// Copyright (c) 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "sandbox/linux/services/credentials.h" #include #include #include #include #include #include #include #include #include #include #include #include "base/basictypes.h" #include "base/bind.h" #include "base/logging.h" #include "base/posix/eintr_wrapper.h" #include "base/strings/string_number_conversions.h" #include "base/template_util.h" #include "base/third_party/valgrind/valgrind.h" #include "base/threading/thread.h" namespace { bool IsRunningOnValgrind() { return RUNNING_ON_VALGRIND; } struct CapFreeDeleter { inline void operator()(cap_t cap) const { int ret = cap_free(cap); CHECK_EQ(0, ret); } }; // Wrapper to manage libcap2's cap_t type. typedef scoped_ptr ScopedCap; struct CapTextFreeDeleter { inline void operator()(char* cap_text) const { int ret = cap_free(cap_text); CHECK_EQ(0, ret); } }; // Wrapper to manage the result from libcap2's cap_from_text(). typedef scoped_ptr ScopedCapText; struct FILECloser { inline void operator()(FILE* f) const { DCHECK(f); PCHECK(0 == fclose(f)); } }; // Don't use ScopedFILE in base since it doesn't check fclose(). // TODO(jln): fix base/. typedef scoped_ptr ScopedFILE; struct DIRCloser { void operator()(DIR* d) const { DCHECK(d); PCHECK(0 == closedir(d)); } }; typedef scoped_ptr ScopedDIR; COMPILE_ASSERT((base::is_same::value), UidAndGidAreSameType); // generic_id_t can be used for either uid_t or gid_t. typedef uid_t generic_id_t; // Write a uid or gid mapping from |id| to |id| in |map_file|. bool WriteToIdMapFile(const char* map_file, generic_id_t id) { ScopedFILE f(fopen(map_file, "w")); PCHECK(f); const uid_t inside_id = id; const uid_t outside_id = id; int num = fprintf(f.get(), "%d %d 1\n", inside_id, outside_id); if (num < 0) return false; // Manually call fflush() to catch permission failures. int ret = fflush(f.get()); if (ret) { VLOG(1) << "Could not write to id map file"; return false; } return true; } // Checks that the set of RES-uids and the set of RES-gids have // one element each and return that element in |resuid| and |resgid| // respectively. It's ok to pass NULL as one or both of the ids. bool GetRESIds(uid_t* resuid, gid_t* resgid) { uid_t ruid, euid, suid; gid_t rgid, egid, sgid; PCHECK(getresuid(&ruid, &euid, &suid) == 0); PCHECK(getresgid(&rgid, &egid, &sgid) == 0); const bool uids_are_equal = (ruid == euid) && (ruid == suid); const bool gids_are_equal = (rgid == egid) && (rgid == sgid); if (!uids_are_equal || !gids_are_equal) return false; if (resuid) *resuid = euid; if (resgid) *resgid = egid; return true; } // chroot() and chdir() to /proc//fdinfo. void ChrootToThreadFdInfo(base::PlatformThreadId tid, bool* result) { DCHECK(result); *result = false; COMPILE_ASSERT((base::is_same::value), TidIsAnInt); const std::string current_thread_fdinfo = "/proc/" + base::IntToString(tid) + "/fdinfo/"; // Make extra sure that /proc//fdinfo is unique to the thread. CHECK(0 == unshare(CLONE_FILES)); int chroot_ret = chroot(current_thread_fdinfo.c_str()); if (chroot_ret) { PLOG(ERROR) << "Could not chroot"; return; } // CWD is essentially an implicit file descriptor, so be careful to not leave // it behind. PCHECK(0 == chdir("/")); *result = true; return; } // chroot() to an empty dir that is "safe". To be safe, it must not contain // any subdirectory (chroot-ing there would allow a chroot escape) and it must // be impossible to create an empty directory there. // We achieve this by doing the following: // 1. We create a new thread, which will create a new /proc// directory // 2. We chroot to /proc//fdinfo/ // This is already "safe", since fdinfo/ does not contain another directory and // one cannot create another directory there. // 3. The thread dies // After (3) happens, the directory is not available anymore in /proc. bool ChrootToSafeEmptyDir() { base::Thread chrooter("sandbox_chrooter"); if (!chrooter.Start()) return false; bool is_chrooted = false; chrooter.message_loop()->PostTask(FROM_HERE, base::Bind(&ChrootToThreadFdInfo, chrooter.thread_id(), &is_chrooted)); // Make sure our task has run before committing the return value. chrooter.Stop(); return is_chrooted; } // CHECK() that an attempt to move to a new user namespace raised an expected // errno. void CheckCloneNewUserErrno(int error) { // EPERM can happen if already in a chroot. EUSERS if too many nested // namespaces are used. EINVAL for kernels that don't support the feature. // Valgrind will ENOSYS unshare(). PCHECK(error == EPERM || error == EUSERS || error == EINVAL || error == ENOSYS); } } // namespace. namespace sandbox { Credentials::Credentials() { } Credentials::~Credentials() { } int Credentials::CountOpenFds(int proc_fd) { DCHECK_LE(0, proc_fd); int proc_self_fd = openat(proc_fd, "self/fd", O_DIRECTORY | O_RDONLY); PCHECK(0 <= proc_self_fd); // Ownership of proc_self_fd is transferred here, it must not be closed // or modified afterwards except via dir. ScopedDIR dir(fdopendir(proc_self_fd)); CHECK(dir); int count = 0; struct dirent e; struct dirent* de; while (!readdir_r(dir.get(), &e, &de) && de) { if (strcmp(e.d_name, ".") == 0 || strcmp(e.d_name, "..") == 0) { continue; } int fd_num; CHECK(base::StringToInt(e.d_name, &fd_num)); if (fd_num == proc_fd || fd_num == proc_self_fd) { continue; } ++count; } return count; } bool Credentials::HasOpenDirectory(int proc_fd) { int proc_self_fd = -1; if (proc_fd >= 0) { proc_self_fd = openat(proc_fd, "self/fd", O_DIRECTORY | O_RDONLY); } else { proc_self_fd = openat(AT_FDCWD, "/proc/self/fd", O_DIRECTORY | O_RDONLY); if (proc_self_fd < 0) { // If this process has been chrooted (eg into /proc/self/fdinfo) then // the new root dir will not have directory listing permissions for us // (hence EACCES). And if we do have this permission, then /proc won't // exist anyway (hence ENOENT). DPCHECK(errno == EACCES || errno == ENOENT) << "Unexpected failure when trying to open /proc/self/fd: (" << errno << ") " << strerror(errno); // If not available, guess false. return false; } } PCHECK(0 <= proc_self_fd); // Ownership of proc_self_fd is transferred here, it must not be closed // or modified afterwards except via dir. ScopedDIR dir(fdopendir(proc_self_fd)); CHECK(dir); struct dirent e; struct dirent* de; while (!readdir_r(dir.get(), &e, &de) && de) { if (strcmp(e.d_name, ".") == 0 || strcmp(e.d_name, "..") == 0) { continue; } int fd_num; CHECK(base::StringToInt(e.d_name, &fd_num)); if (fd_num == proc_fd || fd_num == proc_self_fd) { continue; } struct stat s; // It's OK to use proc_self_fd here, fstatat won't modify it. CHECK(fstatat(proc_self_fd, e.d_name, &s, 0) == 0); if (S_ISDIR(s.st_mode)) { return true; } } // No open unmanaged directories found. return false; } bool Credentials::DropAllCapabilities() { ScopedCap cap(cap_init()); CHECK(cap); PCHECK(0 == cap_set_proc(cap.get())); // We never let this function fail. return true; } bool Credentials::HasAnyCapability() const { ScopedCap current_cap(cap_get_proc()); CHECK(current_cap); ScopedCap empty_cap(cap_init()); CHECK(empty_cap); return cap_compare(current_cap.get(), empty_cap.get()) != 0; } scoped_ptr Credentials::GetCurrentCapString() const { ScopedCap current_cap(cap_get_proc()); CHECK(current_cap); ScopedCapText cap_text(cap_to_text(current_cap.get(), NULL)); CHECK(cap_text); return scoped_ptr (new std::string(cap_text.get())); } // static bool Credentials::SupportsNewUserNS() { // Valgrind will let clone(2) pass-through, but doesn't support unshare(), // so always consider UserNS unsupported there. if (IsRunningOnValgrind()) { return false; } // This is roughly a fork(). const pid_t pid = syscall(__NR_clone, CLONE_NEWUSER | SIGCHLD, 0, 0, 0); if (pid == -1) { CheckCloneNewUserErrno(errno); return false; } // The parent process could have had threads. In the child, these threads // have disappeared. Make sure to not do anything in the child, as this is a // fragile execution environment. if (pid == 0) { _exit(0); } // Always reap the child. siginfo_t infop; PCHECK(0 == HANDLE_EINTR(waitid(P_PID, pid, &infop, WEXITED))); // clone(2) succeeded, we can use CLONE_NEWUSER. return true; } bool Credentials::MoveToNewUserNS() { uid_t uid; gid_t gid; if (!GetRESIds(&uid, &gid)) { // If all the uids (or gids) are not equal to each other, the security // model will most likely confuse the caller, abort. DVLOG(1) << "uids or gids differ!"; return false; } int ret = unshare(CLONE_NEWUSER); if (ret) { const int unshare_errno = errno; VLOG(1) << "Looks like unprivileged CLONE_NEWUSER may not be available " << "on this kernel."; CheckCloneNewUserErrno(unshare_errno); return false; } // The current {r,e,s}{u,g}id is now an overflow id (c.f. // /proc/sys/kernel/overflowuid). Setup the uid and gid maps. DCHECK(GetRESIds(NULL, NULL)); const char kGidMapFile[] = "/proc/self/gid_map"; const char kUidMapFile[] = "/proc/self/uid_map"; CHECK(WriteToIdMapFile(kGidMapFile, gid)); CHECK(WriteToIdMapFile(kUidMapFile, uid)); DCHECK(GetRESIds(NULL, NULL)); return true; } bool Credentials::DropFileSystemAccess() { // Chrooting to a safe empty dir will only be safe if no directory file // descriptor is available to the process. DCHECK(!HasOpenDirectory(-1)); return ChrootToSafeEmptyDir(); } } // namespace sandbox.