/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "image_space.h" #include #include #include #include #include "base/stl_util.h" #include "base/unix_file/fd_file.h" #include "base/scoped_flock.h" #include "gc/accounting/space_bitmap-inl.h" #include "mirror/art_method.h" #include "mirror/class-inl.h" #include "mirror/object-inl.h" #include "oat_file.h" #include "os.h" #include "space-inl.h" #include "utils.h" namespace art { namespace gc { namespace space { Atomic ImageSpace::bitmap_index_(0); ImageSpace::ImageSpace(const std::string& image_filename, const char* image_location, MemMap* mem_map, accounting::ContinuousSpaceBitmap* live_bitmap) : MemMapSpace(image_filename, mem_map, mem_map->Begin(), mem_map->End(), mem_map->End(), kGcRetentionPolicyNeverCollect), image_location_(image_location) { DCHECK(live_bitmap != nullptr); live_bitmap_.reset(live_bitmap); } static int32_t ChooseRelocationOffsetDelta(int32_t min_delta, int32_t max_delta) { CHECK_ALIGNED(min_delta, kPageSize); CHECK_ALIGNED(max_delta, kPageSize); CHECK_LT(min_delta, max_delta); std::default_random_engine generator; generator.seed(NanoTime() * getpid()); std::uniform_int_distribution distribution(min_delta, max_delta); int32_t r = distribution(generator); if (r % 2 == 0) { r = RoundUp(r, kPageSize); } else { r = RoundDown(r, kPageSize); } CHECK_LE(min_delta, r); CHECK_GE(max_delta, r); CHECK_ALIGNED(r, kPageSize); return r; } // We are relocating or generating the core image. We should get rid of everything. It is all // out-of-date. We also don't really care if this fails since it is just a convenience. // Adapted from prune_dex_cache(const char* subdir) in frameworks/native/cmds/installd/commands.c // Note this should only be used during first boot. static void RealPruneDalvikCache(const std::string& cache_dir_path); static void PruneDalvikCache(InstructionSet isa) { CHECK_NE(isa, kNone); // Prune the base /data/dalvik-cache. RealPruneDalvikCache(GetDalvikCacheOrDie(".", false)); // Prune /data/dalvik-cache/. RealPruneDalvikCache(GetDalvikCacheOrDie(GetInstructionSetString(isa), false)); } static void RealPruneDalvikCache(const std::string& cache_dir_path) { if (!OS::DirectoryExists(cache_dir_path.c_str())) { return; } DIR* cache_dir = opendir(cache_dir_path.c_str()); if (cache_dir == nullptr) { PLOG(WARNING) << "Unable to open " << cache_dir_path << " to delete it's contents"; return; } for (struct dirent* de = readdir(cache_dir); de != nullptr; de = readdir(cache_dir)) { const char* name = de->d_name; if (strcmp(name, ".") == 0 || strcmp(name, "..") == 0) { continue; } // We only want to delete regular files and symbolic links. if (de->d_type != DT_REG && de->d_type != DT_LNK) { if (de->d_type != DT_DIR) { // We do expect some directories (namely the for pruning the base dalvik-cache). LOG(WARNING) << "Unexpected file type of " << std::hex << de->d_type << " encountered."; } continue; } std::string cache_file(cache_dir_path); cache_file += '/'; cache_file += name; if (TEMP_FAILURE_RETRY(unlink(cache_file.c_str())) != 0) { PLOG(ERROR) << "Unable to unlink " << cache_file; continue; } } CHECK_EQ(0, TEMP_FAILURE_RETRY(closedir(cache_dir))) << "Unable to close directory."; } // We write out an empty file to the zygote's ISA specific cache dir at the start of // every zygote boot and delete it when the boot completes. If we find a file already // present, it usually means the boot didn't complete. We wipe the entire dalvik // cache if that's the case. static void MarkZygoteStart(const InstructionSet isa) { const std::string isa_subdir = GetDalvikCacheOrDie(GetInstructionSetString(isa), false); const std::string boot_marker = isa_subdir + "/.booting"; if (OS::FileExists(boot_marker.c_str())) { LOG(WARNING) << "Incomplete boot detected. Pruning dalvik cache"; RealPruneDalvikCache(isa_subdir); } VLOG(startup) << "Creating boot start marker: " << boot_marker; std::unique_ptr f(OS::CreateEmptyFile(boot_marker.c_str())); if (f.get() != nullptr) { if (f->FlushCloseOrErase() != 0) { PLOG(WARNING) << "Failed to write boot marker."; } } } static bool GenerateImage(const std::string& image_filename, InstructionSet image_isa, std::string* error_msg) { const std::string boot_class_path_string(Runtime::Current()->GetBootClassPathString()); std::vector boot_class_path; Split(boot_class_path_string, ':', boot_class_path); if (boot_class_path.empty()) { *error_msg = "Failed to generate image because no boot class path specified"; return false; } // We should clean up so we are more likely to have room for the image. if (Runtime::Current()->IsZygote()) { LOG(INFO) << "Pruning dalvik-cache since we are generating an image and will need to recompile"; PruneDalvikCache(image_isa); } std::vector arg_vector; std::string dex2oat(Runtime::Current()->GetCompilerExecutable()); arg_vector.push_back(dex2oat); std::string image_option_string("--image="); image_option_string += image_filename; arg_vector.push_back(image_option_string); for (size_t i = 0; i < boot_class_path.size(); i++) { arg_vector.push_back(std::string("--dex-file=") + boot_class_path[i]); } std::string oat_file_option_string("--oat-file="); oat_file_option_string += ImageHeader::GetOatLocationFromImageLocation(image_filename); arg_vector.push_back(oat_file_option_string); Runtime::Current()->AddCurrentRuntimeFeaturesAsDex2OatArguments(&arg_vector); CHECK_EQ(image_isa, kRuntimeISA) << "We should always be generating an image for the current isa."; int32_t base_offset = ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA, ART_BASE_ADDRESS_MAX_DELTA); LOG(INFO) << "Using an offset of 0x" << std::hex << base_offset << " from default " << "art base address of 0x" << std::hex << ART_BASE_ADDRESS; arg_vector.push_back(StringPrintf("--base=0x%x", ART_BASE_ADDRESS + base_offset)); if (!kIsTargetBuild) { arg_vector.push_back("--host"); } const std::vector& compiler_options = Runtime::Current()->GetImageCompilerOptions(); for (size_t i = 0; i < compiler_options.size(); ++i) { arg_vector.push_back(compiler_options[i].c_str()); } std::string command_line(Join(arg_vector, ' ')); LOG(INFO) << "GenerateImage: " << command_line; return Exec(arg_vector, error_msg); } bool ImageSpace::FindImageFilename(const char* image_location, const InstructionSet image_isa, std::string* system_filename, bool* has_system, std::string* cache_filename, bool* dalvik_cache_exists, bool* has_cache, bool* is_global_cache) { *has_system = false; *has_cache = false; // image_location = /system/framework/boot.art // system_image_location = /system/framework//boot.art std::string system_image_filename(GetSystemImageFilename(image_location, image_isa)); if (OS::FileExists(system_image_filename.c_str())) { *system_filename = system_image_filename; *has_system = true; } bool have_android_data = false; *dalvik_cache_exists = false; std::string dalvik_cache; GetDalvikCache(GetInstructionSetString(image_isa), true, &dalvik_cache, &have_android_data, dalvik_cache_exists, is_global_cache); if (have_android_data && *dalvik_cache_exists) { // Always set output location even if it does not exist, // so that the caller knows where to create the image. // // image_location = /system/framework/boot.art // *image_filename = /data/dalvik-cache//boot.art std::string error_msg; if (!GetDalvikCacheFilename(image_location, dalvik_cache.c_str(), cache_filename, &error_msg)) { LOG(WARNING) << error_msg; return *has_system; } *has_cache = OS::FileExists(cache_filename->c_str()); } return *has_system || *has_cache; } static bool ReadSpecificImageHeader(const char* filename, ImageHeader* image_header) { std::unique_ptr image_file(OS::OpenFileForReading(filename)); if (image_file.get() == nullptr) { return false; } const bool success = image_file->ReadFully(image_header, sizeof(ImageHeader)); if (!success || !image_header->IsValid()) { return false; } return true; } // Relocate the image at image_location to dest_filename and relocate it by a random amount. static bool RelocateImage(const char* image_location, const char* dest_filename, InstructionSet isa, std::string* error_msg) { // We should clean up so we are more likely to have room for the image. if (Runtime::Current()->IsZygote()) { LOG(INFO) << "Pruning dalvik-cache since we are relocating an image and will need to recompile"; PruneDalvikCache(isa); } std::string patchoat(Runtime::Current()->GetPatchoatExecutable()); std::string input_image_location_arg("--input-image-location="); input_image_location_arg += image_location; std::string output_image_filename_arg("--output-image-file="); output_image_filename_arg += dest_filename; std::string input_oat_location_arg("--input-oat-location="); input_oat_location_arg += ImageHeader::GetOatLocationFromImageLocation(image_location); std::string output_oat_filename_arg("--output-oat-file="); output_oat_filename_arg += ImageHeader::GetOatLocationFromImageLocation(dest_filename); std::string instruction_set_arg("--instruction-set="); instruction_set_arg += GetInstructionSetString(isa); std::string base_offset_arg("--base-offset-delta="); StringAppendF(&base_offset_arg, "%d", ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA, ART_BASE_ADDRESS_MAX_DELTA)); std::vector argv; argv.push_back(patchoat); argv.push_back(input_image_location_arg); argv.push_back(output_image_filename_arg); argv.push_back(input_oat_location_arg); argv.push_back(output_oat_filename_arg); argv.push_back(instruction_set_arg); argv.push_back(base_offset_arg); std::string command_line(Join(argv, ' ')); LOG(INFO) << "RelocateImage: " << command_line; return Exec(argv, error_msg); } static ImageHeader* ReadSpecificImageHeader(const char* filename, std::string* error_msg) { std::unique_ptr hdr(new ImageHeader); if (!ReadSpecificImageHeader(filename, hdr.get())) { *error_msg = StringPrintf("Unable to read image header for %s", filename); return nullptr; } return hdr.release(); } ImageHeader* ImageSpace::ReadImageHeaderOrDie(const char* image_location, const InstructionSet image_isa) { std::string error_msg; ImageHeader* image_header = ReadImageHeader(image_location, image_isa, &error_msg); if (image_header == nullptr) { LOG(FATAL) << error_msg; } return image_header; } ImageHeader* ImageSpace::ReadImageHeader(const char* image_location, const InstructionSet image_isa, std::string* error_msg) { std::string system_filename; bool has_system = false; std::string cache_filename; bool has_cache = false; bool dalvik_cache_exists = false; bool is_global_cache = false; if (FindImageFilename(image_location, image_isa, &system_filename, &has_system, &cache_filename, &dalvik_cache_exists, &has_cache, &is_global_cache)) { if (Runtime::Current()->ShouldRelocate()) { if (has_system && has_cache) { std::unique_ptr sys_hdr(new ImageHeader); std::unique_ptr cache_hdr(new ImageHeader); if (!ReadSpecificImageHeader(system_filename.c_str(), sys_hdr.get())) { *error_msg = StringPrintf("Unable to read image header for %s at %s", image_location, system_filename.c_str()); return nullptr; } if (!ReadSpecificImageHeader(cache_filename.c_str(), cache_hdr.get())) { *error_msg = StringPrintf("Unable to read image header for %s at %s", image_location, cache_filename.c_str()); return nullptr; } if (sys_hdr->GetOatChecksum() != cache_hdr->GetOatChecksum()) { *error_msg = StringPrintf("Unable to find a relocated version of image file %s", image_location); return nullptr; } return cache_hdr.release(); } else if (!has_cache) { *error_msg = StringPrintf("Unable to find a relocated version of image file %s", image_location); return nullptr; } else if (!has_system && has_cache) { // This can probably just use the cache one. return ReadSpecificImageHeader(cache_filename.c_str(), error_msg); } } else { // We don't want to relocate, Just pick the appropriate one if we have it and return. if (has_system && has_cache) { // We want the cache if the checksum matches, otherwise the system. std::unique_ptr system(ReadSpecificImageHeader(system_filename.c_str(), error_msg)); std::unique_ptr cache(ReadSpecificImageHeader(cache_filename.c_str(), error_msg)); if (system.get() == nullptr || (cache.get() != nullptr && cache->GetOatChecksum() == system->GetOatChecksum())) { return cache.release(); } else { return system.release(); } } else if (has_system) { return ReadSpecificImageHeader(system_filename.c_str(), error_msg); } else if (has_cache) { return ReadSpecificImageHeader(cache_filename.c_str(), error_msg); } } } *error_msg = StringPrintf("Unable to find image file for %s", image_location); return nullptr; } static bool ChecksumsMatch(const char* image_a, const char* image_b) { ImageHeader hdr_a; ImageHeader hdr_b; return ReadSpecificImageHeader(image_a, &hdr_a) && ReadSpecificImageHeader(image_b, &hdr_b) && hdr_a.GetOatChecksum() == hdr_b.GetOatChecksum(); } static bool ImageCreationAllowed(bool is_global_cache, std::string* error_msg) { // Anyone can write into a "local" cache. if (!is_global_cache) { return true; } // Only the zygote is allowed to create the global boot image. if (Runtime::Current()->IsZygote()) { return true; } *error_msg = "Only the zygote can create the global boot image."; return false; } static constexpr uint64_t kLowSpaceValue = 50 * MB; static constexpr uint64_t kTmpFsSentinelValue = 384 * MB; // Read the free space of the cache partition and make a decision whether to keep the generated // image. This is to try to mitigate situations where the system might run out of space later. static bool CheckSpace(const std::string& cache_filename, std::string* error_msg) { // Using statvfs vs statvfs64 because of b/18207376, and it is enough for all practical purposes. struct statvfs buf; int res = TEMP_FAILURE_RETRY(statvfs(cache_filename.c_str(), &buf)); if (res != 0) { // Could not stat. Conservatively tell the system to delete the image. *error_msg = "Could not stat the filesystem, assuming low-memory situation."; return false; } uint64_t fs_overall_size = buf.f_bsize * static_cast(buf.f_blocks); // Zygote is privileged, but other things are not. Use bavail. uint64_t fs_free_size = buf.f_bsize * static_cast(buf.f_bavail); // Take the overall size as an indicator for a tmpfs, which is being used for the decryption // environment. We do not want to fail quickening the boot image there, as it is beneficial // for time-to-UI. if (fs_overall_size > kTmpFsSentinelValue) { if (fs_free_size < kLowSpaceValue) { *error_msg = StringPrintf("Low-memory situation: only %4.2f megabytes available after image" " generation, need at least %" PRIu64 ".", static_cast(fs_free_size) / MB, kLowSpaceValue / MB); return false; } } return true; } ImageSpace* ImageSpace::Create(const char* image_location, const InstructionSet image_isa, std::string* error_msg) { std::string system_filename; bool has_system = false; std::string cache_filename; bool has_cache = false; bool dalvik_cache_exists = false; bool is_global_cache = true; const bool found_image = FindImageFilename(image_location, image_isa, &system_filename, &has_system, &cache_filename, &dalvik_cache_exists, &has_cache, &is_global_cache); if (Runtime::Current()->IsZygote()) { MarkZygoteStart(image_isa); } ImageSpace* space; bool relocate = Runtime::Current()->ShouldRelocate(); bool can_compile = Runtime::Current()->IsImageDex2OatEnabled(); if (found_image) { const std::string* image_filename; bool is_system = false; bool relocated_version_used = false; if (relocate) { if (!dalvik_cache_exists) { *error_msg = StringPrintf("Requiring relocation for image '%s' at '%s' but we do not have " "any dalvik_cache to find/place it in.", image_location, system_filename.c_str()); return nullptr; } if (has_system) { if (has_cache && ChecksumsMatch(system_filename.c_str(), cache_filename.c_str())) { // We already have a relocated version image_filename = &cache_filename; relocated_version_used = true; } else { // We cannot have a relocated version, Relocate the system one and use it. std::string reason; bool success; // Check whether we are allowed to relocate. if (!can_compile) { reason = "Image dex2oat disabled by -Xnoimage-dex2oat."; success = false; } else if (!ImageCreationAllowed(is_global_cache, &reason)) { // Whether we can write to the cache. success = false; } else { // Try to relocate. success = RelocateImage(image_location, cache_filename.c_str(), image_isa, &reason); } if (success) { relocated_version_used = true; image_filename = &cache_filename; } else { *error_msg = StringPrintf("Unable to relocate image '%s' from '%s' to '%s': %s", image_location, system_filename.c_str(), cache_filename.c_str(), reason.c_str()); // We failed to create files, remove any possibly garbage output. // Since ImageCreationAllowed was true above, we are the zygote // and therefore the only process expected to generate these for // the device. PruneDalvikCache(image_isa); return nullptr; } } } else { CHECK(has_cache); // We can just use cache's since it should be fine. This might or might not be relocated. image_filename = &cache_filename; } } else { if (has_system && has_cache) { // Check they have the same cksum. If they do use the cache. Otherwise system. if (ChecksumsMatch(system_filename.c_str(), cache_filename.c_str())) { image_filename = &cache_filename; relocated_version_used = true; } else { image_filename = &system_filename; is_system = true; } } else if (has_system) { image_filename = &system_filename; is_system = true; } else { CHECK(has_cache); image_filename = &cache_filename; } } { // Note that we must not use the file descriptor associated with // ScopedFlock::GetFile to Init the image file. We want the file // descriptor (and the associated exclusive lock) to be released when // we leave Create. ScopedFlock image_lock; image_lock.Init(image_filename->c_str(), error_msg); VLOG(startup) << "Using image file " << image_filename->c_str() << " for image location " << image_location; // If we are in /system we can assume the image is good. We can also // assume this if we are using a relocated image (i.e. image checksum // matches) since this is only different by the offset. We need this to // make sure that host tests continue to work. space = ImageSpace::Init(image_filename->c_str(), image_location, !(is_system || relocated_version_used), error_msg); } if (space != nullptr) { return space; } if (relocated_version_used) { // Something is wrong with the relocated copy (even though checksums match). Cleanup. // This can happen if the .oat is corrupt, since the above only checks the .art checksums. // TODO: Check the oat file validity earlier. *error_msg = StringPrintf("Attempted to use relocated version of %s at %s generated from %s " "but image failed to load: %s", image_location, cache_filename.c_str(), system_filename.c_str(), error_msg->c_str()); PruneDalvikCache(image_isa); return nullptr; } else if (is_system) { // If the /system file exists, it should be up-to-date, don't try to generate it. *error_msg = StringPrintf("Failed to load /system image '%s': %s", image_filename->c_str(), error_msg->c_str()); return nullptr; } else { // Otherwise, log a warning and fall through to GenerateImage. LOG(WARNING) << *error_msg; } } if (!can_compile) { *error_msg = "Not attempting to compile image because -Xnoimage-dex2oat"; return nullptr; } else if (!dalvik_cache_exists) { *error_msg = StringPrintf("No place to put generated image."); return nullptr; } else if (!ImageCreationAllowed(is_global_cache, error_msg)) { return nullptr; } else if (!GenerateImage(cache_filename, image_isa, error_msg)) { *error_msg = StringPrintf("Failed to generate image '%s': %s", cache_filename.c_str(), error_msg->c_str()); // We failed to create files, remove any possibly garbage output. // Since ImageCreationAllowed was true above, we are the zygote // and therefore the only process expected to generate these for // the device. PruneDalvikCache(image_isa); return nullptr; } else { // Check whether there is enough space left over after we have generated the image. if (!CheckSpace(cache_filename, error_msg)) { // No. Delete the generated image and try to run out of the dex files. PruneDalvikCache(image_isa); return nullptr; } // Note that we must not use the file descriptor associated with // ScopedFlock::GetFile to Init the image file. We want the file // descriptor (and the associated exclusive lock) to be released when // we leave Create. ScopedFlock image_lock; image_lock.Init(cache_filename.c_str(), error_msg); space = ImageSpace::Init(cache_filename.c_str(), image_location, true, error_msg); if (space == nullptr) { *error_msg = StringPrintf("Failed to load generated image '%s': %s", cache_filename.c_str(), error_msg->c_str()); } return space; } } void ImageSpace::VerifyImageAllocations() { byte* current = Begin() + RoundUp(sizeof(ImageHeader), kObjectAlignment); while (current < End()) { DCHECK_ALIGNED(current, kObjectAlignment); mirror::Object* obj = reinterpret_cast(current); CHECK(live_bitmap_->Test(obj)); CHECK(obj->GetClass() != nullptr) << "Image object at address " << obj << " has null class"; if (kUseBakerOrBrooksReadBarrier) { obj->AssertReadBarrierPointer(); } current += RoundUp(obj->SizeOf(), kObjectAlignment); } } ImageSpace* ImageSpace::Init(const char* image_filename, const char* image_location, bool validate_oat_file, std::string* error_msg) { CHECK(image_filename != nullptr); CHECK(image_location != nullptr); uint64_t start_time = 0; if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) { start_time = NanoTime(); LOG(INFO) << "ImageSpace::Init entering image_filename=" << image_filename; } std::unique_ptr file(OS::OpenFileForReading(image_filename)); if (file.get() == NULL) { *error_msg = StringPrintf("Failed to open '%s'", image_filename); return nullptr; } ImageHeader image_header; bool success = file->ReadFully(&image_header, sizeof(image_header)); if (!success || !image_header.IsValid()) { *error_msg = StringPrintf("Invalid image header in '%s'", image_filename); return nullptr; } // Note: The image header is part of the image due to mmap page alignment required of offset. std::unique_ptr map(MemMap::MapFileAtAddress(image_header.GetImageBegin(), image_header.GetImageSize(), PROT_READ | PROT_WRITE, MAP_PRIVATE, file->Fd(), 0, false, image_filename, error_msg)); if (map.get() == NULL) { DCHECK(!error_msg->empty()); return nullptr; } CHECK_EQ(image_header.GetImageBegin(), map->Begin()); DCHECK_EQ(0, memcmp(&image_header, map->Begin(), sizeof(ImageHeader))); std::unique_ptr image_map( MemMap::MapFileAtAddress(nullptr, image_header.GetImageBitmapSize(), PROT_READ, MAP_PRIVATE, file->Fd(), image_header.GetBitmapOffset(), false, image_filename, error_msg)); if (image_map.get() == nullptr) { *error_msg = StringPrintf("Failed to map image bitmap: %s", error_msg->c_str()); return nullptr; } uint32_t bitmap_index = bitmap_index_.FetchAndAddSequentiallyConsistent(1); std::string bitmap_name(StringPrintf("imagespace %s live-bitmap %u", image_filename, bitmap_index)); std::unique_ptr bitmap( accounting::ContinuousSpaceBitmap::CreateFromMemMap(bitmap_name, image_map.release(), reinterpret_cast(map->Begin()), map->Size())); if (bitmap.get() == nullptr) { *error_msg = StringPrintf("Could not create bitmap '%s'", bitmap_name.c_str()); return nullptr; } std::unique_ptr space(new ImageSpace(image_filename, image_location, map.release(), bitmap.release())); // VerifyImageAllocations() will be called later in Runtime::Init() // as some class roots like ArtMethod::java_lang_reflect_ArtMethod_ // and ArtField::java_lang_reflect_ArtField_, which are used from // Object::SizeOf() which VerifyImageAllocations() calls, are not // set yet at this point. space->oat_file_.reset(space->OpenOatFile(image_filename, error_msg)); if (space->oat_file_.get() == nullptr) { DCHECK(!error_msg->empty()); return nullptr; } if (validate_oat_file && !space->ValidateOatFile(error_msg)) { DCHECK(!error_msg->empty()); return nullptr; } Runtime* runtime = Runtime::Current(); runtime->SetInstructionSet(space->oat_file_->GetOatHeader().GetInstructionSet()); mirror::Object* resolution_method = image_header.GetImageRoot(ImageHeader::kResolutionMethod); runtime->SetResolutionMethod(down_cast(resolution_method)); mirror::Object* imt_conflict_method = image_header.GetImageRoot(ImageHeader::kImtConflictMethod); runtime->SetImtConflictMethod(down_cast(imt_conflict_method)); mirror::Object* imt_unimplemented_method = image_header.GetImageRoot(ImageHeader::kImtUnimplementedMethod); runtime->SetImtUnimplementedMethod(down_cast(imt_unimplemented_method)); mirror::Object* default_imt = image_header.GetImageRoot(ImageHeader::kDefaultImt); runtime->SetDefaultImt(down_cast*>(default_imt)); mirror::Object* callee_save_method = image_header.GetImageRoot(ImageHeader::kCalleeSaveMethod); runtime->SetCalleeSaveMethod(down_cast(callee_save_method), Runtime::kSaveAll); callee_save_method = image_header.GetImageRoot(ImageHeader::kRefsOnlySaveMethod); runtime->SetCalleeSaveMethod(down_cast(callee_save_method), Runtime::kRefsOnly); callee_save_method = image_header.GetImageRoot(ImageHeader::kRefsAndArgsSaveMethod); runtime->SetCalleeSaveMethod(down_cast(callee_save_method), Runtime::kRefsAndArgs); if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) { LOG(INFO) << "ImageSpace::Init exiting (" << PrettyDuration(NanoTime() - start_time) << ") " << *space.get(); } return space.release(); } OatFile* ImageSpace::OpenOatFile(const char* image_path, std::string* error_msg) const { const ImageHeader& image_header = GetImageHeader(); std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(image_path); CHECK(image_header.GetOatDataBegin() != nullptr); OatFile* oat_file = OatFile::Open(oat_filename, oat_filename, image_header.GetOatDataBegin(), image_header.GetOatFileBegin(), !Runtime::Current()->IsCompiler(), error_msg); if (oat_file == NULL) { *error_msg = StringPrintf("Failed to open oat file '%s' referenced from image %s: %s", oat_filename.c_str(), GetName(), error_msg->c_str()); return nullptr; } uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum(); uint32_t image_oat_checksum = image_header.GetOatChecksum(); if (oat_checksum != image_oat_checksum) { *error_msg = StringPrintf("Failed to match oat file checksum 0x%x to expected oat checksum 0x%x" " in image %s", oat_checksum, image_oat_checksum, GetName()); return nullptr; } int32_t image_patch_delta = image_header.GetPatchDelta(); int32_t oat_patch_delta = oat_file->GetOatHeader().GetImagePatchDelta(); if (oat_patch_delta != image_patch_delta && !image_header.CompilePic()) { // We should have already relocated by this point. Bail out. *error_msg = StringPrintf("Failed to match oat file patch delta %d to expected patch delta %d " "in image %s", oat_patch_delta, image_patch_delta, GetName()); return nullptr; } return oat_file; } bool ImageSpace::ValidateOatFile(std::string* error_msg) const { CHECK(oat_file_.get() != NULL); for (const OatFile::OatDexFile* oat_dex_file : oat_file_->GetOatDexFiles()) { const std::string& dex_file_location = oat_dex_file->GetDexFileLocation(); uint32_t dex_file_location_checksum; if (!DexFile::GetChecksum(dex_file_location.c_str(), &dex_file_location_checksum, error_msg)) { *error_msg = StringPrintf("Failed to get checksum of dex file '%s' referenced by image %s: " "%s", dex_file_location.c_str(), GetName(), error_msg->c_str()); return false; } if (dex_file_location_checksum != oat_dex_file->GetDexFileLocationChecksum()) { *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file '%s' and " "dex file '%s' (0x%x != 0x%x)", oat_file_->GetLocation().c_str(), dex_file_location.c_str(), oat_dex_file->GetDexFileLocationChecksum(), dex_file_location_checksum); return false; } } return true; } const OatFile* ImageSpace::GetOatFile() const { return oat_file_.get(); } OatFile* ImageSpace::ReleaseOatFile() { CHECK(oat_file_.get() != NULL); return oat_file_.release(); } void ImageSpace::Dump(std::ostream& os) const { os << GetType() << " begin=" << reinterpret_cast(Begin()) << ",end=" << reinterpret_cast(End()) << ",size=" << PrettySize(Size()) << ",name=\"" << GetName() << "\"]"; } } // namespace space } // namespace gc } // namespace art