// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef SaturatedArithmeticARM_h #define SaturatedArithmeticARM_h #include "wtf/CPU.h" #include #include ALWAYS_INLINE int32_t saturatedAddition(int32_t a, int32_t b) { int32_t result; asm("qadd %[output],%[first],%[second]" : [output] "=r" (result) : [first] "r" (a), [second] "r" (b)); return result; } ALWAYS_INLINE int32_t saturatedSubtraction(int32_t a, int32_t b) { int32_t result; asm("qsub %[output],%[first],%[second]" : [output] "=r" (result) : [first] "r" (a), [second] "r" (b)); return result; } inline int getMaxSaturatedSetResultForTesting(int FractionalShift) { // For ARM Asm version the set function maxes out to the biggest // possible integer part with the fractional part zero'd out. // e.g. 0x7fffffc0. return std::numeric_limits::max() & ~((1 << FractionalShift)-1); } inline int getMinSaturatedSetResultForTesting(int FractionalShift) { return std::numeric_limits::min(); } ALWAYS_INLINE int saturatedSet(int value, int FractionalShift) { // Figure out how many bits are left for storing the integer part of // the fixed point number, and saturate our input to that const int saturate = 32 - FractionalShift; int result; // The following ARM code will Saturate the passed value to the number of // bits used for the whole part of the fixed point representation, then // shift it up into place. This will result in the low bits // all being 0's. When the value saturates this gives a different result // to from the C++ case; in the C++ code a saturated value has all the low // bits set to 1 (for a +ve number at least). This cannot be done rapidly // in ARM ... we live with the difference, for the sake of speed. asm("ssat %[output],%[saturate],%[value]\n\t" "lsl %[output],%[shift]" : [output] "=r" (result) : [value] "r" (value), [saturate] "n" (saturate), [shift] "n" (FractionalShift)); return result; } ALWAYS_INLINE int saturatedSet(unsigned value, int FractionalShift) { // Here we are being passed an unsigned value to saturate, // even though the result is returned as a signed integer. The ARM // instruction for unsigned saturation therefore needs to be given one // less bit (i.e. the sign bit) for the saturation to work correctly; hence // the '31' below. const int saturate = 31 - FractionalShift; // The following ARM code will Saturate the passed value to the number of // bits used for the whole part of the fixed point representation, then // shift it up into place. This will result in the low bits // all being 0's. When the value saturates this gives a different result // to from the C++ case; in the C++ code a saturated value has all the low // bits set to 1. This cannot be done rapidly in ARM, so we live with the // difference, for the sake of speed. int result; asm("usat %[output],%[saturate],%[value]\n\t" "lsl %[output],%[shift]" : [output] "=r" (result) : [value] "r" (value), [saturate] "n" (saturate), [shift] "n" (FractionalShift)); return result; } #endif // SaturatedArithmeticARM_h