1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops by placing phi nodes at the end of the loops for
11 // all values that are live across the loop boundary. For example, it turns
12 // the left into the right code:
13 //
14 // for (...) for (...)
15 // if (c) if (c)
16 // X1 = ... X1 = ...
17 // else else
18 // X2 = ... X2 = ...
19 // X3 = phi(X1, X2) X3 = phi(X1, X2)
20 // ... = X3 + 4 X4 = phi(X3)
21 // ... = X4 + 4
22 //
23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
24 // be trivially eliminated by InstCombine. The major benefit of this
25 // transformation is that it makes many other loop optimizations, such as
26 // LoopUnswitching, simpler.
27 //
28 //===----------------------------------------------------------------------===//
29
30 #include "llvm/Transforms/Scalar.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Analysis/AliasAnalysis.h"
34 #include "llvm/Analysis/LoopPass.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/PredIteratorCache.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Transforms/Utils/LoopUtils.h"
43 #include "llvm/Transforms/Utils/SSAUpdater.h"
44 using namespace llvm;
45
46 #define DEBUG_TYPE "lcssa"
47
48 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
49
50 /// Return true if the specified block is in the list.
isExitBlock(BasicBlock * BB,const SmallVectorImpl<BasicBlock * > & ExitBlocks)51 static bool isExitBlock(BasicBlock *BB,
52 const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
53 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
54 if (ExitBlocks[i] == BB)
55 return true;
56 return false;
57 }
58
59 /// Given an instruction in the loop, check to see if it has any uses that are
60 /// outside the current loop. If so, insert LCSSA PHI nodes and rewrite the
61 /// uses.
processInstruction(Loop & L,Instruction & Inst,DominatorTree & DT,const SmallVectorImpl<BasicBlock * > & ExitBlocks,PredIteratorCache & PredCache)62 static bool processInstruction(Loop &L, Instruction &Inst, DominatorTree &DT,
63 const SmallVectorImpl<BasicBlock *> &ExitBlocks,
64 PredIteratorCache &PredCache) {
65 SmallVector<Use *, 16> UsesToRewrite;
66
67 BasicBlock *InstBB = Inst.getParent();
68
69 for (Use &U : Inst.uses()) {
70 Instruction *User = cast<Instruction>(U.getUser());
71 BasicBlock *UserBB = User->getParent();
72 if (PHINode *PN = dyn_cast<PHINode>(User))
73 UserBB = PN->getIncomingBlock(U);
74
75 if (InstBB != UserBB && !L.contains(UserBB))
76 UsesToRewrite.push_back(&U);
77 }
78
79 // If there are no uses outside the loop, exit with no change.
80 if (UsesToRewrite.empty())
81 return false;
82
83 ++NumLCSSA; // We are applying the transformation
84
85 // Invoke instructions are special in that their result value is not available
86 // along their unwind edge. The code below tests to see whether DomBB
87 // dominates
88 // the value, so adjust DomBB to the normal destination block, which is
89 // effectively where the value is first usable.
90 BasicBlock *DomBB = Inst.getParent();
91 if (InvokeInst *Inv = dyn_cast<InvokeInst>(&Inst))
92 DomBB = Inv->getNormalDest();
93
94 DomTreeNode *DomNode = DT.getNode(DomBB);
95
96 SmallVector<PHINode *, 16> AddedPHIs;
97
98 SSAUpdater SSAUpdate;
99 SSAUpdate.Initialize(Inst.getType(), Inst.getName());
100
101 // Insert the LCSSA phi's into all of the exit blocks dominated by the
102 // value, and add them to the Phi's map.
103 for (SmallVectorImpl<BasicBlock *>::const_iterator BBI = ExitBlocks.begin(),
104 BBE = ExitBlocks.end();
105 BBI != BBE; ++BBI) {
106 BasicBlock *ExitBB = *BBI;
107 if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
108 continue;
109
110 // If we already inserted something for this BB, don't reprocess it.
111 if (SSAUpdate.HasValueForBlock(ExitBB))
112 continue;
113
114 PHINode *PN = PHINode::Create(Inst.getType(), PredCache.GetNumPreds(ExitBB),
115 Inst.getName() + ".lcssa", ExitBB->begin());
116
117 // Add inputs from inside the loop for this PHI.
118 for (BasicBlock **PI = PredCache.GetPreds(ExitBB); *PI; ++PI) {
119 PN->addIncoming(&Inst, *PI);
120
121 // If the exit block has a predecessor not within the loop, arrange for
122 // the incoming value use corresponding to that predecessor to be
123 // rewritten in terms of a different LCSSA PHI.
124 if (!L.contains(*PI))
125 UsesToRewrite.push_back(
126 &PN->getOperandUse(PN->getOperandNumForIncomingValue(
127 PN->getNumIncomingValues() - 1)));
128 }
129
130 AddedPHIs.push_back(PN);
131
132 // Remember that this phi makes the value alive in this block.
133 SSAUpdate.AddAvailableValue(ExitBB, PN);
134 }
135
136 // Rewrite all uses outside the loop in terms of the new PHIs we just
137 // inserted.
138 for (unsigned i = 0, e = UsesToRewrite.size(); i != e; ++i) {
139 // If this use is in an exit block, rewrite to use the newly inserted PHI.
140 // This is required for correctness because SSAUpdate doesn't handle uses in
141 // the same block. It assumes the PHI we inserted is at the end of the
142 // block.
143 Instruction *User = cast<Instruction>(UsesToRewrite[i]->getUser());
144 BasicBlock *UserBB = User->getParent();
145 if (PHINode *PN = dyn_cast<PHINode>(User))
146 UserBB = PN->getIncomingBlock(*UsesToRewrite[i]);
147
148 if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
149 // Tell the VHs that the uses changed. This updates SCEV's caches.
150 if (UsesToRewrite[i]->get()->hasValueHandle())
151 ValueHandleBase::ValueIsRAUWd(*UsesToRewrite[i], UserBB->begin());
152 UsesToRewrite[i]->set(UserBB->begin());
153 continue;
154 }
155
156 // Otherwise, do full PHI insertion.
157 SSAUpdate.RewriteUse(*UsesToRewrite[i]);
158 }
159
160 // Remove PHI nodes that did not have any uses rewritten.
161 for (unsigned i = 0, e = AddedPHIs.size(); i != e; ++i) {
162 if (AddedPHIs[i]->use_empty())
163 AddedPHIs[i]->eraseFromParent();
164 }
165
166 return true;
167 }
168
169 /// Return true if the specified block dominates at least
170 /// one of the blocks in the specified list.
171 static bool
blockDominatesAnExit(BasicBlock * BB,DominatorTree & DT,const SmallVectorImpl<BasicBlock * > & ExitBlocks)172 blockDominatesAnExit(BasicBlock *BB,
173 DominatorTree &DT,
174 const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
175 DomTreeNode *DomNode = DT.getNode(BB);
176 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
177 if (DT.dominates(DomNode, DT.getNode(ExitBlocks[i])))
178 return true;
179
180 return false;
181 }
182
formLCSSA(Loop & L,DominatorTree & DT,ScalarEvolution * SE)183 bool llvm::formLCSSA(Loop &L, DominatorTree &DT, ScalarEvolution *SE) {
184 bool Changed = false;
185
186 // Get the set of exiting blocks.
187 SmallVector<BasicBlock *, 8> ExitBlocks;
188 L.getExitBlocks(ExitBlocks);
189
190 if (ExitBlocks.empty())
191 return false;
192
193 PredIteratorCache PredCache;
194
195 // Look at all the instructions in the loop, checking to see if they have uses
196 // outside the loop. If so, rewrite those uses.
197 for (Loop::block_iterator BBI = L.block_begin(), BBE = L.block_end();
198 BBI != BBE; ++BBI) {
199 BasicBlock *BB = *BBI;
200
201 // For large loops, avoid use-scanning by using dominance information: In
202 // particular, if a block does not dominate any of the loop exits, then none
203 // of the values defined in the block could be used outside the loop.
204 if (!blockDominatesAnExit(BB, DT, ExitBlocks))
205 continue;
206
207 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
208 // Reject two common cases fast: instructions with no uses (like stores)
209 // and instructions with one use that is in the same block as this.
210 if (I->use_empty() ||
211 (I->hasOneUse() && I->user_back()->getParent() == BB &&
212 !isa<PHINode>(I->user_back())))
213 continue;
214
215 Changed |= processInstruction(L, *I, DT, ExitBlocks, PredCache);
216 }
217 }
218
219 // If we modified the code, remove any caches about the loop from SCEV to
220 // avoid dangling entries.
221 // FIXME: This is a big hammer, can we clear the cache more selectively?
222 if (SE && Changed)
223 SE->forgetLoop(&L);
224
225 assert(L.isLCSSAForm(DT));
226
227 return Changed;
228 }
229
230 /// Process a loop nest depth first.
formLCSSARecursively(Loop & L,DominatorTree & DT,ScalarEvolution * SE)231 bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT,
232 ScalarEvolution *SE) {
233 bool Changed = false;
234
235 // Recurse depth-first through inner loops.
236 for (Loop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI)
237 Changed |= formLCSSARecursively(**LI, DT, SE);
238
239 Changed |= formLCSSA(L, DT, SE);
240 return Changed;
241 }
242
243 namespace {
244 struct LCSSA : public FunctionPass {
245 static char ID; // Pass identification, replacement for typeid
LCSSA__anone7a2372a0111::LCSSA246 LCSSA() : FunctionPass(ID) {
247 initializeLCSSAPass(*PassRegistry::getPassRegistry());
248 }
249
250 // Cached analysis information for the current function.
251 DominatorTree *DT;
252 LoopInfo *LI;
253 ScalarEvolution *SE;
254
255 bool runOnFunction(Function &F) override;
256
257 /// This transformation requires natural loop information & requires that
258 /// loop preheaders be inserted into the CFG. It maintains both of these,
259 /// as well as the CFG. It also requires dominator information.
getAnalysisUsage__anone7a2372a0111::LCSSA260 void getAnalysisUsage(AnalysisUsage &AU) const override {
261 AU.setPreservesCFG();
262
263 AU.addRequired<DominatorTreeWrapperPass>();
264 AU.addRequired<LoopInfo>();
265 AU.addPreservedID(LoopSimplifyID);
266 AU.addPreserved<AliasAnalysis>();
267 AU.addPreserved<ScalarEvolution>();
268 }
269
270 private:
271 void verifyAnalysis() const override;
272 };
273 }
274
275 char LCSSA::ID = 0;
276 INITIALIZE_PASS_BEGIN(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)277 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
278 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
279 INITIALIZE_PASS_END(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false)
280
281 Pass *llvm::createLCSSAPass() { return new LCSSA(); }
282 char &llvm::LCSSAID = LCSSA::ID;
283
284
285 /// Process all loops in the function, inner-most out.
runOnFunction(Function & F)286 bool LCSSA::runOnFunction(Function &F) {
287 bool Changed = false;
288 LI = &getAnalysis<LoopInfo>();
289 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
290 SE = getAnalysisIfAvailable<ScalarEvolution>();
291
292 // Simplify each loop nest in the function.
293 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
294 Changed |= formLCSSARecursively(**I, *DT, SE);
295
296 return Changed;
297 }
298
verifyLoop(Loop & L,DominatorTree & DT)299 static void verifyLoop(Loop &L, DominatorTree &DT) {
300 // Recurse depth-first through inner loops.
301 for (Loop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI)
302 verifyLoop(**LI, DT);
303
304 // Check the special guarantees that LCSSA makes.
305 //assert(L.isLCSSAForm(DT) && "LCSSA form not preserved!");
306 }
307
verifyAnalysis() const308 void LCSSA::verifyAnalysis() const {
309 // Verify each loop nest in the function, assuming LI still points at that
310 // function's loop info.
311 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
312 verifyLoop(**I, *DT);
313 }
314