// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/basictypes.h" #include "base/logging.h" #include "net/quic/congestion_control/cubic.h" #include "net/quic/quic_connection_stats.h" #include "net/quic/test_tools/mock_clock.h" #include "testing/gtest/include/gtest/gtest.h" namespace net { namespace test { const float kBeta = 0.7f; // Default Cubic backoff factor. const uint32 kNumConnections = 2; const float kNConnectionBeta = (kNumConnections - 1 + kBeta) / kNumConnections; const float kNConnectionAlpha = 3 * kNumConnections * kNumConnections * (1 - kNConnectionBeta) / (1 + kNConnectionBeta); class CubicTest : public ::testing::Test { protected: CubicTest() : one_ms_(QuicTime::Delta::FromMilliseconds(1)), hundred_ms_(QuicTime::Delta::FromMilliseconds(100)), cubic_(&clock_, &stats_) { } const QuicTime::Delta one_ms_; const QuicTime::Delta hundred_ms_; MockClock clock_; QuicConnectionStats stats_; Cubic cubic_; }; TEST_F(CubicTest, AboveOrigin) { // Convex growth. const QuicTime::Delta rtt_min = hundred_ms_; uint32 current_cwnd = 10; uint32 expected_cwnd = current_cwnd + 1; // Initialize the state. clock_.AdvanceTime(one_ms_); EXPECT_EQ(expected_cwnd, cubic_.CongestionWindowAfterAck(current_cwnd, rtt_min)); current_cwnd = expected_cwnd; // Normal TCP phase. for (int i = 0; i < 48; ++i) { for (uint32 n = 1; n < current_cwnd / kNConnectionAlpha; ++n) { // Call once per ACK. EXPECT_NEAR(current_cwnd, cubic_.CongestionWindowAfterAck(current_cwnd, rtt_min), 1); } clock_.AdvanceTime(hundred_ms_); current_cwnd = cubic_.CongestionWindowAfterAck(current_cwnd, rtt_min); EXPECT_NEAR(expected_cwnd, current_cwnd, 1); expected_cwnd++; } // Cubic phase. for (int i = 0; i < 52; ++i) { for (uint32 n = 1; n < current_cwnd; ++n) { // Call once per ACK. EXPECT_EQ(current_cwnd, cubic_.CongestionWindowAfterAck(current_cwnd, rtt_min)); } clock_.AdvanceTime(hundred_ms_); current_cwnd = cubic_.CongestionWindowAfterAck(current_cwnd, rtt_min); } // Total time elapsed so far; add min_rtt (0.1s) here as well. float elapsed_time_s = 10.0f + 0.1f; // |expected_cwnd| is initial value of cwnd + K * t^3, where K = 0.4. expected_cwnd = 11 + (elapsed_time_s * elapsed_time_s * elapsed_time_s * 410) / 1024; EXPECT_EQ(expected_cwnd, current_cwnd); } TEST_F(CubicTest, CwndIncreaseStatsDuringConvexRegion) { const QuicTime::Delta rtt_min = hundred_ms_; uint32 current_cwnd = 10; uint32 expected_cwnd = current_cwnd + 1; // Initialize controller state. clock_.AdvanceTime(one_ms_); expected_cwnd = cubic_.CongestionWindowAfterAck(current_cwnd, rtt_min); current_cwnd = expected_cwnd; // Testing Reno mode increase. for (int i = 0; i < 48; ++i) { for (uint32 n = 1; n < current_cwnd / kNConnectionAlpha; ++n) { // Call once per ACK, causing cwnd growth in Reno mode. cubic_.CongestionWindowAfterAck(current_cwnd, rtt_min); } // Advance current time so that cwnd update is allowed to happen by Cubic. clock_.AdvanceTime(hundred_ms_); current_cwnd = cubic_.CongestionWindowAfterAck(current_cwnd, rtt_min); EXPECT_NEAR(expected_cwnd - 10, stats_.cwnd_increase_congestion_avoidance, 1); EXPECT_NEAR(1u, stats_.cwnd_increase_cubic_mode, 1); expected_cwnd++; } uint32 old_cwnd = current_cwnd; stats_.cwnd_increase_cubic_mode = 0; stats_.cwnd_increase_congestion_avoidance = 0; // Testing Cubic mode increase. for (int i = 0; i < 52; ++i) { for (uint32 n = 1; n < current_cwnd; ++n) { // Call once per ACK. cubic_.CongestionWindowAfterAck(current_cwnd, rtt_min); } clock_.AdvanceTime(hundred_ms_); current_cwnd = cubic_.CongestionWindowAfterAck(current_cwnd, rtt_min); } // Total time elapsed so far; add min_rtt (0.1s) here as well. float elapsed_time_s = 10.0f + 0.1f; // |expected_cwnd| is initial value of cwnd + K * t^3, where K = 0.4. expected_cwnd = 11 + (elapsed_time_s * elapsed_time_s * elapsed_time_s * 410) / 1024; EXPECT_EQ(expected_cwnd - old_cwnd, stats_.cwnd_increase_cubic_mode); EXPECT_EQ(expected_cwnd - old_cwnd, stats_.cwnd_increase_congestion_avoidance); } TEST_F(CubicTest, LossEvents) { const QuicTime::Delta rtt_min = hundred_ms_; uint32 current_cwnd = 422; uint32 expected_cwnd = current_cwnd + 1; // Initialize the state. clock_.AdvanceTime(one_ms_); EXPECT_EQ(expected_cwnd, cubic_.CongestionWindowAfterAck(current_cwnd, rtt_min)); expected_cwnd = static_cast(current_cwnd * kNConnectionBeta); EXPECT_EQ(expected_cwnd, cubic_.CongestionWindowAfterPacketLoss(current_cwnd)); expected_cwnd = static_cast(current_cwnd * kNConnectionBeta); EXPECT_EQ(expected_cwnd, cubic_.CongestionWindowAfterPacketLoss(current_cwnd)); } TEST_F(CubicTest, BelowOrigin) { // Concave growth. const QuicTime::Delta rtt_min = hundred_ms_; uint32 current_cwnd = 422; uint32 expected_cwnd = current_cwnd + 1; // Initialize the state. clock_.AdvanceTime(one_ms_); EXPECT_EQ(expected_cwnd, cubic_.CongestionWindowAfterAck(current_cwnd, rtt_min)); expected_cwnd = static_cast(current_cwnd * kNConnectionBeta); EXPECT_EQ(expected_cwnd, cubic_.CongestionWindowAfterPacketLoss(current_cwnd)); current_cwnd = expected_cwnd; // First update after loss to initialize the epoch. current_cwnd = cubic_.CongestionWindowAfterAck(current_cwnd, rtt_min); uint32 old_cwnd = current_cwnd; // Cubic phase. stats_.cwnd_increase_cubic_mode = 0; stats_.cwnd_increase_congestion_avoidance = 0; for (int i = 0; i < 40 ; ++i) { clock_.AdvanceTime(hundred_ms_); current_cwnd = cubic_.CongestionWindowAfterAck(current_cwnd, rtt_min); } expected_cwnd = 422; EXPECT_EQ(expected_cwnd, current_cwnd); EXPECT_EQ(expected_cwnd - old_cwnd, stats_.cwnd_increase_cubic_mode); EXPECT_EQ(expected_cwnd - old_cwnd, stats_.cwnd_increase_congestion_avoidance); } } // namespace test } // namespace net