/* * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "testing/gtest/include/gtest/gtest.h" #include "webrtc/modules/rtp_rtcp/interface/receive_statistics.h" #include "webrtc/modules/rtp_rtcp/interface/rtp_header_parser.h" #include "webrtc/modules/rtp_rtcp/interface/rtp_payload_registry.h" #include "webrtc/modules/rtp_rtcp/interface/rtp_rtcp.h" #include "webrtc/modules/rtp_rtcp/source/rtcp_utility.h" #include "webrtc/system_wrappers/interface/critical_section_wrapper.h" #include "webrtc/test/testsupport/perf_test.h" #include "webrtc/video/rampup_tests.h" namespace webrtc { namespace { static const int kMaxPacketSize = 1500; std::vector GenerateSsrcs(size_t num_streams, uint32_t ssrc_offset) { std::vector ssrcs; for (size_t i = 0; i != num_streams; ++i) ssrcs.push_back(static_cast(ssrc_offset + i)); return ssrcs; } } // namespace StreamObserver::StreamObserver(const SsrcMap& rtx_media_ssrcs, newapi::Transport* feedback_transport, Clock* clock, RemoteBitrateEstimatorFactory* rbe_factory, RateControlType control_type) : clock_(clock), test_done_(EventWrapper::Create()), rtp_parser_(RtpHeaderParser::Create()), feedback_transport_(feedback_transport), receive_stats_(ReceiveStatistics::Create(clock)), payload_registry_( new RTPPayloadRegistry(RTPPayloadStrategy::CreateStrategy(false))), crit_(CriticalSectionWrapper::CreateCriticalSection()), expected_bitrate_bps_(0), start_bitrate_bps_(0), rtx_media_ssrcs_(rtx_media_ssrcs), total_sent_(0), padding_sent_(0), rtx_media_sent_(0), total_packets_sent_(0), padding_packets_sent_(0), rtx_media_packets_sent_(0), test_start_ms_(clock_->TimeInMilliseconds()), ramp_up_finished_ms_(0) { // Ideally we would only have to instantiate an RtcpSender, an // RtpHeaderParser and a RemoteBitrateEstimator here, but due to the current // state of the RTP module we need a full module and receive statistics to // be able to produce an RTCP with REMB. RtpRtcp::Configuration config; config.receive_statistics = receive_stats_.get(); feedback_transport_.Enable(); config.outgoing_transport = &feedback_transport_; rtp_rtcp_.reset(RtpRtcp::CreateRtpRtcp(config)); rtp_rtcp_->SetREMBStatus(true); rtp_rtcp_->SetRTCPStatus(kRtcpNonCompound); rtp_parser_->RegisterRtpHeaderExtension(kRtpExtensionAbsoluteSendTime, kAbsSendTimeExtensionId); rtp_parser_->RegisterRtpHeaderExtension(kRtpExtensionTransmissionTimeOffset, kTransmissionTimeOffsetExtensionId); const uint32_t kRemoteBitrateEstimatorMinBitrateBps = 30000; remote_bitrate_estimator_.reset( rbe_factory->Create(this, clock, control_type, kRemoteBitrateEstimatorMinBitrateBps)); } void StreamObserver::set_expected_bitrate_bps( unsigned int expected_bitrate_bps) { CriticalSectionScoped lock(crit_.get()); expected_bitrate_bps_ = expected_bitrate_bps; } void StreamObserver::set_start_bitrate_bps(unsigned int start_bitrate_bps) { CriticalSectionScoped lock(crit_.get()); start_bitrate_bps_ = start_bitrate_bps; } void StreamObserver::OnReceiveBitrateChanged( const std::vector& ssrcs, unsigned int bitrate) { CriticalSectionScoped lock(crit_.get()); assert(expected_bitrate_bps_ > 0); if (start_bitrate_bps_ != 0) { // For tests with an explicitly set start bitrate, verify the first // bitrate estimate is close to the start bitrate and lower than the // test target bitrate. This is to verify a call respects the configured // start bitrate, but due to the BWE implementation we can't guarantee the // first estimate really is as high as the start bitrate. EXPECT_GT(bitrate, 0.9 * start_bitrate_bps_); start_bitrate_bps_ = 0; } if (bitrate >= expected_bitrate_bps_) { ramp_up_finished_ms_ = clock_->TimeInMilliseconds(); // Just trigger if there was any rtx padding packet. if (rtx_media_ssrcs_.empty() || rtx_media_sent_ > 0) { TriggerTestDone(); } } rtp_rtcp_->SetREMBData( bitrate, static_cast(ssrcs.size()), &ssrcs[0]); rtp_rtcp_->Process(); } bool StreamObserver::SendRtp(const uint8_t* packet, size_t length) { CriticalSectionScoped lock(crit_.get()); RTPHeader header; EXPECT_TRUE(rtp_parser_->Parse(packet, static_cast(length), &header)); receive_stats_->IncomingPacket(header, length, false); payload_registry_->SetIncomingPayloadType(header); remote_bitrate_estimator_->IncomingPacket( clock_->TimeInMilliseconds(), static_cast(length - 12), header); if (remote_bitrate_estimator_->TimeUntilNextProcess() <= 0) { remote_bitrate_estimator_->Process(); } total_sent_ += length; padding_sent_ += header.paddingLength; ++total_packets_sent_; if (header.paddingLength > 0) ++padding_packets_sent_; if (rtx_media_ssrcs_.find(header.ssrc) != rtx_media_ssrcs_.end()) { rtx_media_sent_ += length - header.headerLength - header.paddingLength; if (header.paddingLength == 0) ++rtx_media_packets_sent_; uint8_t restored_packet[kMaxPacketSize]; uint8_t* restored_packet_ptr = restored_packet; int restored_length = static_cast(length); payload_registry_->RestoreOriginalPacket(&restored_packet_ptr, packet, &restored_length, rtx_media_ssrcs_[header.ssrc], header); length = restored_length; EXPECT_TRUE(rtp_parser_->Parse( restored_packet, static_cast(length), &header)); } else { rtp_rtcp_->SetRemoteSSRC(header.ssrc); } return true; } bool StreamObserver::SendRtcp(const uint8_t* packet, size_t length) { return true; } EventTypeWrapper StreamObserver::Wait() { return test_done_->Wait(120 * 1000); } void StreamObserver::ReportResult(const std::string& measurement, size_t value, const std::string& units) { webrtc::test::PrintResult( measurement, "", ::testing::UnitTest::GetInstance()->current_test_info()->name(), value, units, false); } void StreamObserver::TriggerTestDone() EXCLUSIVE_LOCKS_REQUIRED(crit_) { ReportResult("ramp-up-total-sent", total_sent_, "bytes"); ReportResult("ramp-up-padding-sent", padding_sent_, "bytes"); ReportResult("ramp-up-rtx-media-sent", rtx_media_sent_, "bytes"); ReportResult("ramp-up-total-packets-sent", total_packets_sent_, "packets"); ReportResult("ramp-up-padding-packets-sent", padding_packets_sent_, "packets"); ReportResult("ramp-up-rtx-packets-sent", rtx_media_packets_sent_, "packets"); ReportResult("ramp-up-time", ramp_up_finished_ms_ - test_start_ms_, "milliseconds"); test_done_->Set(); } LowRateStreamObserver::LowRateStreamObserver( newapi::Transport* feedback_transport, Clock* clock, size_t number_of_streams, bool rtx_used) : clock_(clock), number_of_streams_(number_of_streams), rtx_used_(rtx_used), test_done_(EventWrapper::Create()), rtp_parser_(RtpHeaderParser::Create()), feedback_transport_(feedback_transport), receive_stats_(ReceiveStatistics::Create(clock)), crit_(CriticalSectionWrapper::CreateCriticalSection()), send_stream_(NULL), test_state_(kFirstRampup), state_start_ms_(clock_->TimeInMilliseconds()), interval_start_ms_(state_start_ms_), last_remb_bps_(0), sent_bytes_(0), total_overuse_bytes_(0), suspended_in_stats_(false) { RtpRtcp::Configuration config; config.receive_statistics = receive_stats_.get(); feedback_transport_.Enable(); config.outgoing_transport = &feedback_transport_; rtp_rtcp_.reset(RtpRtcp::CreateRtpRtcp(config)); rtp_rtcp_->SetREMBStatus(true); rtp_rtcp_->SetRTCPStatus(kRtcpNonCompound); rtp_parser_->RegisterRtpHeaderExtension(kRtpExtensionTransmissionTimeOffset, kTransmissionTimeOffsetExtensionId); AbsoluteSendTimeRemoteBitrateEstimatorFactory rbe_factory; const uint32_t kRemoteBitrateEstimatorMinBitrateBps = 10000; remote_bitrate_estimator_.reset( rbe_factory.Create(this, clock, kMimdControl, kRemoteBitrateEstimatorMinBitrateBps)); forward_transport_config_.link_capacity_kbps = kHighBandwidthLimitBps / 1000; forward_transport_config_.queue_length_packets = 100; // Something large. test::DirectTransport::SetConfig(forward_transport_config_); test::DirectTransport::SetReceiver(this); } void LowRateStreamObserver::SetSendStream(const VideoSendStream* send_stream) { CriticalSectionScoped lock(crit_.get()); send_stream_ = send_stream; } void LowRateStreamObserver::OnReceiveBitrateChanged( const std::vector& ssrcs, unsigned int bitrate) { CriticalSectionScoped lock(crit_.get()); rtp_rtcp_->SetREMBData( bitrate, static_cast(ssrcs.size()), &ssrcs[0]); rtp_rtcp_->Process(); last_remb_bps_ = bitrate; } bool LowRateStreamObserver::SendRtp(const uint8_t* data, size_t length) { CriticalSectionScoped lock(crit_.get()); sent_bytes_ += length; int64_t now_ms = clock_->TimeInMilliseconds(); if (now_ms > interval_start_ms_ + 1000) { // Let at least 1 second pass. // Verify that the send rate was about right. unsigned int average_rate_bps = static_cast(sent_bytes_) * 8 * 1000 / (now_ms - interval_start_ms_); // TODO(holmer): Why is this failing? // EXPECT_LT(average_rate_bps, last_remb_bps_ * 1.1); if (average_rate_bps > last_remb_bps_ * 1.1) { total_overuse_bytes_ += sent_bytes_ - last_remb_bps_ / 8 * (now_ms - interval_start_ms_) / 1000; } EvolveTestState(average_rate_bps); interval_start_ms_ = now_ms; sent_bytes_ = 0; } return test::DirectTransport::SendRtp(data, length); } PacketReceiver::DeliveryStatus LowRateStreamObserver::DeliverPacket( const uint8_t* packet, size_t length) { CriticalSectionScoped lock(crit_.get()); RTPHeader header; EXPECT_TRUE(rtp_parser_->Parse(packet, static_cast(length), &header)); receive_stats_->IncomingPacket(header, length, false); remote_bitrate_estimator_->IncomingPacket( clock_->TimeInMilliseconds(), static_cast(length - 12), header); if (remote_bitrate_estimator_->TimeUntilNextProcess() <= 0) { remote_bitrate_estimator_->Process(); } suspended_in_stats_ = send_stream_->GetStats().suspended; return DELIVERY_OK; } bool LowRateStreamObserver::SendRtcp(const uint8_t* packet, size_t length) { return true; } std::string LowRateStreamObserver::GetModifierString() { std::string str("_"); char temp_str[5]; sprintf(temp_str, "%i", static_cast(number_of_streams_)); str += std::string(temp_str); str += "stream"; str += (number_of_streams_ > 1 ? "s" : ""); str += "_"; str += (rtx_used_ ? "" : "no"); str += "rtx"; return str; } void LowRateStreamObserver::EvolveTestState(unsigned int bitrate_bps) { int64_t now = clock_->TimeInMilliseconds(); CriticalSectionScoped lock(crit_.get()); assert(send_stream_ != NULL); switch (test_state_) { case kFirstRampup: { EXPECT_FALSE(suspended_in_stats_); if (bitrate_bps > kExpectedHighBitrateBps) { // The first ramp-up has reached the target bitrate. Change the // channel limit, and move to the next test state. forward_transport_config_.link_capacity_kbps = kLowBandwidthLimitBps / 1000; test::DirectTransport::SetConfig(forward_transport_config_); test_state_ = kLowRate; webrtc::test::PrintResult("ramp_up_down_up", GetModifierString(), "first_rampup", now - state_start_ms_, "ms", false); state_start_ms_ = now; interval_start_ms_ = now; sent_bytes_ = 0; } break; } case kLowRate: { if (bitrate_bps < kExpectedLowBitrateBps && suspended_in_stats_) { // The ramp-down was successful. Change the channel limit back to a // high value, and move to the next test state. forward_transport_config_.link_capacity_kbps = kHighBandwidthLimitBps / 1000; test::DirectTransport::SetConfig(forward_transport_config_); test_state_ = kSecondRampup; webrtc::test::PrintResult("ramp_up_down_up", GetModifierString(), "rampdown", now - state_start_ms_, "ms", false); state_start_ms_ = now; interval_start_ms_ = now; sent_bytes_ = 0; } break; } case kSecondRampup: { if (bitrate_bps > kExpectedHighBitrateBps && !suspended_in_stats_) { webrtc::test::PrintResult("ramp_up_down_up", GetModifierString(), "second_rampup", now - state_start_ms_, "ms", false); webrtc::test::PrintResult("ramp_up_down_up", GetModifierString(), "total_overuse", total_overuse_bytes_, "bytes", false); test_done_->Set(); } break; } } } EventTypeWrapper LowRateStreamObserver::Wait() { return test_done_->Wait(test::CallTest::kLongTimeoutMs); } void RampUpTest::RunRampUpTest(bool rtx, size_t num_streams, unsigned int start_bitrate_bps, const std::string& extension_type) { std::vector ssrcs(GenerateSsrcs(num_streams, 100)); std::vector rtx_ssrcs(GenerateSsrcs(num_streams, 200)); StreamObserver::SsrcMap rtx_ssrc_map; if (rtx) { for (size_t i = 0; i < ssrcs.size(); ++i) rtx_ssrc_map[rtx_ssrcs[i]] = ssrcs[i]; } CreateSendConfig(num_streams); scoped_ptr rbe_factory; RateControlType control_type; if (extension_type == RtpExtension::kAbsSendTime) { control_type = kAimdControl; rbe_factory.reset(new AbsoluteSendTimeRemoteBitrateEstimatorFactory); send_config_.rtp.extensions.push_back(RtpExtension( extension_type.c_str(), kAbsSendTimeExtensionId)); } else { control_type = kMimdControl; rbe_factory.reset(new RemoteBitrateEstimatorFactory); send_config_.rtp.extensions.push_back(RtpExtension( extension_type.c_str(), kTransmissionTimeOffsetExtensionId)); } test::DirectTransport receiver_transport; StreamObserver stream_observer(rtx_ssrc_map, &receiver_transport, Clock::GetRealTimeClock(), rbe_factory.get(), control_type); Call::Config call_config(&stream_observer); if (start_bitrate_bps != 0) { call_config.start_bitrate_bps = start_bitrate_bps; stream_observer.set_start_bitrate_bps(start_bitrate_bps); } CreateSenderCall(call_config); receiver_transport.SetReceiver(sender_call_->Receiver()); if (num_streams == 1) { encoder_config_.streams[0].target_bitrate_bps = 2000000; encoder_config_.streams[0].max_bitrate_bps = 2000000; } send_config_.rtp.nack.rtp_history_ms = kNackRtpHistoryMs; send_config_.rtp.ssrcs = ssrcs; if (rtx) { send_config_.rtp.rtx.payload_type = kSendRtxPayloadType; send_config_.rtp.rtx.ssrcs = rtx_ssrcs; send_config_.rtp.rtx.pad_with_redundant_payloads = true; } if (num_streams == 1) { // For single stream rampup until 1mbps stream_observer.set_expected_bitrate_bps(kSingleStreamTargetBps); } else { // For multi stream rampup until all streams are being sent. That means // enough birate to send all the target streams plus the min bitrate of // the last one. int expected_bitrate_bps = encoder_config_.streams.back().min_bitrate_bps; for (size_t i = 0; i < encoder_config_.streams.size() - 1; ++i) { expected_bitrate_bps += encoder_config_.streams[i].target_bitrate_bps; } stream_observer.set_expected_bitrate_bps(expected_bitrate_bps); } CreateStreams(); CreateFrameGeneratorCapturer(); Start(); EXPECT_EQ(kEventSignaled, stream_observer.Wait()); Stop(); DestroyStreams(); } void RampUpTest::RunRampUpDownUpTest(size_t number_of_streams, bool rtx) { test::DirectTransport receiver_transport; LowRateStreamObserver stream_observer( &receiver_transport, Clock::GetRealTimeClock(), number_of_streams, rtx); Call::Config call_config(&stream_observer); CreateSenderCall(call_config); receiver_transport.SetReceiver(sender_call_->Receiver()); CreateSendConfig(number_of_streams); send_config_.rtp.nack.rtp_history_ms = kNackRtpHistoryMs; send_config_.rtp.extensions.push_back(RtpExtension( RtpExtension::kTOffset, kTransmissionTimeOffsetExtensionId)); send_config_.suspend_below_min_bitrate = true; if (rtx) { send_config_.rtp.rtx.payload_type = kSendRtxPayloadType; send_config_.rtp.rtx.ssrcs = GenerateSsrcs(number_of_streams, 200); send_config_.rtp.rtx.pad_with_redundant_payloads = true; } CreateStreams(); stream_observer.SetSendStream(send_stream_); CreateFrameGeneratorCapturer(); Start(); EXPECT_EQ(kEventSignaled, stream_observer.Wait()); Stop(); DestroyStreams(); } TEST_F(RampUpTest, SingleStream) { RunRampUpTest(false, 1, 0, RtpExtension::kTOffset); } TEST_F(RampUpTest, Simulcast) { RunRampUpTest(false, 3, 0, RtpExtension::kTOffset); } TEST_F(RampUpTest, SimulcastWithRtx) { RunRampUpTest(true, 3, 0, RtpExtension::kTOffset); } TEST_F(RampUpTest, SingleStreamWithHighStartBitrate) { RunRampUpTest(false, 1, 0.9 * kSingleStreamTargetBps, RtpExtension::kTOffset); } TEST_F(RampUpTest, UpDownUpOneStream) { RunRampUpDownUpTest(1, false); } TEST_F(RampUpTest, UpDownUpThreeStreams) { RunRampUpDownUpTest(3, false); } TEST_F(RampUpTest, UpDownUpOneStreamRtx) { RunRampUpDownUpTest(1, true); } TEST_F(RampUpTest, UpDownUpThreeStreamsRtx) { RunRampUpDownUpTest(3, true); } } // namespace webrtc