// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/quic/congestion_control/cubic.h" #include #include "base/basictypes.h" #include "base/logging.h" #include "base/time/time.h" #include "net/quic/congestion_control/cube_root.h" #include "net/quic/quic_protocol.h" using std::max; namespace net { namespace { // Constants based on TCP defaults. // The following constants are in 2^10 fractions of a second instead of ms to // allow a 10 shift right to divide. const int kCubeScale = 40; // 1024*1024^3 (first 1024 is from 0.100^3) // where 0.100 is 100 ms which is the scaling // round trip time. const int kCubeCongestionWindowScale = 410; const uint64 kCubeFactor = (GG_UINT64_C(1) << kCubeScale) / kCubeCongestionWindowScale; const uint32 kNumConnections = 2; const float kBeta = 0.7f; // Default Cubic backoff factor. // Additional backoff factor when loss occurs in the concave part of the Cubic // curve. This additional backoff factor is expected to give up bandwidth to // new concurrent flows and speed up convergence. const float kBetaLastMax = 0.85f; // kNConnectionBeta is the backoff factor after loss for our N-connection // emulation, which emulates the effective backoff of an ensemble of N TCP-Reno // connections on a single loss event. The effective multiplier is computed as: const float kNConnectionBeta = (kNumConnections - 1 + kBeta) / kNumConnections; // TCPFriendly alpha is described in Section 3.3 of the CUBIC paper. Note that // kBeta here is a cwnd multiplier, and is equal to 1-beta from the CUBIC paper. // We derive the equivalent kNConnectionAlpha for an N-connection emulation as: const float kNConnectionAlpha = 3 * kNumConnections * kNumConnections * (1 - kNConnectionBeta) / (1 + kNConnectionBeta); // TODO(jri): Compute kNConnectionBeta and kNConnectionAlpha from // number of active streams. } // namespace Cubic::Cubic(const QuicClock* clock, QuicConnectionStats* stats) : clock_(clock), epoch_(QuicTime::Zero()), last_update_time_(QuicTime::Zero()), stats_(stats) { Reset(); } void Cubic::Reset() { epoch_ = QuicTime::Zero(); // Reset time. last_update_time_ = QuicTime::Zero(); // Reset time. last_congestion_window_ = 0; last_max_congestion_window_ = 0; acked_packets_count_ = 0; estimated_tcp_congestion_window_ = 0; origin_point_congestion_window_ = 0; time_to_origin_point_ = 0; last_target_congestion_window_ = 0; } void Cubic::UpdateCongestionControlStats( QuicTcpCongestionWindow new_cubic_mode_cwnd, QuicTcpCongestionWindow new_reno_mode_cwnd) { QuicTcpCongestionWindow highest_new_cwnd = std::max(new_cubic_mode_cwnd, new_reno_mode_cwnd); if (last_congestion_window_ < highest_new_cwnd) { // cwnd will increase to highest_new_cwnd. stats_->cwnd_increase_congestion_avoidance += highest_new_cwnd - last_congestion_window_; if (new_cubic_mode_cwnd > new_reno_mode_cwnd) { // This cwnd increase is due to cubic mode. stats_->cwnd_increase_cubic_mode += new_cubic_mode_cwnd - last_congestion_window_; } } } QuicTcpCongestionWindow Cubic::CongestionWindowAfterPacketLoss( QuicTcpCongestionWindow current_congestion_window) { if (current_congestion_window < last_max_congestion_window_) { // We never reached the old max, so assume we are competing with another // flow. Use our extra back off factor to allow the other flow to go up. last_max_congestion_window_ = static_cast(kBetaLastMax * current_congestion_window); } else { last_max_congestion_window_ = current_congestion_window; } epoch_ = QuicTime::Zero(); // Reset time. return static_cast(current_congestion_window * kNConnectionBeta); } QuicTcpCongestionWindow Cubic::CongestionWindowAfterAck( QuicTcpCongestionWindow current_congestion_window, QuicTime::Delta delay_min) { acked_packets_count_ += 1; // Packets acked. QuicTime current_time = clock_->ApproximateNow(); // Cubic is "independent" of RTT, the update is limited by the time elapsed. if (last_congestion_window_ == current_congestion_window && (current_time.Subtract(last_update_time_) <= MaxCubicTimeInterval())) { return max(last_target_congestion_window_, estimated_tcp_congestion_window_); } last_congestion_window_ = current_congestion_window; last_update_time_ = current_time; if (!epoch_.IsInitialized()) { // First ACK after a loss event. DVLOG(1) << "Start of epoch"; epoch_ = current_time; // Start of epoch. acked_packets_count_ = 1; // Reset count. // Reset estimated_tcp_congestion_window_ to be in sync with cubic. estimated_tcp_congestion_window_ = current_congestion_window; if (last_max_congestion_window_ <= current_congestion_window) { time_to_origin_point_ = 0; origin_point_congestion_window_ = current_congestion_window; } else { time_to_origin_point_ = CubeRoot::Root(kCubeFactor * (last_max_congestion_window_ - current_congestion_window)); origin_point_congestion_window_ = last_max_congestion_window_; } } // Change the time unit from microseconds to 2^10 fractions per second. Take // the round trip time in account. This is done to allow us to use shift as a // divide operator. int64 elapsed_time = (current_time.Add(delay_min).Subtract(epoch_).ToMicroseconds() << 10) / base::Time::kMicrosecondsPerSecond; int64 offset = time_to_origin_point_ - elapsed_time; QuicTcpCongestionWindow delta_congestion_window = (kCubeCongestionWindowScale * offset * offset * offset) >> kCubeScale; QuicTcpCongestionWindow target_congestion_window = origin_point_congestion_window_ - delta_congestion_window; DCHECK_LT(0u, estimated_tcp_congestion_window_); // With dynamic beta/alpha based on number of active streams, it is possible // for the required_ack_count to become much lower than acked_packets_count_ // suddenly, leading to more than one iteration through the following loop. while (true) { // Update estimated TCP congestion_window. uint32 required_ack_count = estimated_tcp_congestion_window_ / kNConnectionAlpha; if (acked_packets_count_ < required_ack_count) { break; } acked_packets_count_ -= required_ack_count; estimated_tcp_congestion_window_++; } // Update cubic mode and reno mode stats in QuicConnectionStats. UpdateCongestionControlStats(target_congestion_window, estimated_tcp_congestion_window_); // We have a new cubic congestion window. last_target_congestion_window_ = target_congestion_window; // Compute target congestion_window based on cubic target and estimated TCP // congestion_window, use highest (fastest). if (target_congestion_window < estimated_tcp_congestion_window_) { target_congestion_window = estimated_tcp_congestion_window_; } DVLOG(1) << "Target congestion_window: " << target_congestion_window; return target_congestion_window; } } // namespace net