/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_VERIFIER_METHOD_VERIFIER_H_ #define ART_RUNTIME_VERIFIER_METHOD_VERIFIER_H_ #include #include #include #include "base/casts.h" #include "base/macros.h" #include "base/stl_util.h" #include "class_reference.h" #include "dex_file.h" #include "dex_instruction.h" #include "instruction_flags.h" #include "method_reference.h" #include "reg_type.h" #include "reg_type_cache.h" #include "register_line.h" #include "safe_map.h" namespace art { struct ReferenceMap2Visitor; template class Handle; namespace verifier { class MethodVerifier; class DexPcToReferenceMap; /* * "Direct" and "virtual" methods are stored independently. The type of call used to invoke the * method determines which list we search, and whether we travel up into superclasses. * * (, , and methods declared "private" or "static" are stored in the "direct" list. * All others are stored in the "virtual" list.) */ enum MethodType { METHOD_UNKNOWN = 0, METHOD_DIRECT, // , private METHOD_STATIC, // static METHOD_VIRTUAL, // virtual, super METHOD_INTERFACE // interface }; std::ostream& operator<<(std::ostream& os, const MethodType& rhs); /* * An enumeration of problems that can turn up during verification. * Both VERIFY_ERROR_BAD_CLASS_SOFT and VERIFY_ERROR_BAD_CLASS_HARD denote failures that cause * the entire class to be rejected. However, VERIFY_ERROR_BAD_CLASS_SOFT denotes a soft failure * that can potentially be corrected, and the verifier will try again at runtime. * VERIFY_ERROR_BAD_CLASS_HARD denotes a hard failure that can't be corrected, and will cause * the class to remain uncompiled. Other errors denote verification errors that cause bytecode * to be rewritten to fail at runtime. */ enum VerifyError { VERIFY_ERROR_BAD_CLASS_HARD, // VerifyError; hard error that skips compilation. VERIFY_ERROR_BAD_CLASS_SOFT, // VerifyError; soft error that verifies again at runtime. VERIFY_ERROR_NO_CLASS, // NoClassDefFoundError. VERIFY_ERROR_NO_FIELD, // NoSuchFieldError. VERIFY_ERROR_NO_METHOD, // NoSuchMethodError. VERIFY_ERROR_ACCESS_CLASS, // IllegalAccessError. VERIFY_ERROR_ACCESS_FIELD, // IllegalAccessError. VERIFY_ERROR_ACCESS_METHOD, // IllegalAccessError. VERIFY_ERROR_CLASS_CHANGE, // IncompatibleClassChangeError. VERIFY_ERROR_INSTANTIATION, // InstantiationError. }; std::ostream& operator<<(std::ostream& os, const VerifyError& rhs); /* * Identifies the type of reference in the instruction that generated the verify error * (e.g. VERIFY_ERROR_ACCESS_CLASS could come from a method, field, or class reference). * * This must fit in two bits. */ enum VerifyErrorRefType { VERIFY_ERROR_REF_CLASS = 0, VERIFY_ERROR_REF_FIELD = 1, VERIFY_ERROR_REF_METHOD = 2, }; const int kVerifyErrorRefTypeShift = 6; // We don't need to store the register data for many instructions, because we either only need // it at branch points (for verification) or GC points and branches (for verification + // type-precise register analysis). enum RegisterTrackingMode { kTrackRegsBranches, kTrackCompilerInterestPoints, kTrackRegsAll, }; // A mapping from a dex pc to the register line statuses as they are immediately prior to the // execution of that instruction. class PcToRegisterLineTable { public: PcToRegisterLineTable() : size_(0) {} ~PcToRegisterLineTable(); // Initialize the RegisterTable. Every instruction address can have a different set of information // about what's in which register, but for verification purposes we only need to store it at // branch target addresses (because we merge into that). void Init(RegisterTrackingMode mode, InstructionFlags* flags, uint32_t insns_size, uint16_t registers_size, MethodVerifier* verifier); RegisterLine* GetLine(size_t idx) { DCHECK_LT(idx, size_); return register_lines_[idx]; } private: std::unique_ptr register_lines_; size_t size_; }; // The verifier class MethodVerifier { public: enum FailureKind { kNoFailure, kSoftFailure, kHardFailure, }; /* Verify a class. Returns "kNoFailure" on success. */ static FailureKind VerifyClass(mirror::Class* klass, bool allow_soft_failures, std::string* error) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); static FailureKind VerifyClass(const DexFile* dex_file, Handle dex_cache, Handle class_loader, const DexFile::ClassDef* class_def, bool allow_soft_failures, std::string* error) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); static MethodVerifier* VerifyMethodAndDump(std::ostream& os, uint32_t method_idx, const DexFile* dex_file, Handle dex_cache, Handle class_loader, const DexFile::ClassDef* class_def, const DexFile::CodeItem* code_item, mirror::ArtMethod* method, uint32_t method_access_flags) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); uint8_t EncodePcToReferenceMapData() const; uint32_t DexFileVersion() const { return dex_file_->GetVersion(); } RegTypeCache* GetRegTypeCache() { return ®_types_; } // Log a verification failure. std::ostream& Fail(VerifyError error); // Log for verification information. std::ostream& LogVerifyInfo(); // Dump the failures encountered by the verifier. std::ostream& DumpFailures(std::ostream& os); // Dump the state of the verifier, namely each instruction, what flags are set on it, register // information void Dump(std::ostream& os) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Fills 'monitor_enter_dex_pcs' with the dex pcs of the monitor-enter instructions corresponding // to the locks held at 'dex_pc' in method 'm'. static void FindLocksAtDexPc(mirror::ArtMethod* m, uint32_t dex_pc, std::vector* monitor_enter_dex_pcs) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Returns the accessed field corresponding to the quick instruction's field // offset at 'dex_pc' in method 'm'. static mirror::ArtField* FindAccessedFieldAtDexPc(mirror::ArtMethod* m, uint32_t dex_pc) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Returns the invoked method corresponding to the quick instruction's vtable // index at 'dex_pc' in method 'm'. static mirror::ArtMethod* FindInvokedMethodAtDexPc(mirror::ArtMethod* m, uint32_t dex_pc) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); static void Init() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); static void Shutdown(); bool CanLoadClasses() const { return can_load_classes_; } MethodVerifier(const DexFile* dex_file, Handle* dex_cache, Handle* class_loader, const DexFile::ClassDef* class_def, const DexFile::CodeItem* code_item, uint32_t method_idx, mirror::ArtMethod* method, uint32_t access_flags, bool can_load_classes, bool allow_soft_failures, bool need_precise_constants) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) : MethodVerifier(dex_file, dex_cache, class_loader, class_def, code_item, method_idx, method, access_flags, can_load_classes, allow_soft_failures, need_precise_constants, false) {} ~MethodVerifier(); // Run verification on the method. Returns true if verification completes and false if the input // has an irrecoverable corruption. bool Verify() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Describe VRegs at the given dex pc. std::vector DescribeVRegs(uint32_t dex_pc); static void VisitStaticRoots(RootCallback* callback, void* arg) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void VisitRoots(RootCallback* callback, void* arg) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Accessors used by the compiler via CompilerCallback const DexFile::CodeItem* CodeItem() const; RegisterLine* GetRegLine(uint32_t dex_pc); const InstructionFlags& GetInstructionFlags(size_t index) const; mirror::ClassLoader* GetClassLoader() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); mirror::DexCache* GetDexCache() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); MethodReference GetMethodReference() const; uint32_t GetAccessFlags() const; bool HasCheckCasts() const; bool HasVirtualOrInterfaceInvokes() const; bool HasFailures() const; RegType& ResolveCheckedClass(uint32_t class_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); private: // Private constructor for dumping. MethodVerifier(const DexFile* dex_file, Handle* dex_cache, Handle* class_loader, const DexFile::ClassDef* class_def, const DexFile::CodeItem* code_item, uint32_t method_idx, mirror::ArtMethod* method, uint32_t access_flags, bool can_load_classes, bool allow_soft_failures, bool need_precise_constants, bool verify_to_dump) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Adds the given string to the beginning of the last failure message. void PrependToLastFailMessage(std::string); // Adds the given string to the end of the last failure message. void AppendToLastFailMessage(std::string); /* * Perform verification on a single method. * * We do this in three passes: * (1) Walk through all code units, determining instruction locations, * widths, and other characteristics. * (2) Walk through all code units, performing static checks on * operands. * (3) Iterate through the method, checking type safety and looking * for code flow problems. */ static FailureKind VerifyMethod(uint32_t method_idx, const DexFile* dex_file, Handle dex_cache, Handle class_loader, const DexFile::ClassDef* class_def_idx, const DexFile::CodeItem* code_item, mirror::ArtMethod* method, uint32_t method_access_flags, bool allow_soft_failures, bool need_precise_constants) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void FindLocksAtDexPc() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); mirror::ArtField* FindAccessedFieldAtDexPc(uint32_t dex_pc) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); mirror::ArtMethod* FindInvokedMethodAtDexPc(uint32_t dex_pc) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); /* * Compute the width of the instruction at each address in the instruction stream, and store it in * insn_flags_. Addresses that are in the middle of an instruction, or that are part of switch * table data, are not touched (so the caller should probably initialize "insn_flags" to zero). * * The "new_instance_count_" and "monitor_enter_count_" fields in vdata are also set. * * Performs some static checks, notably: * - opcode of first instruction begins at index 0 * - only documented instructions may appear * - each instruction follows the last * - last byte of last instruction is at (code_length-1) * * Logs an error and returns "false" on failure. */ bool ComputeWidthsAndCountOps(); /* * Set the "in try" flags for all instructions protected by "try" statements. Also sets the * "branch target" flags for exception handlers. * * Call this after widths have been set in "insn_flags". * * Returns "false" if something in the exception table looks fishy, but we're expecting the * exception table to be somewhat sane. */ bool ScanTryCatchBlocks() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); /* * Perform static verification on all instructions in a method. * * Walks through instructions in a method calling VerifyInstruction on each. */ bool VerifyInstructions(); /* * Perform static verification on an instruction. * * As a side effect, this sets the "branch target" flags in InsnFlags. * * "(CF)" items are handled during code-flow analysis. * * v3 4.10.1 * - target of each jump and branch instruction must be valid * - targets of switch statements must be valid * - operands referencing constant pool entries must be valid * - (CF) operands of getfield, putfield, getstatic, putstatic must be valid * - (CF) operands of method invocation instructions must be valid * - (CF) only invoke-direct can call a method starting with '<' * - (CF) must never be called explicitly * - operands of instanceof, checkcast, new (and variants) must be valid * - new-array[-type] limited to 255 dimensions * - can't use "new" on an array class * - (?) limit dimensions in multi-array creation * - local variable load/store register values must be in valid range * * v3 4.11.1.2 * - branches must be within the bounds of the code array * - targets of all control-flow instructions are the start of an instruction * - register accesses fall within range of allocated registers * - (N/A) access to constant pool must be of appropriate type * - code does not end in the middle of an instruction * - execution cannot fall off the end of the code * - (earlier) for each exception handler, the "try" area must begin and * end at the start of an instruction (end can be at the end of the code) * - (earlier) for each exception handler, the handler must start at a valid * instruction */ bool VerifyInstruction(const Instruction* inst, uint32_t code_offset); /* Ensure that the register index is valid for this code item. */ bool CheckRegisterIndex(uint32_t idx); /* Ensure that the wide register index is valid for this code item. */ bool CheckWideRegisterIndex(uint32_t idx); // Perform static checks on a field Get or set instruction. All we do here is ensure that the // field index is in the valid range. bool CheckFieldIndex(uint32_t idx); // Perform static checks on a method invocation instruction. All we do here is ensure that the // method index is in the valid range. bool CheckMethodIndex(uint32_t idx); // Perform static checks on a "new-instance" instruction. Specifically, make sure the class // reference isn't for an array class. bool CheckNewInstance(uint32_t idx); /* Ensure that the string index is in the valid range. */ bool CheckStringIndex(uint32_t idx); // Perform static checks on an instruction that takes a class constant. Ensure that the class // index is in the valid range. bool CheckTypeIndex(uint32_t idx); // Perform static checks on a "new-array" instruction. Specifically, make sure they aren't // creating an array of arrays that causes the number of dimensions to exceed 255. bool CheckNewArray(uint32_t idx); // Verify an array data table. "cur_offset" is the offset of the fill-array-data instruction. bool CheckArrayData(uint32_t cur_offset); // Verify that the target of a branch instruction is valid. We don't expect code to jump directly // into an exception handler, but it's valid to do so as long as the target isn't a // "move-exception" instruction. We verify that in a later stage. // The dex format forbids certain instructions from branching to themselves. // Updates "insn_flags_", setting the "branch target" flag. bool CheckBranchTarget(uint32_t cur_offset); // Verify a switch table. "cur_offset" is the offset of the switch instruction. // Updates "insn_flags_", setting the "branch target" flag. bool CheckSwitchTargets(uint32_t cur_offset); // Check the register indices used in a "vararg" instruction, such as invoke-virtual or // filled-new-array. // - vA holds word count (0-5), args[] have values. // There are some tests we don't do here, e.g. we don't try to verify that invoking a method that // takes a double is done with consecutive registers. This requires parsing the target method // signature, which we will be doing later on during the code flow analysis. bool CheckVarArgRegs(uint32_t vA, uint32_t arg[]); // Check the register indices used in a "vararg/range" instruction, such as invoke-virtual/range // or filled-new-array/range. // - vA holds word count, vC holds index of first reg. bool CheckVarArgRangeRegs(uint32_t vA, uint32_t vC); // Extract the relative offset from a branch instruction. // Returns "false" on failure (e.g. this isn't a branch instruction). bool GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional, bool* selfOkay); /* Perform detailed code-flow analysis on a single method. */ bool VerifyCodeFlow() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Set the register types for the first instruction in the method based on the method signature. // This has the side-effect of validating the signature. bool SetTypesFromSignature() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); /* * Perform code flow on a method. * * The basic strategy is as outlined in v3 4.11.1.2: set the "changed" bit on the first * instruction, process it (setting additional "changed" bits), and repeat until there are no * more. * * v3 4.11.1.1 * - (N/A) operand stack is always the same size * - operand stack [registers] contain the correct types of values * - local variables [registers] contain the correct types of values * - methods are invoked with the appropriate arguments * - fields are assigned using values of appropriate types * - opcodes have the correct type values in operand registers * - there is never an uninitialized class instance in a local variable in code protected by an * exception handler (operand stack is okay, because the operand stack is discarded when an * exception is thrown) [can't know what's a local var w/o the debug info -- should fall out of * register typing] * * v3 4.11.1.2 * - execution cannot fall off the end of the code * * (We also do many of the items described in the "static checks" sections, because it's easier to * do them here.) * * We need an array of RegType values, one per register, for every instruction. If the method uses * monitor-enter, we need extra data for every register, and a stack for every "interesting" * instruction. In theory this could become quite large -- up to several megabytes for a monster * function. * * NOTE: * The spec forbids backward branches when there's an uninitialized reference in a register. The * idea is to prevent something like this: * loop: * move r1, r0 * new-instance r0, MyClass * ... * if-eq rN, loop // once * initialize r0 * * This leaves us with two different instances, both allocated by the same instruction, but only * one is initialized. The scheme outlined in v3 4.11.1.4 wouldn't catch this, so they work around * it by preventing backward branches. We achieve identical results without restricting code * reordering by specifying that you can't execute the new-instance instruction if a register * contains an uninitialized instance created by that same instruction. */ bool CodeFlowVerifyMethod() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); /* * Perform verification for a single instruction. * * This requires fully decoding the instruction to determine the effect it has on registers. * * Finds zero or more following instructions and sets the "changed" flag if execution at that * point needs to be (re-)evaluated. Register changes are merged into "reg_types_" at the target * addresses. Does not set or clear any other flags in "insn_flags_". */ bool CodeFlowVerifyInstruction(uint32_t* start_guess) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Perform verification of a new array instruction void VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Helper to perform verification on puts of primitive type. void VerifyPrimitivePut(RegType& target_type, RegType& insn_type, const uint32_t vregA) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Perform verification of an aget instruction. The destination register's type will be set to // be that of component type of the array unless the array type is unknown, in which case a // bottom type inferred from the type of instruction is used. is_primitive is false for an // aget-object. void VerifyAGet(const Instruction* inst, RegType& insn_type, bool is_primitive) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Perform verification of an aput instruction. void VerifyAPut(const Instruction* inst, RegType& insn_type, bool is_primitive) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Lookup instance field and fail for resolution violations mirror::ArtField* GetInstanceField(RegType& obj_type, int field_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Lookup static field and fail for resolution violations mirror::ArtField* GetStaticField(int field_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Perform verification of an iget/sget/iput/sput instruction. enum class FieldAccessType { // private kAccGet, kAccPut }; template void VerifyISFieldAccess(const Instruction* inst, RegType& insn_type, bool is_primitive, bool is_static) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Returns the access field of a quick field access (iget/iput-quick) or nullptr // if it cannot be found. mirror::ArtField* GetQuickFieldAccess(const Instruction* inst, RegisterLine* reg_line) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); template void VerifyQuickFieldAccess(const Instruction* inst, RegType& insn_type, bool is_primitive) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Resolves a class based on an index and performs access checks to ensure the referrer can // access the resolved class. RegType& ResolveClassAndCheckAccess(uint32_t class_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); /* * For the "move-exception" instruction at "work_insn_idx_", which must be at an exception handler * address, determine the Join of all exceptions that can land here. Fails if no matching * exception handler can be found or if the Join of exception types fails. */ RegType& GetCaughtExceptionType() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); /* * Resolves a method based on an index and performs access checks to ensure * the referrer can access the resolved method. * Does not throw exceptions. */ mirror::ArtMethod* ResolveMethodAndCheckAccess(uint32_t method_idx, MethodType method_type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); /* * Verify the arguments to a method. We're executing in "method", making * a call to the method reference in vB. * * If this is a "direct" invoke, we allow calls to . For calls to * , the first argument may be an uninitialized reference. Otherwise, * calls to anything starting with '<' will be rejected, as will any * uninitialized reference arguments. * * For non-static method calls, this will verify that the method call is * appropriate for the "this" argument. * * The method reference is in vBBBB. The "is_range" parameter determines * whether we use 0-4 "args" values or a range of registers defined by * vAA and vCCCC. * * Widening conversions on integers and references are allowed, but * narrowing conversions are not. * * Returns the resolved method on success, nullptr on failure (with *failure * set appropriately). */ mirror::ArtMethod* VerifyInvocationArgs(const Instruction* inst, MethodType method_type, bool is_range, bool is_super) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Similar checks to the above, but on the proto. Will be used when the method cannot be // resolved. void VerifyInvocationArgsUnresolvedMethod(const Instruction* inst, MethodType method_type, bool is_range) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); template mirror::ArtMethod* VerifyInvocationArgsFromIterator(T* it, const Instruction* inst, MethodType method_type, bool is_range, mirror::ArtMethod* res_method) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); mirror::ArtMethod* GetQuickInvokedMethod(const Instruction* inst, RegisterLine* reg_line, bool is_range) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); mirror::ArtMethod* VerifyInvokeVirtualQuickArgs(const Instruction* inst, bool is_range) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); /* * Verify that the target instruction is not "move-exception". It's important that the only way * to execute a move-exception is as the first instruction of an exception handler. * Returns "true" if all is well, "false" if the target instruction is move-exception. */ bool CheckNotMoveException(const uint16_t* insns, int insn_idx); /* * Control can transfer to "next_insn". Merge the registers from merge_line into the table at * next_insn, and set the changed flag on the target address if any of the registers were changed. * In the case of fall-through, update the merge line on a change as its the working line for the * next instruction. * Returns "false" if an error is encountered. */ bool UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line, bool update_merge_line) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Is the method being verified a constructor? bool IsConstructor() const { return (method_access_flags_ & kAccConstructor) != 0; } // Is the method verified static? bool IsStatic() const { return (method_access_flags_ & kAccStatic) != 0; } // Return the register type for the method. RegType& GetMethodReturnType() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Get a type representing the declaring class of the method. RegType& GetDeclaringClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); InstructionFlags* CurrentInsnFlags(); RegType& DetermineCat1Constant(int32_t value, bool precise) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); RegTypeCache reg_types_; PcToRegisterLineTable reg_table_; // Storage for the register status we're currently working on. std::unique_ptr work_line_; // The address of the instruction we're currently working on, note that this is in 2 byte // quantities uint32_t work_insn_idx_; // Storage for the register status we're saving for later. std::unique_ptr saved_line_; const uint32_t dex_method_idx_; // The method we're working on. // Its object representation if known. mirror::ArtMethod* mirror_method_ GUARDED_BY(Locks::mutator_lock_); const uint32_t method_access_flags_; // Method's access flags. RegType* return_type_; // Lazily computed return type of the method. const DexFile* const dex_file_; // The dex file containing the method. // The dex_cache for the declaring class of the method. Handle* dex_cache_ GUARDED_BY(Locks::mutator_lock_); // The class loader for the declaring class of the method. Handle* class_loader_ GUARDED_BY(Locks::mutator_lock_); const DexFile::ClassDef* const class_def_; // The class def of the declaring class of the method. const DexFile::CodeItem* const code_item_; // The code item containing the code for the method. RegType* declaring_class_; // Lazily computed reg type of the method's declaring class. // Instruction widths and flags, one entry per code unit. std::unique_ptr insn_flags_; // The dex PC of a FindLocksAtDexPc request, -1 otherwise. uint32_t interesting_dex_pc_; // The container into which FindLocksAtDexPc should write the registers containing held locks, // nullptr if we're not doing FindLocksAtDexPc. std::vector* monitor_enter_dex_pcs_; // The types of any error that occurs. std::vector failures_; // Error messages associated with failures. std::vector failure_messages_; // Is there a pending hard failure? bool have_pending_hard_failure_; // Is there a pending runtime throw failure? A runtime throw failure is when an instruction // would fail at runtime throwing an exception. Such an instruction causes the following code // to be unreachable. This is set by Fail and used to ensure we don't process unreachable // instructions that would hard fail the verification. bool have_pending_runtime_throw_failure_; // Info message log use primarily for verifier diagnostics. std::ostringstream info_messages_; // The number of occurrences of specific opcodes. size_t new_instance_count_; size_t monitor_enter_count_; const bool can_load_classes_; // Converts soft failures to hard failures when false. Only false when the compiler isn't // running and the verifier is called from the class linker. const bool allow_soft_failures_; // An optimization where instead of generating unique RegTypes for constants we use imprecise // constants that cover a range of constants. This isn't good enough for deoptimization that // avoids loading from registers in the case of a constant as the dex instruction set lost the // notion of whether a value should be in a floating point or general purpose register file. const bool need_precise_constants_; // Indicates the method being verified contains at least one check-cast or aput-object // instruction. Aput-object operations implicitly check for array-store exceptions, similar to // check-cast. bool has_check_casts_; // Indicates the method being verified contains at least one invoke-virtual/range // or invoke-interface/range. bool has_virtual_or_interface_invokes_; // Indicates whether we verify to dump the info. In that case we accept quickened instructions // even though we might detect to be a compiler. Should only be set when running // VerifyMethodAndDump. const bool verify_to_dump_; }; std::ostream& operator<<(std::ostream& os, const MethodVerifier::FailureKind& rhs); } // namespace verifier } // namespace art #endif // ART_RUNTIME_VERIFIER_METHOD_VERIFIER_H_