/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_COMPILER_DEX_REG_STORAGE_H_ #define ART_COMPILER_DEX_REG_STORAGE_H_ #include "base/logging.h" #include "compiler_enums.h" // For WideKind namespace art { /* * 16-bit representation of the physical register container holding a Dalvik value. * The encoding allows up to 64 physical elements per storage class, and supports eight * register container shapes. * * [V] [HHHHH] [SSS] [F] [LLLLLL] * * [LLLLLL] * Physical register number for the low or solo register. * 0..63 * * [F] * Describes type of the [LLLLL] register. * 0: Core * 1: Floating point * * [SSS] * Shape of the register container. * 000: Invalid * 001: 32-bit solo register * 010: 64-bit solo register * 011: 64-bit pair consisting of two 32-bit solo registers * 100: 128-bit solo register * 101: 256-bit solo register * 110: 512-bit solo register * 111: 1024-bit solo register * * [HHHHH] * Physical register number of the high register (valid only for register pair). * 0..31 * * [V] * 0 -> Invalid * 1 -> Valid * * Note that in all non-invalid cases, we can determine if the storage is floating point * by testing bit 7. Note also that a register pair is effectively limited to a pair of * physical register numbers in the 0..31 range. * * On some target architectures, the same underlying physical register container can be given * different views. For example, Arm's 32-bit single-precision floating point registers * s2 and s3 map to the low and high halves of double-precision d1. Similarly, X86's xmm3 * vector register can be viewed as 32-bit, 64-bit, 128-bit, etc. In these cases the use of * one view will affect the other views. The RegStorage class does not concern itself * with potential aliasing. That will be done using the associated RegisterInfo struct. * Distinct RegStorage elements should be created for each view of a physical register * container. The management of the aliased physical elements will be handled via RegisterInfo * records. */ class RegStorage { public: enum RegStorageKind { kValidMask = 0x8000, kValid = 0x8000, kInvalid = 0x0000, kShapeMask = 0x0380, k32BitSolo = 0x0080, k64BitSolo = 0x0100, k64BitPair = 0x0180, k128BitSolo = 0x0200, k256BitSolo = 0x0280, k512BitSolo = 0x0300, k1024BitSolo = 0x0380, k64BitMask = 0x0300, k64Bits = 0x0100, kShapeTypeMask = 0x03c0, kFloatingPoint = 0x0040, kCoreRegister = 0x0000, }; static const uint16_t kRegValMask = 0x03ff; // Num, type and shape. static const uint16_t kRegTypeMask = 0x007f; // Num and type. static const uint16_t kRegNumMask = 0x003f; // Num only. static const uint16_t kHighRegNumMask = 0x001f; // 0..31 for high reg static const uint16_t kMaxRegs = kRegValMask + 1; // TODO: deprecate use of kInvalidRegVal and speed up GetReg(). Rely on valid bit instead. static const uint16_t kInvalidRegVal = 0x03ff; static const uint16_t kHighRegShift = 10; static const uint16_t kHighRegMask = (kHighRegNumMask << kHighRegShift); // Reg is [F][LLLLL], will override any existing shape and use rs_kind. constexpr RegStorage(RegStorageKind rs_kind, int reg) : reg_( DCHECK_CONSTEXPR(rs_kind != k64BitPair, , 0u) DCHECK_CONSTEXPR((rs_kind & ~kShapeMask) == 0, , 0u) kValid | rs_kind | (reg & kRegTypeMask)) { } constexpr RegStorage(RegStorageKind rs_kind, int low_reg, int high_reg) : reg_( DCHECK_CONSTEXPR(rs_kind == k64BitPair, << rs_kind, 0u) DCHECK_CONSTEXPR((low_reg & kFloatingPoint) == (high_reg & kFloatingPoint), << low_reg << ", " << high_reg, 0u) DCHECK_CONSTEXPR((high_reg & kRegNumMask) <= kHighRegNumMask, << "High reg must be in 0..31: " << high_reg, false) kValid | rs_kind | ((high_reg & kHighRegNumMask) << kHighRegShift) | (low_reg & kRegTypeMask)) { } constexpr explicit RegStorage(uint16_t val) : reg_(val) {} RegStorage() : reg_(kInvalid) {} // We do not provide a general operator overload for equality of reg storage, as this is // dangerous in the case of architectures with multiple views, and the naming ExactEquals // expresses the exact match expressed here. It is more likely that a comparison between the views // is intended in most cases. Such code can be found in, for example, Mir2Lir::IsSameReg. // // If you know what you are doing, include reg_storage_eq.h, which defines == and != for brevity. bool ExactlyEquals(const RegStorage& rhs) const { return (reg_ == rhs.GetRawBits()); } bool NotExactlyEquals(const RegStorage& rhs) const { return (reg_ != rhs.GetRawBits()); } constexpr bool Valid() const { return ((reg_ & kValidMask) == kValid); } constexpr bool Is32Bit() const { return ((reg_ & kShapeMask) == k32BitSolo); } constexpr bool Is64Bit() const { return ((reg_ & k64BitMask) == k64Bits); } constexpr WideKind GetWideKind() const { return Is64Bit() ? kWide : kNotWide; } constexpr bool Is64BitSolo() const { return ((reg_ & kShapeMask) == k64BitSolo); } constexpr bool IsPair() const { return ((reg_ & kShapeMask) == k64BitPair); } constexpr bool IsFloat() const { return DCHECK_CONSTEXPR(Valid(), , false) ((reg_ & kFloatingPoint) == kFloatingPoint); } constexpr bool IsDouble() const { return DCHECK_CONSTEXPR(Valid(), , false) (reg_ & (kFloatingPoint | k64BitMask)) == (kFloatingPoint | k64Bits); } constexpr bool IsSingle() const { return DCHECK_CONSTEXPR(Valid(), , false) (reg_ & (kFloatingPoint | k64BitMask)) == kFloatingPoint; } static constexpr bool IsFloat(uint16_t reg) { return ((reg & kFloatingPoint) == kFloatingPoint); } static constexpr bool IsDouble(uint16_t reg) { return (reg & (kFloatingPoint | k64BitMask)) == (kFloatingPoint | k64Bits); } static constexpr bool IsSingle(uint16_t reg) { return (reg & (kFloatingPoint | k64BitMask)) == kFloatingPoint; } static constexpr bool Is32Bit(uint16_t reg) { return ((reg & kShapeMask) == k32BitSolo); } static constexpr bool Is64Bit(uint16_t reg) { return ((reg & k64BitMask) == k64Bits); } static constexpr bool Is64BitSolo(uint16_t reg) { return ((reg & kShapeMask) == k64BitSolo); } // Used to retrieve either the low register of a pair, or the only register. int GetReg() const { DCHECK(!IsPair()) << "reg_ = 0x" << std::hex << reg_; return Valid() ? (reg_ & kRegValMask) : kInvalidRegVal; } // Sets shape, type and num of solo. void SetReg(int reg) { DCHECK(Valid()); DCHECK(!IsPair()); reg_ = (reg_ & ~kRegValMask) | reg; } // Set the reg number and type only, target remain 64-bit pair. void SetLowReg(int reg) { DCHECK(IsPair()); reg_ = (reg_ & ~kRegTypeMask) | (reg & kRegTypeMask); } // Retrieve the least significant register of a pair and return as 32-bit solo. int GetLowReg() const { DCHECK(IsPair()); return ((reg_ & kRegTypeMask) | k32BitSolo); } // Create a stand-alone RegStorage from the low reg of a pair. RegStorage GetLow() const { DCHECK(IsPair()); return RegStorage(k32BitSolo, reg_ & kRegTypeMask); } // Retrieve the most significant register of a pair. int GetHighReg() const { DCHECK(IsPair()); return k32BitSolo | ((reg_ & kHighRegMask) >> kHighRegShift) | (reg_ & kFloatingPoint); } // Create a stand-alone RegStorage from the high reg of a pair. RegStorage GetHigh() const { DCHECK(IsPair()); return RegStorage(kValid | GetHighReg()); } void SetHighReg(int reg) { DCHECK(IsPair()); reg_ = (reg_ & ~kHighRegMask) | ((reg & kHighRegNumMask) << kHighRegShift); } // Return the register number of low or solo. constexpr int GetRegNum() const { return reg_ & kRegNumMask; } // Is register number in 0..7? constexpr bool Low8() const { return GetRegNum() < 8; } // Is register number in 0..3? constexpr bool Low4() const { return GetRegNum() < 4; } // Combine 2 32-bit solo regs into a pair. static RegStorage MakeRegPair(RegStorage low, RegStorage high) { DCHECK(!low.IsPair()); DCHECK(low.Is32Bit()); DCHECK(!high.IsPair()); DCHECK(high.Is32Bit()); return RegStorage(k64BitPair, low.GetReg(), high.GetReg()); } static constexpr bool SameRegType(RegStorage reg1, RegStorage reg2) { return ((reg1.reg_ & kShapeTypeMask) == (reg2.reg_ & kShapeTypeMask)); } static constexpr bool SameRegType(int reg1, int reg2) { return ((reg1 & kShapeTypeMask) == (reg2 & kShapeTypeMask)); } // Create a 32-bit solo. static RegStorage Solo32(int reg_num) { return RegStorage(k32BitSolo, reg_num & kRegTypeMask); } // Create a floating point 32-bit solo. static constexpr RegStorage FloatSolo32(int reg_num) { return RegStorage(k32BitSolo, (reg_num & kRegNumMask) | kFloatingPoint); } // Create a 128-bit solo. static constexpr RegStorage Solo128(int reg_num) { return RegStorage(k128BitSolo, reg_num & kRegTypeMask); } // Create a 64-bit solo. static constexpr RegStorage Solo64(int reg_num) { return RegStorage(k64BitSolo, reg_num & kRegTypeMask); } // Create a floating point 64-bit solo. static RegStorage FloatSolo64(int reg_num) { return RegStorage(k64BitSolo, (reg_num & kRegNumMask) | kFloatingPoint); } static constexpr RegStorage InvalidReg() { return RegStorage(kInvalid); } static constexpr uint16_t RegNum(int raw_reg_bits) { return raw_reg_bits & kRegNumMask; } constexpr int GetRawBits() const { return reg_; } size_t StorageSize() const { switch (reg_ & kShapeMask) { case kInvalid: return 0; case k32BitSolo: return 4; case k64BitSolo: return 8; case k64BitPair: return 8; // Is this useful? Might want to disallow taking size of pair. case k128BitSolo: return 16; case k256BitSolo: return 32; case k512BitSolo: return 64; case k1024BitSolo: return 128; default: LOG(FATAL) << "Unexpected shape"; } return 0; } private: uint16_t reg_; }; } // namespace art #endif // ART_COMPILER_DEX_REG_STORAGE_H_