// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/quic/congestion_control/hybrid_slow_start.h" #include using std::max; using std::min; namespace net { // Note(pwestin): the magic clamping numbers come from the original code in // tcp_cubic.c. const int64 kHybridStartLowWindow = 16; // Number of delay samples for detecting the increase of delay. const uint32 kHybridStartMinSamples = 8; const int kHybridStartDelayFactorExp = 4; // 2^4 = 16 // The original paper specifies 2 and 8ms, but those have changed over time. const int kHybridStartDelayMinThresholdUs = 4000; const int kHybridStartDelayMaxThresholdUs = 16000; HybridSlowStart::HybridSlowStart(const QuicClock* clock) : clock_(clock), started_(false), hystart_found_(NOT_FOUND), last_sent_sequence_number_(0), round_start_(QuicTime::Zero()), end_sequence_number_(0), last_close_ack_pair_time_(QuicTime::Zero()), rtt_sample_count_(0), current_min_rtt_(QuicTime::Delta::Zero()) { } void HybridSlowStart::OnPacketAcked( QuicPacketSequenceNumber acked_sequence_number, bool in_slow_start) { // OnPacketAcked gets invoked after ShouldExitSlowStart, so it's best to end // the round when the final packet of the burst is received and start it on // the next incoming ack. if (in_slow_start && IsEndOfRound(acked_sequence_number)) { started_ = false; } } void HybridSlowStart::OnPacketSent(QuicPacketSequenceNumber sequence_number) { last_sent_sequence_number_ = sequence_number; } void HybridSlowStart::Restart() { started_ = false; hystart_found_ = NOT_FOUND; } void HybridSlowStart::StartReceiveRound(QuicPacketSequenceNumber last_sent) { DVLOG(1) << "Reset hybrid slow start @" << last_sent; round_start_ = last_close_ack_pair_time_ = clock_->ApproximateNow(); end_sequence_number_ = last_sent; current_min_rtt_ = QuicTime::Delta::Zero(); rtt_sample_count_ = 0; started_ = true; } bool HybridSlowStart::IsEndOfRound(QuicPacketSequenceNumber ack) const { return end_sequence_number_ <= ack; } bool HybridSlowStart::ShouldExitSlowStart(QuicTime::Delta latest_rtt, QuicTime::Delta min_rtt, int64 congestion_window) { if (!started_) { // Time to start the hybrid slow start. StartReceiveRound(last_sent_sequence_number_); } if (hystart_found_ != NOT_FOUND) { return true; } QuicTime current_time = clock_->ApproximateNow(); // First detection parameter - ack-train detection. // Since slow start burst out packets we can indirectly estimate the inter- // arrival time by looking at the arrival time of the ACKs if the ACKs are // spread out more then half the minimum RTT packets are being spread out // more than the capacity. // This first trigger will not come into play until we hit roughly 9.6 Mbps // with delayed acks (or 4.8Mbps without delayed acks) // TODO(ianswett): QUIC always uses delayed acks, even at the beginning, so // this should likely be at least 4ms. // TODO(pwestin): we need to make sure our pacing don't trigger this detector. // TODO(ianswett): Pacing or other cases could be handled by checking the send // time of the first acked packet in a receive round. if (current_time.Subtract(last_close_ack_pair_time_).ToMicroseconds() <= kHybridStartDelayMinThresholdUs) { last_close_ack_pair_time_ = current_time; if (current_time.Subtract(round_start_).ToMicroseconds() >= min_rtt.ToMicroseconds() >> 1) { hystart_found_ = ACK_TRAIN; } } else if (last_close_ack_pair_time_ == round_start_) { // If the previous ack wasn't close, then move forward the round start time // to the incoming ack. last_close_ack_pair_time_ = round_start_ = current_time; } // Second detection parameter - delay increase detection. // Compare the minimum delay (current_min_rtt_) of the current // burst of packets relative to the minimum delay during the session. // Note: we only look at the first few(8) packets in each burst, since we // only want to compare the lowest RTT of the burst relative to previous // bursts. rtt_sample_count_++; if (rtt_sample_count_ <= kHybridStartMinSamples) { if (current_min_rtt_.IsZero() || current_min_rtt_ > latest_rtt) { current_min_rtt_ = latest_rtt; } } // We only need to check this once per round. if (rtt_sample_count_ == kHybridStartMinSamples) { // Divide min_rtt by 16 to get a rtt increase threshold for exiting. int min_rtt_increase_threshold_us = min_rtt.ToMicroseconds() >> kHybridStartDelayFactorExp; // Ensure the rtt threshold is never less than 2ms or more than 16ms. min_rtt_increase_threshold_us = min(min_rtt_increase_threshold_us, kHybridStartDelayMaxThresholdUs); QuicTime::Delta min_rtt_increase_threshold = QuicTime::Delta::FromMicroseconds(max(min_rtt_increase_threshold_us, kHybridStartDelayMinThresholdUs)); if (current_min_rtt_ > min_rtt.Add(min_rtt_increase_threshold)) { hystart_found_= DELAY; } } // Exit from slow start if the cwnd is greater than 16 and an ack train or // increasing delay are found. return congestion_window >= kHybridStartLowWindow && hystart_found_ != NOT_FOUND; } } // namespace net