
5966 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
5967 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
5968
5969 // Now that we have the comparison, emit a copy from the CR to a GPR.
5970 // This is flagged to the above dot comparison.
5971 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
5972 DAG.getRegister(PPC::CR6, MVT::i32),
5973 CompNode.getValue(1));
5974
5975 // Unpack the result based on how the target uses it.
5976 unsigned BitNo; // Bit # of CR6.
5977 bool InvertBit; // Invert result?
5978 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
5979 default: // Can't happen, don't crash on invalid number though.
5980 case 0: // Return the value of the EQ bit of CR6.
5981 BitNo = 0; InvertBit = false;
5982 break;
5983 case 1: // Return the inverted value of the EQ bit of CR6.
5984 BitNo = 0; InvertBit = true;
5985 break;
5986 case 2: // Return the value of the LT bit of CR6.
5987 BitNo = 2; InvertBit = false;
5988 break;
5989 case 3: // Return the inverted value of the LT bit of CR6.
5990 BitNo = 2; InvertBit = true;
5991 break;
5992 }
5993
5994 // Shift the bit into the low position.
5995 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
5996 DAG.getConstant(8-(3-BitNo), MVT::i32));
5997 // Isolate the bit.
5998 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
5999 DAG.getConstant(1, MVT::i32));
6000
6001 // If we are supposed to, toggle the bit.
6002 if (InvertBit)
6003 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
6004 DAG.getConstant(1, MVT::i32));
6005 return Flags;
6006 }
6007
LowerSIGN_EXTEND_INREG(SDValue Op,SelectionDAG & DAG) const6008 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
6009 SelectionDAG &DAG) const {
6010 SDLoc dl(Op);
6011 // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int
6012 // instructions), but for smaller types, we need to first extend up to v2i32
6013 // before doing going farther.
6014 if (Op.getValueType() == MVT::v2i64) {
6015 EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
6016 if (ExtVT != MVT::v2i32) {
6017 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0));
6018 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op,
6019 DAG.getValueType(EVT::getVectorVT(*DAG.getContext(),
6020 ExtVT.getVectorElementType(), 4)));
6021 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op);
6022 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op,
6023 DAG.getValueType(MVT::v2i32));
6024 }
6025
6026 return Op;
6027 }
6028
6029 return SDValue();
6030 }
6031
LowerSCALAR_TO_VECTOR(SDValue Op,SelectionDAG & DAG) const6032 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
6033 SelectionDAG &DAG) const {
6034 SDLoc dl(Op);
6035 // Create a stack slot that is 16-byte aligned.
6036 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
6037 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
6038 EVT PtrVT = getPointerTy();
6039 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6040
6041 // Store the input value into Value#0 of the stack slot.
6042 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
6043 Op.getOperand(0), FIdx, MachinePointerInfo(),
6044 false, false, 0);
6045 // Load it out.
6046 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
6047 false, false, false, 0);
6048 }
6049
LowerMUL(SDValue Op,SelectionDAG & DAG) const6050 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
6051 SDLoc dl(Op);
6052 if (Op.getValueType() == MVT::v4i32) {
6053 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
6054
6055 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl);
6056 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
6057
6058 SDValue RHSSwap = // = vrlw RHS, 16
6059 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
6060
6061 // Shrinkify inputs to v8i16.
6062 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
6063 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
6064 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
6065
6066 // Low parts multiplied together, generating 32-bit results (we ignore the
6067 // top parts).
6068 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
6069 LHS, RHS, DAG, dl, MVT::v4i32);
6070
6071 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
6072 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
6073 // Shift the high parts up 16 bits.
6074 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
6075 Neg16, DAG, dl);
6076 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
6077 } else if (Op.getValueType() == MVT::v8i16) {
6078 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
6079
6080 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
6081
6082 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
6083 LHS, RHS, Zero, DAG, dl);
6084 } else if (Op.getValueType() == MVT::v16i8) {
6085 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
6086 bool isLittleEndian = Subtarget.isLittleEndian();
6087
6088 // Multiply the even 8-bit parts, producing 16-bit sums.
6089 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
6090 LHS, RHS, DAG, dl, MVT::v8i16);
6091 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
6092
6093 // Multiply the odd 8-bit parts, producing 16-bit sums.
6094 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
6095 LHS, RHS, DAG, dl, MVT::v8i16);
6096 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
6097
6098 // Merge the results together. Because vmuleub and vmuloub are
6099 // instructions with a big-endian bias, we must reverse the
6100 // element numbering and reverse the meaning of "odd" and "even"
6101 // when generating little endian code.
6102 int Ops[16];
6103 for (unsigned i = 0; i != 8; ++i) {
6104 if (isLittleEndian) {
6105 Ops[i*2 ] = 2*i;
6106 Ops[i*2+1] = 2*i+16;
6107 } else {
6108 Ops[i*2 ] = 2*i+1;
6109 Ops[i*2+1] = 2*i+1+16;
6110 }
6111 }
6112 if (isLittleEndian)
6113 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
6114 else
6115 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
6116 } else {
6117 llvm_unreachable("Unknown mul to lower!");
6118 }
6119 }
6120
6121 /// LowerOperation - Provide custom lowering hooks for some operations.
6122 ///
LowerOperation(SDValue Op,SelectionDAG & DAG) const6123 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6124 switch (Op.getOpcode()) {
6125 default: llvm_unreachable("Wasn't expecting to be able to lower this!");
6126 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
6127 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
6128 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
6129 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
6130 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
6131 case ISD::SETCC: return LowerSETCC(Op, DAG);
6132 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
6133 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
6134 case ISD::VASTART:
6135 return LowerVASTART(Op, DAG, Subtarget);
6136
6137 case ISD::VAARG:
6138 return LowerVAARG(Op, DAG, Subtarget);
6139
6140 case ISD::VACOPY:
6141 return LowerVACOPY(Op, DAG, Subtarget);
6142
6143 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, Subtarget);
6144 case ISD::DYNAMIC_STACKALLOC:
6145 return LowerDYNAMIC_STACKALLOC(Op, DAG, Subtarget);
6146
6147 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG);
6148 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG);
6149
6150 case ISD::LOAD: return LowerLOAD(Op, DAG);
6151 case ISD::STORE: return LowerSTORE(Op, DAG);
6152 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG);
6153 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
6154 case ISD::FP_TO_UINT:
6155 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG,
6156 SDLoc(Op));
6157 case ISD::UINT_TO_FP:
6158 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
6159 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
6160
6161 // Lower 64-bit shifts.
6162 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG);
6163 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG);
6164 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG);
6165
6166 // Vector-related lowering.
6167 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
6168 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
6169 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
6170 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
6171 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
6172 case ISD::MUL: return LowerMUL(Op, DAG);
6173
6174 // For counter-based loop handling.
6175 case ISD::INTRINSIC_W_CHAIN: return SDValue();
6176
6177 // Frame & Return address.
6178 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
6179 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
6180 }
6181 }
6182
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const6183 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
6184 SmallVectorImpl<SDValue>&Results,
6185 SelectionDAG &DAG) const {
6186 const TargetMachine &TM = getTargetMachine();
6187 SDLoc dl(N);
6188 switch (N->getOpcode()) {
6189 default:
6190 llvm_unreachable("Do not know how to custom type legalize this operation!");
6191 case ISD::INTRINSIC_W_CHAIN: {
6192 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
6193 Intrinsic::ppc_is_decremented_ctr_nonzero)
6194 break;
6195
6196 assert(N->getValueType(0) == MVT::i1 &&
6197 "Unexpected result type for CTR decrement intrinsic");
6198 EVT SVT = getSetCCResultType(*DAG.getContext(), N->getValueType(0));
6199 SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
6200 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
6201 N->getOperand(1));
6202
6203 Results.push_back(NewInt);
6204 Results.push_back(NewInt.getValue(1));
6205 break;
6206 }
6207 case ISD::VAARG: {
6208 if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
6209 || TM.getSubtarget<PPCSubtarget>().isPPC64())
6210 return;
6211
6212 EVT VT = N->getValueType(0);
6213
6214 if (VT == MVT::i64) {
6215 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, Subtarget);
6216
6217 Results.push_back(NewNode);
6218 Results.push_back(NewNode.getValue(1));
6219 }
6220 return;
6221 }
6222 case ISD::FP_ROUND_INREG: {
6223 assert(N->getValueType(0) == MVT::ppcf128);
6224 assert(N->getOperand(0).getValueType() == MVT::ppcf128);
6225 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
6226 MVT::f64, N->getOperand(0),
6227 DAG.getIntPtrConstant(0));
6228 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
6229 MVT::f64, N->getOperand(0),
6230 DAG.getIntPtrConstant(1));
6231
6232 // Add the two halves of the long double in round-to-zero mode.
6233 SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
6234
6235 // We know the low half is about to be thrown away, so just use something
6236 // convenient.
6237 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
6238 FPreg, FPreg));
6239 return;
6240 }
6241 case ISD::FP_TO_SINT:
6242 // LowerFP_TO_INT() can only handle f32 and f64.
6243 if (N->getOperand(0).getValueType() == MVT::ppcf128)
6244 return;
6245 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
6246 return;
6247 }
6248 }
6249
6250
6251 //===----------------------------------------------------------------------===//
6252 // Other Lowering Code
6253 //===----------------------------------------------------------------------===//
6254
6255 MachineBasicBlock *
EmitAtomicBinary(MachineInstr * MI,MachineBasicBlock * BB,bool is64bit,unsigned BinOpcode) const6256 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
6257 bool is64bit, unsigned BinOpcode) const {
6258 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
6259 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6260
6261 const BasicBlock *LLVM_BB = BB->getBasicBlock();
6262 MachineFunction *F = BB->getParent();
6263 MachineFunction::iterator It = BB;
6264 ++It;
6265
6266 unsigned dest = MI->getOperand(0).getReg();
6267 unsigned ptrA = MI->getOperand(1).getReg();
6268 unsigned ptrB = MI->getOperand(2).getReg();
6269 unsigned incr = MI->getOperand(3).getReg();
6270 DebugLoc dl = MI->getDebugLoc();
6271
6272 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
6273 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6274 F->insert(It, loopMBB);
6275 F->insert(It, exitMBB);
6276 exitMBB->splice(exitMBB->begin(), BB,
6277 std::next(MachineBasicBlock::iterator(MI)), BB->end());
6278 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6279
6280 MachineRegisterInfo &RegInfo = F->getRegInfo();
6281 unsigned TmpReg = (!BinOpcode) ? incr :
6282 RegInfo.createVirtualRegister(
6283 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
6284 (const TargetRegisterClass *) &PPC::GPRCRegClass);
6285
6286 // thisMBB:
6287 // ...
6288 // fallthrough --> loopMBB
6289 BB->addSuccessor(loopMBB);
6290
6291 // loopMBB:
6292 // l[wd]arx dest, ptr
6293 // add r0, dest, incr
6294 // st[wd]cx. r0, ptr
6295 // bne- loopMBB
6296 // fallthrough --> exitMBB
6297 BB = loopMBB;
6298 BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
6299 .addReg(ptrA).addReg(ptrB);
6300 if (BinOpcode)
6301 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
6302 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
6303 .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
6304 BuildMI(BB, dl, TII->get(PPC::BCC))
6305 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
6306 BB->addSuccessor(loopMBB);
6307 BB->addSuccessor(exitMBB);
6308
6309 // exitMBB:
6310 // ...
6311 BB = exitMBB;
6312 return BB;
6313 }
6314
6315 MachineBasicBlock *
EmitPartwordAtomicBinary(MachineInstr * MI,MachineBasicBlock * BB,bool is8bit,unsigned BinOpcode) const6316 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
6317 MachineBasicBlock *BB,
6318 bool is8bit, // operation
6319 unsigned BinOpcode) const {
6320 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
6321 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6322 // In 64 bit mode we have to use 64 bits for addresses, even though the
6323 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address
6324 // registers without caring whether they're 32 or 64, but here we're
6325 // doing actual arithmetic on the addresses.
6326 bool is64bit = Subtarget.isPPC64();
6327 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
6328
6329 const BasicBlock *LLVM_BB = BB->getBasicBlock();
6330 MachineFunction *F = BB->getParent();
6331 MachineFunction::iterator It = BB;
6332 ++It;
6333
6334 unsigned dest = MI->getOperand(0).getReg();
6335 unsigned ptrA = MI->getOperand(1).getReg();
6336 unsigned ptrB = MI->getOperand(2).getReg();
6337 unsigned incr = MI->getOperand(3).getReg();
6338 DebugLoc dl = MI->getDebugLoc();
6339
6340 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
6341 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6342 F->insert(It, loopMBB);
6343 F->insert(It, exitMBB);
6344 exitMBB->splice(exitMBB->begin(), BB,
6345 std::next(MachineBasicBlock::iterator(MI)), BB->end());
6346 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6347
6348 MachineRegisterInfo &RegInfo = F->getRegInfo();
6349 const TargetRegisterClass *RC =
6350 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
6351 (const TargetRegisterClass *) &PPC::GPRCRegClass;
6352 unsigned PtrReg = RegInfo.createVirtualRegister(RC);
6353 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
6354 unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
6355 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
6356 unsigned MaskReg = RegInfo.createVirtualRegister(RC);
6357 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
6358 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
6359 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
6360 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
6361 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
6362 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
6363 unsigned Ptr1Reg;
6364 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
6365
6366 // thisMBB:
6367 // ...
6368 // fallthrough --> loopMBB
6369 BB->addSuccessor(loopMBB);
6370
6371 // The 4-byte load must be aligned, while a char or short may be
6372 // anywhere in the word. Hence all this nasty bookkeeping code.
6373 // add ptr1, ptrA, ptrB [copy if ptrA==0]
6374 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
6375 // xori shift, shift1, 24 [16]
6376 // rlwinm ptr, ptr1, 0, 0, 29
6377 // slw incr2, incr, shift
6378 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
6379 // slw mask, mask2, shift
6380 // loopMBB:
6381 // lwarx tmpDest, ptr
6382 // add tmp, tmpDest, incr2
6383 // andc tmp2, tmpDest, mask
6384 // and tmp3, tmp, mask
6385 // or tmp4, tmp3, tmp2
6386 // stwcx. tmp4, ptr
6387 // bne- loopMBB
6388 // fallthrough --> exitMBB
6389 // srw dest, tmpDest, shift
6390 if (ptrA != ZeroReg) {
6391 Ptr1Reg = RegInfo.createVirtualRegister(RC);
6392 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
6393 .addReg(ptrA).addReg(ptrB);
6394 } else {
6395 Ptr1Reg = ptrB;
6396 }
6397 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
6398 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
6399 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
6400 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
6401 if (is64bit)
6402 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
6403 .addReg(Ptr1Reg).addImm(0).addImm(61);
6404 else
6405 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
6406 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
6407 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
6408 .addReg(incr).addReg(ShiftReg);
6409 if (is8bit)
6410 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
6411 else {
6412 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
6413 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
6414 }
6415 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
6416 .addReg(Mask2Reg).addReg(ShiftReg);
6417
6418 BB = loopMBB;
6419 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
6420 .addReg(ZeroReg).addReg(PtrReg);
6421 if (BinOpcode)
6422 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
6423 .addReg(Incr2Reg).addReg(TmpDestReg);
6424 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
6425 .addReg(TmpDestReg).addReg(MaskReg);
6426 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
6427 .addReg(TmpReg).addReg(MaskReg);
6428 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
6429 .addReg(Tmp3Reg).addReg(Tmp2Reg);
6430 BuildMI(BB, dl, TII->get(PPC::STWCX))
6431 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
6432 BuildMI(BB, dl, TII->get(PPC::BCC))
6433 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
6434 BB->addSuccessor(loopMBB);
6435 BB->addSuccessor(exitMBB);
6436
6437 // exitMBB:
6438 // ...
6439 BB = exitMBB;
6440 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
6441 .addReg(ShiftReg);
6442 return BB;
6443 }
6444
6445 llvm::MachineBasicBlock*
emitEHSjLjSetJmp(MachineInstr * MI,MachineBasicBlock * MBB) const6446 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
6447 MachineBasicBlock *MBB) const {
6448 DebugLoc DL = MI->getDebugLoc();
6449 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6450
6451 MachineFunction *MF = MBB->getParent();
6452 MachineRegisterInfo &MRI = MF->getRegInfo();
6453
6454 const BasicBlock *BB = MBB->getBasicBlock();
6455 MachineFunction::iterator I = MBB;
6456 ++I;
6457
6458 // Memory Reference
6459 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
6460 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
6461
6462 unsigned DstReg = MI->getOperand(0).getReg();
6463 const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
6464 assert(RC->hasType(MVT::i32) && "Invalid destination!");
6465 unsigned mainDstReg = MRI.createVirtualRegister(RC);
6466 unsigned restoreDstReg = MRI.createVirtualRegister(RC);
6467
6468 MVT PVT = getPointerTy();
6469 assert((PVT == MVT::i64 || PVT == MVT::i32) &&
6470 "Invalid Pointer Size!");
6471 // For v = setjmp(buf), we generate
6472 //
6473 // thisMBB:
6474 // SjLjSetup mainMBB
6475 // bl mainMBB
6476 // v_restore = 1
6477 // b sinkMBB
6478 //
6479 // mainMBB:
6480 // buf[LabelOffset] = LR
6481 // v_main = 0
6482 //
6483 // sinkMBB:
6484 // v = phi(main, restore)
6485 //
6486
6487 MachineBasicBlock *thisMBB = MBB;
6488 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
6489 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
6490 MF->insert(I, mainMBB);
6491 MF->insert(I, sinkMBB);
6492
6493 MachineInstrBuilder MIB;
6494
6495 // Transfer the remainder of BB and its successor edges to sinkMBB.
6496 sinkMBB->splice(sinkMBB->begin(), MBB,
6497 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
6498 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
6499
6500 // Note that the structure of the jmp_buf used here is not compatible
6501 // with that used by libc, and is not designed to be. Specifically, it
6502 // stores only those 'reserved' registers that LLVM does not otherwise
6503 // understand how to spill. Also, by convention, by the time this
6504 // intrinsic is called, Clang has already stored the frame address in the
6505 // first slot of the buffer and stack address in the third. Following the
6506 // X86 target code, we'll store the jump address in the second slot. We also
6507 // need to save the TOC pointer (R2) to handle jumps between shared
6508 // libraries, and that will be stored in the fourth slot. The thread
6509 // identifier (R13) is not affected.
6510
6511 // thisMBB:
6512 const int64_t LabelOffset = 1 * PVT.getStoreSize();
6513 const int64_t TOCOffset = 3 * PVT.getStoreSize();
6514 const int64_t BPOffset = 4 * PVT.getStoreSize();
6515
6516 // Prepare IP either in reg.
6517 const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
6518 unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
6519 unsigned BufReg = MI->getOperand(1).getReg();
6520
6521 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
6522 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
6523 .addReg(PPC::X2)
6524 .addImm(TOCOffset)
6525 .addReg(BufReg);
6526 MIB.setMemRefs(MMOBegin, MMOEnd);
6527 }
6528
6529 // Naked functions never have a base pointer, and so we use r1. For all
6530 // other functions, this decision must be delayed until during PEI.
6531 unsigned BaseReg;
6532 if (MF->getFunction()->getAttributes().hasAttribute(
6533 AttributeSet::FunctionIndex, Attribute::Naked))
6534 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
6535 else
6536 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
6537
6538 MIB = BuildMI(*thisMBB, MI, DL,
6539 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
6540 .addReg(BaseReg)
6541 .addImm(BPOffset)
6542 .addReg(BufReg);
6543 MIB.setMemRefs(MMOBegin, MMOEnd);
6544
6545 // Setup
6546 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
6547 const PPCRegisterInfo *TRI =
6548 static_cast<const PPCRegisterInfo*>(getTargetMachine().getRegisterInfo());
6549 MIB.addRegMask(TRI->getNoPreservedMask());
6550
6551 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
6552
6553 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
6554 .addMBB(mainMBB);
6555 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
6556
6557 thisMBB->addSuccessor(mainMBB, /* weight */ 0);
6558 thisMBB->addSuccessor(sinkMBB, /* weight */ 1);
6559
6560 // mainMBB:
6561 // mainDstReg = 0
6562 MIB = BuildMI(mainMBB, DL,
6563 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
6564
6565 // Store IP
6566 if (Subtarget.isPPC64()) {
6567 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
6568 .addReg(LabelReg)
6569 .addImm(LabelOffset)
6570 .addReg(BufReg);
6571 } else {
6572 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
6573 .addReg(LabelReg)
6574 .addImm(LabelOffset)
6575 .addReg(BufReg);
6576 }
6577
6578 MIB.setMemRefs(MMOBegin, MMOEnd);
6579
6580 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
6581 mainMBB->addSuccessor(sinkMBB);
6582
6583 // sinkMBB:
6584 BuildMI(*sinkMBB, sinkMBB->begin(), DL,
6585 TII->get(PPC::PHI), DstReg)
6586 .addReg(mainDstReg).addMBB(mainMBB)
6587 .addReg(restoreDstReg).addMBB(thisMBB);
6588
6589 MI->eraseFromParent();
6590 return sinkMBB;
6591 }
6592
6593 MachineBasicBlock *
emitEHSjLjLongJmp(MachineInstr * MI,MachineBasicBlock * MBB) const6594 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
6595 MachineBasicBlock *MBB) const {
6596 DebugLoc DL = MI->getDebugLoc();
6597 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6598
6599 MachineFunction *MF = MBB->getParent();
6600 MachineRegisterInfo &MRI = MF->getRegInfo();
6601
6602 // Memory Reference
6603 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
6604 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
6605
6606 MVT PVT = getPointerTy();
6607 assert((PVT == MVT::i64 || PVT == MVT::i32) &&
6608 "Invalid Pointer Size!");
6609
6610 const TargetRegisterClass *RC =
6611 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6612 unsigned Tmp = MRI.createVirtualRegister(RC);
6613 // Since FP is only updated here but NOT referenced, it's treated as GPR.
6614 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
6615 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
6616 unsigned BP = (PVT == MVT::i64) ? PPC::X30 : PPC::R30;
6617
6618 MachineInstrBuilder MIB;
6619
6620 const int64_t LabelOffset = 1 * PVT.getStoreSize();
6621 const int64_t SPOffset = 2 * PVT.getStoreSize();
6622 const int64_t TOCOffset = 3 * PVT.getStoreSize();
6623 const int64_t BPOffset = 4 * PVT.getStoreSize();
6624
6625 unsigned BufReg = MI->getOperand(0).getReg();
6626
6627 // Reload FP (the jumped-to function may not have had a
6628 // frame pointer, and if so, then its r31 will be restored
6629 // as necessary).
6630 if (PVT == MVT::i64) {
6631 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
6632 .addImm(0)
6633 .addReg(BufReg);
6634 } else {
6635 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
6636 .addImm(0)
6637 .addReg(BufReg);
6638 }
6639 MIB.setMemRefs(MMOBegin, MMOEnd);
6640
6641 // Reload IP
6642 if (PVT == MVT::i64) {
6643 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
6644 .addImm(LabelOffset)
6645 .addReg(BufReg);
6646 } else {
6647 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
6648 .addImm(LabelOffset)
6649 .addReg(BufReg);
6650 }
6651 MIB.setMemRefs(MMOBegin, MMOEnd);
6652
6653 // Reload SP
6654 if (PVT == MVT::i64) {
6655 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
6656 .addImm(SPOffset)
6657 .addReg(BufReg);
6658 } else {
6659 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
6660 .addImm(SPOffset)
6661 .addReg(BufReg);
6662 }
6663 MIB.setMemRefs(MMOBegin, MMOEnd);
6664
6665 // Reload BP
6666 if (PVT == MVT::i64) {
6667 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
6668 .addImm(BPOffset)
6669 .addReg(BufReg);
6670 } else {
6671 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
6672 .addImm(BPOffset)
6673 .addReg(BufReg);
6674 }
6675 MIB.setMemRefs(MMOBegin, MMOEnd);
6676
6677 // Reload TOC
6678 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
6679 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
6680 .addImm(TOCOffset)
6681 .addReg(BufReg);
6682
6683 MIB.setMemRefs(MMOBegin, MMOEnd);
6684 }
6685
6686 // Jump
6687 BuildMI(*MBB, MI, DL,
6688 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
6689 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
6690
6691 MI->eraseFromParent();
6692 return MBB;
6693 }
6694
6695 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr * MI,MachineBasicBlock * BB) const6696 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
6697 MachineBasicBlock *BB) const {
6698 if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 ||
6699 MI->getOpcode() == PPC::EH_SjLj_SetJmp64) {
6700 return emitEHSjLjSetJmp(MI, BB);
6701 } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 ||
6702 MI->getOpcode() == PPC::EH_SjLj_LongJmp64) {
6703 return emitEHSjLjLongJmp(MI, BB);
6704 }
6705
6706 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6707
6708 // To "insert" these instructions we actually have to insert their
6709 // control-flow patterns.
6710 const BasicBlock *LLVM_BB = BB->getBasicBlock();
6711 MachineFunction::iterator It = BB;
6712 ++It;
6713
6714 MachineFunction *F = BB->getParent();
6715
6716 if (Subtarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
6717 MI->getOpcode() == PPC::SELECT_CC_I8 ||
6718 MI->getOpcode() == PPC::SELECT_I4 ||
6719 MI->getOpcode() == PPC::SELECT_I8)) {
6720 SmallVector<MachineOperand, 2> Cond;
6721 if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
6722 MI->getOpcode() == PPC::SELECT_CC_I8)
6723 Cond.push_back(MI->getOperand(4));
6724 else
6725 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
6726 Cond.push_back(MI->getOperand(1));
6727
6728 DebugLoc dl = MI->getDebugLoc();
6729 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6730 TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(),
6731 Cond, MI->getOperand(2).getReg(),
6732 MI->getOperand(3).getReg());
6733 } else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
6734 MI->getOpcode() == PPC::SELECT_CC_I8 ||
6735 MI->getOpcode() == PPC::SELECT_CC_F4 ||
6736 MI->getOpcode() == PPC::SELECT_CC_F8 ||
6737 MI->getOpcode() == PPC::SELECT_CC_VRRC ||
6738 MI->getOpcode() == PPC::SELECT_I4 ||
6739 MI->getOpcode() == PPC::SELECT_I8 ||
6740 MI->getOpcode() == PPC::SELECT_F4 ||
6741 MI->getOpcode() == PPC::SELECT_F8 ||
6742 MI->getOpcode() == PPC::SELECT_VRRC) {
6743 // The incoming instruction knows the destination vreg to set, the
6744 // condition code register to branch on, the true/false values to
6745 // select between, and a branch opcode to use.
6746
6747 // thisMBB:
6748 // ...
6749 // TrueVal = ...
6750 // cmpTY ccX, r1, r2
6751 // bCC copy1MBB
6752 // fallthrough --> copy0MBB
6753 MachineBasicBlock *thisMBB = BB;
6754 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6755 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
6756 DebugLoc dl = MI->getDebugLoc();
6757 F->insert(It, copy0MBB);
6758 F->insert(It, sinkMBB);
6759
6760 // Transfer the remainder of BB and its successor edges to sinkMBB.
6761 sinkMBB->splice(sinkMBB->begin(), BB,
6762 std::next(MachineBasicBlock::iterator(MI)), BB->end());
6763 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
6764
6765 // Next, add the true and fallthrough blocks as its successors.
6766 BB->addSuccessor(copy0MBB);
6767 BB->addSuccessor(sinkMBB);
6768
6769 if (MI->getOpcode() == PPC::SELECT_I4 ||
6770 MI->getOpcode() == PPC::SELECT_I8 ||
6771 MI->getOpcode() == PPC::SELECT_F4 ||
6772 MI->getOpcode() == PPC::SELECT_F8 ||
6773 MI->getOpcode() == PPC::SELECT_VRRC) {
6774 BuildMI(BB, dl, TII->get(PPC::BC))
6775 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
6776 } else {
6777 unsigned SelectPred = MI->getOperand(4).getImm();
6778 BuildMI(BB, dl, TII->get(PPC::BCC))
6779 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
6780 }
6781
6782 // copy0MBB:
6783 // %FalseValue = ...
6784 // # fallthrough to sinkMBB
6785 BB = copy0MBB;
6786
6787 // Update machine-CFG edges
6788 BB->addSuccessor(sinkMBB);
6789
6790 // sinkMBB:
6791 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6792 // ...
6793 BB = sinkMBB;
6794 BuildMI(*BB, BB->begin(), dl,
6795 TII->get(PPC::PHI), MI->getOperand(0).getReg())
6796 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
6797 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6798 }
6799 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
6800 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
6801 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
6802 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
6803 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
6804 BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
6805 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
6806 BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
6807
6808 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
6809 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
6810 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
6811 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
6812 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
6813 BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
6814 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
6815 BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
6816
6817 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
6818 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
6819 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
6820 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
6821 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
6822 BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
6823 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
6824 BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
6825
6826 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
6827 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
6828 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
6829 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
6830 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
6831 BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
6832 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
6833 BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
6834
6835 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
6836 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
6837 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
6838 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
6839 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
6840 BB = EmitAtomicBinary(MI, BB, false, PPC::NAND);
6841 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
6842 BB = EmitAtomicBinary(MI, BB, true, PPC::NAND8);
6843
6844 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
6845 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
6846 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
6847 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
6848 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
6849 BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
6850 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
6851 BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
6852
6853 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
6854 BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
6855 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
6856 BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
6857 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
6858 BB = EmitAtomicBinary(MI, BB, false, 0);
6859 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
6860 BB = EmitAtomicBinary(MI, BB, true, 0);
6861
6862 else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
6863 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
6864 bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
6865
6866 unsigned dest = MI->getOperand(0).getReg();
6867 unsigned ptrA = MI->getOperand(1).getReg();
6868 unsigned ptrB = MI->getOperand(2).getReg();
6869 unsigned oldval = MI->getOperand(3).getReg();
6870 unsigned newval = MI->getOperand(4).getReg();
6871 DebugLoc dl = MI->getDebugLoc();
6872
6873 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
6874 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
6875 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6876 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6877 F->insert(It, loop1MBB);
6878 F->insert(It, loop2MBB);
6879 F->insert(It, midMBB);
6880 F->insert(It, exitMBB);
6881 exitMBB->splice(exitMBB->begin(), BB,
6882 std::next(MachineBasicBlock::iterator(MI)), BB->end());
6883 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6884
6885 // thisMBB:
6886 // ...
6887 // fallthrough --> loopMBB
6888 BB->addSuccessor(loop1MBB);
6889
6890 // loop1MBB:
6891 // l[wd]arx dest, ptr
6892 // cmp[wd] dest, oldval
6893 // bne- midMBB
6894 // loop2MBB:
6895 // st[wd]cx. newval, ptr
6896 // bne- loopMBB
6897 // b exitBB
6898 // midMBB:
6899 // st[wd]cx. dest, ptr
6900 // exitBB:
6901 BB = loop1MBB;
6902 BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
6903 .addReg(ptrA).addReg(ptrB);
6904 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
6905 .addReg(oldval).addReg(dest);
6906 BuildMI(BB, dl, TII->get(PPC::BCC))
6907 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
6908 BB->addSuccessor(loop2MBB);
6909 BB->addSuccessor(midMBB);
6910
6911 BB = loop2MBB;
6912 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
6913 .addReg(newval).addReg(ptrA).addReg(ptrB);
6914 BuildMI(BB, dl, TII->get(PPC::BCC))
6915 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
6916 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6917 BB->addSuccessor(loop1MBB);
6918 BB->addSuccessor(exitMBB);
6919
6920 BB = midMBB;
6921 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
6922 .addReg(dest).addReg(ptrA).addReg(ptrB);
6923 BB->addSuccessor(exitMBB);
6924
6925 // exitMBB:
6926 // ...
6927 BB = exitMBB;
6928 } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
6929 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
6930 // We must use 64-bit registers for addresses when targeting 64-bit,
6931 // since we're actually doing arithmetic on them. Other registers
6932 // can be 32-bit.
6933 bool is64bit = Subtarget.isPPC64();
6934 bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
6935
6936 unsigned dest = MI->getOperand(0).getReg();
6937 unsigned ptrA = MI->getOperand(1).getReg();
6938 unsigned ptrB = MI->getOperand(2).getReg();
6939 unsigned oldval = MI->getOperand(3).getReg();
6940 unsigned newval = MI->getOperand(4).getReg();
6941 DebugLoc dl = MI->getDebugLoc();
6942
6943 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
6944 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
6945 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6946 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6947 F->insert(It, loop1MBB);
6948 F->insert(It, loop2MBB);
6949 F->insert(It, midMBB);
6950 F->insert(It, exitMBB);
6951 exitMBB->splice(exitMBB->begin(), BB,
6952 std::next(MachineBasicBlock::iterator(MI)), BB->end());
6953 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6954
6955 MachineRegisterInfo &RegInfo = F->getRegInfo();
6956 const TargetRegisterClass *RC =
6957 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
6958 (const TargetRegisterClass *) &PPC::GPRCRegClass;
6959 unsigned PtrReg = RegInfo.createVirtualRegister(RC);
6960 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
6961 unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
6962 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
6963 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
6964 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
6965 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
6966 unsigned MaskReg = RegInfo.createVirtualRegister(RC);
6967 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
6968 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
6969 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
6970 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
6971 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
6972 unsigned Ptr1Reg;
6973 unsigned TmpReg = RegInfo.createVirtualRegister(RC);
6974 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
6975 // thisMBB:
6976 // ...
6977 // fallthrough --> loopMBB
6978 BB->addSuccessor(loop1MBB);
6979
6980 // The 4-byte load must be aligned, while a char or short may be
6981 // anywhere in the word. Hence all this nasty bookkeeping code.
6982 // add ptr1, ptrA, ptrB [copy if ptrA==0]
6983 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
6984 // xori shift, shift1, 24 [16]
6985 // rlwinm ptr, ptr1, 0, 0, 29
6986 // slw newval2, newval, shift
6987 // slw oldval2, oldval,shift
6988 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
6989 // slw mask, mask2, shift
6990 // and newval3, newval2, mask
6991 // and oldval3, oldval2, mask
6992 // loop1MBB:
6993 // lwarx tmpDest, ptr
6994 // and tmp, tmpDest, mask
6995 // cmpw tmp, oldval3
6996 // bne- midMBB
6997 // loop2MBB:
6998 // andc tmp2, tmpDest, mask
6999 // or tmp4, tmp2, newval3
7000 // stwcx. tmp4, ptr
7001 // bne- loop1MBB
7002 // b exitBB
7003 // midMBB:
7004 // stwcx. tmpDest, ptr
7005 // exitBB:
7006 // srw dest, tmpDest, shift
7007 if (ptrA != ZeroReg) {
7008 Ptr1Reg = RegInfo.createVirtualRegister(RC);
7009 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
7010 .addReg(ptrA).addReg(ptrB);
7011 } else {
7012 Ptr1Reg = ptrB;
7013 }
7014 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
7015 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
7016 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
7017 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
7018 if (is64bit)
7019 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
7020 .addReg(Ptr1Reg).addImm(0).addImm(61);
7021 else
7022 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
7023 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
7024 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
7025 .addReg(newval).addReg(ShiftReg);
7026 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
7027 .addReg(oldval).addReg(ShiftReg);
7028 if (is8bit)
7029 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
7030 else {
7031 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
7032 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
7033 .addReg(Mask3Reg).addImm(65535);
7034 }
7035 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
7036 .addReg(Mask2Reg).addReg(ShiftReg);
7037 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
7038 .addReg(NewVal2Reg).addReg(MaskReg);
7039 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
7040 .addReg(OldVal2Reg).addReg(MaskReg);
7041
7042 BB = loop1MBB;
7043 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
7044 .addReg(ZeroReg).addReg(PtrReg);
7045 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
7046 .addReg(TmpDestReg).addReg(MaskReg);
7047 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
7048 .addReg(TmpReg).addReg(OldVal3Reg);
7049 BuildMI(BB, dl, TII->get(PPC::BCC))
7050 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
7051 BB->addSuccessor(loop2MBB);
7052 BB->addSuccessor(midMBB);
7053
7054 BB = loop2MBB;
7055 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
7056 .addReg(TmpDestReg).addReg(MaskReg);
7057 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
7058 .addReg(Tmp2Reg).addReg(NewVal3Reg);
7059 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
7060 .addReg(ZeroReg).addReg(PtrReg);
7061 BuildMI(BB, dl, TII->get(PPC::BCC))
7062 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
7063 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
7064 BB->addSuccessor(loop1MBB);
7065 BB->addSuccessor(exitMBB);
7066
7067 BB = midMBB;
7068 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
7069 .addReg(ZeroReg).addReg(PtrReg);
7070 BB->addSuccessor(exitMBB);
7071
7072 // exitMBB:
7073 // ...
7074 BB = exitMBB;
7075 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
7076 .addReg(ShiftReg);
7077 } else if (MI->getOpcode() == PPC::FADDrtz) {
7078 // This pseudo performs an FADD with rounding mode temporarily forced
7079 // to round-to-zero. We emit this via custom inserter since the FPSCR
7080 // is not modeled at the SelectionDAG level.
7081 unsigned Dest = MI->getOperand(0).getReg();
7082 unsigned Src1 = MI->getOperand(1).getReg();
7083 unsigned Src2 = MI->getOperand(2).getReg();
7084 DebugLoc dl = MI->getDebugLoc();
7085
7086 MachineRegisterInfo &RegInfo = F->getRegInfo();
7087 unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
7088
7089 // Save FPSCR value.
7090 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
7091
7092 // Set rounding mode to round-to-zero.
7093 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
7094 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
7095
7096 // Perform addition.
7097 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
7098
7099 // Restore FPSCR value.
7100 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)).addImm(1).addReg(MFFSReg);
7101 } else if (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
7102 MI->getOpcode() == PPC::ANDIo_1_GT_BIT ||
7103 MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
7104 MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) {
7105 unsigned Opcode = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
7106 MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) ?
7107 PPC::ANDIo8 : PPC::ANDIo;
7108 bool isEQ = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
7109 MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8);
7110
7111 MachineRegisterInfo &RegInfo = F->getRegInfo();
7112 unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
7113 &PPC::GPRCRegClass :
7114 &PPC::G8RCRegClass);
7115
7116 DebugLoc dl = MI->getDebugLoc();
7117 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
7118 .addReg(MI->getOperand(1).getReg()).addImm(1);
7119 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
7120 MI->getOperand(0).getReg())
7121 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
7122 } else {
7123 llvm_unreachable("Unexpected instr type to insert");
7124 }
7125
7126 MI->eraseFromParent(); // The pseudo instruction is gone now.
7127 return BB;
7128 }
7129
7130 //===----------------------------------------------------------------------===//
7131 // Target Optimization Hooks
7132 //===----------------------------------------------------------------------===//
7133
DAGCombineFastRecip(SDValue Op,DAGCombinerInfo & DCI) const7134 SDValue PPCTargetLowering::DAGCombineFastRecip(SDValue Op,
7135 DAGCombinerInfo &DCI) const {
7136 if (DCI.isAfterLegalizeVectorOps())
7137 return SDValue();
7138
7139 EVT VT = Op.getValueType();
7140
7141 if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
7142 (VT == MVT::f64 && Subtarget.hasFRE()) ||
7143 (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
7144 (VT == MVT::v2f64 && Subtarget.hasVSX())) {
7145
7146 // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
7147 // For the reciprocal, we need to find the zero of the function:
7148 // F(X) = A X - 1 [which has a zero at X = 1/A]
7149 // =>
7150 // X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
7151 // does not require additional intermediate precision]
7152
7153 // Convergence is quadratic, so we essentially double the number of digits
7154 // correct after every iteration. The minimum architected relative
7155 // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has
7156 // 23 digits and double has 52 digits.
7157 int Iterations = Subtarget.hasRecipPrec() ? 1 : 3;
7158 if (VT.getScalarType() == MVT::f64)
7159 ++Iterations;
7160
7161 SelectionDAG &DAG = DCI.DAG;
7162 SDLoc dl(Op);
7163
7164 SDValue FPOne =
7165 DAG.getConstantFP(1.0, VT.getScalarType());
7166 if (VT.isVector()) {
7167 assert(VT.getVectorNumElements() == 4 &&
7168 "Unknown vector type");
7169 FPOne = DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
7170 FPOne, FPOne, FPOne, FPOne);
7171 }
7172
7173 SDValue Est = DAG.getNode(PPCISD::FRE, dl, VT, Op);
7174 DCI.AddToWorklist(Est.getNode());
7175
7176 // Newton iterations: Est = Est + Est (1 - Arg * Est)
7177 for (int i = 0; i < Iterations; ++i) {
7178 SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Op, Est);
7179 DCI.AddToWorklist(NewEst.getNode());
7180
7181 NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPOne, NewEst);
7182 DCI.AddToWorklist(NewEst.getNode());
7183
7184 NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst);
7185 DCI.AddToWorklist(NewEst.getNode());
7186
7187 Est = DAG.getNode(ISD::FADD, dl, VT, Est, NewEst);
7188 DCI.AddToWorklist(Est.getNode());
7189 }
7190
7191 return Est;
7192 }
7193
7194 return SDValue();
7195 }
7196
DAGCombineFastRecipFSQRT(SDValue Op,DAGCombinerInfo & DCI) const7197 SDValue PPCTargetLowering::DAGCombineFastRecipFSQRT(SDValue Op,
7198 DAGCombinerInfo &DCI) const {
7199 if (DCI.isAfterLegalizeVectorOps())
7200 return SDValue();
7201
7202 EVT VT = Op.getValueType();
7203
7204 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
7205 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
7206 (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
7207 (VT == MVT::v2f64 && Subtarget.hasVSX())) {
7208
7209 // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
7210 // For the reciprocal sqrt, we need to find the zero of the function:
7211 // F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
7212 // =>
7213 // X_{i+1} = X_i (1.5 - A X_i^2 / 2)
7214 // As a result, we precompute A/2 prior to the iteration loop.
7215
7216 // Convergence is quadratic, so we essentially double the number of digits
7217 // correct after every iteration. The minimum architected relative
7218 // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has
7219 // 23 digits and double has 52 digits.
7220 int Iterations = Subtarget.hasRecipPrec() ? 1 : 3;
7221 if (VT.getScalarType() == MVT::f64)
7222 ++Iterations;
7223
7224 SelectionDAG &DAG = DCI.DAG;
7225 SDLoc dl(Op);
7226
7227 SDValue FPThreeHalves =
7228 DAG.getConstantFP(1.5, VT.getScalarType());
7229 if (VT.isVector()) {
7230 assert(VT.getVectorNumElements() == 4 &&
7231 "Unknown vector type");
7232 FPThreeHalves = DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
7233 FPThreeHalves, FPThreeHalves,
7234 FPThreeHalves, FPThreeHalves);
7235 }
7236
7237 SDValue Est = DAG.getNode(PPCISD::FRSQRTE, dl, VT, Op);
7238 DCI.AddToWorklist(Est.getNode());
7239
7240 // We now need 0.5*Arg which we can write as (1.5*Arg - Arg) so that
7241 // this entire sequence requires only one FP constant.
7242 SDValue HalfArg = DAG.getNode(ISD::FMUL, dl, VT, FPThreeHalves, Op);
7243 DCI.AddToWorklist(HalfArg.getNode());
7244
7245 HalfArg = DAG.getNode(ISD::FSUB, dl, VT, HalfArg, Op);
7246 DCI.AddToWorklist(HalfArg.getNode());
7247
7248 // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
7249 for (int i = 0; i < Iterations; ++i) {
7250 SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, Est);
7251 DCI.AddToWorklist(NewEst.getNode());
7252
7253 NewEst = DAG.getNode(ISD::FMUL, dl, VT, HalfArg, NewEst);
7254 DCI.AddToWorklist(NewEst.getNode());
7255
7256 NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPThreeHalves, NewEst);
7257 DCI.AddToWorklist(NewEst.getNode());
7258
7259 Est = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst);
7260 DCI.AddToWorklist(Est.getNode());
7261 }
7262
7263 return Est;
7264 }
7265
7266 return SDValue();
7267 }
7268
7269 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
7270 // not enforce equality of the chain operands.
isConsecutiveLS(LSBaseSDNode * LS,LSBaseSDNode * Base,unsigned Bytes,int Dist,SelectionDAG & DAG)7271 static bool isConsecutiveLS(LSBaseSDNode *LS, LSBaseSDNode *Base,
7272 unsigned Bytes, int Dist,
7273 SelectionDAG &DAG) {
7274 EVT VT = LS->getMemoryVT();
7275 if (VT.getSizeInBits() / 8 != Bytes)
7276 return false;
7277
7278 SDValue Loc = LS->getBasePtr();
7279 SDValue BaseLoc = Base->getBasePtr();
7280 if (Loc.getOpcode() == ISD::FrameIndex) {
7281 if (BaseLoc.getOpcode() != ISD::FrameIndex)
7282 return false;
7283 const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7284 int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
7285 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
7286 int FS = MFI->getObjectSize(FI);
7287 int BFS = MFI->getObjectSize(BFI);
7288 if (FS != BFS || FS != (int)Bytes) return false;
7289 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
7290 }
7291
7292 // Handle X+C
7293 if (DAG.isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
7294 cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
7295 return true;
7296
7297 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7298 const GlobalValue *GV1 = nullptr;
7299 const GlobalValue *GV2 = nullptr;
7300 int64_t Offset1 = 0;
7301 int64_t Offset2 = 0;
7302 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
7303 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
7304 if (isGA1 && isGA2 && GV1 == GV2)
7305 return Offset1 == (Offset2 + Dist*Bytes);
7306 return false;
7307 }
7308
7309 // Return true is there is a nearyby consecutive load to the one provided
7310 // (regardless of alignment). We search up and down the chain, looking though
7311 // token factors and other loads (but nothing else). As a result, a true
7312 // results indicates that it is safe to create a new consecutive load adjacent
7313 // to the load provided.
findConsecutiveLoad(LoadSDNode * LD,SelectionDAG & DAG)7314 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
7315 SDValue Chain = LD->getChain();
7316 EVT VT = LD->getMemoryVT();
7317
7318 SmallSet<SDNode *, 16> LoadRoots;
7319 SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
7320 SmallSet<SDNode *, 16> Visited;
7321
7322 // First, search up the chain, branching to follow all token-factor operands.
7323 // If we find a consecutive load, then we're done, otherwise, record all
7324 // nodes just above the top-level loads and token factors.
7325 while (!Queue.empty()) {
7326 SDNode *ChainNext = Queue.pop_back_val();
7327 if (!Visited.insert(ChainNext))
7328 continue;
7329
7330 if (LoadSDNode *ChainLD = dyn_cast<LoadSDNode>(ChainNext)) {
7331 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
7332 return true;
7333
7334 if (!Visited.count(ChainLD->getChain().getNode()))
7335 Queue.push_back(ChainLD->getChain().getNode());
7336 } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
7337 for (const SDUse &O : ChainNext->ops())
7338 if (!Visited.count(O.getNode()))
7339 Queue.push_back(O.getNode());
7340 } else
7341 LoadRoots.insert(ChainNext);
7342 }
7343
7344 // Second, search down the chain, starting from the top-level nodes recorded
7345 // in the first phase. These top-level nodes are the nodes just above all
7346 // loads and token factors. Starting with their uses, recursively look though
7347 // all loads (just the chain uses) and token factors to find a consecutive
7348 // load.
7349 Visited.clear();
7350 Queue.clear();
7351
7352 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
7353 IE = LoadRoots.end(); I != IE; ++I) {
7354 Queue.push_back(*I);
7355
7356 while (!Queue.empty()) {
7357 SDNode *LoadRoot = Queue.pop_back_val();
7358 if (!Visited.insert(LoadRoot))
7359 continue;
7360
7361 if (LoadSDNode *ChainLD = dyn_cast<LoadSDNode>(LoadRoot))
7362 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
7363 return true;
7364
7365 for (SDNode::use_iterator UI = LoadRoot->use_begin(),
7366 UE = LoadRoot->use_end(); UI != UE; ++UI)
7367 if (((isa<LoadSDNode>(*UI) &&
7368 cast<LoadSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
7369 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
7370 Queue.push_back(*UI);
7371 }
7372 }
7373
7374 return false;
7375 }
7376
DAGCombineTruncBoolExt(SDNode * N,DAGCombinerInfo & DCI) const7377 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
7378 DAGCombinerInfo &DCI) const {
7379 SelectionDAG &DAG = DCI.DAG;
7380 SDLoc dl(N);
7381
7382 assert(Subtarget.useCRBits() &&
7383 "Expecting to be tracking CR bits");
7384 // If we're tracking CR bits, we need to be careful that we don't have:
7385 // trunc(binary-ops(zext(x), zext(y)))
7386 // or
7387 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
7388 // such that we're unnecessarily moving things into GPRs when it would be
7389 // better to keep them in CR bits.
7390
7391 // Note that trunc here can be an actual i1 trunc, or can be the effective
7392 // truncation that comes from a setcc or select_cc.
7393 if (N->getOpcode() == ISD::TRUNCATE &&
7394 N->getValueType(0) != MVT::i1)
7395 return SDValue();
7396
7397 if (N->getOperand(0).getValueType() != MVT::i32 &&
7398 N->getOperand(0).getValueType() != MVT::i64)
7399 return SDValue();
7400
7401 if (N->getOpcode() == ISD::SETCC ||
7402 N->getOpcode() == ISD::SELECT_CC) {
7403 // If we're looking at a comparison, then we need to make sure that the
7404 // high bits (all except for the first) don't matter the result.
7405 ISD::CondCode CC =
7406 cast<CondCodeSDNode>(N->getOperand(
7407 N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
7408 unsigned OpBits = N->getOperand(0).getValueSizeInBits();
7409
7410 if (ISD::isSignedIntSetCC(CC)) {
7411 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
7412 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
7413 return SDValue();
7414 } else if (ISD::isUnsignedIntSetCC(CC)) {
7415 if (!DAG.MaskedValueIsZero(N->getOperand(0),
7416 APInt::getHighBitsSet(OpBits, OpBits-1)) ||
7417 !DAG.MaskedValueIsZero(N->getOperand(1),
7418 APInt::getHighBitsSet(OpBits, OpBits-1)))
7419 return SDValue();
7420 } else {
7421 // This is neither a signed nor an unsigned comparison, just make sure
7422 // that the high bits are equal.
7423 APInt Op1Zero, Op1One;
7424 APInt Op2Zero, Op2One;
7425 DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One);
7426 DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One);
7427
7428 // We don't really care about what is known about the first bit (if
7429 // anything), so clear it in all masks prior to comparing them.
7430 Op1Zero.clearBit(0); Op1One.clearBit(0);
7431 Op2Zero.clearBit(0); Op2One.clearBit(0);
7432
7433 if (Op1Zero != Op2Zero || Op1One != Op2One)
7434 return SDValue();
7435 }
7436 }
7437
7438 // We now know that the higher-order bits are irrelevant, we just need to
7439 // make sure that all of the intermediate operations are bit operations, and
7440 // all inputs are extensions.
7441 if (N->getOperand(0).getOpcode() != ISD::AND &&
7442 N->getOperand(0).getOpcode() != ISD::OR &&
7443 N->getOperand(0).getOpcode() != ISD::XOR &&
7444 N->getOperand(0).getOpcode() != ISD::SELECT &&
7445 N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
7446 N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
7447 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
7448 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
7449 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
7450 return SDValue();
7451
7452 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
7453 N->getOperand(1).getOpcode() != ISD::AND &&
7454 N->getOperand(1).getOpcode() != ISD::OR &&
7455 N->getOperand(1).getOpcode() != ISD::XOR &&
7456 N->getOperand(1).getOpcode() != ISD::SELECT &&
7457 N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
7458 N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
7459 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
7460 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
7461 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
7462 return SDValue();
7463
7464 SmallVector<SDValue, 4> Inputs;
7465 SmallVector<SDValue, 8> BinOps, PromOps;
7466 SmallPtrSet<SDNode *, 16> Visited;
7467
7468 for (unsigned i = 0; i < 2; ++i) {
7469 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
7470 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
7471 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
7472 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
7473 isa<ConstantSDNode>(N->getOperand(i)))
7474 Inputs.push_back(N->getOperand(i));
7475 else
7476 BinOps.push_back(N->getOperand(i));
7477
7478 if (N->getOpcode() == ISD::TRUNCATE)
7479 break;
7480 }
7481
7482 // Visit all inputs, collect all binary operations (and, or, xor and
7483 // select) that are all fed by extensions.
7484 while (!BinOps.empty()) {
7485 SDValue BinOp = BinOps.back();
7486 BinOps.pop_back();
7487
7488 if (!Visited.insert(BinOp.getNode()))
7489 continue;
7490
7491 PromOps.push_back(BinOp);
7492
7493 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
7494 // The condition of the select is not promoted.
7495 if (BinOp.getOpcode() == ISD::SELECT && i == 0)
7496 continue;
7497 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
7498 continue;
7499
7500 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
7501 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
7502 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
7503 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
7504 isa<ConstantSDNode>(BinOp.getOperand(i))) {
7505 Inputs.push_back(BinOp.getOperand(i));
7506 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
7507 BinOp.getOperand(i).getOpcode() == ISD::OR ||
7508 BinOp.getOperand(i).getOpcode() == ISD::XOR ||
7509 BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
7510 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
7511 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
7512 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
7513 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
7514 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
7515 BinOps.push_back(BinOp.getOperand(i));
7516 } else {
7517 // We have an input that is not an extension or another binary
7518 // operation; we'll abort this transformation.
7519 return SDValue();
7520 }
7521 }
7522 }
7523
7524 // Make sure that this is a self-contained cluster of operations (which
7525 // is not quite the same thing as saying that everything has only one
7526 // use).
7527 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
7528 if (isa<ConstantSDNode>(Inputs[i]))
7529 continue;
7530
7531 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
7532 UE = Inputs[i].getNode()->use_end();
7533 UI != UE; ++UI) {
7534 SDNode *User = *UI;
7535 if (User != N && !Visited.count(User))
7536 return SDValue();
7537
7538 // Make sure that we're not going to promote the non-output-value
7539 // operand(s) or SELECT or SELECT_CC.
7540 // FIXME: Although we could sometimes handle this, and it does occur in
7541 // practice that one of the condition inputs to the select is also one of
7542 // the outputs, we currently can't deal with this.
7543 if (User->getOpcode() == ISD::SELECT) {
7544 if (User->getOperand(0) == Inputs[i])
7545 return SDValue();
7546 } else if (User->getOpcode() == ISD::SELECT_CC) {
7547 if (User->getOperand(0) == Inputs[i] ||
7548 User->getOperand(1) == Inputs[i])
7549 return SDValue();
7550 }
7551 }
7552 }
7553
7554 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
7555 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
7556 UE = PromOps[i].getNode()->use_end();
7557 UI != UE; ++UI) {
7558 SDNode *User = *UI;
7559 if (User != N && !Visited.count(User))
7560 return SDValue();
7561
7562 // Make sure that we're not going to promote the non-output-value
7563 // operand(s) or SELECT or SELECT_CC.
7564 // FIXME: Although we could sometimes handle this, and it does occur in
7565 // practice that one of the condition inputs to the select is also one of
7566 // the outputs, we currently can't deal with this.
7567 if (User->getOpcode() == ISD::SELECT) {
7568 if (User->getOperand(0) == PromOps[i])
7569 return SDValue();
7570 } else if (User->getOpcode() == ISD::SELECT_CC) {
7571 if (User->getOperand(0) == PromOps[i] ||
7572 User->getOperand(1) == PromOps[i])
7573 return SDValue();
7574 }
7575 }
7576 }
7577
7578 // Replace all inputs with the extension operand.
7579 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
7580 // Constants may have users outside the cluster of to-be-promoted nodes,
7581 // and so we need to replace those as we do the promotions.
7582 if (isa<ConstantSDNode>(Inputs[i]))
7583 continue;
7584 else
7585 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
7586 }
7587
7588 // Replace all operations (these are all the same, but have a different
7589 // (i1) return type). DAG.getNode will validate that the types of
7590 // a binary operator match, so go through the list in reverse so that
7591 // we've likely promoted both operands first. Any intermediate truncations or
7592 // extensions disappear.
7593 while (!PromOps.empty()) {
7594 SDValue PromOp = PromOps.back();
7595 PromOps.pop_back();
7596
7597 if (PromOp.getOpcode() == ISD::TRUNCATE ||
7598 PromOp.getOpcode() == ISD::SIGN_EXTEND ||
7599 PromOp.getOpcode() == ISD::ZERO_EXTEND ||
7600 PromOp.getOpcode() == ISD::ANY_EXTEND) {
7601 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
7602 PromOp.getOperand(0).getValueType() != MVT::i1) {
7603 // The operand is not yet ready (see comment below).
7604 PromOps.insert(PromOps.begin(), PromOp);
7605 continue;
7606 }
7607
7608 SDValue RepValue = PromOp.getOperand(0);
7609 if (isa<ConstantSDNode>(RepValue))
7610 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
7611
7612 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
7613 continue;
7614 }
7615
7616 unsigned C;
7617 switch (PromOp.getOpcode()) {
7618 default: C = 0; break;
7619 case ISD::SELECT: C = 1; break;
7620 case ISD::SELECT_CC: C = 2; break;
7621 }
7622
7623 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
7624 PromOp.getOperand(C).getValueType() != MVT::i1) ||
7625 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
7626 PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
7627 // The to-be-promoted operands of this node have not yet been
7628 // promoted (this should be rare because we're going through the
7629 // list backward, but if one of the operands has several users in
7630 // this cluster of to-be-promoted nodes, it is possible).
7631 PromOps.insert(PromOps.begin(), PromOp);
7632 continue;
7633 }
7634
7635 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
7636 PromOp.getNode()->op_end());
7637
7638 // If there are any constant inputs, make sure they're replaced now.
7639 for (unsigned i = 0; i < 2; ++i)
7640 if (isa<ConstantSDNode>(Ops[C+i]))
7641 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
7642
7643 DAG.ReplaceAllUsesOfValueWith(PromOp,
7644 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
7645 }
7646
7647 // Now we're left with the initial truncation itself.
7648 if (N->getOpcode() == ISD::TRUNCATE)
7649 return N->getOperand(0);
7650
7651 // Otherwise, this is a comparison. The operands to be compared have just
7652 // changed type (to i1), but everything else is the same.
7653 return SDValue(N, 0);
7654 }
7655
DAGCombineExtBoolTrunc(SDNode * N,DAGCombinerInfo & DCI) const7656 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
7657 DAGCombinerInfo &DCI) const {
7658 SelectionDAG &DAG = DCI.DAG;
7659 SDLoc dl(N);
7660
7661 // If we're tracking CR bits, we need to be careful that we don't have:
7662 // zext(binary-ops(trunc(x), trunc(y)))
7663 // or
7664 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
7665 // such that we're unnecessarily moving things into CR bits that can more
7666 // efficiently stay in GPRs. Note that if we're not certain that the high
7667 // bits are set as required by the final extension, we still may need to do
7668 // some masking to get the proper behavior.
7669
7670 // This same functionality is important on PPC64 when dealing with
7671 // 32-to-64-bit extensions; these occur often when 32-bit values are used as
7672 // the return values of functions. Because it is so similar, it is handled
7673 // here as well.
7674
7675 if (N->getValueType(0) != MVT::i32 &&
7676 N->getValueType(0) != MVT::i64)
7677 return SDValue();
7678
7679 if (!((N->getOperand(0).getValueType() == MVT::i1 &&
7680 Subtarget.useCRBits()) ||
7681 (N->getOperand(0).getValueType() == MVT::i32 &&
7682 Subtarget.isPPC64())))
7683 return SDValue();
7684
7685 if (N->getOperand(0).getOpcode() != ISD::AND &&
7686 N->getOperand(0).getOpcode() != ISD::OR &&
7687 N->getOperand(0).getOpcode() != ISD::XOR &&
7688 N->getOperand(0).getOpcode() != ISD::SELECT &&
7689 N->getOperand(0).getOpcode() != ISD::SELECT_CC)
7690 return SDValue();
7691
7692 SmallVector<SDValue, 4> Inputs;
7693 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
7694 SmallPtrSet<SDNode *, 16> Visited;
7695
7696 // Visit all inputs, collect all binary operations (and, or, xor and
7697 // select) that are all fed by truncations.
7698 while (!BinOps.empty()) {
7699 SDValue BinOp = BinOps.back();
7700 BinOps.pop_back();
7701
7702 if (!Visited.insert(BinOp.getNode()))
7703 continue;
7704
7705 PromOps.push_back(BinOp);
7706
7707 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
7708 // The condition of the select is not promoted.
7709 if (BinOp.getOpcode() == ISD::SELECT && i == 0)
7710 continue;
7711 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
7712 continue;
7713
7714 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
7715 isa<ConstantSDNode>(BinOp.getOperand(i))) {
7716 Inputs.push_back(BinOp.getOperand(i));
7717 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
7718 BinOp.getOperand(i).getOpcode() == ISD::OR ||
7719 BinOp.getOperand(i).getOpcode() == ISD::XOR ||
7720 BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
7721 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
7722 BinOps.push_back(BinOp.getOperand(i));
7723 } else {
7724 // We have an input that is not a truncation or another binary
7725 // operation; we'll abort this transformation.
7726 return SDValue();
7727 }
7728 }
7729 }
7730
7731 // Make sure that this is a self-contained cluster of operations (which
7732 // is not quite the same thing as saying that everything has only one
7733 // use).
7734 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
7735 if (isa<ConstantSDNode>(Inputs[i]))
7736 continue;
7737
7738 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
7739 UE = Inputs[i].getNode()->use_end();
7740 UI != UE; ++UI) {
7741 SDNode *User = *UI;
7742 if (User != N && !Visited.count(User))
7743 return SDValue();
7744
7745 // Make sure that we're not going to promote the non-output-value
7746 // operand(s) or SELECT or SELECT_CC.
7747 // FIXME: Although we could sometimes handle this, and it does occur in
7748 // practice that one of the condition inputs to the select is also one of
7749 // the outputs, we currently can't deal with this.
7750 if (User->getOpcode() == ISD::SELECT) {
7751 if (User->getOperand(0) == Inputs[i])
7752 return SDValue();
7753 } else if (User->getOpcode() == ISD::SELECT_CC) {
7754 if (User->getOperand(0) == Inputs[i] ||
7755 User->getOperand(1) == Inputs[i])
7756 return SDValue();
7757 }
7758 }
7759 }
7760
7761 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
7762 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
7763 UE = PromOps[i].getNode()->use_end();
7764 UI != UE; ++UI) {
7765 SDNode *User = *UI;
7766 if (User != N && !Visited.count(User))
7767 return SDValue();
7768
7769 // Make sure that we're not going to promote the non-output-value
7770 // operand(s) or SELECT or SELECT_CC.
7771 // FIXME: Although we could sometimes handle this, and it does occur in
7772 // practice that one of the condition inputs to the select is also one of
7773 // the outputs, we currently can't deal with this.
7774 if (User->getOpcode() == ISD::SELECT) {
7775 if (User->getOperand(0) == PromOps[i])
7776 return SDValue();
7777 } else if (User->getOpcode() == ISD::SELECT_CC) {
7778 if (User->getOperand(0) == PromOps[i] ||
7779 User->getOperand(1) == PromOps[i])
7780 return SDValue();
7781 }
7782 }
7783 }
7784
7785 unsigned PromBits = N->getOperand(0).getValueSizeInBits();
7786 bool ReallyNeedsExt = false;
7787 if (N->getOpcode() != ISD::ANY_EXTEND) {
7788 // If all of the inputs are not already sign/zero extended, then
7789 // we'll still need to do that at the end.
7790 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
7791 if (isa<ConstantSDNode>(Inputs[i]))
7792 continue;
7793
7794 unsigned OpBits =
7795 Inputs[i].getOperand(0).getValueSizeInBits();
7796 assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
7797
7798 if ((N->getOpcode() == ISD::ZERO_EXTEND &&
7799 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
7800 APInt::getHighBitsSet(OpBits,
7801 OpBits-PromBits))) ||
7802 (N->getOpcode() == ISD::SIGN_EXTEND &&
7803 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
7804 (OpBits-(PromBits-1)))) {
7805 ReallyNeedsExt = true;
7806 break;
7807 }
7808 }
7809 }
7810
7811 // Replace all inputs, either with the truncation operand, or a
7812 // truncation or extension to the final output type.
7813 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
7814 // Constant inputs need to be replaced with the to-be-promoted nodes that
7815 // use them because they might have users outside of the cluster of
7816 // promoted nodes.
7817 if (isa<ConstantSDNode>(Inputs[i]))
7818 continue;
7819
7820 SDValue InSrc = Inputs[i].getOperand(0);
7821 if (Inputs[i].getValueType() == N->getValueType(0))
7822 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
7823 else if (N->getOpcode() == ISD::SIGN_EXTEND)
7824 DAG.ReplaceAllUsesOfValueWith(Inputs[i],
7825 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
7826 else if (N->getOpcode() == ISD::ZERO_EXTEND)
7827 DAG.ReplaceAllUsesOfValueWith(Inputs[i],
7828 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
7829 else
7830 DAG.ReplaceAllUsesOfValueWith(Inputs[i],
7831 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
7832 }
7833
7834 // Replace all operations (these are all the same, but have a different
7835 // (promoted) return type). DAG.getNode will validate that the types of
7836 // a binary operator match, so go through the list in reverse so that
7837 // we've likely promoted both operands first.
7838 while (!PromOps.empty()) {
7839 SDValue PromOp = PromOps.back();
7840 PromOps.pop_back();
7841
7842 unsigned C;
7843 switch (PromOp.getOpcode()) {
7844 default: C = 0; break;
7845 case ISD::SELECT: C = 1; break;
7846 case ISD::SELECT_CC: C = 2; break;
7847 }
7848
7849 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
7850 PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
7851 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
7852 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
7853 // The to-be-promoted operands of this node have not yet been
7854 // promoted (this should be rare because we're going through the
7855 // list backward, but if one of the operands has several users in
7856 // this cluster of to-be-promoted nodes, it is possible).
7857 PromOps.insert(PromOps.begin(), PromOp);
7858 continue;
7859 }
7860
7861 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
7862 PromOp.getNode()->op_end());
7863
7864 // If this node has constant inputs, then they'll need to be promoted here.
7865 for (unsigned i = 0; i < 2; ++i) {
7866 if (!isa<ConstantSDNode>(Ops[C+i]))
7867 continue;
7868 if (Ops[C+i].getValueType() == N->getValueType(0))
7869 continue;
7870
7871 if (N->getOpcode() == ISD::SIGN_EXTEND)
7872 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
7873 else if (N->getOpcode() == ISD::ZERO_EXTEND)
7874 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
7875 else
7876 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
7877 }
7878
7879 DAG.ReplaceAllUsesOfValueWith(PromOp,
7880 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
7881 }
7882
7883 // Now we're left with the initial extension itself.
7884 if (!ReallyNeedsExt)
7885 return N->getOperand(0);
7886
7887 // To zero extend, just mask off everything except for the first bit (in the
7888 // i1 case).
7889 if (N->getOpcode() == ISD::ZERO_EXTEND)
7890 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
7891 DAG.getConstant(APInt::getLowBitsSet(
7892 N->getValueSizeInBits(0), PromBits),
7893 N->getValueType(0)));
7894
7895 assert(N->getOpcode() == ISD::SIGN_EXTEND &&
7896 "Invalid extension type");
7897 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0));
7898 SDValue ShiftCst =
7899 DAG.getConstant(N->getValueSizeInBits(0)-PromBits, ShiftAmountTy);
7900 return DAG.getNode(ISD::SRA, dl, N->getValueType(0),
7901 DAG.getNode(ISD::SHL, dl, N->getValueType(0),
7902 N->getOperand(0), ShiftCst), ShiftCst);
7903 }
7904
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const7905 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
7906 DAGCombinerInfo &DCI) const {
7907 const TargetMachine &TM = getTargetMachine();
7908 SelectionDAG &DAG = DCI.DAG;
7909 SDLoc dl(N);
7910 switch (N->getOpcode()) {
7911 default: break;
7912 case PPCISD::SHL:
7913 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
7914 if (C->isNullValue()) // 0 << V -> 0.
7915 return N->getOperand(0);
7916 }
7917 break;
7918 case PPCISD::SRL:
7919 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
7920 if (C->isNullValue()) // 0 >>u V -> 0.
7921 return N->getOperand(0);
7922 }
7923 break;
7924 case PPCISD::SRA:
7925 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
7926 if (C->isNullValue() || // 0 >>s V -> 0.
7927 C->isAllOnesValue()) // -1 >>s V -> -1.
7928 return N->getOperand(0);
7929 }
7930 break;
7931 case ISD::SIGN_EXTEND:
7932 case ISD::ZERO_EXTEND:
7933 case ISD::ANY_EXTEND:
7934 return DAGCombineExtBoolTrunc(N, DCI);
7935 case ISD::TRUNCATE:
7936 case ISD::SETCC:
7937 case ISD::SELECT_CC:
7938 return DAGCombineTruncBoolExt(N, DCI);
7939 case ISD::FDIV: {
7940 assert(TM.Options.UnsafeFPMath &&
7941 "Reciprocal estimates require UnsafeFPMath");
7942
7943 if (N->getOperand(1).getOpcode() == ISD::FSQRT) {
7944 SDValue RV =
7945 DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0), DCI);
7946 if (RV.getNode()) {
7947 DCI.AddToWorklist(RV.getNode());
7948 return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
7949 N->getOperand(0), RV);
7950 }
7951 } else if (N->getOperand(1).getOpcode() == ISD::FP_EXTEND &&
7952 N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) {
7953 SDValue RV =
7954 DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0),
7955 DCI);
7956 if (RV.getNode()) {
7957 DCI.AddToWorklist(RV.getNode());
7958 RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N->getOperand(1)),
7959 N->getValueType(0), RV);
7960 DCI.AddToWorklist(RV.getNode());
7961 return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
7962 N->getOperand(0), RV);
7963 }
7964 } else if (N->getOperand(1).getOpcode() == ISD::FP_ROUND &&
7965 N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) {
7966 SDValue RV =
7967 DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0),
7968 DCI);
7969 if (RV.getNode()) {
7970 DCI.AddToWorklist(RV.getNode());
7971 RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N->getOperand(1)),
7972 N->getValueType(0), RV,
7973 N->getOperand(1).getOperand(1));
7974 DCI.AddToWorklist(RV.getNode());
7975 return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
7976 N->getOperand(0), RV);
7977 }
7978 }
7979
7980 SDValue RV = DAGCombineFastRecip(N->getOperand(1), DCI);
7981 if (RV.getNode()) {
7982 DCI.AddToWorklist(RV.getNode());
7983 return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
7984 N->getOperand(0), RV);
7985 }
7986
7987 }
7988 break;
7989 case ISD::FSQRT: {
7990 assert(TM.Options.UnsafeFPMath &&
7991 "Reciprocal estimates require UnsafeFPMath");
7992
7993 // Compute this as 1/(1/sqrt(X)), which is the reciprocal of the
7994 // reciprocal sqrt.
7995 SDValue RV = DAGCombineFastRecipFSQRT(N->getOperand(0), DCI);
7996 if (RV.getNode()) {
7997 DCI.AddToWorklist(RV.getNode());
7998 RV = DAGCombineFastRecip(RV, DCI);
7999 if (RV.getNode()) {
8000 // Unfortunately, RV is now NaN if the input was exactly 0. Select out
8001 // this case and force the answer to 0.
8002
8003 EVT VT = RV.getValueType();
8004
8005 SDValue Zero = DAG.getConstantFP(0.0, VT.getScalarType());
8006 if (VT.isVector()) {
8007 assert(VT.getVectorNumElements() == 4 && "Unknown vector type");
8008 Zero = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Zero, Zero, Zero, Zero);
8009 }
8010
8011 SDValue ZeroCmp =
8012 DAG.getSetCC(dl, getSetCCResultType(*DAG.getContext(), VT),
8013 N->getOperand(0), Zero, ISD::SETEQ);
8014 DCI.AddToWorklist(ZeroCmp.getNode());
8015 DCI.AddToWorklist(RV.getNode());
8016
8017 RV = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, dl, VT,
8018 ZeroCmp, Zero, RV);
8019 return RV;
8020 }
8021 }
8022
8023 }
8024 break;
8025 case ISD::SINT_TO_FP:
8026 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
8027 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
8028 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
8029 // We allow the src/dst to be either f32/f64, but the intermediate
8030 // type must be i64.
8031 if (N->getOperand(0).getValueType() == MVT::i64 &&
8032 N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
8033 SDValue Val = N->getOperand(0).getOperand(0);
8034 if (Val.getValueType() == MVT::f32) {
8035 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
8036 DCI.AddToWorklist(Val.getNode());
8037 }
8038
8039 Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
8040 DCI.AddToWorklist(Val.getNode());
8041 Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
8042 DCI.AddToWorklist(Val.getNode());
8043 if (N->getValueType(0) == MVT::f32) {
8044 Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
8045 DAG.getIntPtrConstant(0));
8046 DCI.AddToWorklist(Val.getNode());
8047 }
8048 return Val;
8049 } else if (N->getOperand(0).getValueType() == MVT::i32) {
8050 // If the intermediate type is i32, we can avoid the load/store here
8051 // too.
8052 }
8053 }
8054 }
8055 break;
8056 case ISD::STORE:
8057 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
8058 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
8059 !cast<StoreSDNode>(N)->isTruncatingStore() &&
8060 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
8061 N->getOperand(1).getValueType() == MVT::i32 &&
8062 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
8063 SDValue Val = N->getOperand(1).getOperand(0);
8064 if (Val.getValueType() == MVT::f32) {
8065 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
8066 DCI.AddToWorklist(Val.getNode());
8067 }
8068 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
8069 DCI.AddToWorklist(Val.getNode());
8070
8071 SDValue Ops[] = {
8072 N->getOperand(0), Val, N->getOperand(2),
8073 DAG.getValueType(N->getOperand(1).getValueType())
8074 };
8075
8076 Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
8077 DAG.getVTList(MVT::Other), Ops,
8078 cast<StoreSDNode>(N)->getMemoryVT(),
8079 cast<StoreSDNode>(N)->getMemOperand());
8080 DCI.AddToWorklist(Val.getNode());
8081 return Val;
8082 }
8083
8084 // Turn STORE (BSWAP) -> sthbrx/stwbrx.
8085 if (cast<StoreSDNode>(N)->isUnindexed() &&
8086 N->getOperand(1).getOpcode() == ISD::BSWAP &&
8087 N->getOperand(1).getNode()->hasOneUse() &&
8088 (N->getOperand(1).getValueType() == MVT::i32 ||
8089 N->getOperand(1).getValueType() == MVT::i16 ||
8090 (TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
8091 TM.getSubtarget<PPCSubtarget>().isPPC64() &&
8092 N->getOperand(1).getValueType() == MVT::i64))) {
8093 SDValue BSwapOp = N->getOperand(1).getOperand(0);
8094 // Do an any-extend to 32-bits if this is a half-word input.
8095 if (BSwapOp.getValueType() == MVT::i16)
8096 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
8097
8098 SDValue Ops[] = {
8099 N->getOperand(0), BSwapOp, N->getOperand(2),
8100 DAG.getValueType(N->getOperand(1).getValueType())
8101 };
8102 return
8103 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
8104 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
8105 cast<StoreSDNode>(N)->getMemOperand());
8106 }
8107 break;
8108 case ISD::LOAD: {
8109 LoadSDNode *LD = cast<LoadSDNode>(N);
8110 EVT VT = LD->getValueType(0);
8111 Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
8112 unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty);
8113 if (ISD::isNON_EXTLoad(N) && VT.isVector() &&
8114 TM.getSubtarget<PPCSubtarget>().hasAltivec() &&
8115 (VT == MVT::v16i8 || VT == MVT::v8i16 ||
8116 VT == MVT::v4i32 || VT == MVT::v4f32) &&
8117 LD->getAlignment() < ABIAlignment) {
8118 // This is a type-legal unaligned Altivec load.
8119 SDValue Chain = LD->getChain();
8120 SDValue Ptr = LD->getBasePtr();
8121 bool isLittleEndian = Subtarget.isLittleEndian();
8122
8123 // This implements the loading of unaligned vectors as described in
8124 // the venerable Apple Velocity Engine overview. Specifically:
8125 // https://developer.apple.com/hardwaredrivers/ve/alignment.html
8126 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
8127 //
8128 // The general idea is to expand a sequence of one or more unaligned
8129 // loads into an alignment-based permutation-control instruction (lvsl
8130 // or lvsr), a series of regular vector loads (which always truncate
8131 // their input address to an aligned address), and a series of
8132 // permutations. The results of these permutations are the requested
8133 // loaded values. The trick is that the last "extra" load is not taken
8134 // from the address you might suspect (sizeof(vector) bytes after the
8135 // last requested load), but rather sizeof(vector) - 1 bytes after the
8136 // last requested vector. The point of this is to avoid a page fault if
8137 // the base address happened to be aligned. This works because if the
8138 // base address is aligned, then adding less than a full vector length
8139 // will cause the last vector in the sequence to be (re)loaded.
8140 // Otherwise, the next vector will be fetched as you might suspect was
8141 // necessary.
8142
8143 // We might be able to reuse the permutation generation from
8144 // a different base address offset from this one by an aligned amount.
8145 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
8146 // optimization later.
8147 Intrinsic::ID Intr = (isLittleEndian ?
8148 Intrinsic::ppc_altivec_lvsr :
8149 Intrinsic::ppc_altivec_lvsl);
8150 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, MVT::v16i8);
8151
8152 // Refine the alignment of the original load (a "new" load created here
8153 // which was identical to the first except for the alignment would be
8154 // merged with the existing node regardless).
8155 MachineFunction &MF = DAG.getMachineFunction();
8156 MachineMemOperand *MMO =
8157 MF.getMachineMemOperand(LD->getPointerInfo(),
8158 LD->getMemOperand()->getFlags(),
8159 LD->getMemoryVT().getStoreSize(),
8160 ABIAlignment);
8161 LD->refineAlignment(MMO);
8162 SDValue BaseLoad = SDValue(LD, 0);
8163
8164 // Note that the value of IncOffset (which is provided to the next
8165 // load's pointer info offset value, and thus used to calculate the
8166 // alignment), and the value of IncValue (which is actually used to
8167 // increment the pointer value) are different! This is because we
8168 // require the next load to appear to be aligned, even though it
8169 // is actually offset from the base pointer by a lesser amount.
8170 int IncOffset = VT.getSizeInBits() / 8;
8171 int IncValue = IncOffset;
8172
8173 // Walk (both up and down) the chain looking for another load at the real
8174 // (aligned) offset (the alignment of the other load does not matter in
8175 // this case). If found, then do not use the offset reduction trick, as
8176 // that will prevent the loads from being later combined (as they would
8177 // otherwise be duplicates).
8178 if (!findConsecutiveLoad(LD, DAG))
8179 --IncValue;
8180
8181 SDValue Increment = DAG.getConstant(IncValue, getPointerTy());
8182 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
8183
8184 SDValue ExtraLoad =
8185 DAG.getLoad(VT, dl, Chain, Ptr,
8186 LD->getPointerInfo().getWithOffset(IncOffset),
8187 LD->isVolatile(), LD->isNonTemporal(),
8188 LD->isInvariant(), ABIAlignment);
8189
8190 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8191 BaseLoad.getValue(1), ExtraLoad.getValue(1));
8192
8193 if (BaseLoad.getValueType() != MVT::v4i32)
8194 BaseLoad = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, BaseLoad);
8195
8196 if (ExtraLoad.getValueType() != MVT::v4i32)
8197 ExtraLoad = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, ExtraLoad);
8198
8199 // Because vperm has a big-endian bias, we must reverse the order
8200 // of the input vectors and complement the permute control vector
8201 // when generating little endian code. We have already handled the
8202 // latter by using lvsr instead of lvsl, so just reverse BaseLoad
8203 // and ExtraLoad here.
8204 SDValue Perm;
8205 if (isLittleEndian)
8206 Perm = BuildIntrinsicOp(Intrinsic::ppc_altivec_vperm,
8207 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
8208 else
8209 Perm = BuildIntrinsicOp(Intrinsic::ppc_altivec_vperm,
8210 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
8211
8212 if (VT != MVT::v4i32)
8213 Perm = DAG.getNode(ISD::BITCAST, dl, VT, Perm);
8214
8215 // Now we need to be really careful about how we update the users of the
8216 // original load. We cannot just call DCI.CombineTo (or
8217 // DAG.ReplaceAllUsesWith for that matter), because the load still has
8218 // uses created here (the permutation for example) that need to stay.
8219 SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8220 while (UI != UE) {
8221 SDUse &Use = UI.getUse();
8222 SDNode *User = *UI;
8223 // Note: BaseLoad is checked here because it might not be N, but a
8224 // bitcast of N.
8225 if (User == Perm.getNode() || User == BaseLoad.getNode() ||
8226 User == TF.getNode() || Use.getResNo() > 1) {
8227 ++UI;
8228 continue;
8229 }
8230
8231 SDValue To = Use.getResNo() ? TF : Perm;
8232 ++UI;
8233
8234 SmallVector<SDValue, 8> Ops;
8235 for (const SDUse &O : User->ops()) {
8236 if (O == Use)
8237 Ops.push_back(To);
8238 else
8239 Ops.push_back(O);
8240 }
8241
8242 DAG.UpdateNodeOperands(User, Ops);
8243 }
8244
8245 return SDValue(N, 0);
8246 }
8247 }
8248 break;
8249 case ISD::INTRINSIC_WO_CHAIN: {
8250 bool isLittleEndian = Subtarget.isLittleEndian();
8251 Intrinsic::ID Intr = (isLittleEndian ?
8252 Intrinsic::ppc_altivec_lvsr :
8253 Intrinsic::ppc_altivec_lvsl);
8254 if (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue() == Intr &&
8255 N->getOperand(1)->getOpcode() == ISD::ADD) {
8256 SDValue Add = N->getOperand(1);
8257
8258 if (DAG.MaskedValueIsZero(Add->getOperand(1),
8259 APInt::getAllOnesValue(4 /* 16 byte alignment */).zext(
8260 Add.getValueType().getScalarType().getSizeInBits()))) {
8261 SDNode *BasePtr = Add->getOperand(0).getNode();
8262 for (SDNode::use_iterator UI = BasePtr->use_begin(),
8263 UE = BasePtr->use_end(); UI != UE; ++UI) {
8264 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
8265 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() ==
8266 Intr) {
8267 // We've found another LVSL/LVSR, and this address is an aligned
8268 // multiple of that one. The results will be the same, so use the
8269 // one we've just found instead.
8270
8271 return SDValue(*UI, 0);
8272 }
8273 }
8274 }
8275 }
8276 }
8277
8278 break;
8279 case ISD::BSWAP:
8280 // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
8281 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
8282 N->getOperand(0).hasOneUse() &&
8283 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
8284 (TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
8285 TM.getSubtarget<PPCSubtarget>().isPPC64() &&
8286 N->getValueType(0) == MVT::i64))) {
8287 SDValue Load = N->getOperand(0);
8288 LoadSDNode *LD = cast<LoadSDNode>(Load);
8289 // Create the byte-swapping load.
8290 SDValue Ops[] = {
8291 LD->getChain(), // Chain
8292 LD->getBasePtr(), // Ptr
8293 DAG.getValueType(N->getValueType(0)) // VT
8294 };
8295 SDValue BSLoad =
8296 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
8297 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
8298 MVT::i64 : MVT::i32, MVT::Other),
8299 Ops, LD->getMemoryVT(), LD->getMemOperand());
8300
8301 // If this is an i16 load, insert the truncate.
8302 SDValue ResVal = BSLoad;
8303 if (N->getValueType(0) == MVT::i16)
8304 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
8305
8306 // First, combine the bswap away. This makes the value produced by the
8307 // load dead.
8308 DCI.CombineTo(N, ResVal);
8309
8310 // Next, combine the load away, we give it a bogus result value but a real
8311 // chain result. The result value is dead because the bswap is dead.
8312 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
8313
8314 // Return N so it doesn't get rechecked!
8315 return SDValue(N, 0);
8316 }
8317
8318 break;
8319 case PPCISD::VCMP: {
8320 // If a VCMPo node already exists with exactly the same operands as this
8321 // node, use its result instead of this node (VCMPo computes both a CR6 and
8322 // a normal output).
8323 //
8324 if (!N->getOperand(0).hasOneUse() &&
8325 !N->getOperand(1).hasOneUse() &&
8326 !N->getOperand(2).hasOneUse()) {
8327
8328 // Scan all of the users of the LHS, looking for VCMPo's that match.
8329 SDNode *VCMPoNode = nullptr;
8330
8331 SDNode *LHSN = N->getOperand(0).getNode();
8332 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
8333 UI != E; ++UI)
8334 if (UI->getOpcode() == PPCISD::VCMPo &&
8335 UI->getOperand(1) == N->getOperand(1) &&
8336 UI->getOperand(2) == N->getOperand(2) &&
8337 UI->getOperand(0) == N->getOperand(0)) {
8338 VCMPoNode = *UI;
8339 break;
8340 }
8341
8342 // If there is no VCMPo node, or if the flag value has a single use, don't
8343 // transform this.
8344 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
8345 break;
8346
8347 // Look at the (necessarily single) use of the flag value. If it has a
8348 // chain, this transformation is more complex. Note that multiple things
8349 // could use the value result, which we should ignore.
8350 SDNode *FlagUser = nullptr;
8351 for (SDNode::use_iterator UI = VCMPoNode->use_begin();
8352 FlagUser == nullptr; ++UI) {
8353 assert(UI != VCMPoNode->use_end() && "Didn't find user!");
8354 SDNode *User = *UI;
8355 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
8356 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
8357 FlagUser = User;
8358 break;
8359 }
8360 }
8361 }
8362
8363 // If the user is a MFOCRF instruction, we know this is safe.
8364 // Otherwise we give up for right now.
8365 if (FlagUser->getOpcode() == PPCISD::MFOCRF)
8366 return SDValue(VCMPoNode, 0);
8367 }
8368 break;
8369 }
8370 case ISD::BRCOND: {
8371 SDValue Cond = N->getOperand(1);
8372 SDValue Target = N->getOperand(2);
8373
8374 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
8375 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
8376 Intrinsic::ppc_is_decremented_ctr_nonzero) {
8377
8378 // We now need to make the intrinsic dead (it cannot be instruction
8379 // selected).
8380 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
8381 assert(Cond.getNode()->hasOneUse() &&
8382 "Counter decrement has more than one use");
8383
8384 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
8385 N->getOperand(0), Target);
8386 }
8387 }
8388 break;
8389 case ISD::BR_CC: {
8390 // If this is a branch on an altivec predicate comparison, lower this so
8391 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This
8392 // lowering is done pre-legalize, because the legalizer lowers the predicate
8393 // compare down to code that is difficult to reassemble.
8394 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
8395 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
8396
8397 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
8398 // value. If so, pass-through the AND to get to the intrinsic.
8399 if (LHS.getOpcode() == ISD::AND &&
8400 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
8401 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
8402 Intrinsic::ppc_is_decremented_ctr_nonzero &&
8403 isa<ConstantSDNode>(LHS.getOperand(1)) &&
8404 !cast<ConstantSDNode>(LHS.getOperand(1))->getConstantIntValue()->
8405 isZero())
8406 LHS = LHS.getOperand(0);
8407
8408 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
8409 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
8410 Intrinsic::ppc_is_decremented_ctr_nonzero &&
8411 isa<ConstantSDNode>(RHS)) {
8412 assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
8413 "Counter decrement comparison is not EQ or NE");
8414
8415 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
8416 bool isBDNZ = (CC == ISD::SETEQ && Val) ||
8417 (CC == ISD::SETNE && !Val);
8418
8419 // We now need to make the intrinsic dead (it cannot be instruction
8420 // selected).
8421 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
8422 assert(LHS.getNode()->hasOneUse() &&
8423 "Counter decrement has more than one use");
8424
8425 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
8426 N->getOperand(0), N->getOperand(4));
8427 }
8428
8429 int CompareOpc;
8430 bool isDot;
8431
8432 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
8433 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
8434 getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
8435 assert(isDot && "Can't compare against a vector result!");
8436
8437 // If this is a comparison against something other than 0/1, then we know
8438 // that the condition is never/always true.
8439 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
8440 if (Val != 0 && Val != 1) {
8441 if (CC == ISD::SETEQ) // Cond never true, remove branch.
8442 return N->getOperand(0);
8443 // Always !=, turn it into an unconditional branch.
8444 return DAG.getNode(ISD::BR, dl, MVT::Other,
8445 N->getOperand(0), N->getOperand(4));
8446 }
8447
8448 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
8449
8450 // Create the PPCISD altivec 'dot' comparison node.
8451 SDValue Ops[] = {
8452 LHS.getOperand(2), // LHS of compare
8453 LHS.getOperand(3), // RHS of compare
8454 DAG.getConstant(CompareOpc, MVT::i32)
8455 };
8456 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
8457 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
8458
8459 // Unpack the result based on how the target uses it.
8460 PPC::Predicate CompOpc;
8461 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
8462 default: // Can't happen, don't crash on invalid number though.
8463 case 0: // Branch on the value of the EQ bit of CR6.
8464 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
8465 break;
8466 case 1: // Branch on the inverted value of the EQ bit of CR6.
8467 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
8468 break;
8469 case 2: // Branch on the value of the LT bit of CR6.
8470 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
8471 break;
8472 case 3: // Branch on the inverted value of the LT bit of CR6.
8473 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
8474 break;
8475 }
8476
8477 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
8478 DAG.getConstant(CompOpc, MVT::i32),
8479 DAG.getRegister(PPC::CR6, MVT::i32),
8480 N->getOperand(4), CompNode.getValue(1));
8481 }
8482 break;
8483 }
8484 }
8485
8486 return SDValue();
8487 }
8488
8489 //===----------------------------------------------------------------------===//
8490 // Inline Assembly Support
8491 //===----------------------------------------------------------------------===//
8492
computeKnownBitsForTargetNode(const SDValue Op,APInt & KnownZero,APInt & KnownOne,const SelectionDAG & DAG,unsigned Depth) const8493 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
8494 APInt &KnownZero,
8495 APInt &KnownOne,
8496 const SelectionDAG &DAG,
8497 unsigned Depth) const {
8498 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
8499 switch (Op.getOpcode()) {
8500 default: break;
8501 case PPCISD::LBRX: {
8502 // lhbrx is known to have the top bits cleared out.
8503 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
8504 KnownZero = 0xFFFF0000;
8505 break;
8506 }
8507 case ISD::INTRINSIC_WO_CHAIN: {
8508 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
8509 default: break;
8510 case Intrinsic::ppc_altivec_vcmpbfp_p:
8511 case Intrinsic::ppc_altivec_vcmpeqfp_p:
8512 case Intrinsic::ppc_altivec_vcmpequb_p:
8513 case Intrinsic::ppc_altivec_vcmpequh_p:
8514 case Intrinsic::ppc_altivec_vcmpequw_p:
8515 case Intrinsic::ppc_altivec_vcmpgefp_p:
8516 case Intrinsic::ppc_altivec_vcmpgtfp_p:
8517 case Intrinsic::ppc_altivec_vcmpgtsb_p:
8518 case Intrinsic::ppc_altivec_vcmpgtsh_p:
8519 case Intrinsic::ppc_altivec_vcmpgtsw_p:
8520 case Intrinsic::ppc_altivec_vcmpgtub_p:
8521 case Intrinsic::ppc_altivec_vcmpgtuh_p:
8522 case Intrinsic::ppc_altivec_vcmpgtuw_p:
8523 KnownZero = ~1U; // All bits but the low one are known to be zero.
8524 break;
8525 }
8526 }
8527 }
8528 }
8529
8530
8531 /// getConstraintType - Given a constraint, return the type of
8532 /// constraint it is for this target.
8533 PPCTargetLowering::ConstraintType
getConstraintType(const std::string & Constraint) const8534 PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
8535 if (Constraint.size() == 1) {
8536 switch (Constraint[0]) {
8537 default: break;
8538 case 'b':
8539 case 'r':
8540 case 'f':
8541 case 'v':
8542 case 'y':
8543 return C_RegisterClass;
8544 case 'Z':
8545 // FIXME: While Z does indicate a memory constraint, it specifically
8546 // indicates an r+r address (used in conjunction with the 'y' modifier
8547 // in the replacement string). Currently, we're forcing the base
8548 // register to be r0 in the asm printer (which is interpreted as zero)
8549 // and forming the complete address in the second register. This is
8550 // suboptimal.
8551 return C_Memory;
8552 }
8553 } else if (Constraint == "wc") { // individual CR bits.
8554 return C_RegisterClass;
8555 } else if (Constraint == "wa" || Constraint == "wd" ||
8556 Constraint == "wf" || Constraint == "ws") {
8557 return C_RegisterClass; // VSX registers.
8558 }
8559 return TargetLowering::getConstraintType(Constraint);
8560 }
8561
8562 /// Examine constraint type and operand type and determine a weight value.
8563 /// This object must already have been set up with the operand type
8564 /// and the current alternative constraint selected.
8565 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const8566 PPCTargetLowering::getSingleConstraintMatchWeight(
8567 AsmOperandInfo &info, const char *constraint) const {
8568 ConstraintWeight weight = CW_Invalid;
8569 Value *CallOperandVal = info.CallOperandVal;
8570 // If we don't have a value, we can't do a match,
8571 // but allow it at the lowest weight.
8572 if (!CallOperandVal)
8573 return CW_Default;
8574 Type *type = CallOperandVal->getType();
8575
8576 // Look at the constraint type.
8577 if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
8578 return CW_Register; // an individual CR bit.
8579 else if ((StringRef(constraint) == "wa" ||
8580 StringRef(constraint) == "wd" ||
8581 StringRef(constraint) == "wf") &&
8582 type->isVectorTy())
8583 return CW_Register;
8584 else if (StringRef(constraint) == "ws" && type->isDoubleTy())
8585 return CW_Register;
8586
8587 switch (*constraint) {
8588 default:
8589 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
8590 break;
8591 case 'b':
8592 if (type->isIntegerTy())
8593 weight = CW_Register;
8594 break;
8595 case 'f':
8596 if (type->isFloatTy())
8597 weight = CW_Register;
8598 break;
8599 case 'd':
8600 if (type->isDoubleTy())
8601 weight = CW_Register;
8602 break;
8603 case 'v':
8604 if (type->isVectorTy())
8605 weight = CW_Register;
8606 break;
8607 case 'y':
8608 weight = CW_Register;
8609 break;
8610 case 'Z':
8611 weight = CW_Memory;
8612 break;
8613 }
8614 return weight;
8615 }
8616
8617 std::pair<unsigned, const TargetRegisterClass*>
getRegForInlineAsmConstraint(const std::string & Constraint,MVT VT) const8618 PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
8619 MVT VT) const {
8620 if (Constraint.size() == 1) {
8621 // GCC RS6000 Constraint Letters
8622 switch (Constraint[0]) {
8623 case 'b': // R1-R31
8624 if (VT == MVT::i64 && Subtarget.isPPC64())
8625 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
8626 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
8627 case 'r': // R0-R31
8628 if (VT == MVT::i64 && Subtarget.isPPC64())
8629 return std::make_pair(0U, &PPC::G8RCRegClass);
8630 return std::make_pair(0U, &PPC::GPRCRegClass);
8631 case 'f':
8632 if (VT == MVT::f32 || VT == MVT::i32)
8633 return std::make_pair(0U, &PPC::F4RCRegClass);
8634 if (VT == MVT::f64 || VT == MVT::i64)
8635 return std::make_pair(0U, &PPC::F8RCRegClass);
8636 break;
8637 case 'v':
8638 return std::make_pair(0U, &PPC::VRRCRegClass);
8639 case 'y': // crrc
8640 return std::make_pair(0U, &PPC::CRRCRegClass);
8641 }
8642 } else if (Constraint == "wc") { // an individual CR bit.
8643 return std::make_pair(0U, &PPC::CRBITRCRegClass);
8644 } else if (Constraint == "wa" || Constraint == "wd" ||
8645 Constraint == "wf") {
8646 return std::make_pair(0U, &PPC::VSRCRegClass);
8647 } else if (Constraint == "ws") {
8648 return std::make_pair(0U, &PPC::VSFRCRegClass);
8649 }
8650
8651 std::pair<unsigned, const TargetRegisterClass*> R =
8652 TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
8653
8654 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
8655 // (which we call X[0-9]+). If a 64-bit value has been requested, and a
8656 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
8657 // register.
8658 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
8659 // the AsmName field from *RegisterInfo.td, then this would not be necessary.
8660 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
8661 PPC::GPRCRegClass.contains(R.first)) {
8662 const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
8663 return std::make_pair(TRI->getMatchingSuperReg(R.first,
8664 PPC::sub_32, &PPC::G8RCRegClass),
8665 &PPC::G8RCRegClass);
8666 }
8667
8668 return R;
8669 }
8670
8671
8672 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
8673 /// vector. If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const8674 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
8675 std::string &Constraint,
8676 std::vector<SDValue>&Ops,
8677 SelectionDAG &DAG) const {
8678 SDValue Result;
8679
8680 // Only support length 1 constraints.
8681 if (Constraint.length() > 1) return;
8682
8683 char Letter = Constraint[0];
8684 switch (Letter) {
8685 default: break;
8686 case 'I':
8687 case 'J':
8688 case 'K':
8689 case 'L':
8690 case 'M':
8691 case 'N':
8692 case 'O':
8693 case 'P': {
8694 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
8695 if (!CST) return; // Must be an immediate to match.
8696 unsigned Value = CST->getZExtValue();
8697 switch (Letter) {
8698 default: llvm_unreachable("Unknown constraint letter!");
8699 case 'I': // "I" is a signed 16-bit constant.
8700 if ((short)Value == (int)Value)
8701 Result = DAG.getTargetConstant(Value, Op.getValueType());
8702 break;
8703 case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
8704 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
8705 if ((short)Value == 0)
8706 Result = DAG.getTargetConstant(Value, Op.getValueType());
8707 break;
8708 case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
8709 if ((Value >> 16) == 0)
8710 Result = DAG.getTargetConstant(Value, Op.getValueType());
8711 break;
8712 case 'M': // "M" is a constant that is greater than 31.
8713 if (Value > 31)
8714 Result = DAG.getTargetConstant(Value, Op.getValueType());
8715 break;
8716 case 'N': // "N" is a positive constant that is an exact power of two.
8717 if ((int)Value > 0 && isPowerOf2_32(Value))
8718 Result = DAG.getTargetConstant(Value, Op.getValueType());
8719 break;
8720 case 'O': // "O" is the constant zero.
8721 if (Value == 0)
8722 Result = DAG.getTargetConstant(Value, Op.getValueType());
8723 break;
8724 case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
8725 if ((short)-Value == (int)-Value)
8726 Result = DAG.getTargetConstant(Value, Op.getValueType());
8727 break;
8728 }
8729 break;
8730 }
8731 }
8732
8733 if (Result.getNode()) {
8734 Ops.push_back(Result);
8735 return;
8736 }
8737
8738 // Handle standard constraint letters.
8739 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
8740 }
8741
8742 // isLegalAddressingMode - Return true if the addressing mode represented
8743 // by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const AddrMode & AM,Type * Ty) const8744 bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
8745 Type *Ty) const {
8746 // FIXME: PPC does not allow r+i addressing modes for vectors!
8747
8748 // PPC allows a sign-extended 16-bit immediate field.
8749 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
8750 return false;
8751
8752 // No global is ever allowed as a base.
8753 if (AM.BaseGV)
8754 return false;
8755
8756 // PPC only support r+r,
8757 switch (AM.Scale) {
8758 case 0: // "r+i" or just "i", depending on HasBaseReg.
8759 break;
8760 case 1:
8761 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
8762 return false;
8763 // Otherwise we have r+r or r+i.
8764 break;
8765 case 2:
8766 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
8767 return false;
8768 // Allow 2*r as r+r.
8769 break;
8770 default:
8771 // No other scales are supported.
8772 return false;
8773 }
8774
8775 return true;
8776 }
8777
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const8778 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
8779 SelectionDAG &DAG) const {
8780 MachineFunction &MF = DAG.getMachineFunction();
8781 MachineFrameInfo *MFI = MF.getFrameInfo();
8782 MFI->setReturnAddressIsTaken(true);
8783
8784 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
8785 return SDValue();
8786
8787 SDLoc dl(Op);
8788 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8789
8790 // Make sure the function does not optimize away the store of the RA to
8791 // the stack.
8792 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
8793 FuncInfo->setLRStoreRequired();
8794 bool isPPC64 = Subtarget.isPPC64();
8795 bool isDarwinABI = Subtarget.isDarwinABI();
8796
8797 if (Depth > 0) {
8798 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
8799 SDValue Offset =
8800
8801 DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
8802 isPPC64? MVT::i64 : MVT::i32);
8803 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8804 DAG.getNode(ISD::ADD, dl, getPointerTy(),
8805 FrameAddr, Offset),
8806 MachinePointerInfo(), false, false, false, 0);
8807 }
8808
8809 // Just load the return address off the stack.
8810 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
8811 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8812 RetAddrFI, MachinePointerInfo(), false, false, false, 0);
8813 }
8814
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const8815 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
8816 SelectionDAG &DAG) const {
8817 SDLoc dl(Op);
8818 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8819
8820 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
8821 bool isPPC64 = PtrVT == MVT::i64;
8822
8823 MachineFunction &MF = DAG.getMachineFunction();
8824 MachineFrameInfo *MFI = MF.getFrameInfo();
8825 MFI->setFrameAddressIsTaken(true);
8826
8827 // Naked functions never have a frame pointer, and so we use r1. For all
8828 // other functions, this decision must be delayed until during PEI.
8829 unsigned FrameReg;
8830 if (MF.getFunction()->getAttributes().hasAttribute(
8831 AttributeSet::FunctionIndex, Attribute::Naked))
8832 FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
8833 else
8834 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
8835
8836 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
8837 PtrVT);
8838 while (Depth--)
8839 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
8840 FrameAddr, MachinePointerInfo(), false, false,
8841 false, 0);
8842 return FrameAddr;
8843 }
8844
8845 // FIXME? Maybe this could be a TableGen attribute on some registers and
8846 // this table could be generated automatically from RegInfo.
getRegisterByName(const char * RegName,EVT VT) const8847 unsigned PPCTargetLowering::getRegisterByName(const char* RegName,
8848 EVT VT) const {
8849 bool isPPC64 = Subtarget.isPPC64();
8850 bool isDarwinABI = Subtarget.isDarwinABI();
8851
8852 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
8853 (!isPPC64 && VT != MVT::i32))
8854 report_fatal_error("Invalid register global variable type");
8855
8856 bool is64Bit = isPPC64 && VT == MVT::i64;
8857 unsigned Reg = StringSwitch<unsigned>(RegName)
8858 .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
8859 .Case("r2", isDarwinABI ? 0 : (is64Bit ? PPC::X2 : PPC::R2))
8860 .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
8861 (is64Bit ? PPC::X13 : PPC::R13))
8862 .Default(0);
8863
8864 if (Reg)
8865 return Reg;
8866 report_fatal_error("Invalid register name global variable");
8867 }
8868
8869 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const8870 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
8871 // The PowerPC target isn't yet aware of offsets.
8872 return false;
8873 }
8874
8875 /// getOptimalMemOpType - Returns the target specific optimal type for load
8876 /// and store operations as a result of memset, memcpy, and memmove
8877 /// lowering. If DstAlign is zero that means it's safe to destination
8878 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
8879 /// means there isn't a need to check it against alignment requirement,
8880 /// probably because the source does not need to be loaded. If 'IsMemset' is
8881 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
8882 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
8883 /// source is constant so it does not need to be loaded.
8884 /// It returns EVT::Other if the type should be determined using generic
8885 /// target-independent logic.
getOptimalMemOpType(uint64_t Size,unsigned DstAlign,unsigned SrcAlign,bool IsMemset,bool ZeroMemset,bool MemcpyStrSrc,MachineFunction & MF) const8886 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
8887 unsigned DstAlign, unsigned SrcAlign,
8888 bool IsMemset, bool ZeroMemset,
8889 bool MemcpyStrSrc,
8890 MachineFunction &MF) const {
8891 if (Subtarget.isPPC64()) {
8892 return MVT::i64;
8893 } else {
8894 return MVT::i32;
8895 }
8896 }
8897
8898 /// \brief Returns true if it is beneficial to convert a load of a constant
8899 /// to just the constant itself.
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty) const8900 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
8901 Type *Ty) const {
8902 assert(Ty->isIntegerTy());
8903
8904 unsigned BitSize = Ty->getPrimitiveSizeInBits();
8905 if (BitSize == 0 || BitSize > 64)
8906 return false;
8907 return true;
8908 }
8909
isTruncateFree(Type * Ty1,Type * Ty2) const8910 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
8911 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
8912 return false;
8913 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
8914 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
8915 return NumBits1 == 64 && NumBits2 == 32;
8916 }
8917
isTruncateFree(EVT VT1,EVT VT2) const8918 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
8919 if (!VT1.isInteger() || !VT2.isInteger())
8920 return false;
8921 unsigned NumBits1 = VT1.getSizeInBits();
8922 unsigned NumBits2 = VT2.getSizeInBits();
8923 return NumBits1 == 64 && NumBits2 == 32;
8924 }
8925
isLegalICmpImmediate(int64_t Imm) const8926 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
8927 return isInt<16>(Imm) || isUInt<16>(Imm);
8928 }
8929
isLegalAddImmediate(int64_t Imm) const8930 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
8931 return isInt<16>(Imm) || isUInt<16>(Imm);
8932 }
8933
allowsUnalignedMemoryAccesses(EVT VT,unsigned,bool * Fast) const8934 bool PPCTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
8935 unsigned,
8936 bool *Fast) const {
8937 if (DisablePPCUnaligned)
8938 return false;
8939
8940 // PowerPC supports unaligned memory access for simple non-vector types.
8941 // Although accessing unaligned addresses is not as efficient as accessing
8942 // aligned addresses, it is generally more efficient than manual expansion,
8943 // and generally only traps for software emulation when crossing page
8944 // boundaries.
8945
8946 if (!VT.isSimple())
8947 return false;
8948
8949 if (VT.getSimpleVT().isVector()) {
8950 if (Subtarget.hasVSX()) {
8951 if (VT != MVT::v2f64 && VT != MVT::v2i64)
8952 return false;
8953 } else {
8954 return false;
8955 }
8956 }
8957
8958 if (VT == MVT::ppcf128)
8959 return false;
8960
8961 if (Fast)
8962 *Fast = true;
8963
8964 return true;
8965 }
8966
isFMAFasterThanFMulAndFAdd(EVT VT) const8967 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
8968 VT = VT.getScalarType();
8969
8970 if (!VT.isSimple())
8971 return false;
8972
8973 switch (VT.getSimpleVT().SimpleTy) {
8974 case MVT::f32:
8975 case MVT::f64:
8976 return true;
8977 default:
8978 break;
8979 }
8980
8981 return false;
8982 }
8983
8984 bool
shouldExpandBuildVectorWithShuffles(EVT VT,unsigned DefinedValues) const8985 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
8986 EVT VT , unsigned DefinedValues) const {
8987 if (VT == MVT::v2i64)
8988 return false;
8989
8990 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
8991 }
8992
getSchedulingPreference(SDNode * N) const8993 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
8994 if (DisableILPPref || Subtarget.enableMachineScheduler())
8995 return TargetLowering::getSchedulingPreference(N);
8996
8997 return Sched::ILP;
8998 }
8999
9000 // Create a fast isel object.
9001 FastISel *
createFastISel(FunctionLoweringInfo & FuncInfo,const TargetLibraryInfo * LibInfo) const9002 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
9003 const TargetLibraryInfo *LibInfo) const {
9004 return PPC::createFastISel(FuncInfo, LibInfo);
9005 }
9006