/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "class_linker.h" #include #include #include #include #include #include #include #include #include #include "base/casts.h" #include "base/logging.h" #include "base/scoped_flock.h" #include "base/stl_util.h" #include "base/unix_file/fd_file.h" #include "class_linker-inl.h" #include "compiler_callbacks.h" #include "debugger.h" #include "dex_file-inl.h" #include "gc_root-inl.h" #include "gc/accounting/card_table-inl.h" #include "gc/accounting/heap_bitmap.h" #include "gc/heap.h" #include "gc/space/image_space.h" #include "handle_scope.h" #include "intern_table.h" #include "interpreter/interpreter.h" #include "leb128.h" #include "method_helper-inl.h" #include "oat.h" #include "oat_file.h" #include "object_lock.h" #include "mirror/art_field-inl.h" #include "mirror/art_method-inl.h" #include "mirror/class.h" #include "mirror/class-inl.h" #include "mirror/class_loader.h" #include "mirror/dex_cache-inl.h" #include "mirror/iftable-inl.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "mirror/proxy.h" #include "mirror/reference-inl.h" #include "mirror/stack_trace_element.h" #include "mirror/string-inl.h" #include "os.h" #include "runtime.h" #include "entrypoints/entrypoint_utils.h" #include "ScopedLocalRef.h" #include "scoped_thread_state_change.h" #include "handle_scope-inl.h" #include "thread.h" #include "utils.h" #include "verifier/method_verifier.h" #include "well_known_classes.h" namespace art { static void ThrowNoClassDefFoundError(const char* fmt, ...) __attribute__((__format__(__printf__, 1, 2))) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); static void ThrowNoClassDefFoundError(const char* fmt, ...) { va_list args; va_start(args, fmt); Thread* self = Thread::Current(); ThrowLocation throw_location = self->GetCurrentLocationForThrow(); self->ThrowNewExceptionV(throw_location, "Ljava/lang/NoClassDefFoundError;", fmt, args); va_end(args); } static void ThrowEarlierClassFailure(mirror::Class* c) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // The class failed to initialize on a previous attempt, so we want to throw // a NoClassDefFoundError (v2 2.17.5). The exception to this rule is if we // failed in verification, in which case v2 5.4.1 says we need to re-throw // the previous error. if (!Runtime::Current()->IsCompiler()) { // Give info if this occurs at runtime. LOG(INFO) << "Rejecting re-init on previously-failed class " << PrettyClass(c); } CHECK(c->IsErroneous()) << PrettyClass(c) << " " << c->GetStatus(); Thread* self = Thread::Current(); ThrowLocation throw_location = self->GetCurrentLocationForThrow(); if (c->GetVerifyErrorClass() != nullptr) { // TODO: change the verifier to store an _instance_, with a useful detail message? std::string temp; self->ThrowNewException(throw_location, c->GetVerifyErrorClass()->GetDescriptor(&temp), PrettyDescriptor(c).c_str()); } else { self->ThrowNewException(throw_location, "Ljava/lang/NoClassDefFoundError;", PrettyDescriptor(c).c_str()); } } static void WrapExceptionInInitializer() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { Thread* self = Thread::Current(); JNIEnv* env = self->GetJniEnv(); ScopedLocalRef cause(env, env->ExceptionOccurred()); CHECK(cause.get() != nullptr); env->ExceptionClear(); bool is_error = env->IsInstanceOf(cause.get(), WellKnownClasses::java_lang_Error); env->Throw(cause.get()); // We only wrap non-Error exceptions; an Error can just be used as-is. if (!is_error) { ThrowLocation throw_location = self->GetCurrentLocationForThrow(); self->ThrowNewWrappedException(throw_location, "Ljava/lang/ExceptionInInitializerError;", nullptr); } } const char* ClassLinker::class_roots_descriptors_[] = { "Ljava/lang/Class;", "Ljava/lang/Object;", "[Ljava/lang/Class;", "[Ljava/lang/Object;", "Ljava/lang/String;", "Ljava/lang/DexCache;", "Ljava/lang/ref/Reference;", "Ljava/lang/reflect/ArtField;", "Ljava/lang/reflect/ArtMethod;", "Ljava/lang/reflect/Proxy;", "[Ljava/lang/String;", "[Ljava/lang/reflect/ArtField;", "[Ljava/lang/reflect/ArtMethod;", "Ljava/lang/ClassLoader;", "Ljava/lang/Throwable;", "Ljava/lang/ClassNotFoundException;", "Ljava/lang/StackTraceElement;", "Z", "B", "C", "D", "F", "I", "J", "S", "V", "[Z", "[B", "[C", "[D", "[F", "[I", "[J", "[S", "[Ljava/lang/StackTraceElement;", }; ClassLinker::ClassLinker(InternTable* intern_table) // dex_lock_ is recursive as it may be used in stack dumping. : dex_lock_("ClassLinker dex lock", kDefaultMutexLevel), dex_cache_image_class_lookup_required_(false), failed_dex_cache_class_lookups_(0), class_roots_(nullptr), array_iftable_(nullptr), find_array_class_cache_next_victim_(0), init_done_(false), log_new_dex_caches_roots_(false), log_new_class_table_roots_(false), intern_table_(intern_table), portable_resolution_trampoline_(nullptr), quick_resolution_trampoline_(nullptr), portable_imt_conflict_trampoline_(nullptr), quick_imt_conflict_trampoline_(nullptr), quick_generic_jni_trampoline_(nullptr), quick_to_interpreter_bridge_trampoline_(nullptr), image_pointer_size_(sizeof(void*)) { CHECK_EQ(arraysize(class_roots_descriptors_), size_t(kClassRootsMax)); memset(find_array_class_cache_, 0, kFindArrayCacheSize * sizeof(mirror::Class*)); } // To set a value for generic JNI. May be necessary in compiler tests. extern "C" void art_quick_generic_jni_trampoline(mirror::ArtMethod*); extern "C" void art_quick_resolution_trampoline(mirror::ArtMethod*); extern "C" void art_quick_imt_conflict_trampoline(mirror::ArtMethod*); extern "C" void art_quick_to_interpreter_bridge(mirror::ArtMethod*); void ClassLinker::InitWithoutImage(const std::vector& boot_class_path) { VLOG(startup) << "ClassLinker::Init"; CHECK(!Runtime::Current()->GetHeap()->HasImageSpace()) << "Runtime has image. We should use it."; CHECK(!init_done_); // java_lang_Class comes first, it's needed for AllocClass Thread* self = Thread::Current(); gc::Heap* heap = Runtime::Current()->GetHeap(); // The GC can't handle an object with a null class since we can't get the size of this object. heap->IncrementDisableMovingGC(self); StackHandleScope<64> hs(self); // 64 is picked arbitrarily. Handle java_lang_Class(hs.NewHandle(down_cast( heap->AllocNonMovableObject(self, nullptr, mirror::Class::ClassClassSize(), VoidFunctor())))); CHECK(java_lang_Class.Get() != nullptr); mirror::Class::SetClassClass(java_lang_Class.Get()); java_lang_Class->SetClass(java_lang_Class.Get()); if (kUseBakerOrBrooksReadBarrier) { java_lang_Class->AssertReadBarrierPointer(); } java_lang_Class->SetClassSize(mirror::Class::ClassClassSize()); heap->DecrementDisableMovingGC(self); // AllocClass(mirror::Class*) can now be used // Class[] is used for reflection support. Handle class_array_class(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::ObjectArray::ClassSize()))); class_array_class->SetComponentType(java_lang_Class.Get()); // java_lang_Object comes next so that object_array_class can be created. Handle java_lang_Object(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::Object::ClassSize()))); CHECK(java_lang_Object.Get() != nullptr); // backfill Object as the super class of Class. java_lang_Class->SetSuperClass(java_lang_Object.Get()); java_lang_Object->SetStatus(mirror::Class::kStatusLoaded, self); // Object[] next to hold class roots. Handle object_array_class(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::ObjectArray::ClassSize()))); object_array_class->SetComponentType(java_lang_Object.Get()); // Setup the char (primitive) class to be used for char[]. Handle char_class(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::Class::PrimitiveClassSize()))); // Setup the char[] class to be used for String. Handle char_array_class(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::Array::ClassSize()))); char_array_class->SetComponentType(char_class.Get()); mirror::CharArray::SetArrayClass(char_array_class.Get()); // Setup String. Handle java_lang_String(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::String::ClassSize()))); mirror::String::SetClass(java_lang_String.Get()); java_lang_String->SetObjectSize(mirror::String::InstanceSize()); java_lang_String->SetStatus(mirror::Class::kStatusResolved, self); // Setup Reference. Handle java_lang_ref_Reference(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::Reference::ClassSize()))); mirror::Reference::SetClass(java_lang_ref_Reference.Get()); java_lang_ref_Reference->SetObjectSize(mirror::Reference::InstanceSize()); java_lang_ref_Reference->SetStatus(mirror::Class::kStatusResolved, self); // Create storage for root classes, save away our work so far (requires descriptors). class_roots_ = GcRoot >( mirror::ObjectArray::Alloc(self, object_array_class.Get(), kClassRootsMax)); CHECK(!class_roots_.IsNull()); SetClassRoot(kJavaLangClass, java_lang_Class.Get()); SetClassRoot(kJavaLangObject, java_lang_Object.Get()); SetClassRoot(kClassArrayClass, class_array_class.Get()); SetClassRoot(kObjectArrayClass, object_array_class.Get()); SetClassRoot(kCharArrayClass, char_array_class.Get()); SetClassRoot(kJavaLangString, java_lang_String.Get()); SetClassRoot(kJavaLangRefReference, java_lang_ref_Reference.Get()); // Setup the primitive type classes. SetClassRoot(kPrimitiveBoolean, CreatePrimitiveClass(self, Primitive::kPrimBoolean)); SetClassRoot(kPrimitiveByte, CreatePrimitiveClass(self, Primitive::kPrimByte)); SetClassRoot(kPrimitiveShort, CreatePrimitiveClass(self, Primitive::kPrimShort)); SetClassRoot(kPrimitiveInt, CreatePrimitiveClass(self, Primitive::kPrimInt)); SetClassRoot(kPrimitiveLong, CreatePrimitiveClass(self, Primitive::kPrimLong)); SetClassRoot(kPrimitiveFloat, CreatePrimitiveClass(self, Primitive::kPrimFloat)); SetClassRoot(kPrimitiveDouble, CreatePrimitiveClass(self, Primitive::kPrimDouble)); SetClassRoot(kPrimitiveVoid, CreatePrimitiveClass(self, Primitive::kPrimVoid)); // Create array interface entries to populate once we can load system classes. array_iftable_ = GcRoot(AllocIfTable(self, 2)); // Create int array type for AllocDexCache (done in AppendToBootClassPath). Handle int_array_class(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::Array::ClassSize()))); int_array_class->SetComponentType(GetClassRoot(kPrimitiveInt)); mirror::IntArray::SetArrayClass(int_array_class.Get()); SetClassRoot(kIntArrayClass, int_array_class.Get()); // now that these are registered, we can use AllocClass() and AllocObjectArray // Set up DexCache. This cannot be done later since AppendToBootClassPath calls AllocDexCache. Handle java_lang_DexCache(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::DexCache::ClassSize()))); SetClassRoot(kJavaLangDexCache, java_lang_DexCache.Get()); java_lang_DexCache->SetObjectSize(mirror::DexCache::InstanceSize()); java_lang_DexCache->SetStatus(mirror::Class::kStatusResolved, self); // Constructor, Field, Method, and AbstractMethod are necessary so // that FindClass can link members. Handle java_lang_reflect_ArtField(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::ArtField::ClassSize()))); CHECK(java_lang_reflect_ArtField.Get() != nullptr); java_lang_reflect_ArtField->SetObjectSize(mirror::ArtField::InstanceSize()); SetClassRoot(kJavaLangReflectArtField, java_lang_reflect_ArtField.Get()); java_lang_reflect_ArtField->SetStatus(mirror::Class::kStatusResolved, self); mirror::ArtField::SetClass(java_lang_reflect_ArtField.Get()); Handle java_lang_reflect_ArtMethod(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::ArtMethod::ClassSize()))); CHECK(java_lang_reflect_ArtMethod.Get() != nullptr); java_lang_reflect_ArtMethod->SetObjectSize(mirror::ArtMethod::InstanceSize(sizeof(void*))); SetClassRoot(kJavaLangReflectArtMethod, java_lang_reflect_ArtMethod.Get()); java_lang_reflect_ArtMethod->SetStatus(mirror::Class::kStatusResolved, self); mirror::ArtMethod::SetClass(java_lang_reflect_ArtMethod.Get()); // Set up array classes for string, field, method Handle object_array_string(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::ObjectArray::ClassSize()))); object_array_string->SetComponentType(java_lang_String.Get()); SetClassRoot(kJavaLangStringArrayClass, object_array_string.Get()); Handle object_array_art_method(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::ObjectArray::ClassSize()))); object_array_art_method->SetComponentType(java_lang_reflect_ArtMethod.Get()); SetClassRoot(kJavaLangReflectArtMethodArrayClass, object_array_art_method.Get()); Handle object_array_art_field(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::ObjectArray::ClassSize()))); object_array_art_field->SetComponentType(java_lang_reflect_ArtField.Get()); SetClassRoot(kJavaLangReflectArtFieldArrayClass, object_array_art_field.Get()); // Setup boot_class_path_ and register class_path now that we can use AllocObjectArray to create // DexCache instances. Needs to be after String, Field, Method arrays since AllocDexCache uses // these roots. CHECK_NE(0U, boot_class_path.size()); for (const DexFile* dex_file : boot_class_path) { CHECK(dex_file != nullptr); AppendToBootClassPath(*dex_file); } // now we can use FindSystemClass // run char class through InitializePrimitiveClass to finish init InitializePrimitiveClass(char_class.Get(), Primitive::kPrimChar); SetClassRoot(kPrimitiveChar, char_class.Get()); // needs descriptor // Create runtime resolution and imt conflict methods. Also setup the default imt. Runtime* runtime = Runtime::Current(); runtime->SetResolutionMethod(runtime->CreateResolutionMethod()); runtime->SetImtConflictMethod(runtime->CreateImtConflictMethod()); runtime->SetImtUnimplementedMethod(runtime->CreateImtConflictMethod()); runtime->SetDefaultImt(runtime->CreateDefaultImt(this)); // Set up GenericJNI entrypoint. That is mainly a hack for common_compiler_test.h so that // we do not need friend classes or a publicly exposed setter. quick_generic_jni_trampoline_ = reinterpret_cast(art_quick_generic_jni_trampoline); if (!runtime->IsCompiler()) { // We need to set up the generic trampolines since we don't have an image. quick_resolution_trampoline_ = reinterpret_cast(art_quick_resolution_trampoline); quick_imt_conflict_trampoline_ = reinterpret_cast(art_quick_imt_conflict_trampoline); quick_to_interpreter_bridge_trampoline_ = reinterpret_cast(art_quick_to_interpreter_bridge); } // Object, String and DexCache need to be rerun through FindSystemClass to finish init java_lang_Object->SetStatus(mirror::Class::kStatusNotReady, self); mirror::Class* Object_class = FindSystemClass(self, "Ljava/lang/Object;"); CHECK_EQ(java_lang_Object.Get(), Object_class); CHECK_EQ(java_lang_Object->GetObjectSize(), mirror::Object::InstanceSize()); java_lang_String->SetStatus(mirror::Class::kStatusNotReady, self); mirror::Class* String_class = FindSystemClass(self, "Ljava/lang/String;"); std::ostringstream os1, os2; java_lang_String->DumpClass(os1, mirror::Class::kDumpClassFullDetail); String_class->DumpClass(os2, mirror::Class::kDumpClassFullDetail); CHECK_EQ(java_lang_String.Get(), String_class) << os1.str() << "\n\n" << os2.str(); CHECK_EQ(java_lang_String->GetObjectSize(), mirror::String::InstanceSize()); java_lang_DexCache->SetStatus(mirror::Class::kStatusNotReady, self); mirror::Class* DexCache_class = FindSystemClass(self, "Ljava/lang/DexCache;"); CHECK_EQ(java_lang_String.Get(), String_class); CHECK_EQ(java_lang_DexCache.Get(), DexCache_class); CHECK_EQ(java_lang_DexCache->GetObjectSize(), mirror::DexCache::InstanceSize()); // Setup the primitive array type classes - can't be done until Object has a vtable. SetClassRoot(kBooleanArrayClass, FindSystemClass(self, "[Z")); mirror::BooleanArray::SetArrayClass(GetClassRoot(kBooleanArrayClass)); SetClassRoot(kByteArrayClass, FindSystemClass(self, "[B")); mirror::ByteArray::SetArrayClass(GetClassRoot(kByteArrayClass)); mirror::Class* found_char_array_class = FindSystemClass(self, "[C"); CHECK_EQ(char_array_class.Get(), found_char_array_class); SetClassRoot(kShortArrayClass, FindSystemClass(self, "[S")); mirror::ShortArray::SetArrayClass(GetClassRoot(kShortArrayClass)); mirror::Class* found_int_array_class = FindSystemClass(self, "[I"); CHECK_EQ(int_array_class.Get(), found_int_array_class); SetClassRoot(kLongArrayClass, FindSystemClass(self, "[J")); mirror::LongArray::SetArrayClass(GetClassRoot(kLongArrayClass)); SetClassRoot(kFloatArrayClass, FindSystemClass(self, "[F")); mirror::FloatArray::SetArrayClass(GetClassRoot(kFloatArrayClass)); SetClassRoot(kDoubleArrayClass, FindSystemClass(self, "[D")); mirror::DoubleArray::SetArrayClass(GetClassRoot(kDoubleArrayClass)); mirror::Class* found_class_array_class = FindSystemClass(self, "[Ljava/lang/Class;"); CHECK_EQ(class_array_class.Get(), found_class_array_class); mirror::Class* found_object_array_class = FindSystemClass(self, "[Ljava/lang/Object;"); CHECK_EQ(object_array_class.Get(), found_object_array_class); // Setup the single, global copy of "iftable". mirror::Class* java_lang_Cloneable = FindSystemClass(self, "Ljava/lang/Cloneable;"); CHECK(java_lang_Cloneable != nullptr); mirror::Class* java_io_Serializable = FindSystemClass(self, "Ljava/io/Serializable;"); CHECK(java_io_Serializable != nullptr); // We assume that Cloneable/Serializable don't have superinterfaces -- normally we'd have to // crawl up and explicitly list all of the supers as well. { mirror::IfTable* array_iftable = array_iftable_.Read(); array_iftable->SetInterface(0, java_lang_Cloneable); array_iftable->SetInterface(1, java_io_Serializable); } // Sanity check Class[] and Object[]'s interfaces. CHECK_EQ(java_lang_Cloneable, mirror::Class::GetDirectInterface(self, class_array_class, 0)); CHECK_EQ(java_io_Serializable, mirror::Class::GetDirectInterface(self, class_array_class, 1)); CHECK_EQ(java_lang_Cloneable, mirror::Class::GetDirectInterface(self, object_array_class, 0)); CHECK_EQ(java_io_Serializable, mirror::Class::GetDirectInterface(self, object_array_class, 1)); // Run Class, ArtField, and ArtMethod through FindSystemClass. This initializes their // dex_cache_ fields and register them in class_table_. mirror::Class* Class_class = FindSystemClass(self, "Ljava/lang/Class;"); CHECK_EQ(java_lang_Class.Get(), Class_class); java_lang_reflect_ArtMethod->SetStatus(mirror::Class::kStatusNotReady, self); mirror::Class* Art_method_class = FindSystemClass(self, "Ljava/lang/reflect/ArtMethod;"); CHECK_EQ(java_lang_reflect_ArtMethod.Get(), Art_method_class); java_lang_reflect_ArtField->SetStatus(mirror::Class::kStatusNotReady, self); mirror::Class* Art_field_class = FindSystemClass(self, "Ljava/lang/reflect/ArtField;"); CHECK_EQ(java_lang_reflect_ArtField.Get(), Art_field_class); mirror::Class* String_array_class = FindSystemClass(self, class_roots_descriptors_[kJavaLangStringArrayClass]); CHECK_EQ(object_array_string.Get(), String_array_class); mirror::Class* Art_method_array_class = FindSystemClass(self, class_roots_descriptors_[kJavaLangReflectArtMethodArrayClass]); CHECK_EQ(object_array_art_method.Get(), Art_method_array_class); mirror::Class* Art_field_array_class = FindSystemClass(self, class_roots_descriptors_[kJavaLangReflectArtFieldArrayClass]); CHECK_EQ(object_array_art_field.Get(), Art_field_array_class); // End of special init trickery, subsequent classes may be loaded via FindSystemClass. // Create java.lang.reflect.Proxy root. mirror::Class* java_lang_reflect_Proxy = FindSystemClass(self, "Ljava/lang/reflect/Proxy;"); SetClassRoot(kJavaLangReflectProxy, java_lang_reflect_Proxy); // java.lang.ref classes need to be specially flagged, but otherwise are normal classes // finish initializing Reference class java_lang_ref_Reference->SetStatus(mirror::Class::kStatusNotReady, self); mirror::Class* Reference_class = FindSystemClass(self, "Ljava/lang/ref/Reference;"); CHECK_EQ(java_lang_ref_Reference.Get(), Reference_class); CHECK_EQ(java_lang_ref_Reference->GetObjectSize(), mirror::Reference::InstanceSize()); CHECK_EQ(java_lang_ref_Reference->GetClassSize(), mirror::Reference::ClassSize()); mirror::Class* java_lang_ref_FinalizerReference = FindSystemClass(self, "Ljava/lang/ref/FinalizerReference;"); java_lang_ref_FinalizerReference->SetAccessFlags( java_lang_ref_FinalizerReference->GetAccessFlags() | kAccClassIsReference | kAccClassIsFinalizerReference); mirror::Class* java_lang_ref_PhantomReference = FindSystemClass(self, "Ljava/lang/ref/PhantomReference;"); java_lang_ref_PhantomReference->SetAccessFlags( java_lang_ref_PhantomReference->GetAccessFlags() | kAccClassIsReference | kAccClassIsPhantomReference); mirror::Class* java_lang_ref_SoftReference = FindSystemClass(self, "Ljava/lang/ref/SoftReference;"); java_lang_ref_SoftReference->SetAccessFlags( java_lang_ref_SoftReference->GetAccessFlags() | kAccClassIsReference); mirror::Class* java_lang_ref_WeakReference = FindSystemClass(self, "Ljava/lang/ref/WeakReference;"); java_lang_ref_WeakReference->SetAccessFlags( java_lang_ref_WeakReference->GetAccessFlags() | kAccClassIsReference | kAccClassIsWeakReference); // Setup the ClassLoader, verifying the object_size_. mirror::Class* java_lang_ClassLoader = FindSystemClass(self, "Ljava/lang/ClassLoader;"); CHECK_EQ(java_lang_ClassLoader->GetObjectSize(), mirror::ClassLoader::InstanceSize()); SetClassRoot(kJavaLangClassLoader, java_lang_ClassLoader); // Set up java.lang.Throwable, java.lang.ClassNotFoundException, and // java.lang.StackTraceElement as a convenience. SetClassRoot(kJavaLangThrowable, FindSystemClass(self, "Ljava/lang/Throwable;")); mirror::Throwable::SetClass(GetClassRoot(kJavaLangThrowable)); SetClassRoot(kJavaLangClassNotFoundException, FindSystemClass(self, "Ljava/lang/ClassNotFoundException;")); SetClassRoot(kJavaLangStackTraceElement, FindSystemClass(self, "Ljava/lang/StackTraceElement;")); SetClassRoot(kJavaLangStackTraceElementArrayClass, FindSystemClass(self, "[Ljava/lang/StackTraceElement;")); mirror::StackTraceElement::SetClass(GetClassRoot(kJavaLangStackTraceElement)); // Ensure void type is resolved in the core's dex cache so java.lang.Void is correctly // initialized. { const DexFile& dex_file = java_lang_Object->GetDexFile(); const DexFile::StringId* void_string_id = dex_file.FindStringId("V"); CHECK(void_string_id != nullptr); uint32_t void_string_index = dex_file.GetIndexForStringId(*void_string_id); const DexFile::TypeId* void_type_id = dex_file.FindTypeId(void_string_index); CHECK(void_type_id != nullptr); uint16_t void_type_idx = dex_file.GetIndexForTypeId(*void_type_id); // Now we resolve void type so the dex cache contains it. We use java.lang.Object class // as referrer so the used dex cache is core's one. mirror::Class* resolved_type = ResolveType(dex_file, void_type_idx, java_lang_Object.Get()); CHECK_EQ(resolved_type, GetClassRoot(kPrimitiveVoid)); self->AssertNoPendingException(); } FinishInit(self); VLOG(startup) << "ClassLinker::InitFromCompiler exiting"; } void ClassLinker::FinishInit(Thread* self) { VLOG(startup) << "ClassLinker::FinishInit entering"; // Let the heap know some key offsets into java.lang.ref instances // Note: we hard code the field indexes here rather than using FindInstanceField // as the types of the field can't be resolved prior to the runtime being // fully initialized mirror::Class* java_lang_ref_Reference = GetClassRoot(kJavaLangRefReference); mirror::Class* java_lang_ref_FinalizerReference = FindSystemClass(self, "Ljava/lang/ref/FinalizerReference;"); mirror::ArtField* pendingNext = java_lang_ref_Reference->GetInstanceField(0); CHECK_STREQ(pendingNext->GetName(), "pendingNext"); CHECK_STREQ(pendingNext->GetTypeDescriptor(), "Ljava/lang/ref/Reference;"); mirror::ArtField* queue = java_lang_ref_Reference->GetInstanceField(1); CHECK_STREQ(queue->GetName(), "queue"); CHECK_STREQ(queue->GetTypeDescriptor(), "Ljava/lang/ref/ReferenceQueue;"); mirror::ArtField* queueNext = java_lang_ref_Reference->GetInstanceField(2); CHECK_STREQ(queueNext->GetName(), "queueNext"); CHECK_STREQ(queueNext->GetTypeDescriptor(), "Ljava/lang/ref/Reference;"); mirror::ArtField* referent = java_lang_ref_Reference->GetInstanceField(3); CHECK_STREQ(referent->GetName(), "referent"); CHECK_STREQ(referent->GetTypeDescriptor(), "Ljava/lang/Object;"); mirror::ArtField* zombie = java_lang_ref_FinalizerReference->GetInstanceField(2); CHECK_STREQ(zombie->GetName(), "zombie"); CHECK_STREQ(zombie->GetTypeDescriptor(), "Ljava/lang/Object;"); // ensure all class_roots_ are initialized for (size_t i = 0; i < kClassRootsMax; i++) { ClassRoot class_root = static_cast(i); mirror::Class* klass = GetClassRoot(class_root); CHECK(klass != nullptr); DCHECK(klass->IsArrayClass() || klass->IsPrimitive() || klass->GetDexCache() != nullptr); // note SetClassRoot does additional validation. // if possible add new checks there to catch errors early } CHECK(!array_iftable_.IsNull()); // disable the slow paths in FindClass and CreatePrimitiveClass now // that Object, Class, and Object[] are setup init_done_ = true; VLOG(startup) << "ClassLinker::FinishInit exiting"; } void ClassLinker::RunRootClinits() { Thread* self = Thread::Current(); for (size_t i = 0; i < ClassLinker::kClassRootsMax; ++i) { mirror::Class* c = GetClassRoot(ClassRoot(i)); if (!c->IsArrayClass() && !c->IsPrimitive()) { StackHandleScope<1> hs(self); Handle h_class(hs.NewHandle(GetClassRoot(ClassRoot(i)))); EnsureInitialized(h_class, true, true); self->AssertNoPendingException(); } } } bool ClassLinker::GenerateOatFile(const char* dex_filename, int oat_fd, const char* oat_cache_filename, std::string* error_msg) { Locks::mutator_lock_->AssertNotHeld(Thread::Current()); // Avoid starving GC. std::string dex2oat(Runtime::Current()->GetCompilerExecutable()); gc::Heap* heap = Runtime::Current()->GetHeap(); std::string boot_image_option("--boot-image="); if (heap->GetImageSpace() == nullptr) { // TODO If we get a dex2dex compiler working we could maybe use that, OTOH since we are likely // out of space anyway it might not matter. *error_msg = StringPrintf("Cannot create oat file for '%s' because we are running " "without an image.", dex_filename); return false; } boot_image_option += heap->GetImageSpace()->GetImageLocation(); std::string dex_file_option("--dex-file="); dex_file_option += dex_filename; std::string oat_fd_option("--oat-fd="); StringAppendF(&oat_fd_option, "%d", oat_fd); std::string oat_location_option("--oat-location="); oat_location_option += oat_cache_filename; std::vector argv; argv.push_back(dex2oat); argv.push_back("--runtime-arg"); argv.push_back("-classpath"); argv.push_back("--runtime-arg"); argv.push_back(Runtime::Current()->GetClassPathString()); Runtime::Current()->AddCurrentRuntimeFeaturesAsDex2OatArguments(&argv); if (!Runtime::Current()->IsVerificationEnabled()) { argv.push_back("--compiler-filter=verify-none"); } if (Runtime::Current()->MustRelocateIfPossible()) { argv.push_back("--runtime-arg"); argv.push_back("-Xrelocate"); } else { argv.push_back("--runtime-arg"); argv.push_back("-Xnorelocate"); } if (!kIsTargetBuild) { argv.push_back("--host"); } argv.push_back(boot_image_option); argv.push_back(dex_file_option); argv.push_back(oat_fd_option); argv.push_back(oat_location_option); const std::vector& compiler_options = Runtime::Current()->GetCompilerOptions(); for (size_t i = 0; i < compiler_options.size(); ++i) { argv.push_back(compiler_options[i].c_str()); } if (!Exec(argv, error_msg)) { // Manually delete the file. Ensures there is no garbage left over if the process unexpectedly // died. Ignore unlink failure, propagate the original error. TEMP_FAILURE_RETRY(unlink(oat_cache_filename)); return false; } return true; } const OatFile* ClassLinker::RegisterOatFile(const OatFile* oat_file) { WriterMutexLock mu(Thread::Current(), dex_lock_); if (kIsDebugBuild) { for (size_t i = 0; i < oat_files_.size(); ++i) { CHECK_NE(oat_file, oat_files_[i]) << oat_file->GetLocation(); } } VLOG(class_linker) << "Registering " << oat_file->GetLocation(); oat_files_.push_back(oat_file); return oat_file; } OatFile& ClassLinker::GetImageOatFile(gc::space::ImageSpace* space) { VLOG(startup) << "ClassLinker::GetImageOatFile entering"; OatFile* oat_file = space->ReleaseOatFile(); CHECK_EQ(RegisterOatFile(oat_file), oat_file); VLOG(startup) << "ClassLinker::GetImageOatFile exiting"; return *oat_file; } const OatFile::OatDexFile* ClassLinker::FindOpenedOatDexFileForDexFile(const DexFile& dex_file) { const char* dex_location = dex_file.GetLocation().c_str(); uint32_t dex_location_checksum = dex_file.GetLocationChecksum(); return FindOpenedOatDexFile(nullptr, dex_location, &dex_location_checksum); } const OatFile::OatDexFile* ClassLinker::FindOpenedOatDexFile(const char* oat_location, const char* dex_location, const uint32_t* dex_location_checksum) { ReaderMutexLock mu(Thread::Current(), dex_lock_); for (const OatFile* oat_file : oat_files_) { DCHECK(oat_file != nullptr); if (oat_location != nullptr) { if (oat_file->GetLocation() != oat_location) { continue; } } const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(dex_location, dex_location_checksum, false); if (oat_dex_file != nullptr) { return oat_dex_file; } } return nullptr; } // Loads all multi dex files from the given oat file returning true on success. // // Parameters: // oat_file - the oat file to load from // dex_location - the dex location used to generate the oat file // dex_location_checksum - the checksum of the dex_location (may be null for pre-opted files) // generated - whether or not the oat_file existed before or was just (re)generated // error_msgs - any error messages will be appended here // dex_files - the loaded dex_files will be appended here (only if the loading succeeds) static bool LoadMultiDexFilesFromOatFile(const OatFile* oat_file, const char* dex_location, const uint32_t* dex_location_checksum, bool generated, std::vector* error_msgs, std::vector* dex_files) { if (oat_file == nullptr) { return false; } size_t old_size = dex_files->size(); // To rollback on error. bool success = true; for (size_t i = 0; success; ++i) { std::string next_name_str = DexFile::GetMultiDexClassesDexName(i, dex_location); const char* next_name = next_name_str.c_str(); uint32_t next_location_checksum; uint32_t* next_location_checksum_pointer = &next_location_checksum; std::string error_msg; if ((i == 0) && (strcmp(next_name, dex_location) == 0)) { // When i=0 the multidex name should be the same as the location name. We already have the // checksum it so we don't need to recompute it. if (dex_location_checksum == nullptr) { next_location_checksum_pointer = nullptr; } else { next_location_checksum = *dex_location_checksum; } } else if (!DexFile::GetChecksum(next_name, next_location_checksum_pointer, &error_msg)) { DCHECK_EQ(false, i == 0 && generated); next_location_checksum_pointer = nullptr; } const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(next_name, nullptr, false); if (oat_dex_file == nullptr) { if (i == 0 && generated) { std::string error_msg; error_msg = StringPrintf("\nFailed to find dex file '%s' (checksum 0x%x) in generated out " " file'%s'", dex_location, next_location_checksum, oat_file->GetLocation().c_str()); error_msgs->push_back(error_msg); } break; // Not found, done. } // Checksum test. Test must succeed when generated. success = !generated; if (next_location_checksum_pointer != nullptr) { success = next_location_checksum == oat_dex_file->GetDexFileLocationChecksum(); } if (success) { const DexFile* dex_file = oat_dex_file->OpenDexFile(&error_msg); if (dex_file == nullptr) { success = false; error_msgs->push_back(error_msg); } else { dex_files->push_back(dex_file); } } // When we generated the file, we expect success, or something is terribly wrong. CHECK_EQ(false, generated && !success) << "dex_location=" << next_name << " oat_location=" << oat_file->GetLocation().c_str() << std::hex << " dex_location_checksum=" << next_location_checksum << " OatDexFile::GetLocationChecksum()=" << oat_dex_file->GetDexFileLocationChecksum(); } if (dex_files->size() == old_size) { success = false; // We did not even find classes.dex } if (success) { return true; } else { // Free all the dex files we have loaded. auto it = dex_files->begin() + old_size; auto it_end = dex_files->end(); for (; it != it_end; it++) { delete *it; } dex_files->erase(dex_files->begin() + old_size, it_end); return false; } } // Multidex files make it possible that some, but not all, dex files can be broken/outdated. This // complicates the loading process, as we should not use an iterative loading process, because that // would register the oat file and dex files that come before the broken one. Instead, check all // multidex ahead of time. bool ClassLinker::OpenDexFilesFromOat(const char* dex_location, const char* oat_location, std::vector* error_msgs, std::vector* dex_files) { // 1) Check whether we have an open oat file. // This requires a dex checksum, use the "primary" one. uint32_t dex_location_checksum; uint32_t* dex_location_checksum_pointer = &dex_location_checksum; bool have_checksum = true; std::string checksum_error_msg; if (!DexFile::GetChecksum(dex_location, dex_location_checksum_pointer, &checksum_error_msg)) { // This happens for pre-opted files since the corresponding dex files are no longer on disk. dex_location_checksum_pointer = nullptr; have_checksum = false; } bool needs_registering = false; const OatFile::OatDexFile* oat_dex_file = FindOpenedOatDexFile(oat_location, dex_location, dex_location_checksum_pointer); std::unique_ptr open_oat_file( oat_dex_file != nullptr ? oat_dex_file->GetOatFile() : nullptr); // 2) If we do not have an open one, maybe there's one on disk already. // In case the oat file is not open, we play a locking game here so // that if two different processes race to load and register or generate // (or worse, one tries to open a partial generated file) we will be okay. // This is actually common with apps that use DexClassLoader to work // around the dex method reference limit and that have a background // service running in a separate process. ScopedFlock scoped_flock; if (open_oat_file.get() == nullptr) { if (oat_location != nullptr) { // Can only do this if we have a checksum, else error. if (!have_checksum) { error_msgs->push_back(checksum_error_msg); return false; } std::string error_msg; // We are loading or creating one in the future. Time to set up the file lock. if (!scoped_flock.Init(oat_location, &error_msg)) { error_msgs->push_back(error_msg); return false; } // TODO Caller specifically asks for this oat_location. We should honor it. Probably? open_oat_file.reset(FindOatFileInOatLocationForDexFile(dex_location, dex_location_checksum, oat_location, &error_msg)); if (open_oat_file.get() == nullptr) { std::string compound_msg = StringPrintf("Failed to find dex file '%s' in oat location '%s': %s", dex_location, oat_location, error_msg.c_str()); VLOG(class_linker) << compound_msg; error_msgs->push_back(compound_msg); } } else { // TODO: What to lock here? bool obsolete_file_cleanup_failed; open_oat_file.reset(FindOatFileContainingDexFileFromDexLocation(dex_location, dex_location_checksum_pointer, kRuntimeISA, error_msgs, &obsolete_file_cleanup_failed)); // There's no point in going forward and eventually try to regenerate the // file if we couldn't remove the obsolete one. Mostly likely we will fail // with the same error when trying to write the new file. // TODO: should we maybe do this only when we get permission issues? (i.e. EACCESS). if (obsolete_file_cleanup_failed) { return false; } } needs_registering = true; } // 3) If we have an oat file, check all contained multidex files for our dex_location. // Note: LoadMultiDexFilesFromOatFile will check for nullptr in the first argument. bool success = LoadMultiDexFilesFromOatFile(open_oat_file.get(), dex_location, dex_location_checksum_pointer, false, error_msgs, dex_files); if (success) { const OatFile* oat_file = open_oat_file.release(); // Avoid deleting it. if (needs_registering) { // We opened the oat file, so we must register it. RegisterOatFile(oat_file); } // If the file isn't executable we failed patchoat but did manage to get the dex files. return oat_file->IsExecutable(); } else { if (needs_registering) { // We opened it, delete it. open_oat_file.reset(); } else { open_oat_file.release(); // Do not delete open oat files. } } // 4) If it's not the case (either no oat file or mismatches), regenerate and load. // Need a checksum, fail else. if (!have_checksum) { error_msgs->push_back(checksum_error_msg); return false; } // Look in cache location if no oat_location is given. std::string cache_location; if (oat_location == nullptr) { // Use the dalvik cache. const std::string dalvik_cache(GetDalvikCacheOrDie(GetInstructionSetString(kRuntimeISA))); cache_location = GetDalvikCacheFilenameOrDie(dex_location, dalvik_cache.c_str()); oat_location = cache_location.c_str(); } bool has_flock = true; // Definitely need to lock now. if (!scoped_flock.HasFile()) { std::string error_msg; if (!scoped_flock.Init(oat_location, &error_msg)) { error_msgs->push_back(error_msg); has_flock = false; } } if (Runtime::Current()->IsDex2OatEnabled() && has_flock && scoped_flock.HasFile()) { // Create the oat file. open_oat_file.reset(CreateOatFileForDexLocation(dex_location, scoped_flock.GetFile()->Fd(), oat_location, error_msgs)); } // Failed, bail. if (open_oat_file.get() == nullptr) { std::string error_msg; // dex2oat was disabled or crashed. Add the dex file in the list of dex_files to make progress. DexFile::Open(dex_location, dex_location, &error_msg, dex_files); error_msgs->push_back(error_msg); return false; } // Try to load again, but stronger checks. success = LoadMultiDexFilesFromOatFile(open_oat_file.get(), dex_location, dex_location_checksum_pointer, true, error_msgs, dex_files); if (success) { RegisterOatFile(open_oat_file.release()); return true; } else { return false; } } const OatFile* ClassLinker::FindOatFileInOatLocationForDexFile(const char* dex_location, uint32_t dex_location_checksum, const char* oat_location, std::string* error_msg) { std::unique_ptr oat_file(OatFile::Open(oat_location, oat_location, nullptr, nullptr, !Runtime::Current()->IsCompiler(), error_msg)); if (oat_file.get() == nullptr) { *error_msg = StringPrintf("Failed to find existing oat file at %s: %s", oat_location, error_msg->c_str()); return nullptr; } Runtime* runtime = Runtime::Current(); const gc::space::ImageSpace* image_space = runtime->GetHeap()->GetImageSpace(); if (image_space != nullptr) { const ImageHeader& image_header = image_space->GetImageHeader(); uint32_t expected_image_oat_checksum = image_header.GetOatChecksum(); uint32_t actual_image_oat_checksum = oat_file->GetOatHeader().GetImageFileLocationOatChecksum(); if (expected_image_oat_checksum != actual_image_oat_checksum) { *error_msg = StringPrintf("Failed to find oat file at '%s' with expected image oat checksum of " "0x%x, found 0x%x", oat_location, expected_image_oat_checksum, actual_image_oat_checksum); return nullptr; } uintptr_t expected_image_oat_offset = reinterpret_cast(image_header.GetOatDataBegin()); uint32_t actual_image_oat_offset = oat_file->GetOatHeader().GetImageFileLocationOatDataBegin(); if (expected_image_oat_offset != actual_image_oat_offset) { *error_msg = StringPrintf("Failed to find oat file at '%s' with expected image oat offset %" PRIuPTR ", found %ud", oat_location, expected_image_oat_offset, actual_image_oat_offset); return nullptr; } int32_t expected_patch_delta = image_header.GetPatchDelta(); int32_t actual_patch_delta = oat_file->GetOatHeader().GetImagePatchDelta(); if (expected_patch_delta != actual_patch_delta) { *error_msg = StringPrintf("Failed to find oat file at '%s' with expected patch delta %d, " " found %d", oat_location, expected_patch_delta, actual_patch_delta); return nullptr; } } const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(dex_location, &dex_location_checksum); if (oat_dex_file == nullptr) { *error_msg = StringPrintf("Failed to find oat file at '%s' containing '%s'", oat_location, dex_location); return nullptr; } uint32_t expected_dex_checksum = dex_location_checksum; uint32_t actual_dex_checksum = oat_dex_file->GetDexFileLocationChecksum(); if (expected_dex_checksum != actual_dex_checksum) { *error_msg = StringPrintf("Failed to find oat file at '%s' with expected dex checksum of 0x%x, " "found 0x%x", oat_location, expected_dex_checksum, actual_dex_checksum); return nullptr; } std::unique_ptr dex_file(oat_dex_file->OpenDexFile(error_msg)); if (dex_file.get() != nullptr) { return oat_file.release(); } else { return nullptr; } } const OatFile* ClassLinker::CreateOatFileForDexLocation(const char* dex_location, int fd, const char* oat_location, std::vector* error_msgs) { // Generate the output oat file for the dex file VLOG(class_linker) << "Generating oat file " << oat_location << " for " << dex_location; std::string error_msg; if (!GenerateOatFile(dex_location, fd, oat_location, &error_msg)) { CHECK(!error_msg.empty()); error_msgs->push_back(error_msg); return nullptr; } std::unique_ptr oat_file(OatFile::Open(oat_location, oat_location, nullptr, nullptr, !Runtime::Current()->IsCompiler(), &error_msg)); if (oat_file.get() == nullptr) { std::string compound_msg = StringPrintf("\nFailed to open generated oat file '%s': %s", oat_location, error_msg.c_str()); error_msgs->push_back(compound_msg); return nullptr; } return oat_file.release(); } bool ClassLinker::VerifyOatImageChecksum(const OatFile* oat_file, const InstructionSet instruction_set) { Runtime* runtime = Runtime::Current(); const gc::space::ImageSpace* image_space = runtime->GetHeap()->GetImageSpace(); if (image_space == nullptr) { return false; } uint32_t image_oat_checksum = 0; if (instruction_set == kRuntimeISA) { const ImageHeader& image_header = image_space->GetImageHeader(); image_oat_checksum = image_header.GetOatChecksum(); } else { std::unique_ptr image_header(gc::space::ImageSpace::ReadImageHeaderOrDie( image_space->GetImageLocation().c_str(), instruction_set)); image_oat_checksum = image_header->GetOatChecksum(); } return oat_file->GetOatHeader().GetImageFileLocationOatChecksum() == image_oat_checksum; } bool ClassLinker::VerifyOatChecksums(const OatFile* oat_file, const InstructionSet instruction_set, std::string* error_msg) { Runtime* runtime = Runtime::Current(); const gc::space::ImageSpace* image_space = runtime->GetHeap()->GetImageSpace(); if (image_space == nullptr) { *error_msg = "No image space for verification against"; return false; } // If the requested instruction set is the same as the current runtime, // we can use the checksums directly. If it isn't, we'll have to read the // image header from the image for the right instruction set. uint32_t image_oat_checksum = 0; uintptr_t image_oat_data_begin = 0; int32_t image_patch_delta = 0; if (instruction_set == runtime->GetInstructionSet()) { const ImageHeader& image_header = image_space->GetImageHeader(); image_oat_checksum = image_header.GetOatChecksum(); image_oat_data_begin = reinterpret_cast(image_header.GetOatDataBegin()); image_patch_delta = image_header.GetPatchDelta(); } else { std::unique_ptr image_header(gc::space::ImageSpace::ReadImageHeaderOrDie( image_space->GetImageLocation().c_str(), instruction_set)); image_oat_checksum = image_header->GetOatChecksum(); image_oat_data_begin = reinterpret_cast(image_header->GetOatDataBegin()); image_patch_delta = image_header->GetPatchDelta(); } const OatHeader& oat_header = oat_file->GetOatHeader(); bool ret = (oat_header.GetImageFileLocationOatChecksum() == image_oat_checksum); // If the oat file is PIC, it doesn't care if/how image was relocated. Ignore these checks. if (!oat_file->IsPic()) { ret = ret && (oat_header.GetImagePatchDelta() == image_patch_delta) && (oat_header.GetImageFileLocationOatDataBegin() == image_oat_data_begin); } if (!ret) { *error_msg = StringPrintf("oat file '%s' mismatch (0x%x, %d, %d) with (0x%x, %" PRIdPTR ", %d)", oat_file->GetLocation().c_str(), oat_file->GetOatHeader().GetImageFileLocationOatChecksum(), oat_file->GetOatHeader().GetImageFileLocationOatDataBegin(), oat_file->GetOatHeader().GetImagePatchDelta(), image_oat_checksum, image_oat_data_begin, image_patch_delta); } return ret; } bool ClassLinker::VerifyOatAndDexFileChecksums(const OatFile* oat_file, const char* dex_location, uint32_t dex_location_checksum, const InstructionSet instruction_set, std::string* error_msg) { if (!VerifyOatChecksums(oat_file, instruction_set, error_msg)) { return false; } const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(dex_location, &dex_location_checksum); if (oat_dex_file == nullptr) { *error_msg = StringPrintf("oat file '%s' does not contain contents for '%s' with checksum 0x%x", oat_file->GetLocation().c_str(), dex_location, dex_location_checksum); for (const OatFile::OatDexFile* oat_dex_file : oat_file->GetOatDexFiles()) { *error_msg += StringPrintf("\noat file '%s' contains contents for '%s' with checksum 0x%x", oat_file->GetLocation().c_str(), oat_dex_file->GetDexFileLocation().c_str(), oat_dex_file->GetDexFileLocationChecksum()); } return false; } if (dex_location_checksum != oat_dex_file->GetDexFileLocationChecksum()) { *error_msg = StringPrintf("oat file '%s' mismatch (0x%x) with '%s' (0x%x)", oat_file->GetLocation().c_str(), oat_dex_file->GetDexFileLocationChecksum(), dex_location, dex_location_checksum); return false; } return true; } bool ClassLinker::VerifyOatWithDexFile(const OatFile* oat_file, const char* dex_location, const uint32_t* dex_location_checksum, std::string* error_msg) { CHECK(oat_file != nullptr); CHECK(dex_location != nullptr); std::unique_ptr dex_file; if (dex_location_checksum == nullptr) { // If no classes.dex found in dex_location, it has been stripped or is corrupt, assume oat is // up-to-date. This is the common case in user builds for jar's and apk's in the /system // directory. const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(dex_location, nullptr); if (oat_dex_file == nullptr) { *error_msg = StringPrintf("Dex checksum mismatch for location '%s' and failed to find oat " "dex file '%s': %s", oat_file->GetLocation().c_str(), dex_location, error_msg->c_str()); return false; } dex_file.reset(oat_dex_file->OpenDexFile(error_msg)); } else { bool verified = VerifyOatAndDexFileChecksums(oat_file, dex_location, *dex_location_checksum, kRuntimeISA, error_msg); if (!verified) { return false; } dex_file.reset(oat_file->GetOatDexFile(dex_location, dex_location_checksum)->OpenDexFile(error_msg)); } return dex_file.get() != nullptr; } const OatFile* ClassLinker::FindOatFileContainingDexFileFromDexLocation( const char* dex_location, const uint32_t* dex_location_checksum, InstructionSet isa, std::vector* error_msgs, bool* obsolete_file_cleanup_failed) { *obsolete_file_cleanup_failed = false; bool already_opened = false; std::string dex_location_str(dex_location); std::unique_ptr oat_file(OpenOatFileFromDexLocation(dex_location_str, isa, &already_opened, obsolete_file_cleanup_failed, error_msgs)); std::string error_msg; if (oat_file.get() == nullptr) { error_msgs->push_back(StringPrintf("Failed to open oat file from dex location '%s'", dex_location)); return nullptr; } else if (oat_file->IsExecutable() && !VerifyOatWithDexFile(oat_file.get(), dex_location, dex_location_checksum, &error_msg)) { error_msgs->push_back(StringPrintf("Failed to verify oat file '%s' found for dex location " "'%s': %s", oat_file->GetLocation().c_str(), dex_location, error_msg.c_str())); return nullptr; } else if (!oat_file->IsExecutable() && Runtime::Current()->GetHeap()->HasImageSpace() && !VerifyOatImageChecksum(oat_file.get(), isa)) { error_msgs->push_back(StringPrintf("Failed to verify non-executable oat file '%s' found for " "dex location '%s'. Image checksum incorrect.", oat_file->GetLocation().c_str(), dex_location)); return nullptr; } else { return oat_file.release(); } } const OatFile* ClassLinker::FindOpenedOatFileFromOatLocation(const std::string& oat_location) { ReaderMutexLock mu(Thread::Current(), dex_lock_); for (size_t i = 0; i < oat_files_.size(); i++) { const OatFile* oat_file = oat_files_[i]; DCHECK(oat_file != nullptr); if (oat_file->GetLocation() == oat_location) { return oat_file; } } return nullptr; } const OatFile* ClassLinker::OpenOatFileFromDexLocation(const std::string& dex_location, InstructionSet isa, bool *already_opened, bool *obsolete_file_cleanup_failed, std::vector* error_msgs) { // Find out if we've already opened the file const OatFile* ret = nullptr; std::string odex_filename(DexFilenameToOdexFilename(dex_location, isa)); ret = FindOpenedOatFileFromOatLocation(odex_filename); if (ret != nullptr) { *already_opened = true; return ret; } std::string dalvik_cache; bool have_android_data = false; bool have_dalvik_cache = false; bool is_global_cache = false; GetDalvikCache(GetInstructionSetString(kRuntimeISA), false, &dalvik_cache, &have_android_data, &have_dalvik_cache, &is_global_cache); std::string cache_filename; if (have_dalvik_cache) { cache_filename = GetDalvikCacheFilenameOrDie(dex_location.c_str(), dalvik_cache.c_str()); ret = FindOpenedOatFileFromOatLocation(cache_filename); if (ret != nullptr) { *already_opened = true; return ret; } } else { // If we need to relocate we should just place odex back where it started. cache_filename = odex_filename; } ret = nullptr; // We know that neither the odex nor the cache'd version is already in use, if it even exists. // // Now we do the following: // 1) Try and open the odex version // 2) If present, checksum-verified & relocated correctly return it // 3) Close the odex version to free up its address space. // 4) Try and open the cache version // 5) If present, checksum-verified & relocated correctly return it // 6) Close the cache version to free up its address space. // 7) If we should relocate: // a) If we have opened and checksum-verified the odex version relocate it to // 'cache_filename' and return it // b) If we have opened and checksum-verified the cache version relocate it in place and return // it. This should not happen often (I think only the run-test's will hit this case). // 8) If the cache-version was present we should delete it since it must be obsolete if we get to // this point. // 9) Return nullptr *already_opened = false; const Runtime* runtime = Runtime::Current(); CHECK(runtime != nullptr); bool executable = !runtime->IsCompiler(); std::string odex_error_msg; bool should_patch_system = false; bool odex_checksum_verified = false; bool have_system_odex = false; { // There is a high probability that both these oat files map similar/the same address // spaces so we must scope them like this so they each gets its turn. std::unique_ptr odex_oat_file(OatFile::Open(odex_filename, odex_filename, nullptr, nullptr, executable, &odex_error_msg)); if (odex_oat_file.get() != nullptr && CheckOatFile(runtime, odex_oat_file.get(), isa, &odex_checksum_verified, &odex_error_msg)) { error_msgs->push_back(odex_error_msg); return odex_oat_file.release(); } else { if (odex_checksum_verified) { // We can just relocate should_patch_system = true; odex_error_msg = "Image Patches are incorrect"; } if (odex_oat_file.get() != nullptr) { have_system_odex = true; } } } std::string cache_error_msg; bool should_patch_cache = false; bool cache_checksum_verified = false; if (have_dalvik_cache) { std::unique_ptr cache_oat_file(OatFile::Open(cache_filename, cache_filename, nullptr, nullptr, executable, &cache_error_msg)); if (cache_oat_file.get() != nullptr && CheckOatFile(runtime, cache_oat_file.get(), isa, &cache_checksum_verified, &cache_error_msg)) { error_msgs->push_back(cache_error_msg); return cache_oat_file.release(); } else if (cache_checksum_verified) { // We can just relocate should_patch_cache = true; cache_error_msg = "Image Patches are incorrect"; } } else if (have_android_data) { // dalvik_cache does not exist but android data does. This means we should be able to create // it, so we should try. GetDalvikCacheOrDie(GetInstructionSetString(kRuntimeISA), true); } ret = nullptr; std::string error_msg; if (runtime->CanRelocate()) { // Run relocation gc::space::ImageSpace* space = Runtime::Current()->GetHeap()->GetImageSpace(); if (space != nullptr) { const std::string& image_location = space->GetImageLocation(); if (odex_checksum_verified && should_patch_system) { ret = PatchAndRetrieveOat(odex_filename, cache_filename, image_location, isa, &error_msg); } else if (cache_checksum_verified && should_patch_cache) { CHECK(have_dalvik_cache); ret = PatchAndRetrieveOat(cache_filename, cache_filename, image_location, isa, &error_msg); } } else if (have_system_odex) { ret = GetInterpretedOnlyOat(odex_filename, isa, &error_msg); } } if (ret == nullptr && have_dalvik_cache && OS::FileExists(cache_filename.c_str())) { // implicitly: were able to fine where the cached version is but we were unable to use it, // either as a destination for relocation or to open a file. We should delete it if it is // there. if (TEMP_FAILURE_RETRY(unlink(cache_filename.c_str())) != 0) { std::string rm_error_msg = StringPrintf("Failed to remove obsolete file from %s when " "searching for dex file %s: %s", cache_filename.c_str(), dex_location.c_str(), strerror(errno)); error_msgs->push_back(rm_error_msg); VLOG(class_linker) << rm_error_msg; // Let the caller know that we couldn't remove the obsolete file. // This is a good indication that further writes may fail as well. *obsolete_file_cleanup_failed = true; } } if (ret == nullptr) { VLOG(class_linker) << error_msg; error_msgs->push_back(error_msg); std::string relocation_msg; if (runtime->CanRelocate()) { relocation_msg = StringPrintf(" and relocation failed"); } if (have_dalvik_cache && cache_checksum_verified) { error_msg = StringPrintf("Failed to open oat file from %s (error %s) or %s " "(error %s)%s.", odex_filename.c_str(), odex_error_msg.c_str(), cache_filename.c_str(), cache_error_msg.c_str(), relocation_msg.c_str()); } else { error_msg = StringPrintf("Failed to open oat file from %s (error %s) (no " "dalvik_cache availible)%s.", odex_filename.c_str(), odex_error_msg.c_str(), relocation_msg.c_str()); } VLOG(class_linker) << error_msg; error_msgs->push_back(error_msg); } return ret; } const OatFile* ClassLinker::GetInterpretedOnlyOat(const std::string& oat_path, InstructionSet isa, std::string* error_msg) { // We open it non-executable std::unique_ptr output(OatFile::Open(oat_path, oat_path, nullptr, nullptr, false, error_msg)); if (output.get() == nullptr) { return nullptr; } if (!Runtime::Current()->GetHeap()->HasImageSpace() || VerifyOatImageChecksum(output.get(), isa)) { return output.release(); } else { *error_msg = StringPrintf("Could not use oat file '%s', image checksum failed to verify.", oat_path.c_str()); return nullptr; } } const OatFile* ClassLinker::PatchAndRetrieveOat(const std::string& input_oat, const std::string& output_oat, const std::string& image_location, InstructionSet isa, std::string* error_msg) { Runtime* runtime = Runtime::Current(); DCHECK(runtime != nullptr); if (!runtime->GetHeap()->HasImageSpace()) { // We don't have an image space so there is no point in trying to patchoat. LOG(WARNING) << "Patching of oat file '" << input_oat << "' not attempted because we are " << "running without an image. Attempting to use oat file for interpretation."; return GetInterpretedOnlyOat(input_oat, isa, error_msg); } if (!runtime->IsDex2OatEnabled()) { // We don't have dex2oat so we can assume we don't have patchoat either. We should just use the // input_oat but make sure we only do interpretation on it's dex files. LOG(WARNING) << "Patching of oat file '" << input_oat << "' not attempted due to dex2oat being " << "disabled. Attempting to use oat file for interpretation"; return GetInterpretedOnlyOat(input_oat, isa, error_msg); } Locks::mutator_lock_->AssertNotHeld(Thread::Current()); // Avoid starving GC. std::string patchoat(runtime->GetPatchoatExecutable()); std::string isa_arg("--instruction-set="); isa_arg += GetInstructionSetString(isa); std::string input_oat_filename_arg("--input-oat-file="); input_oat_filename_arg += input_oat; std::string output_oat_filename_arg("--output-oat-file="); output_oat_filename_arg += output_oat; std::string patched_image_arg("--patched-image-location="); patched_image_arg += image_location; std::vector argv; argv.push_back(patchoat); argv.push_back(isa_arg); argv.push_back(input_oat_filename_arg); argv.push_back(output_oat_filename_arg); argv.push_back(patched_image_arg); std::string command_line(Join(argv, ' ')); LOG(INFO) << "Relocate Oat File: " << command_line; bool success = Exec(argv, error_msg); if (success) { std::unique_ptr output(OatFile::Open(output_oat, output_oat, nullptr, nullptr, !runtime->IsCompiler(), error_msg)); bool checksum_verified = false; if (output.get() != nullptr && CheckOatFile(runtime, output.get(), isa, &checksum_verified, error_msg)) { return output.release(); } else if (output.get() != nullptr) { *error_msg = StringPrintf("Patching of oat file '%s' succeeded " "but output file '%s' failed verifcation: %s", input_oat.c_str(), output_oat.c_str(), error_msg->c_str()); } else { *error_msg = StringPrintf("Patching of oat file '%s' succeeded " "but was unable to open output file '%s': %s", input_oat.c_str(), output_oat.c_str(), error_msg->c_str()); } } else if (!runtime->IsCompiler()) { // patchoat failed which means we probably don't have enough room to place the output oat file, // instead of failing we should just run the interpreter from the dex files in the input oat. LOG(WARNING) << "Patching of oat file '" << input_oat << "' failed. Attempting to use oat file " << "for interpretation. patchoat failure was: " << *error_msg; return GetInterpretedOnlyOat(input_oat, isa, error_msg); } else { *error_msg = StringPrintf("Patching of oat file '%s to '%s' " "failed: %s", input_oat.c_str(), output_oat.c_str(), error_msg->c_str()); } return nullptr; } bool ClassLinker::CheckOatFile(const Runtime* runtime, const OatFile* oat_file, InstructionSet isa, bool* checksum_verified, std::string* error_msg) { std::string compound_msg("Oat file failed to verify: "); uint32_t real_image_checksum; void* real_image_oat_offset; int32_t real_patch_delta; const gc::space::ImageSpace* image_space = Runtime::Current()->GetHeap()->GetImageSpace(); if (image_space == nullptr) { *error_msg = "No image space present"; return false; } if (isa == Runtime::Current()->GetInstructionSet()) { const ImageHeader& image_header = image_space->GetImageHeader(); real_image_checksum = image_header.GetOatChecksum(); real_image_oat_offset = image_header.GetOatDataBegin(); real_patch_delta = image_header.GetPatchDelta(); } else { std::unique_ptr image_header(gc::space::ImageSpace::ReadImageHeaderOrDie( image_space->GetImageLocation().c_str(), isa)); real_image_checksum = image_header->GetOatChecksum(); real_image_oat_offset = image_header->GetOatDataBegin(); real_patch_delta = image_header->GetPatchDelta(); } const OatHeader& oat_header = oat_file->GetOatHeader(); uint32_t oat_image_checksum = oat_header.GetImageFileLocationOatChecksum(); *checksum_verified = oat_image_checksum == real_image_checksum; if (!*checksum_verified) { compound_msg += StringPrintf(" Oat Image Checksum Incorrect (expected 0x%x, recieved 0x%x)", real_image_checksum, oat_image_checksum); } bool offset_verified; bool patch_delta_verified; if (!oat_file->IsPic()) { void* oat_image_oat_offset = reinterpret_cast(oat_header.GetImageFileLocationOatDataBegin()); offset_verified = oat_image_oat_offset == real_image_oat_offset; if (!offset_verified) { compound_msg += StringPrintf(" Oat Image oat offset incorrect (expected 0x%p, recieved 0x%p)", real_image_oat_offset, oat_image_oat_offset); } int32_t oat_patch_delta = oat_header.GetImagePatchDelta(); patch_delta_verified = oat_patch_delta == real_patch_delta; if (!patch_delta_verified) { compound_msg += StringPrintf(" Oat image patch delta incorrect (expected 0x%x, recieved 0x%x)", real_patch_delta, oat_patch_delta); } } else { // If an oat file is PIC, we ignore offset and patching delta. offset_verified = true; patch_delta_verified = true; } bool ret = (*checksum_verified && offset_verified && patch_delta_verified); if (ret) { *error_msg = compound_msg; } return ret; } const OatFile* ClassLinker::FindOatFileFromOatLocation(const std::string& oat_location, std::string* error_msg) { const OatFile* oat_file = FindOpenedOatFileFromOatLocation(oat_location); if (oat_file != nullptr) { return oat_file; } return OatFile::Open(oat_location, oat_location, nullptr, nullptr, !Runtime::Current()->IsCompiler(), error_msg); } static void InitFromImageInterpretOnlyCallback(mirror::Object* obj, void* arg) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { ClassLinker* class_linker = reinterpret_cast(arg); DCHECK(obj != nullptr); DCHECK(class_linker != nullptr); if (obj->IsArtMethod()) { mirror::ArtMethod* method = obj->AsArtMethod(); if (!method->IsNative()) { method->SetEntryPointFromInterpreter(interpreter::artInterpreterToInterpreterBridge); if (method != Runtime::Current()->GetResolutionMethod()) { method->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge()); #if defined(ART_USE_PORTABLE_COMPILER) method->SetEntryPointFromPortableCompiledCode(GetPortableToInterpreterBridge()); #endif } } } } void ClassLinker::InitFromImage() { VLOG(startup) << "ClassLinker::InitFromImage entering"; CHECK(!init_done_); Thread* self = Thread::Current(); gc::Heap* heap = Runtime::Current()->GetHeap(); gc::space::ImageSpace* space = heap->GetImageSpace(); dex_cache_image_class_lookup_required_ = true; CHECK(space != nullptr); OatFile& oat_file = GetImageOatFile(space); CHECK_EQ(oat_file.GetOatHeader().GetImageFileLocationOatChecksum(), 0U); CHECK_EQ(oat_file.GetOatHeader().GetImageFileLocationOatDataBegin(), 0U); const char* image_file_location = oat_file.GetOatHeader(). GetStoreValueByKey(OatHeader::kImageLocationKey); CHECK(image_file_location == nullptr || *image_file_location == 0); portable_resolution_trampoline_ = oat_file.GetOatHeader().GetPortableResolutionTrampoline(); quick_resolution_trampoline_ = oat_file.GetOatHeader().GetQuickResolutionTrampoline(); portable_imt_conflict_trampoline_ = oat_file.GetOatHeader().GetPortableImtConflictTrampoline(); quick_imt_conflict_trampoline_ = oat_file.GetOatHeader().GetQuickImtConflictTrampoline(); quick_generic_jni_trampoline_ = oat_file.GetOatHeader().GetQuickGenericJniTrampoline(); quick_to_interpreter_bridge_trampoline_ = oat_file.GetOatHeader().GetQuickToInterpreterBridge(); mirror::Object* dex_caches_object = space->GetImageHeader().GetImageRoot(ImageHeader::kDexCaches); mirror::ObjectArray* dex_caches = dex_caches_object->AsObjectArray(); StackHandleScope<1> hs(self); Handle> class_roots(hs.NewHandle( space->GetImageHeader().GetImageRoot(ImageHeader::kClassRoots)-> AsObjectArray())); class_roots_ = GcRoot>(class_roots.Get()); // Special case of setting up the String class early so that we can test arbitrary objects // as being Strings or not mirror::String::SetClass(GetClassRoot(kJavaLangString)); CHECK_EQ(oat_file.GetOatHeader().GetDexFileCount(), static_cast(dex_caches->GetLength())); for (int32_t i = 0; i < dex_caches->GetLength(); i++) { StackHandleScope<1> hs(self); Handle dex_cache(hs.NewHandle(dex_caches->Get(i))); const std::string& dex_file_location(dex_cache->GetLocation()->ToModifiedUtf8()); const OatFile::OatDexFile* oat_dex_file = oat_file.GetOatDexFile(dex_file_location.c_str(), nullptr); CHECK(oat_dex_file != nullptr) << oat_file.GetLocation() << " " << dex_file_location; std::string error_msg; const DexFile* dex_file = oat_dex_file->OpenDexFile(&error_msg); if (dex_file == nullptr) { LOG(FATAL) << "Failed to open dex file " << dex_file_location << " from within oat file " << oat_file.GetLocation() << " error '" << error_msg << "'"; } CHECK_EQ(dex_file->GetLocationChecksum(), oat_dex_file->GetDexFileLocationChecksum()); AppendToBootClassPath(*dex_file, dex_cache); } // Set classes on AbstractMethod early so that IsMethod tests can be performed during the live // bitmap walk. mirror::ArtMethod::SetClass(GetClassRoot(kJavaLangReflectArtMethod)); size_t art_method_object_size = mirror::ArtMethod::GetJavaLangReflectArtMethod()->GetObjectSize(); if (!Runtime::Current()->IsCompiler()) { // Compiler supports having an image with a different pointer size than the runtime. This // happens on the host for compile 32 bit tests since we use a 64 bit libart compiler. We may // also use 32 bit dex2oat on a system with 64 bit apps. CHECK_EQ(art_method_object_size, mirror::ArtMethod::InstanceSize(sizeof(void*))) << sizeof(void*); } if (art_method_object_size == mirror::ArtMethod::InstanceSize(4)) { image_pointer_size_ = 4; } else { CHECK_EQ(art_method_object_size, mirror::ArtMethod::InstanceSize(8)); image_pointer_size_ = 8; } // Set entry point to interpreter if in InterpretOnly mode. if (Runtime::Current()->GetInstrumentation()->InterpretOnly()) { ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); heap->VisitObjects(InitFromImageInterpretOnlyCallback, this); } // reinit class_roots_ mirror::Class::SetClassClass(class_roots->Get(kJavaLangClass)); class_roots_ = GcRoot>(class_roots.Get()); // reinit array_iftable_ from any array class instance, they should be == array_iftable_ = GcRoot(GetClassRoot(kObjectArrayClass)->GetIfTable()); DCHECK_EQ(array_iftable_.Read(), GetClassRoot(kBooleanArrayClass)->GetIfTable()); // String class root was set above mirror::Reference::SetClass(GetClassRoot(kJavaLangRefReference)); mirror::ArtField::SetClass(GetClassRoot(kJavaLangReflectArtField)); mirror::BooleanArray::SetArrayClass(GetClassRoot(kBooleanArrayClass)); mirror::ByteArray::SetArrayClass(GetClassRoot(kByteArrayClass)); mirror::CharArray::SetArrayClass(GetClassRoot(kCharArrayClass)); mirror::DoubleArray::SetArrayClass(GetClassRoot(kDoubleArrayClass)); mirror::FloatArray::SetArrayClass(GetClassRoot(kFloatArrayClass)); mirror::IntArray::SetArrayClass(GetClassRoot(kIntArrayClass)); mirror::LongArray::SetArrayClass(GetClassRoot(kLongArrayClass)); mirror::ShortArray::SetArrayClass(GetClassRoot(kShortArrayClass)); mirror::Throwable::SetClass(GetClassRoot(kJavaLangThrowable)); mirror::StackTraceElement::SetClass(GetClassRoot(kJavaLangStackTraceElement)); FinishInit(self); VLOG(startup) << "ClassLinker::InitFromImage exiting"; } void ClassLinker::VisitClassRoots(RootCallback* callback, void* arg, VisitRootFlags flags) { WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); if ((flags & kVisitRootFlagAllRoots) != 0) { for (GcRoot& root : class_table_) { root.VisitRoot(callback, arg, RootInfo(kRootStickyClass)); } for (GcRoot& root : pre_zygote_class_table_) { root.VisitRoot(callback, arg, RootInfo(kRootStickyClass)); } } else if ((flags & kVisitRootFlagNewRoots) != 0) { for (auto& root : new_class_roots_) { mirror::Class* old_ref = root.Read(); root.VisitRoot(callback, arg, RootInfo(kRootStickyClass)); mirror::Class* new_ref = root.Read(); if (UNLIKELY(new_ref != old_ref)) { // Uh ohes, GC moved a root in the log. Need to search the class_table and update the // corresponding object. This is slow, but luckily for us, this may only happen with a // concurrent moving GC. auto it = class_table_.Find(GcRoot(old_ref)); DCHECK(it != class_table_.end()); *it = GcRoot(new_ref); } } } if ((flags & kVisitRootFlagClearRootLog) != 0) { new_class_roots_.clear(); } if ((flags & kVisitRootFlagStartLoggingNewRoots) != 0) { log_new_class_table_roots_ = true; } else if ((flags & kVisitRootFlagStopLoggingNewRoots) != 0) { log_new_class_table_roots_ = false; } // We deliberately ignore the class roots in the image since we // handle image roots by using the MS/CMS rescanning of dirty cards. } // Keep in sync with InitCallback. Anything we visit, we need to // reinit references to when reinitializing a ClassLinker from a // mapped image. void ClassLinker::VisitRoots(RootCallback* callback, void* arg, VisitRootFlags flags) { class_roots_.VisitRoot(callback, arg, RootInfo(kRootVMInternal)); Thread* self = Thread::Current(); { ReaderMutexLock mu(self, dex_lock_); if ((flags & kVisitRootFlagAllRoots) != 0) { for (GcRoot& dex_cache : dex_caches_) { dex_cache.VisitRoot(callback, arg, RootInfo(kRootVMInternal)); } } else if ((flags & kVisitRootFlagNewRoots) != 0) { for (size_t index : new_dex_cache_roots_) { dex_caches_[index].VisitRoot(callback, arg, RootInfo(kRootVMInternal)); } } if ((flags & kVisitRootFlagClearRootLog) != 0) { new_dex_cache_roots_.clear(); } if ((flags & kVisitRootFlagStartLoggingNewRoots) != 0) { log_new_dex_caches_roots_ = true; } else if ((flags & kVisitRootFlagStopLoggingNewRoots) != 0) { log_new_dex_caches_roots_ = false; } } VisitClassRoots(callback, arg, flags); array_iftable_.VisitRoot(callback, arg, RootInfo(kRootVMInternal)); DCHECK(!array_iftable_.IsNull()); for (size_t i = 0; i < kFindArrayCacheSize; ++i) { find_array_class_cache_[i].VisitRootIfNonNull(callback, arg, RootInfo(kRootVMInternal)); } } void ClassLinker::VisitClasses(ClassVisitor* visitor, void* arg) { if (dex_cache_image_class_lookup_required_) { MoveImageClassesToClassTable(); } // TODO: why isn't this a ReaderMutexLock? WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); for (GcRoot& root : class_table_) { if (!visitor(root.Read(), arg)) { return; } } for (GcRoot& root : pre_zygote_class_table_) { if (!visitor(root.Read(), arg)) { return; } } } static bool GetClassesVisitorSet(mirror::Class* c, void* arg) { std::set* classes = reinterpret_cast*>(arg); classes->insert(c); return true; } struct GetClassesVisitorArrayArg { Handle>* classes; int32_t index; bool success; }; static bool GetClassesVisitorArray(mirror::Class* c, void* varg) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { GetClassesVisitorArrayArg* arg = reinterpret_cast(varg); if (arg->index < (*arg->classes)->GetLength()) { (*arg->classes)->Set(arg->index, c); arg->index++; return true; } else { arg->success = false; return false; } } void ClassLinker::VisitClassesWithoutClassesLock(ClassVisitor* visitor, void* arg) { // TODO: it may be possible to avoid secondary storage if we iterate over dex caches. The problem // is avoiding duplicates. if (!kMovingClasses) { std::set classes; VisitClasses(GetClassesVisitorSet, &classes); for (mirror::Class* klass : classes) { if (!visitor(klass, arg)) { return; } } } else { Thread* self = Thread::Current(); StackHandleScope<1> hs(self); Handle> classes = hs.NewHandle>(nullptr); GetClassesVisitorArrayArg local_arg; local_arg.classes = &classes; local_arg.success = false; // We size the array assuming classes won't be added to the class table during the visit. // If this assumption fails we iterate again. while (!local_arg.success) { size_t class_table_size; { ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); class_table_size = class_table_.Size() + pre_zygote_class_table_.Size(); } mirror::Class* class_type = mirror::Class::GetJavaLangClass(); mirror::Class* array_of_class = FindArrayClass(self, &class_type); classes.Assign( mirror::ObjectArray::Alloc(self, array_of_class, class_table_size)); CHECK(classes.Get() != nullptr); // OOME. local_arg.index = 0; local_arg.success = true; VisitClasses(GetClassesVisitorArray, &local_arg); } for (int32_t i = 0; i < classes->GetLength(); ++i) { // If the class table shrank during creation of the clases array we expect null elements. If // the class table grew then the loop repeats. If classes are created after the loop has // finished then we don't visit. mirror::Class* klass = classes->Get(i); if (klass != nullptr && !visitor(klass, arg)) { return; } } } } ClassLinker::~ClassLinker() { mirror::Class::ResetClass(); mirror::String::ResetClass(); mirror::Reference::ResetClass(); mirror::ArtField::ResetClass(); mirror::ArtMethod::ResetClass(); mirror::BooleanArray::ResetArrayClass(); mirror::ByteArray::ResetArrayClass(); mirror::CharArray::ResetArrayClass(); mirror::DoubleArray::ResetArrayClass(); mirror::FloatArray::ResetArrayClass(); mirror::IntArray::ResetArrayClass(); mirror::LongArray::ResetArrayClass(); mirror::ShortArray::ResetArrayClass(); mirror::Throwable::ResetClass(); mirror::StackTraceElement::ResetClass(); STLDeleteElements(&boot_class_path_); STLDeleteElements(&oat_files_); } mirror::DexCache* ClassLinker::AllocDexCache(Thread* self, const DexFile& dex_file) { gc::Heap* heap = Runtime::Current()->GetHeap(); StackHandleScope<16> hs(self); Handle dex_cache_class(hs.NewHandle(GetClassRoot(kJavaLangDexCache))); Handle dex_cache( hs.NewHandle(down_cast( heap->AllocObject(self, dex_cache_class.Get(), dex_cache_class->GetObjectSize(), VoidFunctor())))); if (dex_cache.Get() == nullptr) { return nullptr; } Handle location(hs.NewHandle(intern_table_->InternStrong(dex_file.GetLocation().c_str()))); if (location.Get() == nullptr) { return nullptr; } Handle> strings(hs.NewHandle(AllocStringArray(self, dex_file.NumStringIds()))); if (strings.Get() == nullptr) { return nullptr; } Handle> types(hs.NewHandle(AllocClassArray(self, dex_file.NumTypeIds()))); if (types.Get() == nullptr) { return nullptr; } Handle> methods(hs.NewHandle(AllocArtMethodArray(self, dex_file.NumMethodIds()))); if (methods.Get() == nullptr) { return nullptr; } Handle> fields(hs.NewHandle(AllocArtFieldArray(self, dex_file.NumFieldIds()))); if (fields.Get() == nullptr) { return nullptr; } dex_cache->Init(&dex_file, location.Get(), strings.Get(), types.Get(), methods.Get(), fields.Get()); return dex_cache.Get(); } mirror::Class* ClassLinker::AllocClass(Thread* self, mirror::Class* java_lang_Class, uint32_t class_size) { DCHECK_GE(class_size, sizeof(mirror::Class)); gc::Heap* heap = Runtime::Current()->GetHeap(); mirror::Class::InitializeClassVisitor visitor(class_size); mirror::Object* k = kMovingClasses ? heap->AllocObject(self, java_lang_Class, class_size, visitor) : heap->AllocNonMovableObject(self, java_lang_Class, class_size, visitor); if (UNLIKELY(k == nullptr)) { CHECK(self->IsExceptionPending()); // OOME. return nullptr; } return k->AsClass(); } mirror::Class* ClassLinker::AllocClass(Thread* self, uint32_t class_size) { return AllocClass(self, GetClassRoot(kJavaLangClass), class_size); } mirror::ArtField* ClassLinker::AllocArtField(Thread* self) { return down_cast( GetClassRoot(kJavaLangReflectArtField)->AllocNonMovableObject(self)); } mirror::ArtMethod* ClassLinker::AllocArtMethod(Thread* self) { return down_cast( GetClassRoot(kJavaLangReflectArtMethod)->AllocNonMovableObject(self)); } mirror::ObjectArray* ClassLinker::AllocStackTraceElementArray( Thread* self, size_t length) { return mirror::ObjectArray::Alloc( self, GetClassRoot(kJavaLangStackTraceElementArrayClass), length); } mirror::Class* ClassLinker::EnsureResolved(Thread* self, const char* descriptor, mirror::Class* klass) { DCHECK(klass != nullptr); // For temporary classes we must wait for them to be retired. if (init_done_ && klass->IsTemp()) { CHECK(!klass->IsResolved()); if (klass->IsErroneous()) { ThrowEarlierClassFailure(klass); return nullptr; } StackHandleScope<1> hs(self); Handle h_class(hs.NewHandle(klass)); ObjectLock lock(self, h_class); // Loop and wait for the resolving thread to retire this class. while (!h_class->IsRetired() && !h_class->IsErroneous()) { lock.WaitIgnoringInterrupts(); } if (h_class->IsErroneous()) { ThrowEarlierClassFailure(h_class.Get()); return nullptr; } CHECK(h_class->IsRetired()); // Get the updated class from class table. klass = LookupClass(descriptor, ComputeModifiedUtf8Hash(descriptor), h_class.Get()->GetClassLoader()); } // Wait for the class if it has not already been linked. if (!klass->IsResolved() && !klass->IsErroneous()) { StackHandleScope<1> hs(self); HandleWrapper h_class(hs.NewHandleWrapper(&klass)); ObjectLock lock(self, h_class); // Check for circular dependencies between classes. if (!h_class->IsResolved() && h_class->GetClinitThreadId() == self->GetTid()) { ThrowClassCircularityError(h_class.Get()); h_class->SetStatus(mirror::Class::kStatusError, self); return nullptr; } // Wait for the pending initialization to complete. while (!h_class->IsResolved() && !h_class->IsErroneous()) { lock.WaitIgnoringInterrupts(); } } if (klass->IsErroneous()) { ThrowEarlierClassFailure(klass); return nullptr; } // Return the loaded class. No exceptions should be pending. CHECK(klass->IsResolved()) << PrettyClass(klass); self->AssertNoPendingException(); return klass; } typedef std::pair ClassPathEntry; // Search a collection of DexFiles for a descriptor ClassPathEntry FindInClassPath(const char* descriptor, size_t hash, const std::vector& class_path) { for (const DexFile* dex_file : class_path) { const DexFile::ClassDef* dex_class_def = dex_file->FindClassDef(descriptor, hash); if (dex_class_def != nullptr) { return ClassPathEntry(dex_file, dex_class_def); } } return ClassPathEntry(nullptr, nullptr); } mirror::Class* ClassLinker::FindClassInPathClassLoader(ScopedObjectAccessAlreadyRunnable& soa, Thread* self, const char* descriptor, size_t hash, Handle class_loader) { if (class_loader->GetClass() != soa.Decode(WellKnownClasses::dalvik_system_PathClassLoader) || class_loader->GetParent()->GetClass() != soa.Decode(WellKnownClasses::java_lang_BootClassLoader)) { return nullptr; } ClassPathEntry pair = FindInClassPath(descriptor, hash, boot_class_path_); // Check if this would be found in the parent boot class loader. if (pair.second != nullptr) { mirror::Class* klass = LookupClass(descriptor, hash, nullptr); if (klass != nullptr) { return EnsureResolved(self, descriptor, klass); } klass = DefineClass(self, descriptor, hash, NullHandle(), *pair.first, *pair.second); if (klass != nullptr) { return klass; } CHECK(self->IsExceptionPending()) << descriptor; self->ClearException(); } else { // RegisterDexFile may allocate dex caches (and cause thread suspension). StackHandleScope<3> hs(self); // The class loader is a PathClassLoader which inherits from BaseDexClassLoader. // We need to get the DexPathList and loop through it. Handle cookie_field = hs.NewHandle(soa.DecodeField(WellKnownClasses::dalvik_system_DexFile_cookie)); Handle dex_file_field = hs.NewHandle( soa.DecodeField(WellKnownClasses::dalvik_system_DexPathList$Element_dexFile)); mirror::Object* dex_path_list = soa.DecodeField(WellKnownClasses::dalvik_system_PathClassLoader_pathList)-> GetObject(class_loader.Get()); if (dex_path_list != nullptr && dex_file_field.Get() != nullptr && cookie_field.Get() != nullptr) { // DexPathList has an array dexElements of Elements[] which each contain a dex file. mirror::Object* dex_elements_obj = soa.DecodeField(WellKnownClasses::dalvik_system_DexPathList_dexElements)-> GetObject(dex_path_list); // Loop through each dalvik.system.DexPathList$Element's dalvik.system.DexFile and look // at the mCookie which is a DexFile vector. if (dex_elements_obj != nullptr) { Handle> dex_elements = hs.NewHandle(dex_elements_obj->AsObjectArray()); for (int32_t i = 0; i < dex_elements->GetLength(); ++i) { mirror::Object* element = dex_elements->GetWithoutChecks(i); if (element == nullptr) { // Should never happen, fall back to java code to throw a NPE. break; } mirror::Object* dex_file = dex_file_field->GetObject(element); if (dex_file != nullptr) { const uint64_t cookie = cookie_field->GetLong(dex_file); auto* dex_files = reinterpret_cast*>(static_cast(cookie)); if (dex_files == nullptr) { // This should never happen so log a warning. LOG(WARNING) << "Null DexFile::mCookie for " << descriptor; break; } for (const DexFile* dex_file : *dex_files) { const DexFile::ClassDef* dex_class_def = dex_file->FindClassDef(descriptor, hash); if (dex_class_def != nullptr) { RegisterDexFile(*dex_file); mirror::Class* klass = DefineClass(self, descriptor, hash, class_loader, *dex_file, *dex_class_def); if (klass == nullptr) { CHECK(self->IsExceptionPending()) << descriptor; self->ClearException(); return nullptr; } return klass; } } } } } } } return nullptr; } mirror::Class* ClassLinker::FindClass(Thread* self, const char* descriptor, Handle class_loader) { DCHECK_NE(*descriptor, '\0') << "descriptor is empty string"; DCHECK(self != nullptr); self->AssertNoPendingException(); if (descriptor[1] == '\0') { // only the descriptors of primitive types should be 1 character long, also avoid class lookup // for primitive classes that aren't backed by dex files. return FindPrimitiveClass(descriptor[0]); } const size_t hash = ComputeModifiedUtf8Hash(descriptor); // Find the class in the loaded classes table. mirror::Class* klass = LookupClass(descriptor, hash, class_loader.Get()); if (klass != nullptr) { return EnsureResolved(self, descriptor, klass); } // Class is not yet loaded. if (descriptor[0] == '[') { return CreateArrayClass(self, descriptor, hash, class_loader); } else if (class_loader.Get() == nullptr) { // The boot class loader, search the boot class path. ClassPathEntry pair = FindInClassPath(descriptor, hash, boot_class_path_); if (pair.second != nullptr) { return DefineClass(self, descriptor, hash, NullHandle(), *pair.first, *pair.second); } else { // The boot class loader is searched ahead of the application class loader, failures are // expected and will be wrapped in a ClassNotFoundException. Use the pre-allocated error to // trigger the chaining with a proper stack trace. mirror::Throwable* pre_allocated = Runtime::Current()->GetPreAllocatedNoClassDefFoundError(); self->SetException(ThrowLocation(), pre_allocated); return nullptr; } } else if (Runtime::Current()->UseCompileTimeClassPath()) { // First try with the bootstrap class loader. if (class_loader.Get() != nullptr) { klass = LookupClass(descriptor, hash, nullptr); if (klass != nullptr) { return EnsureResolved(self, descriptor, klass); } } // If the lookup failed search the boot class path. We don't perform a recursive call to avoid // a NoClassDefFoundError being allocated. ClassPathEntry pair = FindInClassPath(descriptor, hash, boot_class_path_); if (pair.second != nullptr) { return DefineClass(self, descriptor, hash, NullHandle(), *pair.first, *pair.second); } // Next try the compile time class path. const std::vector* class_path; { ScopedObjectAccessUnchecked soa(self); ScopedLocalRef jclass_loader(soa.Env(), soa.AddLocalReference(class_loader.Get())); class_path = &Runtime::Current()->GetCompileTimeClassPath(jclass_loader.get()); } pair = FindInClassPath(descriptor, hash, *class_path); if (pair.second != nullptr) { return DefineClass(self, descriptor, hash, class_loader, *pair.first, *pair.second); } } else { ScopedObjectAccessUnchecked soa(self); mirror::Class* klass = FindClassInPathClassLoader(soa, self, descriptor, hash, class_loader); if (klass != nullptr) { return klass; } ScopedLocalRef class_loader_object(soa.Env(), soa.AddLocalReference(class_loader.Get())); std::string class_name_string(DescriptorToDot(descriptor)); ScopedLocalRef result(soa.Env(), nullptr); { ScopedThreadStateChange tsc(self, kNative); ScopedLocalRef class_name_object(soa.Env(), soa.Env()->NewStringUTF(class_name_string.c_str())); if (class_name_object.get() == nullptr) { DCHECK(self->IsExceptionPending()); // OOME. return nullptr; } CHECK(class_loader_object.get() != nullptr); result.reset(soa.Env()->CallObjectMethod(class_loader_object.get(), WellKnownClasses::java_lang_ClassLoader_loadClass, class_name_object.get())); } if (self->IsExceptionPending()) { // If the ClassLoader threw, pass that exception up. return nullptr; } else if (result.get() == nullptr) { // broken loader - throw NPE to be compatible with Dalvik ThrowNullPointerException(nullptr, StringPrintf("ClassLoader.loadClass returned null for %s", class_name_string.c_str()).c_str()); return nullptr; } else { // success, return mirror::Class* return soa.Decode(result.get()); } } ThrowNoClassDefFoundError("Class %s not found", PrintableString(descriptor).c_str()); return nullptr; } mirror::Class* ClassLinker::DefineClass(Thread* self, const char* descriptor, size_t hash, Handle class_loader, const DexFile& dex_file, const DexFile::ClassDef& dex_class_def) { StackHandleScope<3> hs(self); auto klass = hs.NewHandle(nullptr); // Load the class from the dex file. if (UNLIKELY(!init_done_)) { // finish up init of hand crafted class_roots_ if (strcmp(descriptor, "Ljava/lang/Object;") == 0) { klass.Assign(GetClassRoot(kJavaLangObject)); } else if (strcmp(descriptor, "Ljava/lang/Class;") == 0) { klass.Assign(GetClassRoot(kJavaLangClass)); } else if (strcmp(descriptor, "Ljava/lang/String;") == 0) { klass.Assign(GetClassRoot(kJavaLangString)); } else if (strcmp(descriptor, "Ljava/lang/ref/Reference;") == 0) { klass.Assign(GetClassRoot(kJavaLangRefReference)); } else if (strcmp(descriptor, "Ljava/lang/DexCache;") == 0) { klass.Assign(GetClassRoot(kJavaLangDexCache)); } else if (strcmp(descriptor, "Ljava/lang/reflect/ArtField;") == 0) { klass.Assign(GetClassRoot(kJavaLangReflectArtField)); } else if (strcmp(descriptor, "Ljava/lang/reflect/ArtMethod;") == 0) { klass.Assign(GetClassRoot(kJavaLangReflectArtMethod)); } } if (klass.Get() == nullptr) { // Allocate a class with the status of not ready. // Interface object should get the right size here. Regular class will // figure out the right size later and be replaced with one of the right // size when the class becomes resolved. klass.Assign(AllocClass(self, SizeOfClassWithoutEmbeddedTables(dex_file, dex_class_def))); } if (UNLIKELY(klass.Get() == nullptr)) { CHECK(self->IsExceptionPending()); // Expect an OOME. return nullptr; } klass->SetDexCache(FindDexCache(dex_file)); LoadClass(dex_file, dex_class_def, klass, class_loader.Get()); ObjectLock lock(self, klass); if (self->IsExceptionPending()) { // An exception occured during load, set status to erroneous while holding klass' lock in case // notification is necessary. if (!klass->IsErroneous()) { klass->SetStatus(mirror::Class::kStatusError, self); } return nullptr; } klass->SetClinitThreadId(self->GetTid()); // Add the newly loaded class to the loaded classes table. mirror::Class* existing = InsertClass(descriptor, klass.Get(), hash); if (existing != nullptr) { // We failed to insert because we raced with another thread. Calling EnsureResolved may cause // this thread to block. return EnsureResolved(self, descriptor, existing); } // Finish loading (if necessary) by finding parents CHECK(!klass->IsLoaded()); if (!LoadSuperAndInterfaces(klass, dex_file)) { // Loading failed. if (!klass->IsErroneous()) { klass->SetStatus(mirror::Class::kStatusError, self); } return nullptr; } CHECK(klass->IsLoaded()); // Link the class (if necessary) CHECK(!klass->IsResolved()); // TODO: Use fast jobjects? auto interfaces = hs.NewHandle>(nullptr); mirror::Class* new_class = nullptr; if (!LinkClass(self, descriptor, klass, interfaces, &new_class)) { // Linking failed. if (!klass->IsErroneous()) { klass->SetStatus(mirror::Class::kStatusError, self); } return nullptr; } self->AssertNoPendingException(); CHECK(new_class != nullptr) << descriptor; CHECK(new_class->IsResolved()) << descriptor; Handle new_class_h(hs.NewHandle(new_class)); /* * We send CLASS_PREPARE events to the debugger from here. The * definition of "preparation" is creating the static fields for a * class and initializing them to the standard default values, but not * executing any code (that comes later, during "initialization"). * * We did the static preparation in LinkClass. * * The class has been prepared and resolved but possibly not yet verified * at this point. */ Dbg::PostClassPrepare(new_class_h.Get()); return new_class_h.Get(); } uint32_t ClassLinker::SizeOfClassWithoutEmbeddedTables(const DexFile& dex_file, const DexFile::ClassDef& dex_class_def) { const byte* class_data = dex_file.GetClassData(dex_class_def); size_t num_ref = 0; size_t num_32 = 0; size_t num_64 = 0; if (class_data != nullptr) { for (ClassDataItemIterator it(dex_file, class_data); it.HasNextStaticField(); it.Next()) { const DexFile::FieldId& field_id = dex_file.GetFieldId(it.GetMemberIndex()); const char* descriptor = dex_file.GetFieldTypeDescriptor(field_id); char c = descriptor[0]; if (c == 'L' || c == '[') { num_ref++; } else if (c == 'J' || c == 'D') { num_64++; } else { num_32++; } } } return mirror::Class::ComputeClassSize(false, 0, num_32, num_64, num_ref); } bool ClassLinker::FindOatClass(const DexFile& dex_file, uint16_t class_def_idx, OatFile::OatClass* oat_class) { DCHECK(oat_class != nullptr); DCHECK_NE(class_def_idx, DexFile::kDexNoIndex16); const OatFile::OatDexFile* oat_dex_file = FindOpenedOatDexFileForDexFile(dex_file); if (oat_dex_file == nullptr) { return false; } *oat_class = oat_dex_file->GetOatClass(class_def_idx); return true; } static uint32_t GetOatMethodIndexFromMethodIndex(const DexFile& dex_file, uint16_t class_def_idx, uint32_t method_idx) { const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_idx); const byte* class_data = dex_file.GetClassData(class_def); CHECK(class_data != nullptr); ClassDataItemIterator it(dex_file, class_data); // Skip fields while (it.HasNextStaticField()) { it.Next(); } while (it.HasNextInstanceField()) { it.Next(); } // Process methods size_t class_def_method_index = 0; while (it.HasNextDirectMethod()) { if (it.GetMemberIndex() == method_idx) { return class_def_method_index; } class_def_method_index++; it.Next(); } while (it.HasNextVirtualMethod()) { if (it.GetMemberIndex() == method_idx) { return class_def_method_index; } class_def_method_index++; it.Next(); } DCHECK(!it.HasNext()); LOG(FATAL) << "Failed to find method index " << method_idx << " in " << dex_file.GetLocation(); return 0; } bool ClassLinker::FindOatMethodFor(mirror::ArtMethod* method, OatFile::OatMethod* oat_method) { DCHECK(oat_method != nullptr); // Although we overwrite the trampoline of non-static methods, we may get here via the resolution // method for direct methods (or virtual methods made direct). mirror::Class* declaring_class = method->GetDeclaringClass(); size_t oat_method_index; if (method->IsStatic() || method->IsDirect()) { // Simple case where the oat method index was stashed at load time. oat_method_index = method->GetMethodIndex(); } else { // We're invoking a virtual method directly (thanks to sharpening), compute the oat_method_index // by search for its position in the declared virtual methods. oat_method_index = declaring_class->NumDirectMethods(); size_t end = declaring_class->NumVirtualMethods(); bool found = false; for (size_t i = 0; i < end; i++) { // Check method index instead of identity in case of duplicate method definitions. if (method->GetDexMethodIndex() == declaring_class->GetVirtualMethod(i)->GetDexMethodIndex()) { found = true; break; } oat_method_index++; } CHECK(found) << "Didn't find oat method index for virtual method: " << PrettyMethod(method); } DCHECK_EQ(oat_method_index, GetOatMethodIndexFromMethodIndex(*declaring_class->GetDexCache()->GetDexFile(), method->GetDeclaringClass()->GetDexClassDefIndex(), method->GetDexMethodIndex())); OatFile::OatClass oat_class; if (!FindOatClass(*declaring_class->GetDexCache()->GetDexFile(), declaring_class->GetDexClassDefIndex(), &oat_class)) { return false; } *oat_method = oat_class.GetOatMethod(oat_method_index); return true; } // Special case to get oat code without overwriting a trampoline. const void* ClassLinker::GetQuickOatCodeFor(mirror::ArtMethod* method) { CHECK(!method->IsAbstract()) << PrettyMethod(method); if (method->IsProxyMethod()) { return GetQuickProxyInvokeHandler(); } OatFile::OatMethod oat_method; const void* result = nullptr; if (FindOatMethodFor(method, &oat_method)) { result = oat_method.GetQuickCode(); } if (result == nullptr) { if (method->IsNative()) { // No code and native? Use generic trampoline. result = GetQuickGenericJniTrampoline(); #if defined(ART_USE_PORTABLE_COMPILER) } else if (method->IsPortableCompiled()) { // No code? Do we expect portable code? result = GetQuickToPortableBridge(); #endif } else { // No code? You must mean to go into the interpreter. result = GetQuickToInterpreterBridge(); } } return result; } #if defined(ART_USE_PORTABLE_COMPILER) const void* ClassLinker::GetPortableOatCodeFor(mirror::ArtMethod* method, bool* have_portable_code) { CHECK(!method->IsAbstract()) << PrettyMethod(method); *have_portable_code = false; if (method->IsProxyMethod()) { return GetPortableProxyInvokeHandler(); } OatFile::OatMethod oat_method; const void* result = nullptr; const void* quick_code = nullptr; if (FindOatMethodFor(method, &oat_method)) { result = oat_method.GetPortableCode(); quick_code = oat_method.GetQuickCode(); } if (result == nullptr) { if (quick_code == nullptr) { // No code? You must mean to go into the interpreter. result = GetPortableToInterpreterBridge(); } else { // No code? But there's quick code, so use a bridge. result = GetPortableToQuickBridge(); } } else { *have_portable_code = true; } return result; } #endif const void* ClassLinker::GetOatMethodQuickCodeFor(mirror::ArtMethod* method) { if (method->IsNative() || method->IsAbstract() || method->IsProxyMethod()) { return nullptr; } OatFile::OatMethod oat_method; bool found = FindOatMethodFor(method, &oat_method); return found ? oat_method.GetQuickCode() : nullptr; } const void* ClassLinker::GetQuickOatCodeFor(const DexFile& dex_file, uint16_t class_def_idx, uint32_t method_idx) { OatFile::OatClass oat_class; if (!FindOatClass(dex_file, class_def_idx, &oat_class)) { return nullptr; } uint32_t oat_method_idx = GetOatMethodIndexFromMethodIndex(dex_file, class_def_idx, method_idx); return oat_class.GetOatMethod(oat_method_idx).GetQuickCode(); } #if defined(ART_USE_PORTABLE_COMPILER) const void* ClassLinker::GetPortableOatCodeFor(const DexFile& dex_file, uint16_t class_def_idx, uint32_t method_idx) { OatFile::OatClass oat_class; if (!FindOatClass(dex_file, class_def_idx, &oat_class)) { return nullptr; } uint32_t oat_method_idx = GetOatMethodIndexFromMethodIndex(dex_file, class_def_idx, method_idx); return oat_class.GetOatMethod(oat_method_idx).GetPortableCode(); } #endif // Returns true if the method must run with interpreter, false otherwise. static bool NeedsInterpreter( mirror::ArtMethod* method, const void* quick_code, const void* portable_code) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { if ((quick_code == nullptr) && (portable_code == nullptr)) { // No code: need interpreter. // May return true for native code, in the case of generic JNI // DCHECK(!method->IsNative()); return true; } #ifdef ART_SEA_IR_MODE ScopedObjectAccess soa(Thread::Current()); if (std::string::npos != PrettyMethod(method).find("fibonacci")) { LOG(INFO) << "Found " << PrettyMethod(method); return false; } #endif // If interpreter mode is enabled, every method (except native and proxy) must // be run with interpreter. return Runtime::Current()->GetInstrumentation()->InterpretOnly() && !method->IsNative() && !method->IsProxyMethod(); } void ClassLinker::FixupStaticTrampolines(mirror::Class* klass) { DCHECK(klass->IsInitialized()) << PrettyDescriptor(klass); if (klass->NumDirectMethods() == 0) { return; // No direct methods => no static methods. } Runtime* runtime = Runtime::Current(); if (!runtime->IsStarted() || runtime->UseCompileTimeClassPath()) { if (runtime->IsCompiler() || runtime->GetHeap()->HasImageSpace()) { return; // OAT file unavailable. } } const DexFile& dex_file = klass->GetDexFile(); const DexFile::ClassDef* dex_class_def = klass->GetClassDef(); CHECK(dex_class_def != nullptr); const byte* class_data = dex_file.GetClassData(*dex_class_def); // There should always be class data if there were direct methods. CHECK(class_data != nullptr) << PrettyDescriptor(klass); ClassDataItemIterator it(dex_file, class_data); // Skip fields while (it.HasNextStaticField()) { it.Next(); } while (it.HasNextInstanceField()) { it.Next(); } OatFile::OatClass oat_class; bool has_oat_class = FindOatClass(dex_file, klass->GetDexClassDefIndex(), &oat_class); // Link the code of methods skipped by LinkCode. for (size_t method_index = 0; it.HasNextDirectMethod(); ++method_index, it.Next()) { mirror::ArtMethod* method = klass->GetDirectMethod(method_index); if (!method->IsStatic()) { // Only update static methods. continue; } const void* portable_code = nullptr; const void* quick_code = nullptr; if (has_oat_class) { OatFile::OatMethod oat_method = oat_class.GetOatMethod(method_index); portable_code = oat_method.GetPortableCode(); quick_code = oat_method.GetQuickCode(); } const bool enter_interpreter = NeedsInterpreter(method, quick_code, portable_code); bool have_portable_code = false; if (enter_interpreter) { // Use interpreter entry point. // Check whether the method is native, in which case it's generic JNI. if (quick_code == nullptr && portable_code == nullptr && method->IsNative()) { quick_code = GetQuickGenericJniTrampoline(); #if defined(ART_USE_PORTABLE_COMPILER) portable_code = GetPortableToQuickBridge(); #endif } else { #if defined(ART_USE_PORTABLE_COMPILER) portable_code = GetPortableToInterpreterBridge(); #endif quick_code = GetQuickToInterpreterBridge(); } } else { #if defined(ART_USE_PORTABLE_COMPILER) if (portable_code == nullptr) { portable_code = GetPortableToQuickBridge(); } else { have_portable_code = true; } if (quick_code == nullptr) { quick_code = GetQuickToPortableBridge(); } #else if (quick_code == nullptr) { quick_code = GetQuickToInterpreterBridge(); } #endif } runtime->GetInstrumentation()->UpdateMethodsCode(method, quick_code, portable_code, have_portable_code); } // Ignore virtual methods on the iterator. } void ClassLinker::LinkCode(Handle method, const OatFile::OatClass* oat_class, const DexFile& dex_file, uint32_t dex_method_index, uint32_t method_index) { if (Runtime::Current()->IsCompiler()) { // The following code only applies to a non-compiler runtime. return; } // Method shouldn't have already been linked. DCHECK(method->GetEntryPointFromQuickCompiledCode() == nullptr); #if defined(ART_USE_PORTABLE_COMPILER) DCHECK(method->GetEntryPointFromPortableCompiledCode() == nullptr); #endif if (oat_class != nullptr) { // Every kind of method should at least get an invoke stub from the oat_method. // non-abstract methods also get their code pointers. const OatFile::OatMethod oat_method = oat_class->GetOatMethod(method_index); oat_method.LinkMethod(method.Get()); } // Install entry point from interpreter. bool enter_interpreter = NeedsInterpreter(method.Get(), method->GetEntryPointFromQuickCompiledCode(), #if defined(ART_USE_PORTABLE_COMPILER) method->GetEntryPointFromPortableCompiledCode()); #else nullptr); #endif if (enter_interpreter && !method->IsNative()) { method->SetEntryPointFromInterpreter(interpreter::artInterpreterToInterpreterBridge); } else { method->SetEntryPointFromInterpreter(artInterpreterToCompiledCodeBridge); } if (method->IsAbstract()) { method->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge()); #if defined(ART_USE_PORTABLE_COMPILER) method->SetEntryPointFromPortableCompiledCode(GetPortableToInterpreterBridge()); #endif return; } bool have_portable_code = false; if (method->IsStatic() && !method->IsConstructor()) { // For static methods excluding the class initializer, install the trampoline. // It will be replaced by the proper entry point by ClassLinker::FixupStaticTrampolines // after initializing class (see ClassLinker::InitializeClass method). method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionTrampoline()); #if defined(ART_USE_PORTABLE_COMPILER) method->SetEntryPointFromPortableCompiledCode(GetPortableResolutionTrampoline()); #endif } else if (enter_interpreter) { if (!method->IsNative()) { // Set entry point from compiled code if there's no code or in interpreter only mode. method->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge()); #if defined(ART_USE_PORTABLE_COMPILER) method->SetEntryPointFromPortableCompiledCode(GetPortableToInterpreterBridge()); #endif } else { method->SetEntryPointFromQuickCompiledCode(GetQuickGenericJniTrampoline()); #if defined(ART_USE_PORTABLE_COMPILER) method->SetEntryPointFromPortableCompiledCode(GetPortableToQuickBridge()); #endif } #if defined(ART_USE_PORTABLE_COMPILER) } else if (method->GetEntryPointFromPortableCompiledCode() != nullptr) { DCHECK(method->GetEntryPointFromQuickCompiledCode() == nullptr); have_portable_code = true; method->SetEntryPointFromQuickCompiledCode(GetQuickToPortableBridge()); #endif } else { DCHECK(method->GetEntryPointFromQuickCompiledCode() != nullptr); #if defined(ART_USE_PORTABLE_COMPILER) method->SetEntryPointFromPortableCompiledCode(GetPortableToQuickBridge()); #endif } if (method->IsNative()) { // Unregistering restores the dlsym lookup stub. method->UnregisterNative(Thread::Current()); if (enter_interpreter) { // We have a native method here without code. Then it should have either the GenericJni // trampoline as entrypoint (non-static), or the Resolution trampoline (static). DCHECK(method->GetEntryPointFromQuickCompiledCode() == GetQuickResolutionTrampoline() || method->GetEntryPointFromQuickCompiledCode() == GetQuickGenericJniTrampoline()); } } // Allow instrumentation its chance to hijack code. Runtime* runtime = Runtime::Current(); runtime->GetInstrumentation()->UpdateMethodsCode(method.Get(), method->GetEntryPointFromQuickCompiledCode(), #if defined(ART_USE_PORTABLE_COMPILER) method->GetEntryPointFromPortableCompiledCode(), #else nullptr, #endif have_portable_code); } void ClassLinker::LoadClass(const DexFile& dex_file, const DexFile::ClassDef& dex_class_def, Handle klass, mirror::ClassLoader* class_loader) { CHECK(klass.Get() != nullptr); CHECK(klass->GetDexCache() != nullptr); CHECK_EQ(mirror::Class::kStatusNotReady, klass->GetStatus()); const char* descriptor = dex_file.GetClassDescriptor(dex_class_def); CHECK(descriptor != nullptr); klass->SetClass(GetClassRoot(kJavaLangClass)); if (kUseBakerOrBrooksReadBarrier) { klass->AssertReadBarrierPointer(); } uint32_t access_flags = dex_class_def.GetJavaAccessFlags(); CHECK_EQ(access_flags & ~kAccJavaFlagsMask, 0U); klass->SetAccessFlags(access_flags); klass->SetClassLoader(class_loader); DCHECK_EQ(klass->GetPrimitiveType(), Primitive::kPrimNot); klass->SetStatus(mirror::Class::kStatusIdx, nullptr); klass->SetDexClassDefIndex(dex_file.GetIndexForClassDef(dex_class_def)); klass->SetDexTypeIndex(dex_class_def.class_idx_); CHECK(klass->GetDexCacheStrings() != nullptr); const byte* class_data = dex_file.GetClassData(dex_class_def); if (class_data == nullptr) { return; // no fields or methods - for example a marker interface } OatFile::OatClass oat_class; if (Runtime::Current()->IsStarted() && !Runtime::Current()->UseCompileTimeClassPath() && FindOatClass(dex_file, klass->GetDexClassDefIndex(), &oat_class)) { LoadClassMembers(dex_file, class_data, klass, class_loader, &oat_class); } else { LoadClassMembers(dex_file, class_data, klass, class_loader, nullptr); } } void ClassLinker::LoadClassMembers(const DexFile& dex_file, const byte* class_data, Handle klass, mirror::ClassLoader* class_loader, const OatFile::OatClass* oat_class) { // Load fields. ClassDataItemIterator it(dex_file, class_data); Thread* self = Thread::Current(); if (it.NumStaticFields() != 0) { mirror::ObjectArray* statics = AllocArtFieldArray(self, it.NumStaticFields()); if (UNLIKELY(statics == nullptr)) { CHECK(self->IsExceptionPending()); // OOME. return; } klass->SetSFields(statics); } if (it.NumInstanceFields() != 0) { mirror::ObjectArray* fields = AllocArtFieldArray(self, it.NumInstanceFields()); if (UNLIKELY(fields == nullptr)) { CHECK(self->IsExceptionPending()); // OOME. return; } klass->SetIFields(fields); } for (size_t i = 0; it.HasNextStaticField(); i++, it.Next()) { StackHandleScope<1> hs(self); Handle sfield(hs.NewHandle(AllocArtField(self))); if (UNLIKELY(sfield.Get() == nullptr)) { CHECK(self->IsExceptionPending()); // OOME. return; } klass->SetStaticField(i, sfield.Get()); LoadField(dex_file, it, klass, sfield); } for (size_t i = 0; it.HasNextInstanceField(); i++, it.Next()) { StackHandleScope<1> hs(self); Handle ifield(hs.NewHandle(AllocArtField(self))); if (UNLIKELY(ifield.Get() == nullptr)) { CHECK(self->IsExceptionPending()); // OOME. return; } klass->SetInstanceField(i, ifield.Get()); LoadField(dex_file, it, klass, ifield); } // Load methods. if (it.NumDirectMethods() != 0) { // TODO: append direct methods to class object mirror::ObjectArray* directs = AllocArtMethodArray(self, it.NumDirectMethods()); if (UNLIKELY(directs == nullptr)) { CHECK(self->IsExceptionPending()); // OOME. return; } klass->SetDirectMethods(directs); } if (it.NumVirtualMethods() != 0) { // TODO: append direct methods to class object mirror::ObjectArray* virtuals = AllocArtMethodArray(self, it.NumVirtualMethods()); if (UNLIKELY(virtuals == nullptr)) { CHECK(self->IsExceptionPending()); // OOME. return; } klass->SetVirtualMethods(virtuals); } size_t class_def_method_index = 0; uint32_t last_dex_method_index = DexFile::kDexNoIndex; size_t last_class_def_method_index = 0; for (size_t i = 0; it.HasNextDirectMethod(); i++, it.Next()) { StackHandleScope<1> hs(self); Handle method(hs.NewHandle(LoadMethod(self, dex_file, it, klass))); if (UNLIKELY(method.Get() == nullptr)) { CHECK(self->IsExceptionPending()); // OOME. return; } klass->SetDirectMethod(i, method.Get()); LinkCode(method, oat_class, dex_file, it.GetMemberIndex(), class_def_method_index); uint32_t it_method_index = it.GetMemberIndex(); if (last_dex_method_index == it_method_index) { // duplicate case method->SetMethodIndex(last_class_def_method_index); } else { method->SetMethodIndex(class_def_method_index); last_dex_method_index = it_method_index; last_class_def_method_index = class_def_method_index; } class_def_method_index++; } for (size_t i = 0; it.HasNextVirtualMethod(); i++, it.Next()) { StackHandleScope<1> hs(self); Handle method(hs.NewHandle(LoadMethod(self, dex_file, it, klass))); if (UNLIKELY(method.Get() == nullptr)) { CHECK(self->IsExceptionPending()); // OOME. return; } klass->SetVirtualMethod(i, method.Get()); DCHECK_EQ(class_def_method_index, it.NumDirectMethods() + i); LinkCode(method, oat_class, dex_file, it.GetMemberIndex(), class_def_method_index); class_def_method_index++; } DCHECK(!it.HasNext()); } void ClassLinker::LoadField(const DexFile& /*dex_file*/, const ClassDataItemIterator& it, Handle klass, Handle dst) { uint32_t field_idx = it.GetMemberIndex(); dst->SetDexFieldIndex(field_idx); dst->SetDeclaringClass(klass.Get()); dst->SetAccessFlags(it.GetFieldAccessFlags()); } mirror::ArtMethod* ClassLinker::LoadMethod(Thread* self, const DexFile& dex_file, const ClassDataItemIterator& it, Handle klass) { uint32_t dex_method_idx = it.GetMemberIndex(); const DexFile::MethodId& method_id = dex_file.GetMethodId(dex_method_idx); const char* method_name = dex_file.StringDataByIdx(method_id.name_idx_); mirror::ArtMethod* dst = AllocArtMethod(self); if (UNLIKELY(dst == nullptr)) { CHECK(self->IsExceptionPending()); // OOME. return nullptr; } DCHECK(dst->IsArtMethod()) << PrettyDescriptor(dst->GetClass()); const char* old_cause = self->StartAssertNoThreadSuspension("LoadMethod"); dst->SetDexMethodIndex(dex_method_idx); dst->SetDeclaringClass(klass.Get()); dst->SetCodeItemOffset(it.GetMethodCodeItemOffset()); dst->SetDexCacheResolvedMethods(klass->GetDexCache()->GetResolvedMethods()); dst->SetDexCacheResolvedTypes(klass->GetDexCache()->GetResolvedTypes()); uint32_t access_flags = it.GetMethodAccessFlags(); if (UNLIKELY(strcmp("finalize", method_name) == 0)) { // Set finalizable flag on declaring class. if (strcmp("V", dex_file.GetShorty(method_id.proto_idx_)) == 0) { // Void return type. if (klass->GetClassLoader() != nullptr) { // All non-boot finalizer methods are flagged. klass->SetFinalizable(); } else { std::string temp; const char* klass_descriptor = klass->GetDescriptor(&temp); // The Enum class declares a "final" finalize() method to prevent subclasses from // introducing a finalizer. We don't want to set the finalizable flag for Enum or its // subclasses, so we exclude it here. // We also want to avoid setting the flag on Object, where we know that finalize() is // empty. if (strcmp(klass_descriptor, "Ljava/lang/Object;") != 0 && strcmp(klass_descriptor, "Ljava/lang/Enum;") != 0) { klass->SetFinalizable(); } } } } else if (method_name[0] == '<') { // Fix broken access flags for initializers. Bug 11157540. bool is_init = (strcmp("", method_name) == 0); bool is_clinit = !is_init && (strcmp("", method_name) == 0); if (UNLIKELY(!is_init && !is_clinit)) { LOG(WARNING) << "Unexpected '<' at start of method name " << method_name; } else { if (UNLIKELY((access_flags & kAccConstructor) == 0)) { LOG(WARNING) << method_name << " didn't have expected constructor access flag in class " << PrettyDescriptor(klass.Get()) << " in dex file " << dex_file.GetLocation(); access_flags |= kAccConstructor; } } } dst->SetAccessFlags(access_flags); self->EndAssertNoThreadSuspension(old_cause); return dst; } void ClassLinker::AppendToBootClassPath(const DexFile& dex_file) { Thread* self = Thread::Current(); StackHandleScope<1> hs(self); Handle dex_cache(hs.NewHandle(AllocDexCache(self, dex_file))); CHECK(dex_cache.Get() != nullptr) << "Failed to allocate dex cache for " << dex_file.GetLocation(); AppendToBootClassPath(dex_file, dex_cache); } void ClassLinker::AppendToBootClassPath(const DexFile& dex_file, Handle dex_cache) { CHECK(dex_cache.Get() != nullptr) << dex_file.GetLocation(); boot_class_path_.push_back(&dex_file); RegisterDexFile(dex_file, dex_cache); } bool ClassLinker::IsDexFileRegisteredLocked(const DexFile& dex_file) { dex_lock_.AssertSharedHeld(Thread::Current()); for (size_t i = 0; i != dex_caches_.size(); ++i) { mirror::DexCache* dex_cache = GetDexCache(i); if (dex_cache->GetDexFile() == &dex_file) { return true; } } return false; } bool ClassLinker::IsDexFileRegistered(const DexFile& dex_file) { ReaderMutexLock mu(Thread::Current(), dex_lock_); return IsDexFileRegisteredLocked(dex_file); } void ClassLinker::RegisterDexFileLocked(const DexFile& dex_file, Handle dex_cache) { dex_lock_.AssertExclusiveHeld(Thread::Current()); CHECK(dex_cache.Get() != nullptr) << dex_file.GetLocation(); CHECK(dex_cache->GetLocation()->Equals(dex_file.GetLocation())) << dex_cache->GetLocation()->ToModifiedUtf8() << " " << dex_file.GetLocation(); dex_caches_.push_back(GcRoot(dex_cache.Get())); dex_cache->SetDexFile(&dex_file); if (log_new_dex_caches_roots_) { // TODO: This is not safe if we can remove dex caches. new_dex_cache_roots_.push_back(dex_caches_.size() - 1); } } void ClassLinker::RegisterDexFile(const DexFile& dex_file) { Thread* self = Thread::Current(); { ReaderMutexLock mu(self, dex_lock_); if (IsDexFileRegisteredLocked(dex_file)) { return; } } // Don't alloc while holding the lock, since allocation may need to // suspend all threads and another thread may need the dex_lock_ to // get to a suspend point. StackHandleScope<1> hs(self); Handle dex_cache(hs.NewHandle(AllocDexCache(self, dex_file))); CHECK(dex_cache.Get() != nullptr) << "Failed to allocate dex cache for " << dex_file.GetLocation(); { WriterMutexLock mu(self, dex_lock_); if (IsDexFileRegisteredLocked(dex_file)) { return; } RegisterDexFileLocked(dex_file, dex_cache); } } void ClassLinker::RegisterDexFile(const DexFile& dex_file, Handle dex_cache) { WriterMutexLock mu(Thread::Current(), dex_lock_); RegisterDexFileLocked(dex_file, dex_cache); } mirror::DexCache* ClassLinker::FindDexCache(const DexFile& dex_file) { ReaderMutexLock mu(Thread::Current(), dex_lock_); // Search assuming unique-ness of dex file. for (size_t i = 0; i != dex_caches_.size(); ++i) { mirror::DexCache* dex_cache = GetDexCache(i); if (dex_cache->GetDexFile() == &dex_file) { return dex_cache; } } // Search matching by location name. std::string location(dex_file.GetLocation()); for (size_t i = 0; i != dex_caches_.size(); ++i) { mirror::DexCache* dex_cache = GetDexCache(i); if (dex_cache->GetDexFile()->GetLocation() == location) { return dex_cache; } } // Failure, dump diagnostic and abort. for (size_t i = 0; i != dex_caches_.size(); ++i) { mirror::DexCache* dex_cache = GetDexCache(i); LOG(ERROR) << "Registered dex file " << i << " = " << dex_cache->GetDexFile()->GetLocation(); } LOG(FATAL) << "Failed to find DexCache for DexFile " << location; return nullptr; } void ClassLinker::FixupDexCaches(mirror::ArtMethod* resolution_method) { ReaderMutexLock mu(Thread::Current(), dex_lock_); for (size_t i = 0; i != dex_caches_.size(); ++i) { mirror::DexCache* dex_cache = GetDexCache(i); dex_cache->Fixup(resolution_method); } } mirror::Class* ClassLinker::CreatePrimitiveClass(Thread* self, Primitive::Type type) { mirror::Class* klass = AllocClass(self, mirror::Class::PrimitiveClassSize()); if (UNLIKELY(klass == nullptr)) { return nullptr; } return InitializePrimitiveClass(klass, type); } mirror::Class* ClassLinker::InitializePrimitiveClass(mirror::Class* primitive_class, Primitive::Type type) { CHECK(primitive_class != nullptr); // Must hold lock on object when initializing. Thread* self = Thread::Current(); StackHandleScope<1> hs(self); Handle h_class(hs.NewHandle(primitive_class)); ObjectLock lock(self, h_class); primitive_class->SetAccessFlags(kAccPublic | kAccFinal | kAccAbstract); primitive_class->SetPrimitiveType(type); primitive_class->SetStatus(mirror::Class::kStatusInitialized, self); const char* descriptor = Primitive::Descriptor(type); mirror::Class* existing = InsertClass(descriptor, primitive_class, ComputeModifiedUtf8Hash(descriptor)); CHECK(existing == nullptr) << "InitPrimitiveClass(" << type << ") failed"; return primitive_class; } // Create an array class (i.e. the class object for the array, not the // array itself). "descriptor" looks like "[C" or "[[[[B" or // "[Ljava/lang/String;". // // If "descriptor" refers to an array of primitives, look up the // primitive type's internally-generated class object. // // "class_loader" is the class loader of the class that's referring to // us. It's used to ensure that we're looking for the element type in // the right context. It does NOT become the class loader for the // array class; that always comes from the base element class. // // Returns nullptr with an exception raised on failure. mirror::Class* ClassLinker::CreateArrayClass(Thread* self, const char* descriptor, size_t hash, Handle class_loader) { // Identify the underlying component type CHECK_EQ('[', descriptor[0]); StackHandleScope<2> hs(self); Handle component_type(hs.NewHandle(FindClass(self, descriptor + 1, class_loader))); if (component_type.Get() == nullptr) { DCHECK(self->IsExceptionPending()); // We need to accept erroneous classes as component types. const size_t component_hash = ComputeModifiedUtf8Hash(descriptor + 1); component_type.Assign(LookupClass(descriptor + 1, component_hash, class_loader.Get())); if (component_type.Get() == nullptr) { DCHECK(self->IsExceptionPending()); return nullptr; } else { self->ClearException(); } } if (UNLIKELY(component_type->IsPrimitiveVoid())) { ThrowNoClassDefFoundError("Attempt to create array of void primitive type"); return nullptr; } // See if the component type is already loaded. Array classes are // always associated with the class loader of their underlying // element type -- an array of Strings goes with the loader for // java/lang/String -- so we need to look for it there. (The // caller should have checked for the existence of the class // before calling here, but they did so with *their* class loader, // not the component type's loader.) // // If we find it, the caller adds "loader" to the class' initiating // loader list, which should prevent us from going through this again. // // This call is unnecessary if "loader" and "component_type->GetClassLoader()" // are the same, because our caller (FindClass) just did the // lookup. (Even if we get this wrong we still have correct behavior, // because we effectively do this lookup again when we add the new // class to the hash table --- necessary because of possible races with // other threads.) if (class_loader.Get() != component_type->GetClassLoader()) { mirror::Class* new_class = LookupClass(descriptor, hash, component_type->GetClassLoader()); if (new_class != nullptr) { return new_class; } } // Fill out the fields in the Class. // // It is possible to execute some methods against arrays, because // all arrays are subclasses of java_lang_Object_, so we need to set // up a vtable. We can just point at the one in java_lang_Object_. // // Array classes are simple enough that we don't need to do a full // link step. auto new_class = hs.NewHandle(nullptr); if (UNLIKELY(!init_done_)) { // Classes that were hand created, ie not by FindSystemClass if (strcmp(descriptor, "[Ljava/lang/Class;") == 0) { new_class.Assign(GetClassRoot(kClassArrayClass)); } else if (strcmp(descriptor, "[Ljava/lang/Object;") == 0) { new_class.Assign(GetClassRoot(kObjectArrayClass)); } else if (strcmp(descriptor, class_roots_descriptors_[kJavaLangStringArrayClass]) == 0) { new_class.Assign(GetClassRoot(kJavaLangStringArrayClass)); } else if (strcmp(descriptor, class_roots_descriptors_[kJavaLangReflectArtMethodArrayClass]) == 0) { new_class.Assign(GetClassRoot(kJavaLangReflectArtMethodArrayClass)); } else if (strcmp(descriptor, class_roots_descriptors_[kJavaLangReflectArtFieldArrayClass]) == 0) { new_class.Assign(GetClassRoot(kJavaLangReflectArtFieldArrayClass)); } else if (strcmp(descriptor, "[C") == 0) { new_class.Assign(GetClassRoot(kCharArrayClass)); } else if (strcmp(descriptor, "[I") == 0) { new_class.Assign(GetClassRoot(kIntArrayClass)); } } if (new_class.Get() == nullptr) { new_class.Assign(AllocClass(self, mirror::Array::ClassSize())); if (new_class.Get() == nullptr) { return nullptr; } new_class->SetComponentType(component_type.Get()); } ObjectLock lock(self, new_class); // Must hold lock on object when initializing. DCHECK(new_class->GetComponentType() != nullptr); mirror::Class* java_lang_Object = GetClassRoot(kJavaLangObject); new_class->SetSuperClass(java_lang_Object); new_class->SetVTable(java_lang_Object->GetVTable()); new_class->SetPrimitiveType(Primitive::kPrimNot); new_class->SetClassLoader(component_type->GetClassLoader()); new_class->SetStatus(mirror::Class::kStatusLoaded, self); { StackHandleScope hs(self, Runtime::Current()->GetImtUnimplementedMethod()); new_class->PopulateEmbeddedImtAndVTable(&hs); } new_class->SetStatus(mirror::Class::kStatusInitialized, self); // don't need to set new_class->SetObjectSize(..) // because Object::SizeOf delegates to Array::SizeOf // All arrays have java/lang/Cloneable and java/io/Serializable as // interfaces. We need to set that up here, so that stuff like // "instanceof" works right. // // Note: The GC could run during the call to FindSystemClass, // so we need to make sure the class object is GC-valid while we're in // there. Do this by clearing the interface list so the GC will just // think that the entries are null. // Use the single, global copies of "interfaces" and "iftable" // (remember not to free them for arrays). { mirror::IfTable* array_iftable = array_iftable_.Read(); CHECK(array_iftable != nullptr); new_class->SetIfTable(array_iftable); } // Inherit access flags from the component type. int access_flags = new_class->GetComponentType()->GetAccessFlags(); // Lose any implementation detail flags; in particular, arrays aren't finalizable. access_flags &= kAccJavaFlagsMask; // Arrays can't be used as a superclass or interface, so we want to add "abstract final" // and remove "interface". access_flags |= kAccAbstract | kAccFinal; access_flags &= ~kAccInterface; new_class->SetAccessFlags(access_flags); mirror::Class* existing = InsertClass(descriptor, new_class.Get(), hash); if (existing == nullptr) { return new_class.Get(); } // Another thread must have loaded the class after we // started but before we finished. Abandon what we've // done. // // (Yes, this happens.) return existing; } mirror::Class* ClassLinker::FindPrimitiveClass(char type) { switch (type) { case 'B': return GetClassRoot(kPrimitiveByte); case 'C': return GetClassRoot(kPrimitiveChar); case 'D': return GetClassRoot(kPrimitiveDouble); case 'F': return GetClassRoot(kPrimitiveFloat); case 'I': return GetClassRoot(kPrimitiveInt); case 'J': return GetClassRoot(kPrimitiveLong); case 'S': return GetClassRoot(kPrimitiveShort); case 'Z': return GetClassRoot(kPrimitiveBoolean); case 'V': return GetClassRoot(kPrimitiveVoid); default: break; } std::string printable_type(PrintableChar(type)); ThrowNoClassDefFoundError("Not a primitive type: %s", printable_type.c_str()); return nullptr; } mirror::Class* ClassLinker::InsertClass(const char* descriptor, mirror::Class* klass, size_t hash) { if (VLOG_IS_ON(class_linker)) { mirror::DexCache* dex_cache = klass->GetDexCache(); std::string source; if (dex_cache != nullptr) { source += " from "; source += dex_cache->GetLocation()->ToModifiedUtf8(); } LOG(INFO) << "Loaded class " << descriptor << source; } WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); mirror::Class* existing = LookupClassFromTableLocked(descriptor, klass->GetClassLoader(), hash); if (existing != nullptr) { return existing; } if (kIsDebugBuild && !klass->IsTemp() && klass->GetClassLoader() == nullptr && dex_cache_image_class_lookup_required_) { // Check a class loaded with the system class loader matches one in the image if the class // is in the image. existing = LookupClassFromImage(descriptor); if (existing != nullptr) { CHECK_EQ(klass, existing); } } VerifyObject(klass); class_table_.InsertWithHash(GcRoot(klass), hash); if (log_new_class_table_roots_) { new_class_roots_.push_back(GcRoot(klass)); } return nullptr; } mirror::Class* ClassLinker::UpdateClass(const char* descriptor, mirror::Class* klass, size_t hash) { WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); auto existing_it = class_table_.FindWithHash(std::make_pair(descriptor, klass->GetClassLoader()), hash); if (existing_it == class_table_.end()) { CHECK(klass->IsProxyClass()); return nullptr; } mirror::Class* existing = existing_it->Read(); CHECK_NE(existing, klass) << descriptor; CHECK(!existing->IsResolved()) << descriptor; CHECK_EQ(klass->GetStatus(), mirror::Class::kStatusResolving) << descriptor; CHECK(!klass->IsTemp()) << descriptor; if (kIsDebugBuild && klass->GetClassLoader() == nullptr && dex_cache_image_class_lookup_required_) { // Check a class loaded with the system class loader matches one in the image if the class // is in the image. existing = LookupClassFromImage(descriptor); if (existing != nullptr) { CHECK_EQ(klass, existing) << descriptor; } } VerifyObject(klass); // Update the element in the hash set. *existing_it = GcRoot(klass); if (log_new_class_table_roots_) { new_class_roots_.push_back(GcRoot(klass)); } return existing; } bool ClassLinker::RemoveClass(const char* descriptor, mirror::ClassLoader* class_loader) { WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); auto pair = std::make_pair(descriptor, class_loader); auto it = class_table_.Find(pair); if (it != class_table_.end()) { class_table_.Erase(it); return true; } it = pre_zygote_class_table_.Find(pair); if (it != pre_zygote_class_table_.end()) { pre_zygote_class_table_.Erase(it); return true; } return false; } mirror::Class* ClassLinker::LookupClass(const char* descriptor, size_t hash, mirror::ClassLoader* class_loader) { { ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); mirror::Class* result = LookupClassFromTableLocked(descriptor, class_loader, hash); if (result != nullptr) { return result; } } if (class_loader != nullptr || !dex_cache_image_class_lookup_required_) { return nullptr; } else { // Lookup failed but need to search dex_caches_. mirror::Class* result = LookupClassFromImage(descriptor); if (result != nullptr) { InsertClass(descriptor, result, hash); } else { // Searching the image dex files/caches failed, we don't want to get into this situation // often as map searches are faster, so after kMaxFailedDexCacheLookups move all image // classes into the class table. constexpr uint32_t kMaxFailedDexCacheLookups = 1000; if (++failed_dex_cache_class_lookups_ > kMaxFailedDexCacheLookups) { MoveImageClassesToClassTable(); } } return result; } } mirror::Class* ClassLinker::LookupClassFromTableLocked(const char* descriptor, mirror::ClassLoader* class_loader, size_t hash) { auto descriptor_pair = std::make_pair(descriptor, class_loader); auto it = pre_zygote_class_table_.FindWithHash(descriptor_pair, hash); if (it == pre_zygote_class_table_.end()) { it = class_table_.FindWithHash(descriptor_pair, hash); if (it == class_table_.end()) { return nullptr; } } return it->Read(); } static mirror::ObjectArray* GetImageDexCaches() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { gc::space::ImageSpace* image = Runtime::Current()->GetHeap()->GetImageSpace(); CHECK(image != nullptr); mirror::Object* root = image->GetImageHeader().GetImageRoot(ImageHeader::kDexCaches); return root->AsObjectArray(); } void ClassLinker::MoveImageClassesToClassTable() { Thread* self = Thread::Current(); WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); if (!dex_cache_image_class_lookup_required_) { return; // All dex cache classes are already in the class table. } const char* old_no_suspend_cause = self->StartAssertNoThreadSuspension("Moving image classes to class table"); mirror::ObjectArray* dex_caches = GetImageDexCaches(); std::string temp; for (int32_t i = 0; i < dex_caches->GetLength(); i++) { mirror::DexCache* dex_cache = dex_caches->Get(i); mirror::ObjectArray* types = dex_cache->GetResolvedTypes(); for (int32_t j = 0; j < types->GetLength(); j++) { mirror::Class* klass = types->Get(j); if (klass != nullptr) { DCHECK(klass->GetClassLoader() == nullptr); const char* descriptor = klass->GetDescriptor(&temp); size_t hash = ComputeModifiedUtf8Hash(descriptor); mirror::Class* existing = LookupClassFromTableLocked(descriptor, nullptr, hash); if (existing != nullptr) { CHECK_EQ(existing, klass) << PrettyClassAndClassLoader(existing) << " != " << PrettyClassAndClassLoader(klass); } else { class_table_.Insert(GcRoot(klass)); if (log_new_class_table_roots_) { new_class_roots_.push_back(GcRoot(klass)); } } } } } dex_cache_image_class_lookup_required_ = false; self->EndAssertNoThreadSuspension(old_no_suspend_cause); } void ClassLinker::MoveClassTableToPreZygote() { WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); DCHECK(pre_zygote_class_table_.Empty()); pre_zygote_class_table_ = std::move(class_table_); class_table_.Clear(); } mirror::Class* ClassLinker::LookupClassFromImage(const char* descriptor) { Thread* self = Thread::Current(); const char* old_no_suspend_cause = self->StartAssertNoThreadSuspension("Image class lookup"); mirror::ObjectArray* dex_caches = GetImageDexCaches(); for (int32_t i = 0; i < dex_caches->GetLength(); ++i) { mirror::DexCache* dex_cache = dex_caches->Get(i); const DexFile* dex_file = dex_cache->GetDexFile(); // Try binary searching the string/type index. const DexFile::StringId* string_id = dex_file->FindStringId(descriptor); if (string_id != nullptr) { const DexFile::TypeId* type_id = dex_file->FindTypeId(dex_file->GetIndexForStringId(*string_id)); if (type_id != nullptr) { uint16_t type_idx = dex_file->GetIndexForTypeId(*type_id); mirror::Class* klass = dex_cache->GetResolvedType(type_idx); if (klass != nullptr) { self->EndAssertNoThreadSuspension(old_no_suspend_cause); return klass; } } } } self->EndAssertNoThreadSuspension(old_no_suspend_cause); return nullptr; } void ClassLinker::LookupClasses(const char* descriptor, std::vector& result) { result.clear(); if (dex_cache_image_class_lookup_required_) { MoveImageClassesToClassTable(); } WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); while (true) { auto it = class_table_.Find(descriptor); if (it == class_table_.end()) { break; } result.push_back(it->Read()); class_table_.Erase(it); } for (mirror::Class* k : result) { class_table_.Insert(GcRoot(k)); } size_t pre_zygote_start = result.size(); // Now handle the pre zygote table. // Note: This dirties the pre-zygote table but shouldn't be an issue since LookupClasses is only // called from the debugger. while (true) { auto it = pre_zygote_class_table_.Find(descriptor); if (it == pre_zygote_class_table_.end()) { break; } result.push_back(it->Read()); pre_zygote_class_table_.Erase(it); } for (size_t i = pre_zygote_start; i < result.size(); ++i) { pre_zygote_class_table_.Insert(GcRoot(result[i])); } } void ClassLinker::VerifyClass(Handle klass) { // TODO: assert that the monitor on the Class is held Thread* self = Thread::Current(); ObjectLock lock(self, klass); // Don't attempt to re-verify if already sufficiently verified. if (klass->IsVerified()) { EnsurePreverifiedMethods(klass); return; } if (klass->IsCompileTimeVerified() && Runtime::Current()->IsCompiler()) { return; } // The class might already be erroneous, for example at compile time if we attempted to verify // this class as a parent to another. if (klass->IsErroneous()) { ThrowEarlierClassFailure(klass.Get()); return; } if (klass->GetStatus() == mirror::Class::kStatusResolved) { klass->SetStatus(mirror::Class::kStatusVerifying, self); } else { CHECK_EQ(klass->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime) << PrettyClass(klass.Get()); CHECK(!Runtime::Current()->IsCompiler()); klass->SetStatus(mirror::Class::kStatusVerifyingAtRuntime, self); } // Skip verification if disabled. if (!Runtime::Current()->IsVerificationEnabled()) { klass->SetStatus(mirror::Class::kStatusVerified, self); EnsurePreverifiedMethods(klass); return; } // Verify super class. StackHandleScope<2> hs(self); Handle super(hs.NewHandle(klass->GetSuperClass())); if (super.Get() != nullptr) { // Acquire lock to prevent races on verifying the super class. ObjectLock lock(self, super); if (!super->IsVerified() && !super->IsErroneous()) { VerifyClass(super); } if (!super->IsCompileTimeVerified()) { std::string error_msg( StringPrintf("Rejecting class %s that attempts to sub-class erroneous class %s", PrettyDescriptor(klass.Get()).c_str(), PrettyDescriptor(super.Get()).c_str())); LOG(ERROR) << error_msg << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8(); Handle cause(hs.NewHandle(self->GetException(nullptr))); if (cause.Get() != nullptr) { self->ClearException(); } ThrowVerifyError(klass.Get(), "%s", error_msg.c_str()); if (cause.Get() != nullptr) { self->GetException(nullptr)->SetCause(cause.Get()); } ClassReference ref(klass->GetDexCache()->GetDexFile(), klass->GetDexClassDefIndex()); if (Runtime::Current()->IsCompiler()) { Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref); } klass->SetStatus(mirror::Class::kStatusError, self); return; } } // Try to use verification information from the oat file, otherwise do runtime verification. const DexFile& dex_file = *klass->GetDexCache()->GetDexFile(); mirror::Class::Status oat_file_class_status(mirror::Class::kStatusNotReady); bool preverified = VerifyClassUsingOatFile(dex_file, klass.Get(), oat_file_class_status); if (oat_file_class_status == mirror::Class::kStatusError) { VLOG(class_linker) << "Skipping runtime verification of erroneous class " << PrettyDescriptor(klass.Get()) << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8(); ThrowVerifyError(klass.Get(), "Rejecting class %s because it failed compile-time verification", PrettyDescriptor(klass.Get()).c_str()); klass->SetStatus(mirror::Class::kStatusError, self); return; } verifier::MethodVerifier::FailureKind verifier_failure = verifier::MethodVerifier::kNoFailure; std::string error_msg; if (!preverified) { verifier_failure = verifier::MethodVerifier::VerifyClass(klass.Get(), Runtime::Current()->IsCompiler(), &error_msg); } if (preverified || verifier_failure != verifier::MethodVerifier::kHardFailure) { if (!preverified && verifier_failure != verifier::MethodVerifier::kNoFailure) { VLOG(class_linker) << "Soft verification failure in class " << PrettyDescriptor(klass.Get()) << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8() << " because: " << error_msg; } self->AssertNoPendingException(); // Make sure all classes referenced by catch blocks are resolved. ResolveClassExceptionHandlerTypes(dex_file, klass); if (verifier_failure == verifier::MethodVerifier::kNoFailure) { // Even though there were no verifier failures we need to respect whether the super-class // was verified or requiring runtime reverification. if (super.Get() == nullptr || super->IsVerified()) { klass->SetStatus(mirror::Class::kStatusVerified, self); } else { CHECK_EQ(super->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime); klass->SetStatus(mirror::Class::kStatusRetryVerificationAtRuntime, self); // Pretend a soft failure occured so that we don't consider the class verified below. verifier_failure = verifier::MethodVerifier::kSoftFailure; } } else { CHECK_EQ(verifier_failure, verifier::MethodVerifier::kSoftFailure); // Soft failures at compile time should be retried at runtime. Soft // failures at runtime will be handled by slow paths in the generated // code. Set status accordingly. if (Runtime::Current()->IsCompiler()) { klass->SetStatus(mirror::Class::kStatusRetryVerificationAtRuntime, self); } else { klass->SetStatus(mirror::Class::kStatusVerified, self); // As this is a fake verified status, make sure the methods are _not_ marked preverified // later. klass->SetAccessFlags(klass->GetAccessFlags() | kAccPreverified); } } } else { LOG(ERROR) << "Verification failed on class " << PrettyDescriptor(klass.Get()) << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8() << " because: " << error_msg; self->AssertNoPendingException(); ThrowVerifyError(klass.Get(), "%s", error_msg.c_str()); klass->SetStatus(mirror::Class::kStatusError, self); } if (preverified || verifier_failure == verifier::MethodVerifier::kNoFailure) { // Class is verified so we don't need to do any access check on its methods. // Let the interpreter know it by setting the kAccPreverified flag onto each // method. // Note: we're going here during compilation and at runtime. When we set the // kAccPreverified flag when compiling image classes, the flag is recorded // in the image and is set when loading the image. EnsurePreverifiedMethods(klass); } } void ClassLinker::EnsurePreverifiedMethods(Handle klass) { if ((klass->GetAccessFlags() & kAccPreverified) == 0) { klass->SetPreverifiedFlagOnAllMethods(); klass->SetAccessFlags(klass->GetAccessFlags() | kAccPreverified); } } bool ClassLinker::VerifyClassUsingOatFile(const DexFile& dex_file, mirror::Class* klass, mirror::Class::Status& oat_file_class_status) { // If we're compiling, we can only verify the class using the oat file if // we are not compiling the image or if the class we're verifying is not part of // the app. In other words, we will only check for preverification of bootclasspath // classes. if (Runtime::Current()->IsCompiler()) { // Are we compiling the bootclasspath? if (!Runtime::Current()->UseCompileTimeClassPath()) { return false; } // We are compiling an app (not the image). // Is this an app class? (I.e. not a bootclasspath class) if (klass->GetClassLoader() != nullptr) { return false; } } const OatFile::OatDexFile* oat_dex_file = FindOpenedOatDexFileForDexFile(dex_file); // In case we run without an image there won't be a backing oat file. if (oat_dex_file == nullptr) { return false; } // We may be running with a preopted oat file but without image. In this case, // we don't skip verification of preverified classes to ensure we initialize // dex caches with all types resolved during verification. if (!Runtime::Current()->IsCompiler() && !Runtime::Current()->GetHeap()->HasImageSpace()) { return false; } uint16_t class_def_index = klass->GetDexClassDefIndex(); oat_file_class_status = oat_dex_file->GetOatClass(class_def_index).GetStatus(); if (oat_file_class_status == mirror::Class::kStatusVerified || oat_file_class_status == mirror::Class::kStatusInitialized) { return true; } if (oat_file_class_status == mirror::Class::kStatusRetryVerificationAtRuntime) { // Compile time verification failed with a soft error. Compile time verification can fail // because we have incomplete type information. Consider the following: // class ... { // Foo x; // .... () { // if (...) { // v1 gets assigned a type of resolved class Foo // } else { // v1 gets assigned a type of unresolved class Bar // } // iput x = v1 // } } // when we merge v1 following the if-the-else it results in Conflict // (see verifier::RegType::Merge) as we can't know the type of Bar and we could possibly be // allowing an unsafe assignment to the field x in the iput (javac may have compiled this as // it knew Bar was a sub-class of Foo, but for us this may have been moved into a separate apk // at compile time). return false; } if (oat_file_class_status == mirror::Class::kStatusError) { // Compile time verification failed with a hard error. This is caused by invalid instructions // in the class. These errors are unrecoverable. return false; } if (oat_file_class_status == mirror::Class::kStatusNotReady) { // Status is uninitialized if we couldn't determine the status at compile time, for example, // not loading the class. // TODO: when the verifier doesn't rely on Class-es failing to resolve/load the type hierarchy // isn't a problem and this case shouldn't occur return false; } std::string temp; LOG(FATAL) << "Unexpected class status: " << oat_file_class_status << " " << dex_file.GetLocation() << " " << PrettyClass(klass) << " " << klass->GetDescriptor(&temp); return false; } void ClassLinker::ResolveClassExceptionHandlerTypes(const DexFile& dex_file, Handle klass) { for (size_t i = 0; i < klass->NumDirectMethods(); i++) { ResolveMethodExceptionHandlerTypes(dex_file, klass->GetDirectMethod(i)); } for (size_t i = 0; i < klass->NumVirtualMethods(); i++) { ResolveMethodExceptionHandlerTypes(dex_file, klass->GetVirtualMethod(i)); } } void ClassLinker::ResolveMethodExceptionHandlerTypes(const DexFile& dex_file, mirror::ArtMethod* method) { // similar to DexVerifier::ScanTryCatchBlocks and dex2oat's ResolveExceptionsForMethod. const DexFile::CodeItem* code_item = dex_file.GetCodeItem(method->GetCodeItemOffset()); if (code_item == nullptr) { return; // native or abstract method } if (code_item->tries_size_ == 0) { return; // nothing to process } const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item, 0); uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr); ClassLinker* linker = Runtime::Current()->GetClassLinker(); for (uint32_t idx = 0; idx < handlers_size; idx++) { CatchHandlerIterator iterator(handlers_ptr); for (; iterator.HasNext(); iterator.Next()) { // Ensure exception types are resolved so that they don't need resolution to be delivered, // unresolved exception types will be ignored by exception delivery if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) { mirror::Class* exception_type = linker->ResolveType(iterator.GetHandlerTypeIndex(), method); if (exception_type == nullptr) { DCHECK(Thread::Current()->IsExceptionPending()); Thread::Current()->ClearException(); } } } handlers_ptr = iterator.EndDataPointer(); } } static void CheckProxyConstructor(mirror::ArtMethod* constructor); static void CheckProxyMethod(Handle method, Handle prototype); mirror::Class* ClassLinker::CreateProxyClass(ScopedObjectAccessAlreadyRunnable& soa, jstring name, jobjectArray interfaces, jobject loader, jobjectArray methods, jobjectArray throws) { Thread* self = soa.Self(); StackHandleScope<8> hs(self); Handle klass(hs.NewHandle( AllocClass(self, GetClassRoot(kJavaLangClass), sizeof(mirror::Class)))); if (klass.Get() == nullptr) { CHECK(self->IsExceptionPending()); // OOME. return nullptr; } DCHECK(klass->GetClass() != nullptr); klass->SetObjectSize(sizeof(mirror::Proxy)); // Set the class access flags incl. preverified, so we do not try to set the flag on the methods. klass->SetAccessFlags(kAccClassIsProxy | kAccPublic | kAccFinal | kAccPreverified); klass->SetClassLoader(soa.Decode(loader)); DCHECK_EQ(klass->GetPrimitiveType(), Primitive::kPrimNot); klass->SetName(soa.Decode(name)); mirror::Class* proxy_class = GetClassRoot(kJavaLangReflectProxy); klass->SetDexCache(proxy_class->GetDexCache()); klass->SetStatus(mirror::Class::kStatusIdx, self); // Instance fields are inherited, but we add a couple of static fields... { mirror::ObjectArray* sfields = AllocArtFieldArray(self, 2); if (UNLIKELY(sfields == nullptr)) { CHECK(self->IsExceptionPending()); // OOME. return nullptr; } klass->SetSFields(sfields); } // 1. Create a static field 'interfaces' that holds the _declared_ interfaces implemented by // our proxy, so Class.getInterfaces doesn't return the flattened set. Handle interfaces_sfield(hs.NewHandle(AllocArtField(self))); if (UNLIKELY(interfaces_sfield.Get() == nullptr)) { CHECK(self->IsExceptionPending()); // OOME. return nullptr; } klass->SetStaticField(0, interfaces_sfield.Get()); interfaces_sfield->SetDexFieldIndex(0); interfaces_sfield->SetDeclaringClass(klass.Get()); interfaces_sfield->SetAccessFlags(kAccStatic | kAccPublic | kAccFinal); // 2. Create a static field 'throws' that holds exceptions thrown by our methods. Handle throws_sfield(hs.NewHandle(AllocArtField(self))); if (UNLIKELY(throws_sfield.Get() == nullptr)) { CHECK(self->IsExceptionPending()); // OOME. return nullptr; } klass->SetStaticField(1, throws_sfield.Get()); throws_sfield->SetDexFieldIndex(1); throws_sfield->SetDeclaringClass(klass.Get()); throws_sfield->SetAccessFlags(kAccStatic | kAccPublic | kAccFinal); // Proxies have 1 direct method, the constructor { mirror::ObjectArray* directs = AllocArtMethodArray(self, 1); if (UNLIKELY(directs == nullptr)) { CHECK(self->IsExceptionPending()); // OOME. return nullptr; } klass->SetDirectMethods(directs); mirror::ArtMethod* constructor = CreateProxyConstructor(self, klass, proxy_class); if (UNLIKELY(constructor == nullptr)) { CHECK(self->IsExceptionPending()); // OOME. return nullptr; } klass->SetDirectMethod(0, constructor); } // Create virtual method using specified prototypes. size_t num_virtual_methods = soa.Decode*>(methods)->GetLength(); { mirror::ObjectArray* virtuals = AllocArtMethodArray(self, num_virtual_methods); if (UNLIKELY(virtuals == nullptr)) { CHECK(self->IsExceptionPending()); // OOME. return nullptr; } klass->SetVirtualMethods(virtuals); } for (size_t i = 0; i < num_virtual_methods; ++i) { StackHandleScope<1> hs(self); mirror::ObjectArray* decoded_methods = soa.Decode*>(methods); Handle prototype(hs.NewHandle(decoded_methods->Get(i))); mirror::ArtMethod* clone = CreateProxyMethod(self, klass, prototype); if (UNLIKELY(clone == nullptr)) { CHECK(self->IsExceptionPending()); // OOME. return nullptr; } klass->SetVirtualMethod(i, clone); } klass->SetSuperClass(proxy_class); // The super class is java.lang.reflect.Proxy klass->SetStatus(mirror::Class::kStatusLoaded, self); // Now effectively in the loaded state. self->AssertNoPendingException(); std::string descriptor(GetDescriptorForProxy(klass.Get())); mirror::Class* new_class = nullptr; { // Must hold lock on object when resolved. ObjectLock resolution_lock(self, klass); // Link the fields and virtual methods, creating vtable and iftables Handle > h_interfaces( hs.NewHandle(soa.Decode*>(interfaces))); if (!LinkClass(self, descriptor.c_str(), klass, h_interfaces, &new_class)) { klass->SetStatus(mirror::Class::kStatusError, self); return nullptr; } } CHECK(klass->IsRetired()); CHECK_NE(klass.Get(), new_class); klass.Assign(new_class); CHECK_EQ(interfaces_sfield->GetDeclaringClass(), new_class); interfaces_sfield->SetObject(klass.Get(), soa.Decode*>(interfaces)); CHECK_EQ(throws_sfield->GetDeclaringClass(), new_class); throws_sfield->SetObject(klass.Get(), soa.Decode >*>(throws)); { // Lock on klass is released. Lock new class object. ObjectLock initialization_lock(self, klass); klass->SetStatus(mirror::Class::kStatusInitialized, self); } // sanity checks if (kIsDebugBuild) { CHECK(klass->GetIFields() == nullptr); CheckProxyConstructor(klass->GetDirectMethod(0)); for (size_t i = 0; i < num_virtual_methods; ++i) { StackHandleScope<2> hs(self); mirror::ObjectArray* decoded_methods = soa.Decode*>(methods); Handle prototype(hs.NewHandle(decoded_methods->Get(i))); Handle virtual_method(hs.NewHandle(klass->GetVirtualMethod(i))); CheckProxyMethod(virtual_method, prototype); } mirror::String* decoded_name = soa.Decode(name); std::string interfaces_field_name(StringPrintf("java.lang.Class[] %s.interfaces", decoded_name->ToModifiedUtf8().c_str())); CHECK_EQ(PrettyField(klass->GetStaticField(0)), interfaces_field_name); std::string throws_field_name(StringPrintf("java.lang.Class[][] %s.throws", decoded_name->ToModifiedUtf8().c_str())); CHECK_EQ(PrettyField(klass->GetStaticField(1)), throws_field_name); CHECK_EQ(klass.Get()->GetInterfaces(), soa.Decode*>(interfaces)); CHECK_EQ(klass.Get()->GetThrows(), soa.Decode>*>(throws)); } mirror::Class* existing = InsertClass(descriptor.c_str(), klass.Get(), ComputeModifiedUtf8Hash(descriptor.c_str())); CHECK(existing == nullptr); return klass.Get(); } std::string ClassLinker::GetDescriptorForProxy(mirror::Class* proxy_class) { DCHECK(proxy_class->IsProxyClass()); mirror::String* name = proxy_class->GetName(); DCHECK(name != nullptr); return DotToDescriptor(name->ToModifiedUtf8().c_str()); } mirror::ArtMethod* ClassLinker::FindMethodForProxy(mirror::Class* proxy_class, mirror::ArtMethod* proxy_method) { DCHECK(proxy_class->IsProxyClass()); DCHECK(proxy_method->IsProxyMethod()); // Locate the dex cache of the original interface/Object mirror::DexCache* dex_cache = nullptr; { ReaderMutexLock mu(Thread::Current(), dex_lock_); for (size_t i = 0; i != dex_caches_.size(); ++i) { mirror::DexCache* a_dex_cache = GetDexCache(i); if (proxy_method->HasSameDexCacheResolvedTypes(a_dex_cache->GetResolvedTypes())) { dex_cache = a_dex_cache; break; } } } CHECK(dex_cache != nullptr); uint32_t method_idx = proxy_method->GetDexMethodIndex(); mirror::ArtMethod* resolved_method = dex_cache->GetResolvedMethod(method_idx); CHECK(resolved_method != nullptr); return resolved_method; } mirror::ArtMethod* ClassLinker::CreateProxyConstructor(Thread* self, Handle klass, mirror::Class* proxy_class) { // Create constructor for Proxy that must initialize h mirror::ObjectArray* proxy_direct_methods = proxy_class->GetDirectMethods(); CHECK_EQ(proxy_direct_methods->GetLength(), 16); mirror::ArtMethod* proxy_constructor = proxy_direct_methods->Get(2); // Ensure constructor is in dex cache so that we can use the dex cache to look up the overridden // constructor method. proxy_class->GetDexCache()->SetResolvedMethod(proxy_constructor->GetDexMethodIndex(), proxy_constructor); // Clone the existing constructor of Proxy (our constructor would just invoke it so steal its // code_ too) mirror::ArtMethod* constructor = down_cast(proxy_constructor->Clone(self)); if (constructor == nullptr) { CHECK(self->IsExceptionPending()); // OOME. return nullptr; } // Make this constructor public and fix the class to be our Proxy version constructor->SetAccessFlags((constructor->GetAccessFlags() & ~kAccProtected) | kAccPublic); constructor->SetDeclaringClass(klass.Get()); return constructor; } static void CheckProxyConstructor(mirror::ArtMethod* constructor) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { CHECK(constructor->IsConstructor()); CHECK_STREQ(constructor->GetName(), ""); CHECK_STREQ(constructor->GetSignature().ToString().c_str(), "(Ljava/lang/reflect/InvocationHandler;)V"); DCHECK(constructor->IsPublic()); } mirror::ArtMethod* ClassLinker::CreateProxyMethod(Thread* self, Handle klass, Handle prototype) { // Ensure prototype is in dex cache so that we can use the dex cache to look up the overridden // prototype method prototype->GetDeclaringClass()->GetDexCache()->SetResolvedMethod(prototype->GetDexMethodIndex(), prototype.Get()); // We steal everything from the prototype (such as DexCache, invoke stub, etc.) then specialize // as necessary mirror::ArtMethod* method = down_cast(prototype->Clone(self)); if (UNLIKELY(method == nullptr)) { CHECK(self->IsExceptionPending()); // OOME. return nullptr; } // Set class to be the concrete proxy class and clear the abstract flag, modify exceptions to // the intersection of throw exceptions as defined in Proxy method->SetDeclaringClass(klass.Get()); method->SetAccessFlags((method->GetAccessFlags() & ~kAccAbstract) | kAccFinal); // At runtime the method looks like a reference and argument saving method, clone the code // related parameters from this method. method->SetEntryPointFromQuickCompiledCode(GetQuickProxyInvokeHandler()); #if defined(ART_USE_PORTABLE_COMPILER) method->SetEntryPointFromPortableCompiledCode(GetPortableProxyInvokeHandler()); #endif method->SetEntryPointFromInterpreter(artInterpreterToCompiledCodeBridge); return method; } static void CheckProxyMethod(Handle method, Handle prototype) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // Basic sanity CHECK(!prototype->IsFinal()); CHECK(method->IsFinal()); CHECK(!method->IsAbstract()); // The proxy method doesn't have its own dex cache or dex file and so it steals those of its // interface prototype. The exception to this are Constructors and the Class of the Proxy itself. CHECK(prototype->HasSameDexCacheResolvedMethods(method.Get())); CHECK(prototype->HasSameDexCacheResolvedTypes(method.Get())); CHECK_EQ(prototype->GetDexMethodIndex(), method->GetDexMethodIndex()); MethodHelper mh(method); MethodHelper mh2(prototype); CHECK_STREQ(method->GetName(), prototype->GetName()); CHECK_STREQ(method->GetShorty(), prototype->GetShorty()); // More complex sanity - via dex cache CHECK_EQ(mh.GetReturnType(), mh2.GetReturnType()); } static bool CanWeInitializeClass(mirror::Class* klass, bool can_init_statics, bool can_init_parents) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { if (can_init_statics && can_init_parents) { return true; } if (!can_init_statics) { // Check if there's a class initializer. mirror::ArtMethod* clinit = klass->FindClassInitializer(); if (clinit != nullptr) { return false; } // Check if there are encoded static values needing initialization. if (klass->NumStaticFields() != 0) { const DexFile::ClassDef* dex_class_def = klass->GetClassDef(); DCHECK(dex_class_def != nullptr); if (dex_class_def->static_values_off_ != 0) { return false; } } } if (!klass->IsInterface() && klass->HasSuperClass()) { mirror::Class* super_class = klass->GetSuperClass(); if (!can_init_parents && !super_class->IsInitialized()) { return false; } else { if (!CanWeInitializeClass(super_class, can_init_statics, can_init_parents)) { return false; } } } return true; } bool ClassLinker::IsInitialized() const { return init_done_; } bool ClassLinker::InitializeClass(Handle klass, bool can_init_statics, bool can_init_parents) { // see JLS 3rd edition, 12.4.2 "Detailed Initialization Procedure" for the locking protocol // Are we already initialized and therefore done? // Note: we differ from the JLS here as we don't do this under the lock, this is benign as // an initialized class will never change its state. if (klass->IsInitialized()) { return true; } // Fast fail if initialization requires a full runtime. Not part of the JLS. if (!CanWeInitializeClass(klass.Get(), can_init_statics, can_init_parents)) { return false; } Thread* self = Thread::Current(); uint64_t t0; { ObjectLock lock(self, klass); // Re-check under the lock in case another thread initialized ahead of us. if (klass->IsInitialized()) { return true; } // Was the class already found to be erroneous? Done under the lock to match the JLS. if (klass->IsErroneous()) { ThrowEarlierClassFailure(klass.Get()); return false; } CHECK(klass->IsResolved()) << PrettyClass(klass.Get()) << ": state=" << klass->GetStatus(); if (!klass->IsVerified()) { VerifyClass(klass); if (!klass->IsVerified()) { // We failed to verify, expect either the klass to be erroneous or verification failed at // compile time. if (klass->IsErroneous()) { CHECK(self->IsExceptionPending()); } else { CHECK(Runtime::Current()->IsCompiler()); CHECK_EQ(klass->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime); } return false; } else { self->AssertNoPendingException(); } } // If the class is kStatusInitializing, either this thread is // initializing higher up the stack or another thread has beat us // to initializing and we need to wait. Either way, this // invocation of InitializeClass will not be responsible for // running and will return. if (klass->GetStatus() == mirror::Class::kStatusInitializing) { // Could have got an exception during verification. if (self->IsExceptionPending()) { return false; } // We caught somebody else in the act; was it us? if (klass->GetClinitThreadId() == self->GetTid()) { // Yes. That's fine. Return so we can continue initializing. return true; } // No. That's fine. Wait for another thread to finish initializing. return WaitForInitializeClass(klass, self, lock); } if (!ValidateSuperClassDescriptors(klass)) { klass->SetStatus(mirror::Class::kStatusError, self); return false; } CHECK_EQ(klass->GetStatus(), mirror::Class::kStatusVerified) << PrettyClass(klass.Get()); // From here out other threads may observe that we're initializing and so changes of state // require the a notification. klass->SetClinitThreadId(self->GetTid()); klass->SetStatus(mirror::Class::kStatusInitializing, self); t0 = NanoTime(); } // Initialize super classes, must be done while initializing for the JLS. if (!klass->IsInterface() && klass->HasSuperClass()) { mirror::Class* super_class = klass->GetSuperClass(); if (!super_class->IsInitialized()) { CHECK(!super_class->IsInterface()); CHECK(can_init_parents); StackHandleScope<1> hs(self); Handle handle_scope_super(hs.NewHandle(super_class)); bool super_initialized = InitializeClass(handle_scope_super, can_init_statics, true); if (!super_initialized) { // The super class was verified ahead of entering initializing, we should only be here if // the super class became erroneous due to initialization. CHECK(handle_scope_super->IsErroneous() && self->IsExceptionPending()) << "Super class initialization failed for " << PrettyDescriptor(handle_scope_super.Get()) << " that has unexpected status " << handle_scope_super->GetStatus() << "\nPending exception:\n" << (self->GetException(nullptr) != nullptr ? self->GetException(nullptr)->Dump() : ""); ObjectLock lock(self, klass); // Initialization failed because the super-class is erroneous. klass->SetStatus(mirror::Class::kStatusError, self); return false; } } } const size_t num_static_fields = klass->NumStaticFields(); if (num_static_fields > 0) { const DexFile::ClassDef* dex_class_def = klass->GetClassDef(); CHECK(dex_class_def != nullptr); const DexFile& dex_file = klass->GetDexFile(); StackHandleScope<2> hs(self); Handle class_loader(hs.NewHandle(klass->GetClassLoader())); Handle dex_cache(hs.NewHandle(klass->GetDexCache())); // Eagerly fill in static fields so that the we don't have to do as many expensive // Class::FindStaticField in ResolveField. for (size_t i = 0; i < num_static_fields; ++i) { mirror::ArtField* field = klass->GetStaticField(i); const uint32_t field_idx = field->GetDexFieldIndex(); mirror::ArtField* resolved_field = dex_cache->GetResolvedField(field_idx); if (resolved_field == nullptr) { dex_cache->SetResolvedField(field_idx, field); } else { DCHECK_EQ(field, resolved_field); } } EncodedStaticFieldValueIterator it(dex_file, &dex_cache, &class_loader, this, *dex_class_def); if (it.HasNext()) { CHECK(can_init_statics); // We reordered the fields, so we need to be able to map the // field indexes to the right fields. SafeMap field_map; ConstructFieldMap(dex_file, *dex_class_def, klass.Get(), field_map); for (size_t i = 0; it.HasNext(); i++, it.Next()) { if (Runtime::Current()->IsActiveTransaction()) { it.ReadValueToField(field_map.Get(i)); } else { it.ReadValueToField(field_map.Get(i)); } } } } mirror::ArtMethod* clinit = klass->FindClassInitializer(); if (clinit != nullptr) { CHECK(can_init_statics); JValue result; clinit->Invoke(self, nullptr, 0, &result, "V"); } uint64_t t1 = NanoTime(); bool success = true; { ObjectLock lock(self, klass); if (self->IsExceptionPending()) { WrapExceptionInInitializer(); klass->SetStatus(mirror::Class::kStatusError, self); success = false; } else { RuntimeStats* global_stats = Runtime::Current()->GetStats(); RuntimeStats* thread_stats = self->GetStats(); ++global_stats->class_init_count; ++thread_stats->class_init_count; global_stats->class_init_time_ns += (t1 - t0); thread_stats->class_init_time_ns += (t1 - t0); // Set the class as initialized except if failed to initialize static fields. klass->SetStatus(mirror::Class::kStatusInitialized, self); if (VLOG_IS_ON(class_linker)) { std::string temp; LOG(INFO) << "Initialized class " << klass->GetDescriptor(&temp) << " from " << klass->GetLocation(); } // Opportunistically set static method trampolines to their destination. FixupStaticTrampolines(klass.Get()); } } return success; } bool ClassLinker::WaitForInitializeClass(Handle klass, Thread* self, ObjectLock& lock) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { while (true) { self->AssertNoPendingException(); CHECK(!klass->IsInitialized()); lock.WaitIgnoringInterrupts(); // When we wake up, repeat the test for init-in-progress. If // there's an exception pending (only possible if // "interruptShouldThrow" was set), bail out. if (self->IsExceptionPending()) { WrapExceptionInInitializer(); klass->SetStatus(mirror::Class::kStatusError, self); return false; } // Spurious wakeup? Go back to waiting. if (klass->GetStatus() == mirror::Class::kStatusInitializing) { continue; } if (klass->GetStatus() == mirror::Class::kStatusVerified && Runtime::Current()->IsCompiler()) { // Compile time initialization failed. return false; } if (klass->IsErroneous()) { // The caller wants an exception, but it was thrown in a // different thread. Synthesize one here. ThrowNoClassDefFoundError(" failed for class %s; see exception in other thread", PrettyDescriptor(klass.Get()).c_str()); return false; } if (klass->IsInitialized()) { return true; } LOG(FATAL) << "Unexpected class status. " << PrettyClass(klass.Get()) << " is " << klass->GetStatus(); } LOG(FATAL) << "Not Reached" << PrettyClass(klass.Get()); } bool ClassLinker::ValidateSuperClassDescriptors(Handle klass) { if (klass->IsInterface()) { return true; } // Begin with the methods local to the superclass. StackHandleScope<2> hs(Thread::Current()); MethodHelper mh(hs.NewHandle(nullptr)); MethodHelper super_mh(hs.NewHandle(nullptr)); if (klass->HasSuperClass() && klass->GetClassLoader() != klass->GetSuperClass()->GetClassLoader()) { for (int i = klass->GetSuperClass()->GetVTableLength() - 1; i >= 0; --i) { mh.ChangeMethod(klass->GetVTableEntry(i)); super_mh.ChangeMethod(klass->GetSuperClass()->GetVTableEntry(i)); if (mh.GetMethod() != super_mh.GetMethod() && !mh.HasSameSignatureWithDifferentClassLoaders(&super_mh)) { ThrowLinkageError(klass.Get(), "Class %s method %s resolves differently in superclass %s", PrettyDescriptor(klass.Get()).c_str(), PrettyMethod(mh.GetMethod()).c_str(), PrettyDescriptor(klass->GetSuperClass()).c_str()); return false; } } } for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) { if (klass->GetClassLoader() != klass->GetIfTable()->GetInterface(i)->GetClassLoader()) { uint32_t num_methods = klass->GetIfTable()->GetInterface(i)->NumVirtualMethods(); for (uint32_t j = 0; j < num_methods; ++j) { mh.ChangeMethod(klass->GetIfTable()->GetMethodArray(i)->GetWithoutChecks(j)); super_mh.ChangeMethod(klass->GetIfTable()->GetInterface(i)->GetVirtualMethod(j)); if (mh.GetMethod() != super_mh.GetMethod() && !mh.HasSameSignatureWithDifferentClassLoaders(&super_mh)) { ThrowLinkageError(klass.Get(), "Class %s method %s resolves differently in interface %s", PrettyDescriptor(klass.Get()).c_str(), PrettyMethod(mh.GetMethod()).c_str(), PrettyDescriptor(klass->GetIfTable()->GetInterface(i)).c_str()); return false; } } } } return true; } bool ClassLinker::EnsureInitialized(Handle c, bool can_init_fields, bool can_init_parents) { DCHECK(c.Get() != nullptr); if (c->IsInitialized()) { EnsurePreverifiedMethods(c); return true; } const bool success = InitializeClass(c, can_init_fields, can_init_parents); Thread* self = Thread::Current(); if (!success) { if (can_init_fields && can_init_parents) { CHECK(self->IsExceptionPending()) << PrettyClass(c.Get()); } } else { self->AssertNoPendingException(); } return success; } void ClassLinker::ConstructFieldMap(const DexFile& dex_file, const DexFile::ClassDef& dex_class_def, mirror::Class* c, SafeMap& field_map) { const byte* class_data = dex_file.GetClassData(dex_class_def); ClassDataItemIterator it(dex_file, class_data); StackHandleScope<2> hs(Thread::Current()); Handle dex_cache(hs.NewHandle(c->GetDexCache())); Handle class_loader(hs.NewHandle(c->GetClassLoader())); CHECK(!kMovingFields); for (size_t i = 0; it.HasNextStaticField(); i++, it.Next()) { field_map.Put(i, ResolveField(dex_file, it.GetMemberIndex(), dex_cache, class_loader, true)); } } void ClassLinker::FixupTemporaryDeclaringClass(mirror::Class* temp_class, mirror::Class* new_class) { mirror::ObjectArray* fields = new_class->GetIFields(); if (fields != nullptr) { for (int index = 0; index < fields->GetLength(); index ++) { if (fields->Get(index)->GetDeclaringClass() == temp_class) { fields->Get(index)->SetDeclaringClass(new_class); } } } fields = new_class->GetSFields(); if (fields != nullptr) { for (int index = 0; index < fields->GetLength(); index ++) { if (fields->Get(index)->GetDeclaringClass() == temp_class) { fields->Get(index)->SetDeclaringClass(new_class); } } } mirror::ObjectArray* methods = new_class->GetDirectMethods(); if (methods != nullptr) { for (int index = 0; index < methods->GetLength(); index ++) { if (methods->Get(index)->GetDeclaringClass() == temp_class) { methods->Get(index)->SetDeclaringClass(new_class); } } } methods = new_class->GetVirtualMethods(); if (methods != nullptr) { for (int index = 0; index < methods->GetLength(); index ++) { if (methods->Get(index)->GetDeclaringClass() == temp_class) { methods->Get(index)->SetDeclaringClass(new_class); } } } } bool ClassLinker::LinkClass(Thread* self, const char* descriptor, Handle klass, Handle> interfaces, mirror::Class** new_class) { CHECK_EQ(mirror::Class::kStatusLoaded, klass->GetStatus()); if (!LinkSuperClass(klass)) { return false; } StackHandleScope imt_handle_scope( self, Runtime::Current()->GetImtUnimplementedMethod()); if (!LinkMethods(self, klass, interfaces, &imt_handle_scope)) { return false; } if (!LinkInstanceFields(klass)) { return false; } size_t class_size; if (!LinkStaticFields(klass, &class_size)) { return false; } CreateReferenceInstanceOffsets(klass); CreateReferenceStaticOffsets(klass); CHECK_EQ(mirror::Class::kStatusLoaded, klass->GetStatus()); if (!klass->IsTemp() || (!init_done_ && klass->GetClassSize() == class_size)) { // We don't need to retire this class as it has no embedded tables or it was created the // correct size during class linker initialization. CHECK_EQ(klass->GetClassSize(), class_size) << PrettyDescriptor(klass.Get()); if (klass->ShouldHaveEmbeddedImtAndVTable()) { klass->PopulateEmbeddedImtAndVTable(&imt_handle_scope); } // This will notify waiters on klass that saw the not yet resolved // class in the class_table_ during EnsureResolved. klass->SetStatus(mirror::Class::kStatusResolved, self); *new_class = klass.Get(); } else { CHECK(!klass->IsResolved()); // Retire the temporary class and create the correctly sized resolved class. *new_class = klass->CopyOf(self, class_size, &imt_handle_scope); if (UNLIKELY(*new_class == nullptr)) { CHECK(self->IsExceptionPending()); // Expect an OOME. klass->SetStatus(mirror::Class::kStatusError, self); return false; } CHECK_EQ((*new_class)->GetClassSize(), class_size); StackHandleScope<1> hs(self); auto new_class_h = hs.NewHandleWrapper(new_class); ObjectLock lock(self, new_class_h); FixupTemporaryDeclaringClass(klass.Get(), new_class_h.Get()); mirror::Class* existing = UpdateClass(descriptor, new_class_h.Get(), ComputeModifiedUtf8Hash(descriptor)); CHECK(existing == nullptr || existing == klass.Get()); // This will notify waiters on temp class that saw the not yet resolved class in the // class_table_ during EnsureResolved. klass->SetStatus(mirror::Class::kStatusRetired, self); CHECK_EQ(new_class_h->GetStatus(), mirror::Class::kStatusResolving); // This will notify waiters on new_class that saw the not yet resolved // class in the class_table_ during EnsureResolved. new_class_h->SetStatus(mirror::Class::kStatusResolved, self); } return true; } static void CountMethodsAndFields(ClassDataItemIterator& dex_data, size_t* virtual_methods, size_t* direct_methods, size_t* static_fields, size_t* instance_fields) { *virtual_methods = *direct_methods = *static_fields = *instance_fields = 0; while (dex_data.HasNextStaticField()) { dex_data.Next(); (*static_fields)++; } while (dex_data.HasNextInstanceField()) { dex_data.Next(); (*instance_fields)++; } while (dex_data.HasNextDirectMethod()) { (*direct_methods)++; dex_data.Next(); } while (dex_data.HasNextVirtualMethod()) { (*virtual_methods)++; dex_data.Next(); } DCHECK(!dex_data.HasNext()); } static void DumpClass(std::ostream& os, const DexFile& dex_file, const DexFile::ClassDef& dex_class_def, const char* suffix) { ClassDataItemIterator dex_data(dex_file, dex_file.GetClassData(dex_class_def)); os << dex_file.GetClassDescriptor(dex_class_def) << suffix << ":\n"; os << " Static fields:\n"; while (dex_data.HasNextStaticField()) { const DexFile::FieldId& id = dex_file.GetFieldId(dex_data.GetMemberIndex()); os << " " << dex_file.GetFieldTypeDescriptor(id) << " " << dex_file.GetFieldName(id) << "\n"; dex_data.Next(); } os << " Instance fields:\n"; while (dex_data.HasNextInstanceField()) { const DexFile::FieldId& id = dex_file.GetFieldId(dex_data.GetMemberIndex()); os << " " << dex_file.GetFieldTypeDescriptor(id) << " " << dex_file.GetFieldName(id) << "\n"; dex_data.Next(); } os << " Direct methods:\n"; while (dex_data.HasNextDirectMethod()) { const DexFile::MethodId& id = dex_file.GetMethodId(dex_data.GetMemberIndex()); os << " " << dex_file.GetMethodName(id) << dex_file.GetMethodSignature(id).ToString() << "\n"; dex_data.Next(); } os << " Virtual methods:\n"; while (dex_data.HasNextVirtualMethod()) { const DexFile::MethodId& id = dex_file.GetMethodId(dex_data.GetMemberIndex()); os << " " << dex_file.GetMethodName(id) << dex_file.GetMethodSignature(id).ToString() << "\n"; dex_data.Next(); } } static std::string DumpClasses(const DexFile& dex_file1, const DexFile::ClassDef& dex_class_def1, const DexFile& dex_file2, const DexFile::ClassDef& dex_class_def2) { std::ostringstream os; DumpClass(os, dex_file1, dex_class_def1, " (Compile time)"); DumpClass(os, dex_file2, dex_class_def2, " (Runtime)"); return os.str(); } // Very simple structural check on whether the classes match. Only compares the number of // methods and fields. static bool SimpleStructuralCheck(const DexFile& dex_file1, const DexFile::ClassDef& dex_class_def1, const DexFile& dex_file2, const DexFile::ClassDef& dex_class_def2, std::string* error_msg) { ClassDataItemIterator dex_data1(dex_file1, dex_file1.GetClassData(dex_class_def1)); ClassDataItemIterator dex_data2(dex_file2, dex_file2.GetClassData(dex_class_def2)); // Counters for current dex file. size_t dex_virtual_methods1, dex_direct_methods1, dex_static_fields1, dex_instance_fields1; CountMethodsAndFields(dex_data1, &dex_virtual_methods1, &dex_direct_methods1, &dex_static_fields1, &dex_instance_fields1); // Counters for compile-time dex file. size_t dex_virtual_methods2, dex_direct_methods2, dex_static_fields2, dex_instance_fields2; CountMethodsAndFields(dex_data2, &dex_virtual_methods2, &dex_direct_methods2, &dex_static_fields2, &dex_instance_fields2); if (dex_virtual_methods1 != dex_virtual_methods2) { std::string class_dump = DumpClasses(dex_file1, dex_class_def1, dex_file2, dex_class_def2); *error_msg = StringPrintf("Virtual method count off: %zu vs %zu\n%s", dex_virtual_methods1, dex_virtual_methods2, class_dump.c_str()); return false; } if (dex_direct_methods1 != dex_direct_methods2) { std::string class_dump = DumpClasses(dex_file1, dex_class_def1, dex_file2, dex_class_def2); *error_msg = StringPrintf("Direct method count off: %zu vs %zu\n%s", dex_direct_methods1, dex_direct_methods2, class_dump.c_str()); return false; } if (dex_static_fields1 != dex_static_fields2) { std::string class_dump = DumpClasses(dex_file1, dex_class_def1, dex_file2, dex_class_def2); *error_msg = StringPrintf("Static field count off: %zu vs %zu\n%s", dex_static_fields1, dex_static_fields2, class_dump.c_str()); return false; } if (dex_instance_fields1 != dex_instance_fields2) { std::string class_dump = DumpClasses(dex_file1, dex_class_def1, dex_file2, dex_class_def2); *error_msg = StringPrintf("Instance field count off: %zu vs %zu\n%s", dex_instance_fields1, dex_instance_fields2, class_dump.c_str()); return false; } return true; } // Checks whether a the super-class changed from what we had at compile-time. This would // invalidate quickening. static bool CheckSuperClassChange(Handle klass, const DexFile& dex_file, const DexFile::ClassDef& class_def, mirror::Class* super_class) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // Check for unexpected changes in the superclass. // Quick check 1) is the super_class class-loader the boot class loader? This always has // precedence. if (super_class->GetClassLoader() != nullptr && // Quick check 2) different dex cache? Breaks can only occur for different dex files, // which is implied by different dex cache. klass->GetDexCache() != super_class->GetDexCache()) { // Now comes the expensive part: things can be broken if (a) the klass' dex file has a // definition for the super-class, and (b) the files are in separate oat files. The oat files // are referenced from the dex file, so do (b) first. Only relevant if we have oat files. const OatFile* class_oat_file = dex_file.GetOatFile(); if (class_oat_file != nullptr) { const OatFile* loaded_super_oat_file = super_class->GetDexFile().GetOatFile(); if (loaded_super_oat_file != nullptr && class_oat_file != loaded_super_oat_file) { // Now check (a). const DexFile::ClassDef* super_class_def = dex_file.FindClassDef(class_def.superclass_idx_); if (super_class_def != nullptr) { // Uh-oh, we found something. Do our check. std::string error_msg; if (!SimpleStructuralCheck(dex_file, *super_class_def, super_class->GetDexFile(), *super_class->GetClassDef(), &error_msg)) { // Print a warning to the log. This exception might be caught, e.g., as common in test // drivers. When the class is later tried to be used, we re-throw a new instance, as we // only save the type of the exception. LOG(WARNING) << "Incompatible structural change detected: " << StringPrintf( "Structural change of %s is hazardous (%s at compile time, %s at runtime): %s", PrettyType(super_class_def->class_idx_, dex_file).c_str(), class_oat_file->GetLocation().c_str(), loaded_super_oat_file->GetLocation().c_str(), error_msg.c_str()); ThrowIncompatibleClassChangeError(klass.Get(), "Structural change of %s is hazardous (%s at compile time, %s at runtime): %s", PrettyType(super_class_def->class_idx_, dex_file).c_str(), class_oat_file->GetLocation().c_str(), loaded_super_oat_file->GetLocation().c_str(), error_msg.c_str()); return false; } } } } } return true; } bool ClassLinker::LoadSuperAndInterfaces(Handle klass, const DexFile& dex_file) { CHECK_EQ(mirror::Class::kStatusIdx, klass->GetStatus()); const DexFile::ClassDef& class_def = dex_file.GetClassDef(klass->GetDexClassDefIndex()); uint16_t super_class_idx = class_def.superclass_idx_; if (super_class_idx != DexFile::kDexNoIndex16) { mirror::Class* super_class = ResolveType(dex_file, super_class_idx, klass.Get()); if (super_class == nullptr) { DCHECK(Thread::Current()->IsExceptionPending()); return false; } // Verify if (!klass->CanAccess(super_class)) { ThrowIllegalAccessError(klass.Get(), "Class %s extended by class %s is inaccessible", PrettyDescriptor(super_class).c_str(), PrettyDescriptor(klass.Get()).c_str()); return false; } CHECK(super_class->IsResolved()); klass->SetSuperClass(super_class); if (!CheckSuperClassChange(klass, dex_file, class_def, super_class)) { DCHECK(Thread::Current()->IsExceptionPending()); return false; } } const DexFile::TypeList* interfaces = dex_file.GetInterfacesList(class_def); if (interfaces != nullptr) { for (size_t i = 0; i < interfaces->Size(); i++) { uint16_t idx = interfaces->GetTypeItem(i).type_idx_; mirror::Class* interface = ResolveType(dex_file, idx, klass.Get()); if (interface == nullptr) { DCHECK(Thread::Current()->IsExceptionPending()); return false; } // Verify if (!klass->CanAccess(interface)) { // TODO: the RI seemed to ignore this in my testing. ThrowIllegalAccessError(klass.Get(), "Interface %s implemented by class %s is inaccessible", PrettyDescriptor(interface).c_str(), PrettyDescriptor(klass.Get()).c_str()); return false; } } } // Mark the class as loaded. klass->SetStatus(mirror::Class::kStatusLoaded, nullptr); return true; } bool ClassLinker::LinkSuperClass(Handle klass) { CHECK(!klass->IsPrimitive()); mirror::Class* super = klass->GetSuperClass(); if (klass.Get() == GetClassRoot(kJavaLangObject)) { if (super != nullptr) { ThrowClassFormatError(klass.Get(), "java.lang.Object must not have a superclass"); return false; } return true; } if (super == nullptr) { ThrowLinkageError(klass.Get(), "No superclass defined for class %s", PrettyDescriptor(klass.Get()).c_str()); return false; } // Verify if (super->IsFinal() || super->IsInterface()) { ThrowIncompatibleClassChangeError(klass.Get(), "Superclass %s of %s is %s", PrettyDescriptor(super).c_str(), PrettyDescriptor(klass.Get()).c_str(), super->IsFinal() ? "declared final" : "an interface"); return false; } if (!klass->CanAccess(super)) { ThrowIllegalAccessError(klass.Get(), "Superclass %s is inaccessible to class %s", PrettyDescriptor(super).c_str(), PrettyDescriptor(klass.Get()).c_str()); return false; } // Inherit kAccClassIsFinalizable from the superclass in case this // class doesn't override finalize. if (super->IsFinalizable()) { klass->SetFinalizable(); } // Inherit reference flags (if any) from the superclass. int reference_flags = (super->GetAccessFlags() & kAccReferenceFlagsMask); if (reference_flags != 0) { klass->SetAccessFlags(klass->GetAccessFlags() | reference_flags); } // Disallow custom direct subclasses of java.lang.ref.Reference. if (init_done_ && super == GetClassRoot(kJavaLangRefReference)) { ThrowLinkageError(klass.Get(), "Class %s attempts to subclass java.lang.ref.Reference, which is not allowed", PrettyDescriptor(klass.Get()).c_str()); return false; } if (kIsDebugBuild) { // Ensure super classes are fully resolved prior to resolving fields.. while (super != nullptr) { CHECK(super->IsResolved()); super = super->GetSuperClass(); } } return true; } // Populate the class vtable and itable. Compute return type indices. bool ClassLinker::LinkMethods(Thread* self, Handle klass, Handle> interfaces, StackHandleScope* out_imt) { if (klass->IsInterface()) { // No vtable. size_t count = klass->NumVirtualMethods(); if (!IsUint(16, count)) { ThrowClassFormatError(klass.Get(), "Too many methods on interface: %zd", count); return false; } for (size_t i = 0; i < count; ++i) { klass->GetVirtualMethodDuringLinking(i)->SetMethodIndex(i); } } else if (!LinkVirtualMethods(self, klass)) { // Link virtual methods first. return false; } return LinkInterfaceMethods(self, klass, interfaces, out_imt); // Link interface method last. } // Comparator for name and signature of a method, used in finding overriding methods. Implementation // avoids the use of handles, if it didn't then rather than compare dex files we could compare dex // caches in the implementation below. class MethodNameAndSignatureComparator FINAL { public: explicit MethodNameAndSignatureComparator(mirror::ArtMethod* method) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) : dex_file_(method->GetDexFile()), mid_(&dex_file_->GetMethodId(method->GetDexMethodIndex())), name_(nullptr), name_len_(0) { DCHECK(!method->IsProxyMethod()) << PrettyMethod(method); } const char* GetName() { if (name_ == nullptr) { name_ = dex_file_->StringDataAndUtf16LengthByIdx(mid_->name_idx_, &name_len_); } return name_; } bool HasSameNameAndSignature(mirror::ArtMethod* other) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DCHECK(!other->IsProxyMethod()) << PrettyMethod(other); const DexFile* other_dex_file = other->GetDexFile(); const DexFile::MethodId& other_mid = other_dex_file->GetMethodId(other->GetDexMethodIndex()); if (dex_file_ == other_dex_file) { return mid_->name_idx_ == other_mid.name_idx_ && mid_->proto_idx_ == other_mid.proto_idx_; } GetName(); // Only used to make sure its calculated. uint32_t other_name_len; const char* other_name = other_dex_file->StringDataAndUtf16LengthByIdx(other_mid.name_idx_, &other_name_len); if (name_len_ != other_name_len || strcmp(name_, other_name) != 0) { return false; } return dex_file_->GetMethodSignature(*mid_) == other_dex_file->GetMethodSignature(other_mid); } private: // Dex file for the method to compare against. const DexFile* const dex_file_; // MethodId for the method to compare against. const DexFile::MethodId* const mid_; // Lazily computed name from the dex file's strings. const char* name_; // Lazily computed name length. uint32_t name_len_; }; class LinkVirtualHashTable { public: LinkVirtualHashTable(Handle klass, size_t hash_size, uint32_t* hash_table) : klass_(klass), hash_size_(hash_size), hash_table_(hash_table) { std::fill(hash_table_, hash_table_ + hash_size_, invalid_index_); } void Add(uint32_t virtual_method_index) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { mirror::ArtMethod* local_method = klass_->GetVirtualMethodDuringLinking(virtual_method_index); const char* name = local_method->GetName(); uint32_t hash = ComputeModifiedUtf8Hash(name); uint32_t index = hash % hash_size_; // Linear probe until we have an empty slot. while (hash_table_[index] != invalid_index_) { if (++index == hash_size_) { index = 0; } } hash_table_[index] = virtual_method_index; } uint32_t FindAndRemove(MethodNameAndSignatureComparator* comparator) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { const char* name = comparator->GetName(); uint32_t hash = ComputeModifiedUtf8Hash(name); size_t index = hash % hash_size_; while (true) { const uint32_t value = hash_table_[index]; // Since linear probe makes continuous blocks, hitting an invalid index means we are done // the block and can safely assume not found. if (value == invalid_index_) { break; } if (value != removed_index_) { // This signifies not already overriden. mirror::ArtMethod* virtual_method = klass_->GetVirtualMethodDuringLinking(value); if (comparator->HasSameNameAndSignature(virtual_method->GetInterfaceMethodIfProxy())) { hash_table_[index] = removed_index_; return value; } } if (++index == hash_size_) { index = 0; } } return GetNotFoundIndex(); } static uint32_t GetNotFoundIndex() { return invalid_index_; } private: static const uint32_t invalid_index_; static const uint32_t removed_index_; Handle klass_; const size_t hash_size_; uint32_t* const hash_table_; }; const uint32_t LinkVirtualHashTable::invalid_index_ = std::numeric_limits::max(); const uint32_t LinkVirtualHashTable::removed_index_ = std::numeric_limits::max() - 1; bool ClassLinker::LinkVirtualMethods(Thread* self, Handle klass) { const size_t num_virtual_methods = klass->NumVirtualMethods(); if (klass->HasSuperClass()) { const size_t super_vtable_length = klass->GetSuperClass()->GetVTableLength(); const size_t max_count = num_virtual_methods + super_vtable_length; StackHandleScope<2> hs(self); Handle super_class(hs.NewHandle(klass->GetSuperClass())); Handle> vtable; if (super_class->ShouldHaveEmbeddedImtAndVTable()) { vtable = hs.NewHandle(AllocArtMethodArray(self, max_count)); if (UNLIKELY(vtable.Get() == nullptr)) { CHECK(self->IsExceptionPending()); // OOME. return false; } for (size_t i = 0; i < super_vtable_length; i++) { vtable->SetWithoutChecks(i, super_class->GetEmbeddedVTableEntry(i)); } if (num_virtual_methods == 0) { klass->SetVTable(vtable.Get()); return true; } } else { mirror::ObjectArray* super_vtable = super_class->GetVTable(); CHECK(super_vtable != nullptr) << PrettyClass(super_class.Get()); if (num_virtual_methods == 0) { klass->SetVTable(super_vtable); return true; } vtable = hs.NewHandle(super_vtable->CopyOf(self, max_count)); if (UNLIKELY(vtable.Get() == nullptr)) { CHECK(self->IsExceptionPending()); // OOME. return false; } } // How the algorithm works: // 1. Populate hash table by adding num_virtual_methods from klass. The values in the hash // table are: invalid_index for unused slots, index super_vtable_length + i for a virtual // method which has not been matched to a vtable method, and j if the virtual method at the // index overrode the super virtual method at index j. // 2. Loop through super virtual methods, if they overwrite, update hash table to j // (j < super_vtable_length) to avoid redundant checks. (TODO maybe use this info for reducing // the need for the initial vtable which we later shrink back down). // 3. Add non overridden methods to the end of the vtable. static constexpr size_t kMaxStackHash = 250; const size_t hash_table_size = num_virtual_methods * 3; uint32_t* hash_table_ptr; std::unique_ptr hash_heap_storage; if (hash_table_size <= kMaxStackHash) { hash_table_ptr = reinterpret_cast( alloca(hash_table_size * sizeof(*hash_table_ptr))); } else { hash_heap_storage.reset(new uint32_t[hash_table_size]); hash_table_ptr = hash_heap_storage.get(); } LinkVirtualHashTable hash_table(klass, hash_table_size, hash_table_ptr); // Add virtual methods to the hash table. for (size_t i = 0; i < num_virtual_methods; ++i) { hash_table.Add(i); } // Loop through each super vtable method and see if they are overriden by a method we added to // the hash table. for (size_t j = 0; j < super_vtable_length; ++j) { // Search the hash table to see if we are overidden by any method. mirror::ArtMethod* super_method = vtable->GetWithoutChecks(j); MethodNameAndSignatureComparator super_method_name_comparator( super_method->GetInterfaceMethodIfProxy()); uint32_t hash_index = hash_table.FindAndRemove(&super_method_name_comparator); if (hash_index != hash_table.GetNotFoundIndex()) { mirror::ArtMethod* virtual_method = klass->GetVirtualMethodDuringLinking(hash_index); if (klass->CanAccessMember(super_method->GetDeclaringClass(), super_method->GetAccessFlags())) { if (super_method->IsFinal()) { ThrowLinkageError(klass.Get(), "Method %s overrides final method in class %s", PrettyMethod(virtual_method).c_str(), super_method->GetDeclaringClassDescriptor()); return false; } vtable->SetWithoutChecks(j, virtual_method); virtual_method->SetMethodIndex(j); } else { LOG(WARNING) << "Before Android 4.1, method " << PrettyMethod(virtual_method) << " would have incorrectly overridden the package-private method in " << PrettyDescriptor(super_method->GetDeclaringClassDescriptor()); } } } // Add the non overridden methods at the end. size_t actual_count = super_vtable_length; for (size_t i = 0; i < num_virtual_methods; ++i) { mirror::ArtMethod* local_method = klass->GetVirtualMethodDuringLinking(i); size_t method_idx = local_method->GetMethodIndexDuringLinking(); if (method_idx < super_vtable_length && local_method == vtable->GetWithoutChecks(method_idx)) { continue; } vtable->SetWithoutChecks(actual_count, local_method); local_method->SetMethodIndex(actual_count); ++actual_count; } if (!IsUint(16, actual_count)) { ThrowClassFormatError(klass.Get(), "Too many methods defined on class: %zd", actual_count); return false; } // Shrink vtable if possible CHECK_LE(actual_count, max_count); if (actual_count < max_count) { vtable.Assign(vtable->CopyOf(self, actual_count)); if (UNLIKELY(vtable.Get() == nullptr)) { CHECK(self->IsExceptionPending()); // OOME. return false; } } klass->SetVTable(vtable.Get()); } else { CHECK_EQ(klass.Get(), GetClassRoot(kJavaLangObject)); if (!IsUint(16, num_virtual_methods)) { ThrowClassFormatError(klass.Get(), "Too many methods: %d", static_cast(num_virtual_methods)); return false; } mirror::ObjectArray* vtable = AllocArtMethodArray(self, num_virtual_methods); if (UNLIKELY(vtable == nullptr)) { CHECK(self->IsExceptionPending()); // OOME. return false; } for (size_t i = 0; i < num_virtual_methods; ++i) { mirror::ArtMethod* virtual_method = klass->GetVirtualMethodDuringLinking(i); vtable->SetWithoutChecks(i, virtual_method); virtual_method->SetMethodIndex(i & 0xFFFF); } klass->SetVTable(vtable); } return true; } bool ClassLinker::LinkInterfaceMethods(Thread* self, Handle klass, Handle> interfaces, StackHandleScope* out_imt) { StackHandleScope<2> hs(self); Runtime* const runtime = Runtime::Current(); const bool has_superclass = klass->HasSuperClass(); const size_t super_ifcount = has_superclass ? klass->GetSuperClass()->GetIfTableCount() : 0U; const bool have_interfaces = interfaces.Get() != nullptr; const size_t num_interfaces = have_interfaces ? interfaces->GetLength() : klass->NumDirectInterfaces(); if (num_interfaces == 0) { if (super_ifcount == 0) { // Class implements no interfaces. DCHECK_EQ(klass->GetIfTableCount(), 0); DCHECK(klass->GetIfTable() == nullptr); return true; } // Class implements same interfaces as parent, are any of these not marker interfaces? bool has_non_marker_interface = false; mirror::IfTable* super_iftable = klass->GetSuperClass()->GetIfTable(); for (size_t i = 0; i < super_ifcount; ++i) { if (super_iftable->GetMethodArrayCount(i) > 0) { has_non_marker_interface = true; break; } } // Class just inherits marker interfaces from parent so recycle parent's iftable. if (!has_non_marker_interface) { klass->SetIfTable(super_iftable); return true; } } size_t ifcount = super_ifcount + num_interfaces; for (size_t i = 0; i < num_interfaces; i++) { mirror::Class* interface = have_interfaces ? interfaces->GetWithoutChecks(i) : mirror::Class::GetDirectInterface(self, klass, i); DCHECK(interface != nullptr); if (UNLIKELY(!interface->IsInterface())) { std::string temp; ThrowIncompatibleClassChangeError(klass.Get(), "Class %s implements non-interface class %s", PrettyDescriptor(klass.Get()).c_str(), PrettyDescriptor(interface->GetDescriptor(&temp)).c_str()); return false; } ifcount += interface->GetIfTableCount(); } Handle iftable(hs.NewHandle(AllocIfTable(self, ifcount))); if (UNLIKELY(iftable.Get() == nullptr)) { CHECK(self->IsExceptionPending()); // OOME. return false; } if (super_ifcount != 0) { mirror::IfTable* super_iftable = klass->GetSuperClass()->GetIfTable(); for (size_t i = 0; i < super_ifcount; i++) { mirror::Class* super_interface = super_iftable->GetInterface(i); iftable->SetInterface(i, super_interface); } } // Flatten the interface inheritance hierarchy. size_t idx = super_ifcount; for (size_t i = 0; i < num_interfaces; i++) { mirror::Class* interface = have_interfaces ? interfaces->Get(i) : mirror::Class::GetDirectInterface(self, klass, i); // Check if interface is already in iftable bool duplicate = false; for (size_t j = 0; j < idx; j++) { mirror::Class* existing_interface = iftable->GetInterface(j); if (existing_interface == interface) { duplicate = true; break; } } if (!duplicate) { // Add this non-duplicate interface. iftable->SetInterface(idx++, interface); // Add this interface's non-duplicate super-interfaces. for (int32_t j = 0; j < interface->GetIfTableCount(); j++) { mirror::Class* super_interface = interface->GetIfTable()->GetInterface(j); bool super_duplicate = false; for (size_t k = 0; k < idx; k++) { mirror::Class* existing_interface = iftable->GetInterface(k); if (existing_interface == super_interface) { super_duplicate = true; break; } } if (!super_duplicate) { iftable->SetInterface(idx++, super_interface); } } } } // Shrink iftable in case duplicates were found if (idx < ifcount) { DCHECK_NE(num_interfaces, 0U); iftable.Assign(down_cast(iftable->CopyOf(self, idx * mirror::IfTable::kMax))); if (UNLIKELY(iftable.Get() == nullptr)) { CHECK(self->IsExceptionPending()); // OOME. return false; } ifcount = idx; } else { DCHECK_EQ(idx, ifcount); } klass->SetIfTable(iftable.Get()); // If we're an interface, we don't need the vtable pointers, so we're done. if (klass->IsInterface()) { return true; } Handle> vtable( hs.NewHandle(klass->GetVTableDuringLinking())); std::vector miranda_list; // Copy the IMT from the super class if possible. bool extend_super_iftable = false; if (has_superclass) { mirror::Class* super_class = klass->GetSuperClass(); extend_super_iftable = true; if (super_class->ShouldHaveEmbeddedImtAndVTable()) { for (size_t i = 0; i < mirror::Class::kImtSize; ++i) { out_imt->SetReference(i, super_class->GetEmbeddedImTableEntry(i)); } } else { // No imt in the super class, need to reconstruct from the iftable. mirror::IfTable* if_table = super_class->GetIfTable(); mirror::ArtMethod* conflict_method = runtime->GetImtConflictMethod(); const size_t length = super_class->GetIfTableCount(); for (size_t i = 0; i < length; ++i) { mirror::Class* interface = iftable->GetInterface(i); const size_t num_virtuals = interface->NumVirtualMethods(); const size_t method_array_count = if_table->GetMethodArrayCount(i); DCHECK_EQ(num_virtuals, method_array_count); if (method_array_count == 0) { continue; } mirror::ObjectArray* method_array = if_table->GetMethodArray(i); for (size_t j = 0; j < num_virtuals; ++j) { mirror::ArtMethod* method = method_array->GetWithoutChecks(j); if (method->IsMiranda()) { continue; } mirror::ArtMethod* interface_method = interface->GetVirtualMethod(j); uint32_t imt_index = interface_method->GetDexMethodIndex() % mirror::Class::kImtSize; mirror::ArtMethod* imt_ref = out_imt->GetReference(imt_index)->AsArtMethod(); if (imt_ref == runtime->GetImtUnimplementedMethod()) { out_imt->SetReference(imt_index, method); } else if (imt_ref != conflict_method) { out_imt->SetReference(imt_index, conflict_method); } } } } } for (size_t i = 0; i < ifcount; ++i) { size_t num_methods = iftable->GetInterface(i)->NumVirtualMethods(); if (num_methods > 0) { StackHandleScope<2> hs(self); const bool is_super = i < super_ifcount; const bool super_interface = is_super && extend_super_iftable; Handle> method_array; Handle> input_array; if (super_interface) { mirror::IfTable* if_table = klass->GetSuperClass()->GetIfTable(); DCHECK(if_table != nullptr); DCHECK(if_table->GetMethodArray(i) != nullptr); // If we are working on a super interface, try extending the existing method array. method_array = hs.NewHandle(if_table->GetMethodArray(i)->Clone(self)-> AsObjectArray()); // We are overwriting a super class interface, try to only virtual methods instead of the // whole vtable. input_array = hs.NewHandle(klass->GetVirtualMethods()); } else { method_array = hs.NewHandle(AllocArtMethodArray(self, num_methods)); // A new interface, we need the whole vtable incase a new interface method is implemented // in the whole superclass. input_array = vtable; } if (UNLIKELY(method_array.Get() == nullptr)) { CHECK(self->IsExceptionPending()); // OOME. return false; } iftable->SetMethodArray(i, method_array.Get()); if (input_array.Get() == nullptr) { // If the added virtual methods is empty, do nothing. DCHECK(super_interface); continue; } for (size_t j = 0; j < num_methods; ++j) { mirror::ArtMethod* interface_method = iftable->GetInterface(i)->GetVirtualMethod(j); MethodNameAndSignatureComparator interface_name_comparator( interface_method->GetInterfaceMethodIfProxy()); int32_t k; // For each method listed in the interface's method list, find the // matching method in our class's method list. We want to favor the // subclass over the superclass, which just requires walking // back from the end of the vtable. (This only matters if the // superclass defines a private method and this class redefines // it -- otherwise it would use the same vtable slot. In .dex files // those don't end up in the virtual method table, so it shouldn't // matter which direction we go. We walk it backward anyway.) for (k = input_array->GetLength() - 1; k >= 0; --k) { mirror::ArtMethod* vtable_method = input_array->GetWithoutChecks(k); mirror::ArtMethod* vtable_method_for_name_comparison = vtable_method->GetInterfaceMethodIfProxy(); if (interface_name_comparator.HasSameNameAndSignature( vtable_method_for_name_comparison)) { if (!vtable_method->IsAbstract() && !vtable_method->IsPublic()) { ThrowIllegalAccessError( klass.Get(), "Method '%s' implementing interface method '%s' is not public", PrettyMethod(vtable_method).c_str(), PrettyMethod(interface_method).c_str()); return false; } method_array->SetWithoutChecks(j, vtable_method); // Place method in imt if entry is empty, place conflict otherwise. uint32_t imt_index = interface_method->GetDexMethodIndex() % mirror::Class::kImtSize; mirror::ArtMethod* imt_ref = out_imt->GetReference(imt_index)->AsArtMethod(); mirror::ArtMethod* conflict_method = runtime->GetImtConflictMethod(); if (imt_ref == runtime->GetImtUnimplementedMethod()) { out_imt->SetReference(imt_index, vtable_method); } else if (imt_ref != conflict_method) { // If we are not a conflict and we have the same signature and name as the imt entry, // it must be that we overwrote a superclass vtable entry. MethodNameAndSignatureComparator imt_ref_name_comparator( imt_ref->GetInterfaceMethodIfProxy()); if (imt_ref_name_comparator.HasSameNameAndSignature( vtable_method_for_name_comparison)) { out_imt->SetReference(imt_index, vtable_method); } else { out_imt->SetReference(imt_index, conflict_method); } } break; } } if (k < 0 && !super_interface) { mirror::ArtMethod* miranda_method = nullptr; for (mirror::ArtMethod* mir_method : miranda_list) { if (interface_name_comparator.HasSameNameAndSignature( mir_method->GetInterfaceMethodIfProxy())) { miranda_method = mir_method; break; } } if (miranda_method == nullptr) { // Point the interface table at a phantom slot. miranda_method = down_cast(interface_method->Clone(self)); if (UNLIKELY(miranda_method == nullptr)) { CHECK(self->IsExceptionPending()); // OOME. return false; } // TODO: If a methods move then the miranda_list may hold stale references. miranda_list.push_back(miranda_method); } method_array->SetWithoutChecks(j, miranda_method); } } } } if (!miranda_list.empty()) { int old_method_count = klass->NumVirtualMethods(); int new_method_count = old_method_count + miranda_list.size(); mirror::ObjectArray* virtuals; if (old_method_count == 0) { virtuals = AllocArtMethodArray(self, new_method_count); } else { virtuals = klass->GetVirtualMethods()->CopyOf(self, new_method_count); } if (UNLIKELY(virtuals == nullptr)) { CHECK(self->IsExceptionPending()); // OOME. return false; } klass->SetVirtualMethods(virtuals); int old_vtable_count = vtable->GetLength(); int new_vtable_count = old_vtable_count + miranda_list.size(); vtable.Assign(vtable->CopyOf(self, new_vtable_count)); if (UNLIKELY(vtable.Get() == nullptr)) { CHECK(self->IsExceptionPending()); // OOME. return false; } for (size_t i = 0; i < miranda_list.size(); ++i) { mirror::ArtMethod* method = miranda_list[i]; // Leave the declaring class alone as type indices are relative to it method->SetAccessFlags(method->GetAccessFlags() | kAccMiranda); method->SetMethodIndex(0xFFFF & (old_vtable_count + i)); klass->SetVirtualMethod(old_method_count + i, method); vtable->SetWithoutChecks(old_vtable_count + i, method); } // TODO: do not assign to the vtable field until it is fully constructed. klass->SetVTable(vtable.Get()); } if (kIsDebugBuild) { mirror::ObjectArray* vtable = klass->GetVTableDuringLinking(); for (int i = 0; i < vtable->GetLength(); ++i) { CHECK(vtable->GetWithoutChecks(i) != nullptr); } } return true; } bool ClassLinker::LinkInstanceFields(Handle klass) { CHECK(klass.Get() != nullptr); return LinkFields(klass, false, nullptr); } bool ClassLinker::LinkStaticFields(Handle klass, size_t* class_size) { CHECK(klass.Get() != nullptr); return LinkFields(klass, true, class_size); } struct LinkFieldsComparator { explicit LinkFieldsComparator() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { } // No thread safety analysis as will be called from STL. Checked lock held in constructor. bool operator()(mirror::ArtField* field1, mirror::ArtField* field2) NO_THREAD_SAFETY_ANALYSIS { // First come reference fields, then 64-bit, and finally 32-bit Primitive::Type type1 = field1->GetTypeAsPrimitiveType(); Primitive::Type type2 = field2->GetTypeAsPrimitiveType(); if (type1 != type2) { if (type1 == Primitive::kPrimNot) { // Reference always goes first. return true; } if (type2 == Primitive::kPrimNot) { // Reference always goes first. return false; } size_t size1 = Primitive::ComponentSize(type1); size_t size2 = Primitive::ComponentSize(type2); if (size1 != size2) { // Larger primitive types go first. return size1 > size2; } // Primitive types differ but sizes match. Arbitrarily order by primitive type. return type1 < type2; } // Same basic group? Then sort by dex field index. This is guaranteed to be sorted // by name and for equal names by type id index. // NOTE: This works also for proxies. Their static fields are assigned appropriate indexes. return field1->GetDexFieldIndex() < field2->GetDexFieldIndex(); } }; bool ClassLinker::LinkFields(Handle klass, bool is_static, size_t* class_size) { size_t num_fields = is_static ? klass->NumStaticFields() : klass->NumInstanceFields(); mirror::ObjectArray* fields = is_static ? klass->GetSFields() : klass->GetIFields(); // Initialize field_offset MemberOffset field_offset(0); if (is_static) { field_offset = klass->GetFirstReferenceStaticFieldOffsetDuringLinking(); } else { mirror::Class* super_class = klass->GetSuperClass(); if (super_class != nullptr) { CHECK(super_class->IsResolved()) << PrettyClass(klass.Get()) << " " << PrettyClass(super_class); field_offset = MemberOffset(super_class->GetObjectSize()); } } CHECK_EQ(num_fields == 0, fields == nullptr) << PrettyClass(klass.Get()); // we want a relatively stable order so that adding new fields // minimizes disruption of C++ version such as Class and Method. std::deque grouped_and_sorted_fields; for (size_t i = 0; i < num_fields; i++) { mirror::ArtField* f = fields->Get(i); CHECK(f != nullptr) << PrettyClass(klass.Get()); grouped_and_sorted_fields.push_back(f); } std::sort(grouped_and_sorted_fields.begin(), grouped_and_sorted_fields.end(), LinkFieldsComparator()); // References should be at the front. size_t current_field = 0; size_t num_reference_fields = 0; for (; current_field < num_fields; current_field++) { mirror::ArtField* field = grouped_and_sorted_fields.front(); Primitive::Type type = field->GetTypeAsPrimitiveType(); bool isPrimitive = type != Primitive::kPrimNot; if (isPrimitive) { break; // past last reference, move on to the next phase } grouped_and_sorted_fields.pop_front(); num_reference_fields++; field->SetOffset(field_offset); field_offset = MemberOffset(field_offset.Uint32Value() + sizeof(mirror::HeapReference)); } // Now we want to pack all of the double-wide fields together. If // we're not aligned, though, we want to shuffle one 32-bit field // into place. If we can't find one, we'll have to pad it. if (current_field != num_fields && !IsAligned<8>(field_offset.Uint32Value())) { for (size_t i = 0; i < grouped_and_sorted_fields.size(); i++) { mirror::ArtField* field = grouped_and_sorted_fields[i]; Primitive::Type type = field->GetTypeAsPrimitiveType(); CHECK(type != Primitive::kPrimNot) << PrettyField(field); // should be primitive types if (type == Primitive::kPrimLong || type == Primitive::kPrimDouble) { continue; } current_field++; field->SetOffset(field_offset); // drop the consumed field grouped_and_sorted_fields.erase(grouped_and_sorted_fields.begin() + i); break; } // whether we found a 32-bit field for padding or not, we advance field_offset = MemberOffset(field_offset.Uint32Value() + sizeof(mirror::HeapReference)); } // Alignment is good, shuffle any double-wide fields forward, and // finish assigning field offsets to all fields. DCHECK(current_field == num_fields || IsAligned<8>(field_offset.Uint32Value())) << PrettyClass(klass.Get()); while (!grouped_and_sorted_fields.empty()) { mirror::ArtField* field = grouped_and_sorted_fields.front(); grouped_and_sorted_fields.pop_front(); Primitive::Type type = field->GetTypeAsPrimitiveType(); CHECK(type != Primitive::kPrimNot) << PrettyField(field); // should be primitive types field->SetOffset(field_offset); field_offset = MemberOffset(field_offset.Uint32Value() + ((type == Primitive::kPrimLong || type == Primitive::kPrimDouble) ? sizeof(uint64_t) : sizeof(uint32_t))); current_field++; } // We lie to the GC about the java.lang.ref.Reference.referent field, so it doesn't scan it. if (!is_static && klass->DescriptorEquals("Ljava/lang/ref/Reference;")) { // We know there are no non-reference fields in the Reference classes, and we know // that 'referent' is alphabetically last, so this is easy... CHECK_EQ(num_reference_fields, num_fields) << PrettyClass(klass.Get()); CHECK_STREQ(fields->Get(num_fields - 1)->GetName(), "referent") << PrettyClass(klass.Get()); --num_reference_fields; } size_t size = field_offset.Uint32Value(); // Update klass if (is_static) { klass->SetNumReferenceStaticFields(num_reference_fields); *class_size = size; } else { klass->SetNumReferenceInstanceFields(num_reference_fields); if (!klass->IsVariableSize()) { if (klass->DescriptorEquals("Ljava/lang/reflect/ArtMethod;")) { klass->SetObjectSize(mirror::ArtMethod::InstanceSize(sizeof(void*))); } else { std::string temp; DCHECK_GE(size, sizeof(mirror::Object)) << klass->GetDescriptor(&temp); size_t previous_size = klass->GetObjectSize(); if (previous_size != 0) { // Make sure that we didn't originally have an incorrect size. CHECK_EQ(previous_size, size) << klass->GetDescriptor(&temp); } klass->SetObjectSize(size); } } } if (kIsDebugBuild) { // Make sure that the fields array is ordered by name but all reference // offsets are at the beginning as far as alignment allows. MemberOffset start_ref_offset = is_static ? klass->GetFirstReferenceStaticFieldOffsetDuringLinking() : klass->GetFirstReferenceInstanceFieldOffset(); MemberOffset end_ref_offset(start_ref_offset.Uint32Value() + num_reference_fields * sizeof(mirror::HeapReference)); MemberOffset current_ref_offset = start_ref_offset; for (size_t i = 0; i < num_fields; i++) { mirror::ArtField* field = fields->Get(i); if (false) { // enable to debug field layout LOG(INFO) << "LinkFields: " << (is_static ? "static" : "instance") << " class=" << PrettyClass(klass.Get()) << " field=" << PrettyField(field) << " offset=" << field->GetField32(MemberOffset(mirror::ArtField::OffsetOffset())); } if (i != 0) { mirror::ArtField* prev_field = fields->Get(i - 1u); // NOTE: The field names can be the same. This is not possible in the Java language // but it's valid Java/dex bytecode and for example proguard can generate such bytecode. CHECK_LE(strcmp(prev_field->GetName(), field->GetName()), 0); } Primitive::Type type = field->GetTypeAsPrimitiveType(); bool is_primitive = type != Primitive::kPrimNot; if (klass->DescriptorEquals("Ljava/lang/ref/Reference;") && strcmp("referent", field->GetName()) == 0) { is_primitive = true; // We lied above, so we have to expect a lie here. } MemberOffset offset = field->GetOffsetDuringLinking(); if (is_primitive) { if (offset.Uint32Value() < end_ref_offset.Uint32Value()) { // Shuffled before references. size_t type_size = Primitive::ComponentSize(type); CHECK_LT(type_size, sizeof(mirror::HeapReference)); CHECK_LT(offset.Uint32Value(), start_ref_offset.Uint32Value()); CHECK_LE(offset.Uint32Value() + type_size, start_ref_offset.Uint32Value()); CHECK(!IsAligned)>(offset.Uint32Value())); } } else { CHECK_EQ(current_ref_offset.Uint32Value(), offset.Uint32Value()); current_ref_offset = MemberOffset(current_ref_offset.Uint32Value() + sizeof(mirror::HeapReference)); } } CHECK_EQ(current_ref_offset.Uint32Value(), end_ref_offset.Uint32Value()); } return true; } // Set the bitmap of reference instance field offsets. void ClassLinker::CreateReferenceInstanceOffsets(Handle klass) { uint32_t reference_offsets = 0; mirror::Class* super_class = klass->GetSuperClass(); if (super_class != nullptr) { reference_offsets = super_class->GetReferenceInstanceOffsets(); // If our superclass overflowed, we don't stand a chance. if (reference_offsets == CLASS_WALK_SUPER) { klass->SetReferenceInstanceOffsets(reference_offsets); return; } } CreateReferenceOffsets(klass, false, reference_offsets); } void ClassLinker::CreateReferenceStaticOffsets(Handle klass) { CreateReferenceOffsets(klass, true, 0); } void ClassLinker::CreateReferenceOffsets(Handle klass, bool is_static, uint32_t reference_offsets) { size_t num_reference_fields = is_static ? klass->NumReferenceStaticFieldsDuringLinking() : klass->NumReferenceInstanceFieldsDuringLinking(); if (num_reference_fields != 0u) { // All of the fields that contain object references are guaranteed be grouped in memory // starting at an appropriately aligned address after super class object data for instances // and after the basic class data for classes. uint32_t start_offset = !is_static ? klass->GetFirstReferenceInstanceFieldOffset().Uint32Value() // Can't use klass->GetFirstReferenceStaticFieldOffset() yet. : klass->ShouldHaveEmbeddedImtAndVTable() ? mirror::Class::ComputeClassSize( true, klass->GetVTableDuringLinking()->GetLength(), 0, 0, 0) : sizeof(mirror::Class); uint32_t start_bit = start_offset / sizeof(mirror::HeapReference); if (start_bit + num_reference_fields > 32) { reference_offsets = CLASS_WALK_SUPER; } else { reference_offsets |= (0xffffffffu >> start_bit) & (0xffffffffu << (32 - (start_bit + num_reference_fields))); } } // Update fields in klass if (is_static) { klass->SetReferenceStaticOffsets(reference_offsets); } else { klass->SetReferenceInstanceOffsets(reference_offsets); } } mirror::String* ClassLinker::ResolveString(const DexFile& dex_file, uint32_t string_idx, Handle dex_cache) { DCHECK(dex_cache.Get() != nullptr); mirror::String* resolved = dex_cache->GetResolvedString(string_idx); if (resolved != nullptr) { return resolved; } uint32_t utf16_length; const char* utf8_data = dex_file.StringDataAndUtf16LengthByIdx(string_idx, &utf16_length); mirror::String* string = intern_table_->InternStrong(utf16_length, utf8_data); dex_cache->SetResolvedString(string_idx, string); return string; } mirror::Class* ClassLinker::ResolveType(const DexFile& dex_file, uint16_t type_idx, mirror::Class* referrer) { StackHandleScope<2> hs(Thread::Current()); Handle dex_cache(hs.NewHandle(referrer->GetDexCache())); Handle class_loader(hs.NewHandle(referrer->GetClassLoader())); return ResolveType(dex_file, type_idx, dex_cache, class_loader); } mirror::Class* ClassLinker::ResolveType(const DexFile& dex_file, uint16_t type_idx, Handle dex_cache, Handle class_loader) { DCHECK(dex_cache.Get() != nullptr); mirror::Class* resolved = dex_cache->GetResolvedType(type_idx); if (resolved == nullptr) { Thread* self = Thread::Current(); const char* descriptor = dex_file.StringByTypeIdx(type_idx); resolved = FindClass(self, descriptor, class_loader); if (resolved != nullptr) { // TODO: we used to throw here if resolved's class loader was not the // boot class loader. This was to permit different classes with the // same name to be loaded simultaneously by different loaders dex_cache->SetResolvedType(type_idx, resolved); } else { CHECK(self->IsExceptionPending()) << "Expected pending exception for failed resolution of: " << descriptor; // Convert a ClassNotFoundException to a NoClassDefFoundError. StackHandleScope<1> hs(self); Handle cause(hs.NewHandle(self->GetException(nullptr))); if (cause->InstanceOf(GetClassRoot(kJavaLangClassNotFoundException))) { DCHECK(resolved == nullptr); // No Handle needed to preserve resolved. self->ClearException(); ThrowNoClassDefFoundError("Failed resolution of: %s", descriptor); self->GetException(nullptr)->SetCause(cause.Get()); } } } DCHECK((resolved == nullptr) || resolved->IsResolved() || resolved->IsErroneous()) << PrettyDescriptor(resolved) << " " << resolved->GetStatus(); return resolved; } mirror::ArtMethod* ClassLinker::ResolveMethod(const DexFile& dex_file, uint32_t method_idx, Handle dex_cache, Handle class_loader, Handle referrer, InvokeType type) { DCHECK(dex_cache.Get() != nullptr); // Check for hit in the dex cache. mirror::ArtMethod* resolved = dex_cache->GetResolvedMethod(method_idx); if (resolved != nullptr && !resolved->IsRuntimeMethod()) { return resolved; } // Fail, get the declaring class. const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx); mirror::Class* klass = ResolveType(dex_file, method_id.class_idx_, dex_cache, class_loader); if (klass == nullptr) { DCHECK(Thread::Current()->IsExceptionPending()); return nullptr; } // Scan using method_idx, this saves string compares but will only hit for matching dex // caches/files. switch (type) { case kDirect: // Fall-through. case kStatic: resolved = klass->FindDirectMethod(dex_cache.Get(), method_idx); break; case kInterface: resolved = klass->FindInterfaceMethod(dex_cache.Get(), method_idx); DCHECK(resolved == nullptr || resolved->GetDeclaringClass()->IsInterface()); break; case kSuper: // Fall-through. case kVirtual: resolved = klass->FindVirtualMethod(dex_cache.Get(), method_idx); break; default: LOG(FATAL) << "Unreachable - invocation type: " << type; } if (resolved == nullptr) { // Search by name, which works across dex files. const char* name = dex_file.StringDataByIdx(method_id.name_idx_); const Signature signature = dex_file.GetMethodSignature(method_id); switch (type) { case kDirect: // Fall-through. case kStatic: resolved = klass->FindDirectMethod(name, signature); break; case kInterface: resolved = klass->FindInterfaceMethod(name, signature); DCHECK(resolved == nullptr || resolved->GetDeclaringClass()->IsInterface()); break; case kSuper: // Fall-through. case kVirtual: resolved = klass->FindVirtualMethod(name, signature); break; } } // If we found a method, check for incompatible class changes. if (LIKELY(resolved != nullptr && !resolved->CheckIncompatibleClassChange(type))) { // Be a good citizen and update the dex cache to speed subsequent calls. dex_cache->SetResolvedMethod(method_idx, resolved); return resolved; } else { // If we had a method, it's an incompatible-class-change error. if (resolved != nullptr) { ThrowIncompatibleClassChangeError(type, resolved->GetInvokeType(), resolved, referrer.Get()); } else { // We failed to find the method which means either an access error, an incompatible class // change, or no such method. First try to find the method among direct and virtual methods. const char* name = dex_file.StringDataByIdx(method_id.name_idx_); const Signature signature = dex_file.GetMethodSignature(method_id); switch (type) { case kDirect: case kStatic: resolved = klass->FindVirtualMethod(name, signature); // Note: kDirect and kStatic are also mutually exclusive, but in that case we would // have had a resolved method before, which triggers the "true" branch above. break; case kInterface: case kVirtual: case kSuper: resolved = klass->FindDirectMethod(name, signature); break; } // If we found something, check that it can be accessed by the referrer. if (resolved != nullptr && referrer.Get() != nullptr) { mirror::Class* methods_class = resolved->GetDeclaringClass(); mirror::Class* referring_class = referrer->GetDeclaringClass(); if (!referring_class->CanAccess(methods_class)) { ThrowIllegalAccessErrorClassForMethodDispatch(referring_class, methods_class, resolved, type); return nullptr; } else if (!referring_class->CanAccessMember(methods_class, resolved->GetAccessFlags())) { ThrowIllegalAccessErrorMethod(referring_class, resolved); return nullptr; } } // Otherwise, throw an IncompatibleClassChangeError if we found something, and check interface // methods and throw if we find the method there. If we find nothing, throw a // NoSuchMethodError. switch (type) { case kDirect: case kStatic: if (resolved != nullptr) { ThrowIncompatibleClassChangeError(type, kVirtual, resolved, referrer.Get()); } else { resolved = klass->FindInterfaceMethod(name, signature); if (resolved != nullptr) { ThrowIncompatibleClassChangeError(type, kInterface, resolved, referrer.Get()); } else { ThrowNoSuchMethodError(type, klass, name, signature); } } break; case kInterface: if (resolved != nullptr) { ThrowIncompatibleClassChangeError(type, kDirect, resolved, referrer.Get()); } else { resolved = klass->FindVirtualMethod(name, signature); if (resolved != nullptr) { ThrowIncompatibleClassChangeError(type, kVirtual, resolved, referrer.Get()); } else { ThrowNoSuchMethodError(type, klass, name, signature); } } break; case kSuper: if (resolved != nullptr) { ThrowIncompatibleClassChangeError(type, kDirect, resolved, referrer.Get()); } else { ThrowNoSuchMethodError(type, klass, name, signature); } break; case kVirtual: if (resolved != nullptr) { ThrowIncompatibleClassChangeError(type, kDirect, resolved, referrer.Get()); } else { resolved = klass->FindInterfaceMethod(name, signature); if (resolved != nullptr) { ThrowIncompatibleClassChangeError(type, kInterface, resolved, referrer.Get()); } else { ThrowNoSuchMethodError(type, klass, name, signature); } } break; } } DCHECK(Thread::Current()->IsExceptionPending()); return nullptr; } } mirror::ArtField* ClassLinker::ResolveField(const DexFile& dex_file, uint32_t field_idx, Handle dex_cache, Handle class_loader, bool is_static) { DCHECK(dex_cache.Get() != nullptr); mirror::ArtField* resolved = dex_cache->GetResolvedField(field_idx); if (resolved != nullptr) { return resolved; } const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx); Thread* const self = Thread::Current(); StackHandleScope<1> hs(self); Handle klass( hs.NewHandle(ResolveType(dex_file, field_id.class_idx_, dex_cache, class_loader))); if (klass.Get() == nullptr) { DCHECK(Thread::Current()->IsExceptionPending()); return nullptr; } if (is_static) { resolved = mirror::Class::FindStaticField(self, klass, dex_cache.Get(), field_idx); } else { resolved = klass->FindInstanceField(dex_cache.Get(), field_idx); } if (resolved == nullptr) { const char* name = dex_file.GetFieldName(field_id); const char* type = dex_file.GetFieldTypeDescriptor(field_id); if (is_static) { resolved = mirror::Class::FindStaticField(self, klass, name, type); } else { resolved = klass->FindInstanceField(name, type); } if (resolved == nullptr) { ThrowNoSuchFieldError(is_static ? "static " : "instance ", klass.Get(), type, name); return nullptr; } } dex_cache->SetResolvedField(field_idx, resolved); return resolved; } mirror::ArtField* ClassLinker::ResolveFieldJLS(const DexFile& dex_file, uint32_t field_idx, Handle dex_cache, Handle class_loader) { DCHECK(dex_cache.Get() != nullptr); mirror::ArtField* resolved = dex_cache->GetResolvedField(field_idx); if (resolved != nullptr) { return resolved; } const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx); Thread* self = Thread::Current(); StackHandleScope<1> hs(self); Handle klass( hs.NewHandle(ResolveType(dex_file, field_id.class_idx_, dex_cache, class_loader))); if (klass.Get() == nullptr) { DCHECK(Thread::Current()->IsExceptionPending()); return nullptr; } StringPiece name(dex_file.StringDataByIdx(field_id.name_idx_)); StringPiece type(dex_file.StringDataByIdx( dex_file.GetTypeId(field_id.type_idx_).descriptor_idx_)); resolved = mirror::Class::FindField(self, klass, name, type); if (resolved != nullptr) { dex_cache->SetResolvedField(field_idx, resolved); } else { ThrowNoSuchFieldError("", klass.Get(), type, name); } return resolved; } const char* ClassLinker::MethodShorty(uint32_t method_idx, mirror::ArtMethod* referrer, uint32_t* length) { mirror::Class* declaring_class = referrer->GetDeclaringClass(); mirror::DexCache* dex_cache = declaring_class->GetDexCache(); const DexFile& dex_file = *dex_cache->GetDexFile(); const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx); return dex_file.GetMethodShorty(method_id, length); } void ClassLinker::DumpAllClasses(int flags) { if (dex_cache_image_class_lookup_required_) { MoveImageClassesToClassTable(); } // TODO: at the time this was written, it wasn't safe to call PrettyField with the ClassLinker // lock held, because it might need to resolve a field's type, which would try to take the lock. std::vector all_classes; { ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); for (GcRoot& it : class_table_) { all_classes.push_back(it.Read()); } } for (size_t i = 0; i < all_classes.size(); ++i) { all_classes[i]->DumpClass(std::cerr, flags); } } void ClassLinker::DumpForSigQuit(std::ostream& os) { if (dex_cache_image_class_lookup_required_) { MoveImageClassesToClassTable(); } ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); os << "Zygote loaded classes=" << pre_zygote_class_table_.Size() << " post zygote classes=" << class_table_.Size() << "\n"; } size_t ClassLinker::NumLoadedClasses() { if (dex_cache_image_class_lookup_required_) { MoveImageClassesToClassTable(); } ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); // Only return non zygote classes since these are the ones which apps which care about. return class_table_.Size(); } pid_t ClassLinker::GetClassesLockOwner() { return Locks::classlinker_classes_lock_->GetExclusiveOwnerTid(); } pid_t ClassLinker::GetDexLockOwner() { return dex_lock_.GetExclusiveOwnerTid(); } void ClassLinker::SetClassRoot(ClassRoot class_root, mirror::Class* klass) { DCHECK(!init_done_); DCHECK(klass != nullptr); DCHECK(klass->GetClassLoader() == nullptr); mirror::ObjectArray* class_roots = class_roots_.Read(); DCHECK(class_roots != nullptr); DCHECK(class_roots->Get(class_root) == nullptr); class_roots->Set(class_root, klass); } std::size_t ClassLinker::ClassDescriptorHashEquals::operator()(const GcRoot& root) const { std::string temp; return ComputeModifiedUtf8Hash(root.Read()->GetDescriptor(&temp)); } bool ClassLinker::ClassDescriptorHashEquals::operator()(const GcRoot& a, const GcRoot& b) { if (a.Read()->GetClassLoader() != b.Read()->GetClassLoader()) { return false; } std::string temp; return a.Read()->DescriptorEquals(b.Read()->GetDescriptor(&temp)); } std::size_t ClassLinker::ClassDescriptorHashEquals::operator()( const std::pair& element) const { return ComputeModifiedUtf8Hash(element.first); } bool ClassLinker::ClassDescriptorHashEquals::operator()( const GcRoot& a, const std::pair& b) { if (a.Read()->GetClassLoader() != b.second) { return false; } return a.Read()->DescriptorEquals(b.first); } bool ClassLinker::ClassDescriptorHashEquals::operator()(const GcRoot& a, const char* descriptor) { return a.Read()->DescriptorEquals(descriptor); } std::size_t ClassLinker::ClassDescriptorHashEquals::operator()(const char* descriptor) const { return ComputeModifiedUtf8Hash(descriptor); } bool ClassLinker::MayBeCalledWithDirectCodePointer(mirror::ArtMethod* m) { // Non-image methods don't use direct code pointer. if (!m->GetDeclaringClass()->IsBootStrapClassLoaded()) { return false; } if (m->IsPrivate()) { // The method can only be called inside its own oat file. Therefore it won't be called using // its direct code if the oat file has been compiled in PIC mode. ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); const DexFile& dex_file = m->GetDeclaringClass()->GetDexFile(); const OatFile::OatDexFile* oat_dex_file = class_linker->FindOpenedOatDexFileForDexFile(dex_file); if (oat_dex_file == nullptr) { // No oat file: the method has not been compiled. return false; } const OatFile* oat_file = oat_dex_file->GetOatFile(); return oat_file != nullptr && !oat_file->IsPic(); } else { // The method can be called outside its own oat file. Therefore it won't be called using its // direct code pointer only if all loaded oat files have been compiled in PIC mode. ReaderMutexLock mu(Thread::Current(), dex_lock_); for (const OatFile* oat_file : oat_files_) { if (!oat_file->IsPic()) { return true; } } return false; } } } // namespace art