// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/v8.h" #include "src/accessors.h" #include "src/api.h" #include "src/base/bits.h" #include "src/base/once.h" #include "src/base/utils/random-number-generator.h" #include "src/bootstrapper.h" #include "src/codegen.h" #include "src/compilation-cache.h" #include "src/conversions.h" #include "src/cpu-profiler.h" #include "src/debug.h" #include "src/deoptimizer.h" #include "src/global-handles.h" #include "src/heap/gc-idle-time-handler.h" #include "src/heap/incremental-marking.h" #include "src/heap/mark-compact.h" #include "src/heap/objects-visiting-inl.h" #include "src/heap/objects-visiting.h" #include "src/heap/store-buffer.h" #include "src/heap-profiler.h" #include "src/isolate-inl.h" #include "src/natives.h" #include "src/runtime-profiler.h" #include "src/scopeinfo.h" #include "src/snapshot.h" #include "src/utils.h" #include "src/v8threads.h" #include "src/vm-state-inl.h" #if V8_TARGET_ARCH_ARM && !V8_INTERPRETED_REGEXP #include "src/regexp-macro-assembler.h" // NOLINT #include "src/arm/regexp-macro-assembler-arm.h" // NOLINT #endif #if V8_TARGET_ARCH_MIPS && !V8_INTERPRETED_REGEXP #include "src/regexp-macro-assembler.h" // NOLINT #include "src/mips/regexp-macro-assembler-mips.h" // NOLINT #endif #if V8_TARGET_ARCH_MIPS64 && !V8_INTERPRETED_REGEXP #include "src/regexp-macro-assembler.h" #include "src/mips64/regexp-macro-assembler-mips64.h" #endif namespace v8 { namespace internal { Heap::Heap() : amount_of_external_allocated_memory_(0), amount_of_external_allocated_memory_at_last_global_gc_(0), isolate_(NULL), code_range_size_(0), // semispace_size_ should be a power of 2 and old_generation_size_ should // be a multiple of Page::kPageSize. reserved_semispace_size_(8 * (kPointerSize / 4) * MB), max_semi_space_size_(8 * (kPointerSize / 4) * MB), initial_semispace_size_(Page::kPageSize), max_old_generation_size_(700ul * (kPointerSize / 4) * MB), max_executable_size_(256ul * (kPointerSize / 4) * MB), // Variables set based on semispace_size_ and old_generation_size_ in // ConfigureHeap. // Will be 4 * reserved_semispace_size_ to ensure that young // generation can be aligned to its size. maximum_committed_(0), survived_since_last_expansion_(0), sweep_generation_(0), always_allocate_scope_depth_(0), contexts_disposed_(0), global_ic_age_(0), flush_monomorphic_ics_(false), scan_on_scavenge_pages_(0), new_space_(this), old_pointer_space_(NULL), old_data_space_(NULL), code_space_(NULL), map_space_(NULL), cell_space_(NULL), property_cell_space_(NULL), lo_space_(NULL), gc_state_(NOT_IN_GC), gc_post_processing_depth_(0), allocations_count_(0), raw_allocations_hash_(0), dump_allocations_hash_countdown_(FLAG_dump_allocations_digest_at_alloc), ms_count_(0), gc_count_(0), remembered_unmapped_pages_index_(0), unflattened_strings_length_(0), #ifdef DEBUG allocation_timeout_(0), #endif // DEBUG old_generation_allocation_limit_(kMinimumOldGenerationAllocationLimit), old_gen_exhausted_(false), inline_allocation_disabled_(false), store_buffer_rebuilder_(store_buffer()), hidden_string_(NULL), gc_safe_size_of_old_object_(NULL), total_regexp_code_generated_(0), tracer_(this), high_survival_rate_period_length_(0), promoted_objects_size_(0), promotion_rate_(0), semi_space_copied_object_size_(0), semi_space_copied_rate_(0), nodes_died_in_new_space_(0), nodes_copied_in_new_space_(0), nodes_promoted_(0), maximum_size_scavenges_(0), max_gc_pause_(0.0), total_gc_time_ms_(0.0), max_alive_after_gc_(0), min_in_mutator_(kMaxInt), marking_time_(0.0), sweeping_time_(0.0), mark_compact_collector_(this), store_buffer_(this), marking_(this), incremental_marking_(this), gc_count_at_last_idle_gc_(0), full_codegen_bytes_generated_(0), crankshaft_codegen_bytes_generated_(0), gcs_since_last_deopt_(0), #ifdef VERIFY_HEAP no_weak_object_verification_scope_depth_(0), #endif allocation_sites_scratchpad_length_(0), promotion_queue_(this), configured_(false), external_string_table_(this), chunks_queued_for_free_(NULL), gc_callbacks_depth_(0) { // Allow build-time customization of the max semispace size. Building // V8 with snapshots and a non-default max semispace size is much // easier if you can define it as part of the build environment. #if defined(V8_MAX_SEMISPACE_SIZE) max_semi_space_size_ = reserved_semispace_size_ = V8_MAX_SEMISPACE_SIZE; #endif // Ensure old_generation_size_ is a multiple of kPageSize. DCHECK(MB >= Page::kPageSize); memset(roots_, 0, sizeof(roots_[0]) * kRootListLength); set_native_contexts_list(NULL); set_array_buffers_list(Smi::FromInt(0)); set_allocation_sites_list(Smi::FromInt(0)); set_encountered_weak_collections(Smi::FromInt(0)); // Put a dummy entry in the remembered pages so we can find the list the // minidump even if there are no real unmapped pages. RememberUnmappedPage(NULL, false); ClearObjectStats(true); } intptr_t Heap::Capacity() { if (!HasBeenSetUp()) return 0; return new_space_.Capacity() + old_pointer_space_->Capacity() + old_data_space_->Capacity() + code_space_->Capacity() + map_space_->Capacity() + cell_space_->Capacity() + property_cell_space_->Capacity(); } intptr_t Heap::CommittedMemory() { if (!HasBeenSetUp()) return 0; return new_space_.CommittedMemory() + old_pointer_space_->CommittedMemory() + old_data_space_->CommittedMemory() + code_space_->CommittedMemory() + map_space_->CommittedMemory() + cell_space_->CommittedMemory() + property_cell_space_->CommittedMemory() + lo_space_->Size(); } size_t Heap::CommittedPhysicalMemory() { if (!HasBeenSetUp()) return 0; return new_space_.CommittedPhysicalMemory() + old_pointer_space_->CommittedPhysicalMemory() + old_data_space_->CommittedPhysicalMemory() + code_space_->CommittedPhysicalMemory() + map_space_->CommittedPhysicalMemory() + cell_space_->CommittedPhysicalMemory() + property_cell_space_->CommittedPhysicalMemory() + lo_space_->CommittedPhysicalMemory(); } intptr_t Heap::CommittedMemoryExecutable() { if (!HasBeenSetUp()) return 0; return isolate()->memory_allocator()->SizeExecutable(); } void Heap::UpdateMaximumCommitted() { if (!HasBeenSetUp()) return; intptr_t current_committed_memory = CommittedMemory(); if (current_committed_memory > maximum_committed_) { maximum_committed_ = current_committed_memory; } } intptr_t Heap::Available() { if (!HasBeenSetUp()) return 0; return new_space_.Available() + old_pointer_space_->Available() + old_data_space_->Available() + code_space_->Available() + map_space_->Available() + cell_space_->Available() + property_cell_space_->Available(); } bool Heap::HasBeenSetUp() { return old_pointer_space_ != NULL && old_data_space_ != NULL && code_space_ != NULL && map_space_ != NULL && cell_space_ != NULL && property_cell_space_ != NULL && lo_space_ != NULL; } int Heap::GcSafeSizeOfOldObject(HeapObject* object) { if (IntrusiveMarking::IsMarked(object)) { return IntrusiveMarking::SizeOfMarkedObject(object); } return object->SizeFromMap(object->map()); } GarbageCollector Heap::SelectGarbageCollector(AllocationSpace space, const char** reason) { // Is global GC requested? if (space != NEW_SPACE) { isolate_->counters()->gc_compactor_caused_by_request()->Increment(); *reason = "GC in old space requested"; return MARK_COMPACTOR; } if (FLAG_gc_global || (FLAG_stress_compaction && (gc_count_ & 1) != 0)) { *reason = "GC in old space forced by flags"; return MARK_COMPACTOR; } // Is enough data promoted to justify a global GC? if (OldGenerationAllocationLimitReached()) { isolate_->counters()->gc_compactor_caused_by_promoted_data()->Increment(); *reason = "promotion limit reached"; return MARK_COMPACTOR; } // Have allocation in OLD and LO failed? if (old_gen_exhausted_) { isolate_->counters() ->gc_compactor_caused_by_oldspace_exhaustion() ->Increment(); *reason = "old generations exhausted"; return MARK_COMPACTOR; } // Is there enough space left in OLD to guarantee that a scavenge can // succeed? // // Note that MemoryAllocator->MaxAvailable() undercounts the memory available // for object promotion. It counts only the bytes that the memory // allocator has not yet allocated from the OS and assigned to any space, // and does not count available bytes already in the old space or code // space. Undercounting is safe---we may get an unrequested full GC when // a scavenge would have succeeded. if (isolate_->memory_allocator()->MaxAvailable() <= new_space_.Size()) { isolate_->counters() ->gc_compactor_caused_by_oldspace_exhaustion() ->Increment(); *reason = "scavenge might not succeed"; return MARK_COMPACTOR; } // Default *reason = NULL; return SCAVENGER; } // TODO(1238405): Combine the infrastructure for --heap-stats and // --log-gc to avoid the complicated preprocessor and flag testing. void Heap::ReportStatisticsBeforeGC() { // Heap::ReportHeapStatistics will also log NewSpace statistics when // compiled --log-gc is set. The following logic is used to avoid // double logging. #ifdef DEBUG if (FLAG_heap_stats || FLAG_log_gc) new_space_.CollectStatistics(); if (FLAG_heap_stats) { ReportHeapStatistics("Before GC"); } else if (FLAG_log_gc) { new_space_.ReportStatistics(); } if (FLAG_heap_stats || FLAG_log_gc) new_space_.ClearHistograms(); #else if (FLAG_log_gc) { new_space_.CollectStatistics(); new_space_.ReportStatistics(); new_space_.ClearHistograms(); } #endif // DEBUG } void Heap::PrintShortHeapStatistics() { if (!FLAG_trace_gc_verbose) return; PrintPID("Memory allocator, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB\n", isolate_->memory_allocator()->Size() / KB, isolate_->memory_allocator()->Available() / KB); PrintPID("New space, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB" ", committed: %6" V8_PTR_PREFIX "d KB\n", new_space_.Size() / KB, new_space_.Available() / KB, new_space_.CommittedMemory() / KB); PrintPID("Old pointers, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB" ", committed: %6" V8_PTR_PREFIX "d KB\n", old_pointer_space_->SizeOfObjects() / KB, old_pointer_space_->Available() / KB, old_pointer_space_->CommittedMemory() / KB); PrintPID("Old data space, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB" ", committed: %6" V8_PTR_PREFIX "d KB\n", old_data_space_->SizeOfObjects() / KB, old_data_space_->Available() / KB, old_data_space_->CommittedMemory() / KB); PrintPID("Code space, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB" ", committed: %6" V8_PTR_PREFIX "d KB\n", code_space_->SizeOfObjects() / KB, code_space_->Available() / KB, code_space_->CommittedMemory() / KB); PrintPID("Map space, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB" ", committed: %6" V8_PTR_PREFIX "d KB\n", map_space_->SizeOfObjects() / KB, map_space_->Available() / KB, map_space_->CommittedMemory() / KB); PrintPID("Cell space, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB" ", committed: %6" V8_PTR_PREFIX "d KB\n", cell_space_->SizeOfObjects() / KB, cell_space_->Available() / KB, cell_space_->CommittedMemory() / KB); PrintPID("PropertyCell space, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB" ", committed: %6" V8_PTR_PREFIX "d KB\n", property_cell_space_->SizeOfObjects() / KB, property_cell_space_->Available() / KB, property_cell_space_->CommittedMemory() / KB); PrintPID("Large object space, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB" ", committed: %6" V8_PTR_PREFIX "d KB\n", lo_space_->SizeOfObjects() / KB, lo_space_->Available() / KB, lo_space_->CommittedMemory() / KB); PrintPID("All spaces, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB" ", committed: %6" V8_PTR_PREFIX "d KB\n", this->SizeOfObjects() / KB, this->Available() / KB, this->CommittedMemory() / KB); PrintPID("External memory reported: %6" V8_PTR_PREFIX "d KB\n", static_cast(amount_of_external_allocated_memory_ / KB)); PrintPID("Total time spent in GC : %.1f ms\n", total_gc_time_ms_); } // TODO(1238405): Combine the infrastructure for --heap-stats and // --log-gc to avoid the complicated preprocessor and flag testing. void Heap::ReportStatisticsAfterGC() { // Similar to the before GC, we use some complicated logic to ensure that // NewSpace statistics are logged exactly once when --log-gc is turned on. #if defined(DEBUG) if (FLAG_heap_stats) { new_space_.CollectStatistics(); ReportHeapStatistics("After GC"); } else if (FLAG_log_gc) { new_space_.ReportStatistics(); } #else if (FLAG_log_gc) new_space_.ReportStatistics(); #endif // DEBUG } void Heap::GarbageCollectionPrologue() { { AllowHeapAllocation for_the_first_part_of_prologue; ClearJSFunctionResultCaches(); gc_count_++; unflattened_strings_length_ = 0; if (FLAG_flush_code && FLAG_flush_code_incrementally) { mark_compact_collector()->EnableCodeFlushing(true); } #ifdef VERIFY_HEAP if (FLAG_verify_heap) { Verify(); } #endif } // Reset GC statistics. promoted_objects_size_ = 0; semi_space_copied_object_size_ = 0; nodes_died_in_new_space_ = 0; nodes_copied_in_new_space_ = 0; nodes_promoted_ = 0; UpdateMaximumCommitted(); #ifdef DEBUG DCHECK(!AllowHeapAllocation::IsAllowed() && gc_state_ == NOT_IN_GC); if (FLAG_gc_verbose) Print(); ReportStatisticsBeforeGC(); #endif // DEBUG store_buffer()->GCPrologue(); if (isolate()->concurrent_osr_enabled()) { isolate()->optimizing_compiler_thread()->AgeBufferedOsrJobs(); } if (new_space_.IsAtMaximumCapacity()) { maximum_size_scavenges_++; } else { maximum_size_scavenges_ = 0; } CheckNewSpaceExpansionCriteria(); } intptr_t Heap::SizeOfObjects() { intptr_t total = 0; AllSpaces spaces(this); for (Space* space = spaces.next(); space != NULL; space = spaces.next()) { total += space->SizeOfObjects(); } return total; } void Heap::ClearAllICsByKind(Code::Kind kind) { HeapObjectIterator it(code_space()); for (Object* object = it.Next(); object != NULL; object = it.Next()) { Code* code = Code::cast(object); Code::Kind current_kind = code->kind(); if (current_kind == Code::FUNCTION || current_kind == Code::OPTIMIZED_FUNCTION) { code->ClearInlineCaches(kind); } } } void Heap::RepairFreeListsAfterBoot() { PagedSpaces spaces(this); for (PagedSpace* space = spaces.next(); space != NULL; space = spaces.next()) { space->RepairFreeListsAfterBoot(); } } void Heap::ProcessPretenuringFeedback() { if (FLAG_allocation_site_pretenuring) { int tenure_decisions = 0; int dont_tenure_decisions = 0; int allocation_mementos_found = 0; int allocation_sites = 0; int active_allocation_sites = 0; // If the scratchpad overflowed, we have to iterate over the allocation // sites list. // TODO(hpayer): We iterate over the whole list of allocation sites when // we grew to the maximum semi-space size to deopt maybe tenured // allocation sites. We could hold the maybe tenured allocation sites // in a seperate data structure if this is a performance problem. bool deopt_maybe_tenured = DeoptMaybeTenuredAllocationSites(); bool use_scratchpad = allocation_sites_scratchpad_length_ < kAllocationSiteScratchpadSize && !deopt_maybe_tenured; int i = 0; Object* list_element = allocation_sites_list(); bool trigger_deoptimization = false; bool maximum_size_scavenge = MaximumSizeScavenge(); while (use_scratchpad ? i < allocation_sites_scratchpad_length_ : list_element->IsAllocationSite()) { AllocationSite* site = use_scratchpad ? AllocationSite::cast(allocation_sites_scratchpad()->get(i)) : AllocationSite::cast(list_element); allocation_mementos_found += site->memento_found_count(); if (site->memento_found_count() > 0) { active_allocation_sites++; if (site->DigestPretenuringFeedback(maximum_size_scavenge)) { trigger_deoptimization = true; } if (site->GetPretenureMode() == TENURED) { tenure_decisions++; } else { dont_tenure_decisions++; } allocation_sites++; } if (deopt_maybe_tenured && site->IsMaybeTenure()) { site->set_deopt_dependent_code(true); trigger_deoptimization = true; } if (use_scratchpad) { i++; } else { list_element = site->weak_next(); } } if (trigger_deoptimization) { isolate_->stack_guard()->RequestDeoptMarkedAllocationSites(); } FlushAllocationSitesScratchpad(); if (FLAG_trace_pretenuring_statistics && (allocation_mementos_found > 0 || tenure_decisions > 0 || dont_tenure_decisions > 0)) { PrintF( "GC: (mode, #visited allocation sites, #active allocation sites, " "#mementos, #tenure decisions, #donttenure decisions) " "(%s, %d, %d, %d, %d, %d)\n", use_scratchpad ? "use scratchpad" : "use list", allocation_sites, active_allocation_sites, allocation_mementos_found, tenure_decisions, dont_tenure_decisions); } } } void Heap::DeoptMarkedAllocationSites() { // TODO(hpayer): If iterating over the allocation sites list becomes a // performance issue, use a cache heap data structure instead (similar to the // allocation sites scratchpad). Object* list_element = allocation_sites_list(); while (list_element->IsAllocationSite()) { AllocationSite* site = AllocationSite::cast(list_element); if (site->deopt_dependent_code()) { site->dependent_code()->MarkCodeForDeoptimization( isolate_, DependentCode::kAllocationSiteTenuringChangedGroup); site->set_deopt_dependent_code(false); } list_element = site->weak_next(); } Deoptimizer::DeoptimizeMarkedCode(isolate_); } void Heap::GarbageCollectionEpilogue() { store_buffer()->GCEpilogue(); // In release mode, we only zap the from space under heap verification. if (Heap::ShouldZapGarbage()) { ZapFromSpace(); } // Process pretenuring feedback and update allocation sites. ProcessPretenuringFeedback(); #ifdef VERIFY_HEAP if (FLAG_verify_heap) { Verify(); } #endif AllowHeapAllocation for_the_rest_of_the_epilogue; #ifdef DEBUG if (FLAG_print_global_handles) isolate_->global_handles()->Print(); if (FLAG_print_handles) PrintHandles(); if (FLAG_gc_verbose) Print(); if (FLAG_code_stats) ReportCodeStatistics("After GC"); #endif if (FLAG_deopt_every_n_garbage_collections > 0) { // TODO(jkummerow/ulan/jarin): This is not safe! We can't assume that // the topmost optimized frame can be deoptimized safely, because it // might not have a lazy bailout point right after its current PC. if (++gcs_since_last_deopt_ == FLAG_deopt_every_n_garbage_collections) { Deoptimizer::DeoptimizeAll(isolate()); gcs_since_last_deopt_ = 0; } } UpdateMaximumCommitted(); isolate_->counters()->alive_after_last_gc()->Set( static_cast(SizeOfObjects())); isolate_->counters()->string_table_capacity()->Set( string_table()->Capacity()); isolate_->counters()->number_of_symbols()->Set( string_table()->NumberOfElements()); if (full_codegen_bytes_generated_ + crankshaft_codegen_bytes_generated_ > 0) { isolate_->counters()->codegen_fraction_crankshaft()->AddSample( static_cast((crankshaft_codegen_bytes_generated_ * 100.0) / (crankshaft_codegen_bytes_generated_ + full_codegen_bytes_generated_))); } if (CommittedMemory() > 0) { isolate_->counters()->external_fragmentation_total()->AddSample( static_cast(100 - (SizeOfObjects() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_new_space()->AddSample(static_cast( (new_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_old_pointer_space()->AddSample( static_cast((old_pointer_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_old_data_space()->AddSample( static_cast((old_data_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_code_space()->AddSample( static_cast((code_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_map_space()->AddSample(static_cast( (map_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_cell_space()->AddSample( static_cast((cell_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_property_cell_space()->AddSample( static_cast((property_cell_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_lo_space()->AddSample(static_cast( (lo_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_sample_total_committed()->AddSample( static_cast(CommittedMemory() / KB)); isolate_->counters()->heap_sample_total_used()->AddSample( static_cast(SizeOfObjects() / KB)); isolate_->counters()->heap_sample_map_space_committed()->AddSample( static_cast(map_space()->CommittedMemory() / KB)); isolate_->counters()->heap_sample_cell_space_committed()->AddSample( static_cast(cell_space()->CommittedMemory() / KB)); isolate_->counters() ->heap_sample_property_cell_space_committed() ->AddSample( static_cast(property_cell_space()->CommittedMemory() / KB)); isolate_->counters()->heap_sample_code_space_committed()->AddSample( static_cast(code_space()->CommittedMemory() / KB)); isolate_->counters()->heap_sample_maximum_committed()->AddSample( static_cast(MaximumCommittedMemory() / KB)); } #define UPDATE_COUNTERS_FOR_SPACE(space) \ isolate_->counters()->space##_bytes_available()->Set( \ static_cast(space()->Available())); \ isolate_->counters()->space##_bytes_committed()->Set( \ static_cast(space()->CommittedMemory())); \ isolate_->counters()->space##_bytes_used()->Set( \ static_cast(space()->SizeOfObjects())); #define UPDATE_FRAGMENTATION_FOR_SPACE(space) \ if (space()->CommittedMemory() > 0) { \ isolate_->counters()->external_fragmentation_##space()->AddSample( \ static_cast(100 - \ (space()->SizeOfObjects() * 100.0) / \ space()->CommittedMemory())); \ } #define UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(space) \ UPDATE_COUNTERS_FOR_SPACE(space) \ UPDATE_FRAGMENTATION_FOR_SPACE(space) UPDATE_COUNTERS_FOR_SPACE(new_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(old_pointer_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(old_data_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(code_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(map_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(cell_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(property_cell_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(lo_space) #undef UPDATE_COUNTERS_FOR_SPACE #undef UPDATE_FRAGMENTATION_FOR_SPACE #undef UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE #ifdef DEBUG ReportStatisticsAfterGC(); #endif // DEBUG // Remember the last top pointer so that we can later find out // whether we allocated in new space since the last GC. new_space_top_after_last_gc_ = new_space()->top(); } void Heap::CollectAllGarbage(int flags, const char* gc_reason, const v8::GCCallbackFlags gc_callback_flags) { // Since we are ignoring the return value, the exact choice of space does // not matter, so long as we do not specify NEW_SPACE, which would not // cause a full GC. mark_compact_collector_.SetFlags(flags); CollectGarbage(OLD_POINTER_SPACE, gc_reason, gc_callback_flags); mark_compact_collector_.SetFlags(kNoGCFlags); } void Heap::CollectAllAvailableGarbage(const char* gc_reason) { // Since we are ignoring the return value, the exact choice of space does // not matter, so long as we do not specify NEW_SPACE, which would not // cause a full GC. // Major GC would invoke weak handle callbacks on weakly reachable // handles, but won't collect weakly reachable objects until next // major GC. Therefore if we collect aggressively and weak handle callback // has been invoked, we rerun major GC to release objects which become // garbage. // Note: as weak callbacks can execute arbitrary code, we cannot // hope that eventually there will be no weak callbacks invocations. // Therefore stop recollecting after several attempts. if (isolate()->concurrent_recompilation_enabled()) { // The optimizing compiler may be unnecessarily holding on to memory. DisallowHeapAllocation no_recursive_gc; isolate()->optimizing_compiler_thread()->Flush(); } mark_compact_collector()->SetFlags(kMakeHeapIterableMask | kReduceMemoryFootprintMask); isolate_->compilation_cache()->Clear(); const int kMaxNumberOfAttempts = 7; const int kMinNumberOfAttempts = 2; for (int attempt = 0; attempt < kMaxNumberOfAttempts; attempt++) { if (!CollectGarbage(MARK_COMPACTOR, gc_reason, NULL) && attempt + 1 >= kMinNumberOfAttempts) { break; } } mark_compact_collector()->SetFlags(kNoGCFlags); new_space_.Shrink(); UncommitFromSpace(); incremental_marking()->UncommitMarkingDeque(); } void Heap::EnsureFillerObjectAtTop() { // There may be an allocation memento behind every object in new space. // If we evacuate a not full new space or if we are on the last page of // the new space, then there may be uninitialized memory behind the top // pointer of the new space page. We store a filler object there to // identify the unused space. Address from_top = new_space_.top(); Address from_limit = new_space_.limit(); if (from_top < from_limit) { int remaining_in_page = static_cast(from_limit - from_top); CreateFillerObjectAt(from_top, remaining_in_page); } } bool Heap::CollectGarbage(GarbageCollector collector, const char* gc_reason, const char* collector_reason, const v8::GCCallbackFlags gc_callback_flags) { // The VM is in the GC state until exiting this function. VMState state(isolate_); #ifdef DEBUG // Reset the allocation timeout to the GC interval, but make sure to // allow at least a few allocations after a collection. The reason // for this is that we have a lot of allocation sequences and we // assume that a garbage collection will allow the subsequent // allocation attempts to go through. allocation_timeout_ = Max(6, FLAG_gc_interval); #endif EnsureFillerObjectAtTop(); if (collector == SCAVENGER && !incremental_marking()->IsStopped()) { if (FLAG_trace_incremental_marking) { PrintF("[IncrementalMarking] Scavenge during marking.\n"); } } if (collector == MARK_COMPACTOR && !mark_compact_collector()->abort_incremental_marking() && !incremental_marking()->IsStopped() && !incremental_marking()->should_hurry() && FLAG_incremental_marking_steps) { // Make progress in incremental marking. const intptr_t kStepSizeWhenDelayedByScavenge = 1 * MB; incremental_marking()->Step(kStepSizeWhenDelayedByScavenge, IncrementalMarking::NO_GC_VIA_STACK_GUARD); if (!incremental_marking()->IsComplete() && !FLAG_gc_global) { if (FLAG_trace_incremental_marking) { PrintF("[IncrementalMarking] Delaying MarkSweep.\n"); } collector = SCAVENGER; collector_reason = "incremental marking delaying mark-sweep"; } } bool next_gc_likely_to_collect_more = false; { tracer()->Start(collector, gc_reason, collector_reason); DCHECK(AllowHeapAllocation::IsAllowed()); DisallowHeapAllocation no_allocation_during_gc; GarbageCollectionPrologue(); { HistogramTimerScope histogram_timer_scope( (collector == SCAVENGER) ? isolate_->counters()->gc_scavenger() : isolate_->counters()->gc_compactor()); next_gc_likely_to_collect_more = PerformGarbageCollection(collector, gc_callback_flags); } GarbageCollectionEpilogue(); tracer()->Stop(); } // Start incremental marking for the next cycle. The heap snapshot // generator needs incremental marking to stay off after it aborted. if (!mark_compact_collector()->abort_incremental_marking() && WorthActivatingIncrementalMarking()) { incremental_marking()->Start(); } return next_gc_likely_to_collect_more; } int Heap::NotifyContextDisposed() { if (isolate()->concurrent_recompilation_enabled()) { // Flush the queued recompilation tasks. isolate()->optimizing_compiler_thread()->Flush(); } flush_monomorphic_ics_ = true; AgeInlineCaches(); return ++contexts_disposed_; } void Heap::MoveElements(FixedArray* array, int dst_index, int src_index, int len) { if (len == 0) return; DCHECK(array->map() != fixed_cow_array_map()); Object** dst_objects = array->data_start() + dst_index; MemMove(dst_objects, array->data_start() + src_index, len * kPointerSize); if (!InNewSpace(array)) { for (int i = 0; i < len; i++) { // TODO(hpayer): check store buffer for entries if (InNewSpace(dst_objects[i])) { RecordWrite(array->address(), array->OffsetOfElementAt(dst_index + i)); } } } incremental_marking()->RecordWrites(array); } #ifdef VERIFY_HEAP // Helper class for verifying the string table. class StringTableVerifier : public ObjectVisitor { public: void VisitPointers(Object** start, Object** end) { // Visit all HeapObject pointers in [start, end). for (Object** p = start; p < end; p++) { if ((*p)->IsHeapObject()) { // Check that the string is actually internalized. CHECK((*p)->IsTheHole() || (*p)->IsUndefined() || (*p)->IsInternalizedString()); } } } }; static void VerifyStringTable(Heap* heap) { StringTableVerifier verifier; heap->string_table()->IterateElements(&verifier); } #endif // VERIFY_HEAP static bool AbortIncrementalMarkingAndCollectGarbage( Heap* heap, AllocationSpace space, const char* gc_reason = NULL) { heap->mark_compact_collector()->SetFlags(Heap::kAbortIncrementalMarkingMask); bool result = heap->CollectGarbage(space, gc_reason); heap->mark_compact_collector()->SetFlags(Heap::kNoGCFlags); return result; } void Heap::ReserveSpace(int* sizes, Address* locations_out) { bool gc_performed = true; int counter = 0; static const int kThreshold = 20; while (gc_performed && counter++ < kThreshold) { gc_performed = false; DCHECK(NEW_SPACE == FIRST_PAGED_SPACE - 1); for (int space = NEW_SPACE; space <= LAST_PAGED_SPACE; space++) { if (sizes[space] != 0) { AllocationResult allocation; if (space == NEW_SPACE) { allocation = new_space()->AllocateRaw(sizes[space]); } else { allocation = paged_space(space)->AllocateRaw(sizes[space]); } FreeListNode* node; if (!allocation.To(&node)) { if (space == NEW_SPACE) { Heap::CollectGarbage(NEW_SPACE, "failed to reserve space in the new space"); } else { AbortIncrementalMarkingAndCollectGarbage( this, static_cast(space), "failed to reserve space in paged space"); } gc_performed = true; break; } else { // Mark with a free list node, in case we have a GC before // deserializing. node->set_size(this, sizes[space]); locations_out[space] = node->address(); } } } } if (gc_performed) { // Failed to reserve the space after several attempts. V8::FatalProcessOutOfMemory("Heap::ReserveSpace"); } } void Heap::EnsureFromSpaceIsCommitted() { if (new_space_.CommitFromSpaceIfNeeded()) return; // Committing memory to from space failed. // Memory is exhausted and we will die. V8::FatalProcessOutOfMemory("Committing semi space failed."); } void Heap::ClearJSFunctionResultCaches() { if (isolate_->bootstrapper()->IsActive()) return; Object* context = native_contexts_list(); while (!context->IsUndefined()) { // Get the caches for this context. GC can happen when the context // is not fully initialized, so the caches can be undefined. Object* caches_or_undefined = Context::cast(context)->get(Context::JSFUNCTION_RESULT_CACHES_INDEX); if (!caches_or_undefined->IsUndefined()) { FixedArray* caches = FixedArray::cast(caches_or_undefined); // Clear the caches: int length = caches->length(); for (int i = 0; i < length; i++) { JSFunctionResultCache::cast(caches->get(i))->Clear(); } } // Get the next context: context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK); } } void Heap::ClearNormalizedMapCaches() { if (isolate_->bootstrapper()->IsActive() && !incremental_marking()->IsMarking()) { return; } Object* context = native_contexts_list(); while (!context->IsUndefined()) { // GC can happen when the context is not fully initialized, // so the cache can be undefined. Object* cache = Context::cast(context)->get(Context::NORMALIZED_MAP_CACHE_INDEX); if (!cache->IsUndefined()) { NormalizedMapCache::cast(cache)->Clear(); } context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK); } } void Heap::UpdateSurvivalStatistics(int start_new_space_size) { if (start_new_space_size == 0) return; promotion_rate_ = (static_cast(promoted_objects_size_) / static_cast(start_new_space_size) * 100); semi_space_copied_rate_ = (static_cast(semi_space_copied_object_size_) / static_cast(start_new_space_size) * 100); double survival_rate = promotion_rate_ + semi_space_copied_rate_; if (survival_rate > kYoungSurvivalRateHighThreshold) { high_survival_rate_period_length_++; } else { high_survival_rate_period_length_ = 0; } } bool Heap::PerformGarbageCollection( GarbageCollector collector, const v8::GCCallbackFlags gc_callback_flags) { int freed_global_handles = 0; if (collector != SCAVENGER) { PROFILE(isolate_, CodeMovingGCEvent()); } #ifdef VERIFY_HEAP if (FLAG_verify_heap) { VerifyStringTable(this); } #endif GCType gc_type = collector == MARK_COMPACTOR ? kGCTypeMarkSweepCompact : kGCTypeScavenge; { GCCallbacksScope scope(this); if (scope.CheckReenter()) { AllowHeapAllocation allow_allocation; GCTracer::Scope scope(tracer(), GCTracer::Scope::EXTERNAL); VMState state(isolate_); HandleScope handle_scope(isolate_); CallGCPrologueCallbacks(gc_type, kNoGCCallbackFlags); } } EnsureFromSpaceIsCommitted(); int start_new_space_size = Heap::new_space()->SizeAsInt(); if (IsHighSurvivalRate()) { // We speed up the incremental marker if it is running so that it // does not fall behind the rate of promotion, which would cause a // constantly growing old space. incremental_marking()->NotifyOfHighPromotionRate(); } if (collector == MARK_COMPACTOR) { // Perform mark-sweep with optional compaction. MarkCompact(); sweep_generation_++; // Temporarily set the limit for case when PostGarbageCollectionProcessing // allocates and triggers GC. The real limit is set at after // PostGarbageCollectionProcessing. old_generation_allocation_limit_ = OldGenerationAllocationLimit(PromotedSpaceSizeOfObjects(), 0); old_gen_exhausted_ = false; } else { Scavenge(); } UpdateSurvivalStatistics(start_new_space_size); isolate_->counters()->objs_since_last_young()->Set(0); // Callbacks that fire after this point might trigger nested GCs and // restart incremental marking, the assertion can't be moved down. DCHECK(collector == SCAVENGER || incremental_marking()->IsStopped()); gc_post_processing_depth_++; { AllowHeapAllocation allow_allocation; GCTracer::Scope scope(tracer(), GCTracer::Scope::EXTERNAL); freed_global_handles = isolate_->global_handles()->PostGarbageCollectionProcessing(collector); } gc_post_processing_depth_--; isolate_->eternal_handles()->PostGarbageCollectionProcessing(this); // Update relocatables. Relocatable::PostGarbageCollectionProcessing(isolate_); if (collector == MARK_COMPACTOR) { // Register the amount of external allocated memory. amount_of_external_allocated_memory_at_last_global_gc_ = amount_of_external_allocated_memory_; old_generation_allocation_limit_ = OldGenerationAllocationLimit( PromotedSpaceSizeOfObjects(), freed_global_handles); } { GCCallbacksScope scope(this); if (scope.CheckReenter()) { AllowHeapAllocation allow_allocation; GCTracer::Scope scope(tracer(), GCTracer::Scope::EXTERNAL); VMState state(isolate_); HandleScope handle_scope(isolate_); CallGCEpilogueCallbacks(gc_type, gc_callback_flags); } } #ifdef VERIFY_HEAP if (FLAG_verify_heap) { VerifyStringTable(this); } #endif return freed_global_handles > 0; } void Heap::CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags) { for (int i = 0; i < gc_prologue_callbacks_.length(); ++i) { if (gc_type & gc_prologue_callbacks_[i].gc_type) { if (!gc_prologue_callbacks_[i].pass_isolate_) { v8::GCPrologueCallback callback = reinterpret_cast( gc_prologue_callbacks_[i].callback); callback(gc_type, flags); } else { v8::Isolate* isolate = reinterpret_cast(this->isolate()); gc_prologue_callbacks_[i].callback(isolate, gc_type, flags); } } } } void Heap::CallGCEpilogueCallbacks(GCType gc_type, GCCallbackFlags gc_callback_flags) { for (int i = 0; i < gc_epilogue_callbacks_.length(); ++i) { if (gc_type & gc_epilogue_callbacks_[i].gc_type) { if (!gc_epilogue_callbacks_[i].pass_isolate_) { v8::GCPrologueCallback callback = reinterpret_cast( gc_epilogue_callbacks_[i].callback); callback(gc_type, gc_callback_flags); } else { v8::Isolate* isolate = reinterpret_cast(this->isolate()); gc_epilogue_callbacks_[i].callback(isolate, gc_type, gc_callback_flags); } } } } void Heap::MarkCompact() { gc_state_ = MARK_COMPACT; LOG(isolate_, ResourceEvent("markcompact", "begin")); uint64_t size_of_objects_before_gc = SizeOfObjects(); mark_compact_collector_.Prepare(); ms_count_++; MarkCompactPrologue(); mark_compact_collector_.CollectGarbage(); LOG(isolate_, ResourceEvent("markcompact", "end")); gc_state_ = NOT_IN_GC; isolate_->counters()->objs_since_last_full()->Set(0); flush_monomorphic_ics_ = false; if (FLAG_allocation_site_pretenuring) { EvaluateOldSpaceLocalPretenuring(size_of_objects_before_gc); } } void Heap::MarkCompactPrologue() { // At any old GC clear the keyed lookup cache to enable collection of unused // maps. isolate_->keyed_lookup_cache()->Clear(); isolate_->context_slot_cache()->Clear(); isolate_->descriptor_lookup_cache()->Clear(); RegExpResultsCache::Clear(string_split_cache()); RegExpResultsCache::Clear(regexp_multiple_cache()); isolate_->compilation_cache()->MarkCompactPrologue(); CompletelyClearInstanceofCache(); FlushNumberStringCache(); if (FLAG_cleanup_code_caches_at_gc) { polymorphic_code_cache()->set_cache(undefined_value()); } ClearNormalizedMapCaches(); } // Helper class for copying HeapObjects class ScavengeVisitor : public ObjectVisitor { public: explicit ScavengeVisitor(Heap* heap) : heap_(heap) {} void VisitPointer(Object** p) { ScavengePointer(p); } void VisitPointers(Object** start, Object** end) { // Copy all HeapObject pointers in [start, end) for (Object** p = start; p < end; p++) ScavengePointer(p); } private: void ScavengePointer(Object** p) { Object* object = *p; if (!heap_->InNewSpace(object)) return; Heap::ScavengeObject(reinterpret_cast(p), reinterpret_cast(object)); } Heap* heap_; }; #ifdef VERIFY_HEAP // Visitor class to verify pointers in code or data space do not point into // new space. class VerifyNonPointerSpacePointersVisitor : public ObjectVisitor { public: explicit VerifyNonPointerSpacePointersVisitor(Heap* heap) : heap_(heap) {} void VisitPointers(Object** start, Object** end) { for (Object** current = start; current < end; current++) { if ((*current)->IsHeapObject()) { CHECK(!heap_->InNewSpace(HeapObject::cast(*current))); } } } private: Heap* heap_; }; static void VerifyNonPointerSpacePointers(Heap* heap) { // Verify that there are no pointers to new space in spaces where we // do not expect them. VerifyNonPointerSpacePointersVisitor v(heap); HeapObjectIterator code_it(heap->code_space()); for (HeapObject* object = code_it.Next(); object != NULL; object = code_it.Next()) object->Iterate(&v); HeapObjectIterator data_it(heap->old_data_space()); for (HeapObject* object = data_it.Next(); object != NULL; object = data_it.Next()) object->Iterate(&v); } #endif // VERIFY_HEAP void Heap::CheckNewSpaceExpansionCriteria() { if (new_space_.TotalCapacity() < new_space_.MaximumCapacity() && survived_since_last_expansion_ > new_space_.TotalCapacity()) { // Grow the size of new space if there is room to grow, enough data // has survived scavenge since the last expansion and we are not in // high promotion mode. new_space_.Grow(); survived_since_last_expansion_ = 0; } } static bool IsUnscavengedHeapObject(Heap* heap, Object** p) { return heap->InNewSpace(*p) && !HeapObject::cast(*p)->map_word().IsForwardingAddress(); } void Heap::ScavengeStoreBufferCallback(Heap* heap, MemoryChunk* page, StoreBufferEvent event) { heap->store_buffer_rebuilder_.Callback(page, event); } void StoreBufferRebuilder::Callback(MemoryChunk* page, StoreBufferEvent event) { if (event == kStoreBufferStartScanningPagesEvent) { start_of_current_page_ = NULL; current_page_ = NULL; } else if (event == kStoreBufferScanningPageEvent) { if (current_page_ != NULL) { // If this page already overflowed the store buffer during this iteration. if (current_page_->scan_on_scavenge()) { // Then we should wipe out the entries that have been added for it. store_buffer_->SetTop(start_of_current_page_); } else if (store_buffer_->Top() - start_of_current_page_ >= (store_buffer_->Limit() - store_buffer_->Top()) >> 2) { // Did we find too many pointers in the previous page? The heuristic is // that no page can take more then 1/5 the remaining slots in the store // buffer. current_page_->set_scan_on_scavenge(true); store_buffer_->SetTop(start_of_current_page_); } else { // In this case the page we scanned took a reasonable number of slots in // the store buffer. It has now been rehabilitated and is no longer // marked scan_on_scavenge. DCHECK(!current_page_->scan_on_scavenge()); } } start_of_current_page_ = store_buffer_->Top(); current_page_ = page; } else if (event == kStoreBufferFullEvent) { // The current page overflowed the store buffer again. Wipe out its entries // in the store buffer and mark it scan-on-scavenge again. This may happen // several times while scanning. if (current_page_ == NULL) { // Store Buffer overflowed while scanning promoted objects. These are not // in any particular page, though they are likely to be clustered by the // allocation routines. store_buffer_->EnsureSpace(StoreBuffer::kStoreBufferSize / 2); } else { // Store Buffer overflowed while scanning a particular old space page for // pointers to new space. DCHECK(current_page_ == page); DCHECK(page != NULL); current_page_->set_scan_on_scavenge(true); DCHECK(start_of_current_page_ != store_buffer_->Top()); store_buffer_->SetTop(start_of_current_page_); } } else { UNREACHABLE(); } } void PromotionQueue::Initialize() { // Assumes that a NewSpacePage exactly fits a number of promotion queue // entries (where each is a pair of intptr_t). This allows us to simplify // the test fpr when to switch pages. DCHECK((Page::kPageSize - MemoryChunk::kBodyOffset) % (2 * kPointerSize) == 0); limit_ = reinterpret_cast(heap_->new_space()->ToSpaceStart()); front_ = rear_ = reinterpret_cast(heap_->new_space()->ToSpaceEnd()); emergency_stack_ = NULL; } void PromotionQueue::RelocateQueueHead() { DCHECK(emergency_stack_ == NULL); Page* p = Page::FromAllocationTop(reinterpret_cast
(rear_)); intptr_t* head_start = rear_; intptr_t* head_end = Min(front_, reinterpret_cast(p->area_end())); int entries_count = static_cast(head_end - head_start) / kEntrySizeInWords; emergency_stack_ = new List(2 * entries_count); while (head_start != head_end) { int size = static_cast(*(head_start++)); HeapObject* obj = reinterpret_cast(*(head_start++)); emergency_stack_->Add(Entry(obj, size)); } rear_ = head_end; } class ScavengeWeakObjectRetainer : public WeakObjectRetainer { public: explicit ScavengeWeakObjectRetainer(Heap* heap) : heap_(heap) {} virtual Object* RetainAs(Object* object) { if (!heap_->InFromSpace(object)) { return object; } MapWord map_word = HeapObject::cast(object)->map_word(); if (map_word.IsForwardingAddress()) { return map_word.ToForwardingAddress(); } return NULL; } private: Heap* heap_; }; void Heap::Scavenge() { RelocationLock relocation_lock(this); #ifdef VERIFY_HEAP if (FLAG_verify_heap) VerifyNonPointerSpacePointers(this); #endif gc_state_ = SCAVENGE; // Implements Cheney's copying algorithm LOG(isolate_, ResourceEvent("scavenge", "begin")); // Clear descriptor cache. isolate_->descriptor_lookup_cache()->Clear(); // Used for updating survived_since_last_expansion_ at function end. intptr_t survived_watermark = PromotedSpaceSizeOfObjects(); SelectScavengingVisitorsTable(); incremental_marking()->PrepareForScavenge(); // Flip the semispaces. After flipping, to space is empty, from space has // live objects. new_space_.Flip(); new_space_.ResetAllocationInfo(); // We need to sweep newly copied objects which can be either in the // to space or promoted to the old generation. For to-space // objects, we treat the bottom of the to space as a queue. Newly // copied and unswept objects lie between a 'front' mark and the // allocation pointer. // // Promoted objects can go into various old-generation spaces, and // can be allocated internally in the spaces (from the free list). // We treat the top of the to space as a queue of addresses of // promoted objects. The addresses of newly promoted and unswept // objects lie between a 'front' mark and a 'rear' mark that is // updated as a side effect of promoting an object. // // There is guaranteed to be enough room at the top of the to space // for the addresses of promoted objects: every object promoted // frees up its size in bytes from the top of the new space, and // objects are at least one pointer in size. Address new_space_front = new_space_.ToSpaceStart(); promotion_queue_.Initialize(); #ifdef DEBUG store_buffer()->Clean(); #endif ScavengeVisitor scavenge_visitor(this); // Copy roots. IterateRoots(&scavenge_visitor, VISIT_ALL_IN_SCAVENGE); // Copy objects reachable from the old generation. { StoreBufferRebuildScope scope(this, store_buffer(), &ScavengeStoreBufferCallback); store_buffer()->IteratePointersToNewSpace(&ScavengeObject); } // Copy objects reachable from simple cells by scavenging cell values // directly. HeapObjectIterator cell_iterator(cell_space_); for (HeapObject* heap_object = cell_iterator.Next(); heap_object != NULL; heap_object = cell_iterator.Next()) { if (heap_object->IsCell()) { Cell* cell = Cell::cast(heap_object); Address value_address = cell->ValueAddress(); scavenge_visitor.VisitPointer(reinterpret_cast(value_address)); } } // Copy objects reachable from global property cells by scavenging global // property cell values directly. HeapObjectIterator js_global_property_cell_iterator(property_cell_space_); for (HeapObject* heap_object = js_global_property_cell_iterator.Next(); heap_object != NULL; heap_object = js_global_property_cell_iterator.Next()) { if (heap_object->IsPropertyCell()) { PropertyCell* cell = PropertyCell::cast(heap_object); Address value_address = cell->ValueAddress(); scavenge_visitor.VisitPointer(reinterpret_cast(value_address)); Address type_address = cell->TypeAddress(); scavenge_visitor.VisitPointer(reinterpret_cast(type_address)); } } // Copy objects reachable from the encountered weak collections list. scavenge_visitor.VisitPointer(&encountered_weak_collections_); // Copy objects reachable from the code flushing candidates list. MarkCompactCollector* collector = mark_compact_collector(); if (collector->is_code_flushing_enabled()) { collector->code_flusher()->IteratePointersToFromSpace(&scavenge_visitor); } new_space_front = DoScavenge(&scavenge_visitor, new_space_front); while (isolate()->global_handles()->IterateObjectGroups( &scavenge_visitor, &IsUnscavengedHeapObject)) { new_space_front = DoScavenge(&scavenge_visitor, new_space_front); } isolate()->global_handles()->RemoveObjectGroups(); isolate()->global_handles()->RemoveImplicitRefGroups(); isolate_->global_handles()->IdentifyNewSpaceWeakIndependentHandles( &IsUnscavengedHeapObject); isolate_->global_handles()->IterateNewSpaceWeakIndependentRoots( &scavenge_visitor); new_space_front = DoScavenge(&scavenge_visitor, new_space_front); UpdateNewSpaceReferencesInExternalStringTable( &UpdateNewSpaceReferenceInExternalStringTableEntry); promotion_queue_.Destroy(); incremental_marking()->UpdateMarkingDequeAfterScavenge(); ScavengeWeakObjectRetainer weak_object_retainer(this); ProcessWeakReferences(&weak_object_retainer); DCHECK(new_space_front == new_space_.top()); // Set age mark. new_space_.set_age_mark(new_space_.top()); new_space_.LowerInlineAllocationLimit( new_space_.inline_allocation_limit_step()); // Update how much has survived scavenge. IncrementYoungSurvivorsCounter(static_cast( (PromotedSpaceSizeOfObjects() - survived_watermark) + new_space_.Size())); LOG(isolate_, ResourceEvent("scavenge", "end")); gc_state_ = NOT_IN_GC; gc_idle_time_handler_.NotifyScavenge(); } String* Heap::UpdateNewSpaceReferenceInExternalStringTableEntry(Heap* heap, Object** p) { MapWord first_word = HeapObject::cast(*p)->map_word(); if (!first_word.IsForwardingAddress()) { // Unreachable external string can be finalized. heap->FinalizeExternalString(String::cast(*p)); return NULL; } // String is still reachable. return String::cast(first_word.ToForwardingAddress()); } void Heap::UpdateNewSpaceReferencesInExternalStringTable( ExternalStringTableUpdaterCallback updater_func) { #ifdef VERIFY_HEAP if (FLAG_verify_heap) { external_string_table_.Verify(); } #endif if (external_string_table_.new_space_strings_.is_empty()) return; Object** start = &external_string_table_.new_space_strings_[0]; Object** end = start + external_string_table_.new_space_strings_.length(); Object** last = start; for (Object** p = start; p < end; ++p) { DCHECK(InFromSpace(*p)); String* target = updater_func(this, p); if (target == NULL) continue; DCHECK(target->IsExternalString()); if (InNewSpace(target)) { // String is still in new space. Update the table entry. *last = target; ++last; } else { // String got promoted. Move it to the old string list. external_string_table_.AddOldString(target); } } DCHECK(last <= end); external_string_table_.ShrinkNewStrings(static_cast(last - start)); } void Heap::UpdateReferencesInExternalStringTable( ExternalStringTableUpdaterCallback updater_func) { // Update old space string references. if (external_string_table_.old_space_strings_.length() > 0) { Object** start = &external_string_table_.old_space_strings_[0]; Object** end = start + external_string_table_.old_space_strings_.length(); for (Object** p = start; p < end; ++p) *p = updater_func(this, p); } UpdateNewSpaceReferencesInExternalStringTable(updater_func); } void Heap::ProcessWeakReferences(WeakObjectRetainer* retainer) { ProcessArrayBuffers(retainer); ProcessNativeContexts(retainer); // TODO(mvstanton): AllocationSites only need to be processed during // MARK_COMPACT, as they live in old space. Verify and address. ProcessAllocationSites(retainer); } void Heap::ProcessNativeContexts(WeakObjectRetainer* retainer) { Object* head = VisitWeakList(this, native_contexts_list(), retainer); // Update the head of the list of contexts. set_native_contexts_list(head); } void Heap::ProcessArrayBuffers(WeakObjectRetainer* retainer) { Object* array_buffer_obj = VisitWeakList(this, array_buffers_list(), retainer); set_array_buffers_list(array_buffer_obj); } void Heap::TearDownArrayBuffers() { Object* undefined = undefined_value(); for (Object* o = array_buffers_list(); o != undefined;) { JSArrayBuffer* buffer = JSArrayBuffer::cast(o); Runtime::FreeArrayBuffer(isolate(), buffer); o = buffer->weak_next(); } set_array_buffers_list(undefined); } void Heap::ProcessAllocationSites(WeakObjectRetainer* retainer) { Object* allocation_site_obj = VisitWeakList(this, allocation_sites_list(), retainer); set_allocation_sites_list(allocation_site_obj); } void Heap::ResetAllAllocationSitesDependentCode(PretenureFlag flag) { DisallowHeapAllocation no_allocation_scope; Object* cur = allocation_sites_list(); bool marked = false; while (cur->IsAllocationSite()) { AllocationSite* casted = AllocationSite::cast(cur); if (casted->GetPretenureMode() == flag) { casted->ResetPretenureDecision(); casted->set_deopt_dependent_code(true); marked = true; } cur = casted->weak_next(); } if (marked) isolate_->stack_guard()->RequestDeoptMarkedAllocationSites(); } void Heap::EvaluateOldSpaceLocalPretenuring( uint64_t size_of_objects_before_gc) { uint64_t size_of_objects_after_gc = SizeOfObjects(); double old_generation_survival_rate = (static_cast(size_of_objects_after_gc) * 100) / static_cast(size_of_objects_before_gc); if (old_generation_survival_rate < kOldSurvivalRateLowThreshold) { // Too many objects died in the old generation, pretenuring of wrong // allocation sites may be the cause for that. We have to deopt all // dependent code registered in the allocation sites to re-evaluate // our pretenuring decisions. ResetAllAllocationSitesDependentCode(TENURED); if (FLAG_trace_pretenuring) { PrintF( "Deopt all allocation sites dependent code due to low survival " "rate in the old generation %f\n", old_generation_survival_rate); } } } void Heap::VisitExternalResources(v8::ExternalResourceVisitor* visitor) { DisallowHeapAllocation no_allocation; // All external strings are listed in the external string table. class ExternalStringTableVisitorAdapter : public ObjectVisitor { public: explicit ExternalStringTableVisitorAdapter( v8::ExternalResourceVisitor* visitor) : visitor_(visitor) {} virtual void VisitPointers(Object** start, Object** end) { for (Object** p = start; p < end; p++) { DCHECK((*p)->IsExternalString()); visitor_->VisitExternalString( Utils::ToLocal(Handle(String::cast(*p)))); } } private: v8::ExternalResourceVisitor* visitor_; } external_string_table_visitor(visitor); external_string_table_.Iterate(&external_string_table_visitor); } class NewSpaceScavenger : public StaticNewSpaceVisitor { public: static inline void VisitPointer(Heap* heap, Object** p) { Object* object = *p; if (!heap->InNewSpace(object)) return; Heap::ScavengeObject(reinterpret_cast(p), reinterpret_cast(object)); } }; Address Heap::DoScavenge(ObjectVisitor* scavenge_visitor, Address new_space_front) { do { SemiSpace::AssertValidRange(new_space_front, new_space_.top()); // The addresses new_space_front and new_space_.top() define a // queue of unprocessed copied objects. Process them until the // queue is empty. while (new_space_front != new_space_.top()) { if (!NewSpacePage::IsAtEnd(new_space_front)) { HeapObject* object = HeapObject::FromAddress(new_space_front); new_space_front += NewSpaceScavenger::IterateBody(object->map(), object); } else { new_space_front = NewSpacePage::FromLimit(new_space_front)->next_page()->area_start(); } } // Promote and process all the to-be-promoted objects. { StoreBufferRebuildScope scope(this, store_buffer(), &ScavengeStoreBufferCallback); while (!promotion_queue()->is_empty()) { HeapObject* target; int size; promotion_queue()->remove(&target, &size); // Promoted object might be already partially visited // during old space pointer iteration. Thus we search specificly // for pointers to from semispace instead of looking for pointers // to new space. DCHECK(!target->IsMap()); IterateAndMarkPointersToFromSpace( target->address(), target->address() + size, &ScavengeObject); } } // Take another spin if there are now unswept objects in new space // (there are currently no more unswept promoted objects). } while (new_space_front != new_space_.top()); return new_space_front; } STATIC_ASSERT((FixedDoubleArray::kHeaderSize & kDoubleAlignmentMask) == 0); // NOLINT STATIC_ASSERT((ConstantPoolArray::kFirstEntryOffset & kDoubleAlignmentMask) == 0); // NOLINT STATIC_ASSERT((ConstantPoolArray::kExtendedFirstOffset & kDoubleAlignmentMask) == 0); // NOLINT INLINE(static HeapObject* EnsureDoubleAligned(Heap* heap, HeapObject* object, int size)); static HeapObject* EnsureDoubleAligned(Heap* heap, HeapObject* object, int size) { if ((OffsetFrom(object->address()) & kDoubleAlignmentMask) != 0) { heap->CreateFillerObjectAt(object->address(), kPointerSize); return HeapObject::FromAddress(object->address() + kPointerSize); } else { heap->CreateFillerObjectAt(object->address() + size - kPointerSize, kPointerSize); return object; } } enum LoggingAndProfiling { LOGGING_AND_PROFILING_ENABLED, LOGGING_AND_PROFILING_DISABLED }; enum MarksHandling { TRANSFER_MARKS, IGNORE_MARKS }; template class ScavengingVisitor : public StaticVisitorBase { public: static void Initialize() { table_.Register(kVisitSeqOneByteString, &EvacuateSeqOneByteString); table_.Register(kVisitSeqTwoByteString, &EvacuateSeqTwoByteString); table_.Register(kVisitShortcutCandidate, &EvacuateShortcutCandidate); table_.Register(kVisitByteArray, &EvacuateByteArray); table_.Register(kVisitFixedArray, &EvacuateFixedArray); table_.Register(kVisitFixedDoubleArray, &EvacuateFixedDoubleArray); table_.Register(kVisitFixedTypedArray, &EvacuateFixedTypedArray); table_.Register(kVisitFixedFloat64Array, &EvacuateFixedFloat64Array); table_.Register( kVisitNativeContext, &ObjectEvacuationStrategy::template VisitSpecialized< Context::kSize>); table_.Register( kVisitConsString, &ObjectEvacuationStrategy::template VisitSpecialized< ConsString::kSize>); table_.Register( kVisitSlicedString, &ObjectEvacuationStrategy::template VisitSpecialized< SlicedString::kSize>); table_.Register( kVisitSymbol, &ObjectEvacuationStrategy::template VisitSpecialized< Symbol::kSize>); table_.Register( kVisitSharedFunctionInfo, &ObjectEvacuationStrategy::template VisitSpecialized< SharedFunctionInfo::kSize>); table_.Register(kVisitJSWeakCollection, &ObjectEvacuationStrategy::Visit); table_.Register(kVisitJSArrayBuffer, &ObjectEvacuationStrategy::Visit); table_.Register(kVisitJSTypedArray, &ObjectEvacuationStrategy::Visit); table_.Register(kVisitJSDataView, &ObjectEvacuationStrategy::Visit); table_.Register(kVisitJSRegExp, &ObjectEvacuationStrategy::Visit); if (marks_handling == IGNORE_MARKS) { table_.Register( kVisitJSFunction, &ObjectEvacuationStrategy::template VisitSpecialized< JSFunction::kSize>); } else { table_.Register(kVisitJSFunction, &EvacuateJSFunction); } table_.RegisterSpecializations, kVisitDataObject, kVisitDataObjectGeneric>(); table_.RegisterSpecializations, kVisitJSObject, kVisitJSObjectGeneric>(); table_.RegisterSpecializations, kVisitStruct, kVisitStructGeneric>(); } static VisitorDispatchTable* GetTable() { return &table_; } private: enum ObjectContents { DATA_OBJECT, POINTER_OBJECT }; static void RecordCopiedObject(Heap* heap, HeapObject* obj) { bool should_record = false; #ifdef DEBUG should_record = FLAG_heap_stats; #endif should_record = should_record || FLAG_log_gc; if (should_record) { if (heap->new_space()->Contains(obj)) { heap->new_space()->RecordAllocation(obj); } else { heap->new_space()->RecordPromotion(obj); } } } // Helper function used by CopyObject to copy a source object to an // allocated target object and update the forwarding pointer in the source // object. Returns the target object. INLINE(static void MigrateObject(Heap* heap, HeapObject* source, HeapObject* target, int size)) { // If we migrate into to-space, then the to-space top pointer should be // right after the target object. Incorporate double alignment // over-allocation. DCHECK(!heap->InToSpace(target) || target->address() + size == heap->new_space()->top() || target->address() + size + kPointerSize == heap->new_space()->top()); // Make sure that we do not overwrite the promotion queue which is at // the end of to-space. DCHECK(!heap->InToSpace(target) || heap->promotion_queue()->IsBelowPromotionQueue( heap->new_space()->top())); // Copy the content of source to target. heap->CopyBlock(target->address(), source->address(), size); // Set the forwarding address. source->set_map_word(MapWord::FromForwardingAddress(target)); if (logging_and_profiling_mode == LOGGING_AND_PROFILING_ENABLED) { // Update NewSpace stats if necessary. RecordCopiedObject(heap, target); heap->OnMoveEvent(target, source, size); } if (marks_handling == TRANSFER_MARKS) { if (Marking::TransferColor(source, target)) { MemoryChunk::IncrementLiveBytesFromGC(target->address(), size); } } } template static inline bool SemiSpaceCopyObject(Map* map, HeapObject** slot, HeapObject* object, int object_size) { Heap* heap = map->GetHeap(); int allocation_size = object_size; if (alignment != kObjectAlignment) { DCHECK(alignment == kDoubleAlignment); allocation_size += kPointerSize; } DCHECK(heap->AllowedToBeMigrated(object, NEW_SPACE)); AllocationResult allocation = heap->new_space()->AllocateRaw(allocation_size); HeapObject* target = NULL; // Initialization to please compiler. if (allocation.To(&target)) { // Order is important here: Set the promotion limit before storing a // filler for double alignment or migrating the object. Otherwise we // may end up overwriting promotion queue entries when we migrate the // object. heap->promotion_queue()->SetNewLimit(heap->new_space()->top()); if (alignment != kObjectAlignment) { target = EnsureDoubleAligned(heap, target, allocation_size); } // Order is important: slot might be inside of the target if target // was allocated over a dead object and slot comes from the store // buffer. *slot = target; MigrateObject(heap, object, target, object_size); heap->IncrementSemiSpaceCopiedObjectSize(object_size); return true; } return false; } template static inline bool PromoteObject(Map* map, HeapObject** slot, HeapObject* object, int object_size) { Heap* heap = map->GetHeap(); int allocation_size = object_size; if (alignment != kObjectAlignment) { DCHECK(alignment == kDoubleAlignment); allocation_size += kPointerSize; } AllocationResult allocation; if (object_contents == DATA_OBJECT) { DCHECK(heap->AllowedToBeMigrated(object, OLD_DATA_SPACE)); allocation = heap->old_data_space()->AllocateRaw(allocation_size); } else { DCHECK(heap->AllowedToBeMigrated(object, OLD_POINTER_SPACE)); allocation = heap->old_pointer_space()->AllocateRaw(allocation_size); } HeapObject* target = NULL; // Initialization to please compiler. if (allocation.To(&target)) { if (alignment != kObjectAlignment) { target = EnsureDoubleAligned(heap, target, allocation_size); } // Order is important: slot might be inside of the target if target // was allocated over a dead object and slot comes from the store // buffer. *slot = target; MigrateObject(heap, object, target, object_size); if (object_contents == POINTER_OBJECT) { if (map->instance_type() == JS_FUNCTION_TYPE) { heap->promotion_queue()->insert(target, JSFunction::kNonWeakFieldsEndOffset); } else { heap->promotion_queue()->insert(target, object_size); } } heap->IncrementPromotedObjectsSize(object_size); return true; } return false; } template static inline void EvacuateObject(Map* map, HeapObject** slot, HeapObject* object, int object_size) { SLOW_DCHECK(object_size <= Page::kMaxRegularHeapObjectSize); SLOW_DCHECK(object->Size() == object_size); Heap* heap = map->GetHeap(); if (!heap->ShouldBePromoted(object->address(), object_size)) { // A semi-space copy may fail due to fragmentation. In that case, we // try to promote the object. if (SemiSpaceCopyObject(map, slot, object, object_size)) { return; } } if (PromoteObject(map, slot, object, object_size)) { return; } // If promotion failed, we try to copy the object to the other semi-space if (SemiSpaceCopyObject(map, slot, object, object_size)) return; UNREACHABLE(); } static inline void EvacuateJSFunction(Map* map, HeapObject** slot, HeapObject* object) { ObjectEvacuationStrategy::template VisitSpecialized< JSFunction::kSize>(map, slot, object); MapWord map_word = object->map_word(); DCHECK(map_word.IsForwardingAddress()); HeapObject* target = map_word.ToForwardingAddress(); MarkBit mark_bit = Marking::MarkBitFrom(target); if (Marking::IsBlack(mark_bit)) { // This object is black and it might not be rescanned by marker. // We should explicitly record code entry slot for compaction because // promotion queue processing (IterateAndMarkPointersToFromSpace) will // miss it as it is not HeapObject-tagged. Address code_entry_slot = target->address() + JSFunction::kCodeEntryOffset; Code* code = Code::cast(Code::GetObjectFromEntryAddress(code_entry_slot)); map->GetHeap()->mark_compact_collector()->RecordCodeEntrySlot( code_entry_slot, code); } } static inline void EvacuateFixedArray(Map* map, HeapObject** slot, HeapObject* object) { int object_size = FixedArray::BodyDescriptor::SizeOf(map, object); EvacuateObject(map, slot, object, object_size); } static inline void EvacuateFixedDoubleArray(Map* map, HeapObject** slot, HeapObject* object) { int length = reinterpret_cast(object)->length(); int object_size = FixedDoubleArray::SizeFor(length); EvacuateObject(map, slot, object, object_size); } static inline void EvacuateFixedTypedArray(Map* map, HeapObject** slot, HeapObject* object) { int object_size = reinterpret_cast(object)->size(); EvacuateObject(map, slot, object, object_size); } static inline void EvacuateFixedFloat64Array(Map* map, HeapObject** slot, HeapObject* object) { int object_size = reinterpret_cast(object)->size(); EvacuateObject(map, slot, object, object_size); } static inline void EvacuateByteArray(Map* map, HeapObject** slot, HeapObject* object) { int object_size = reinterpret_cast(object)->ByteArraySize(); EvacuateObject(map, slot, object, object_size); } static inline void EvacuateSeqOneByteString(Map* map, HeapObject** slot, HeapObject* object) { int object_size = SeqOneByteString::cast(object) ->SeqOneByteStringSize(map->instance_type()); EvacuateObject(map, slot, object, object_size); } static inline void EvacuateSeqTwoByteString(Map* map, HeapObject** slot, HeapObject* object) { int object_size = SeqTwoByteString::cast(object) ->SeqTwoByteStringSize(map->instance_type()); EvacuateObject(map, slot, object, object_size); } static inline void EvacuateShortcutCandidate(Map* map, HeapObject** slot, HeapObject* object) { DCHECK(IsShortcutCandidate(map->instance_type())); Heap* heap = map->GetHeap(); if (marks_handling == IGNORE_MARKS && ConsString::cast(object)->unchecked_second() == heap->empty_string()) { HeapObject* first = HeapObject::cast(ConsString::cast(object)->unchecked_first()); *slot = first; if (!heap->InNewSpace(first)) { object->set_map_word(MapWord::FromForwardingAddress(first)); return; } MapWord first_word = first->map_word(); if (first_word.IsForwardingAddress()) { HeapObject* target = first_word.ToForwardingAddress(); *slot = target; object->set_map_word(MapWord::FromForwardingAddress(target)); return; } heap->DoScavengeObject(first->map(), slot, first); object->set_map_word(MapWord::FromForwardingAddress(*slot)); return; } int object_size = ConsString::kSize; EvacuateObject(map, slot, object, object_size); } template class ObjectEvacuationStrategy { public: template static inline void VisitSpecialized(Map* map, HeapObject** slot, HeapObject* object) { EvacuateObject(map, slot, object, object_size); } static inline void Visit(Map* map, HeapObject** slot, HeapObject* object) { int object_size = map->instance_size(); EvacuateObject(map, slot, object, object_size); } }; static VisitorDispatchTable table_; }; template VisitorDispatchTable ScavengingVisitor::table_; static void InitializeScavengingVisitorsTables() { ScavengingVisitor::Initialize(); ScavengingVisitor::Initialize(); ScavengingVisitor::Initialize(); ScavengingVisitor::Initialize(); } void Heap::SelectScavengingVisitorsTable() { bool logging_and_profiling = FLAG_verify_predictable || isolate()->logger()->is_logging() || isolate()->cpu_profiler()->is_profiling() || (isolate()->heap_profiler() != NULL && isolate()->heap_profiler()->is_tracking_object_moves()); if (!incremental_marking()->IsMarking()) { if (!logging_and_profiling) { scavenging_visitors_table_.CopyFrom(ScavengingVisitor< IGNORE_MARKS, LOGGING_AND_PROFILING_DISABLED>::GetTable()); } else { scavenging_visitors_table_.CopyFrom(ScavengingVisitor< IGNORE_MARKS, LOGGING_AND_PROFILING_ENABLED>::GetTable()); } } else { if (!logging_and_profiling) { scavenging_visitors_table_.CopyFrom(ScavengingVisitor< TRANSFER_MARKS, LOGGING_AND_PROFILING_DISABLED>::GetTable()); } else { scavenging_visitors_table_.CopyFrom(ScavengingVisitor< TRANSFER_MARKS, LOGGING_AND_PROFILING_ENABLED>::GetTable()); } if (incremental_marking()->IsCompacting()) { // When compacting forbid short-circuiting of cons-strings. // Scavenging code relies on the fact that new space object // can't be evacuated into evacuation candidate but // short-circuiting violates this assumption. scavenging_visitors_table_.Register( StaticVisitorBase::kVisitShortcutCandidate, scavenging_visitors_table_.GetVisitorById( StaticVisitorBase::kVisitConsString)); } } } void Heap::ScavengeObjectSlow(HeapObject** p, HeapObject* object) { SLOW_DCHECK(object->GetIsolate()->heap()->InFromSpace(object)); MapWord first_word = object->map_word(); SLOW_DCHECK(!first_word.IsForwardingAddress()); Map* map = first_word.ToMap(); map->GetHeap()->DoScavengeObject(map, p, object); } AllocationResult Heap::AllocatePartialMap(InstanceType instance_type, int instance_size) { Object* result; AllocationResult allocation = AllocateRaw(Map::kSize, MAP_SPACE, MAP_SPACE); if (!allocation.To(&result)) return allocation; // Map::cast cannot be used due to uninitialized map field. reinterpret_cast(result)->set_map(raw_unchecked_meta_map()); reinterpret_cast(result)->set_instance_type(instance_type); reinterpret_cast(result)->set_instance_size(instance_size); reinterpret_cast(result)->set_visitor_id( StaticVisitorBase::GetVisitorId(instance_type, instance_size)); reinterpret_cast(result)->set_inobject_properties(0); reinterpret_cast(result)->set_pre_allocated_property_fields(0); reinterpret_cast(result)->set_unused_property_fields(0); reinterpret_cast(result)->set_bit_field(0); reinterpret_cast(result)->set_bit_field2(0); int bit_field3 = Map::EnumLengthBits::encode(kInvalidEnumCacheSentinel) | Map::OwnsDescriptors::encode(true); reinterpret_cast(result)->set_bit_field3(bit_field3); return result; } AllocationResult Heap::AllocateMap(InstanceType instance_type, int instance_size, ElementsKind elements_kind) { HeapObject* result; AllocationResult allocation = AllocateRaw(Map::kSize, MAP_SPACE, MAP_SPACE); if (!allocation.To(&result)) return allocation; result->set_map_no_write_barrier(meta_map()); Map* map = Map::cast(result); map->set_instance_type(instance_type); map->set_visitor_id( StaticVisitorBase::GetVisitorId(instance_type, instance_size)); map->set_prototype(null_value(), SKIP_WRITE_BARRIER); map->set_constructor(null_value(), SKIP_WRITE_BARRIER); map->set_instance_size(instance_size); map->set_inobject_properties(0); map->set_pre_allocated_property_fields(0); map->set_code_cache(empty_fixed_array(), SKIP_WRITE_BARRIER); map->set_dependent_code(DependentCode::cast(empty_fixed_array()), SKIP_WRITE_BARRIER); map->init_back_pointer(undefined_value()); map->set_unused_property_fields(0); map->set_instance_descriptors(empty_descriptor_array()); map->set_bit_field(0); map->set_bit_field2(1 << Map::kIsExtensible); int bit_field3 = Map::EnumLengthBits::encode(kInvalidEnumCacheSentinel) | Map::OwnsDescriptors::encode(true); map->set_bit_field3(bit_field3); map->set_elements_kind(elements_kind); return map; } AllocationResult Heap::AllocateFillerObject(int size, bool double_align, AllocationSpace space) { HeapObject* obj; { AllocationResult allocation = AllocateRaw(size, space, space); if (!allocation.To(&obj)) return allocation; } #ifdef DEBUG MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address()); DCHECK(chunk->owner()->identity() == space); #endif CreateFillerObjectAt(obj->address(), size); return obj; } const Heap::StringTypeTable Heap::string_type_table[] = { #define STRING_TYPE_ELEMENT(type, size, name, camel_name) \ { type, size, k##camel_name##MapRootIndex } \ , STRING_TYPE_LIST(STRING_TYPE_ELEMENT) #undef STRING_TYPE_ELEMENT }; const Heap::ConstantStringTable Heap::constant_string_table[] = { #define CONSTANT_STRING_ELEMENT(name, contents) \ { contents, k##name##RootIndex } \ , INTERNALIZED_STRING_LIST(CONSTANT_STRING_ELEMENT) #undef CONSTANT_STRING_ELEMENT }; const Heap::StructTable Heap::struct_table[] = { #define STRUCT_TABLE_ELEMENT(NAME, Name, name) \ { NAME##_TYPE, Name::kSize, k##Name##MapRootIndex } \ , STRUCT_LIST(STRUCT_TABLE_ELEMENT) #undef STRUCT_TABLE_ELEMENT }; bool Heap::CreateInitialMaps() { HeapObject* obj; { AllocationResult allocation = AllocatePartialMap(MAP_TYPE, Map::kSize); if (!allocation.To(&obj)) return false; } // Map::cast cannot be used due to uninitialized map field. Map* new_meta_map = reinterpret_cast(obj); set_meta_map(new_meta_map); new_meta_map->set_map(new_meta_map); { // Partial map allocation #define ALLOCATE_PARTIAL_MAP(instance_type, size, field_name) \ { \ Map* map; \ if (!AllocatePartialMap((instance_type), (size)).To(&map)) return false; \ set_##field_name##_map(map); \ } ALLOCATE_PARTIAL_MAP(FIXED_ARRAY_TYPE, kVariableSizeSentinel, fixed_array); ALLOCATE_PARTIAL_MAP(ODDBALL_TYPE, Oddball::kSize, undefined); ALLOCATE_PARTIAL_MAP(ODDBALL_TYPE, Oddball::kSize, null); ALLOCATE_PARTIAL_MAP(CONSTANT_POOL_ARRAY_TYPE, kVariableSizeSentinel, constant_pool_array); #undef ALLOCATE_PARTIAL_MAP } // Allocate the empty array. { AllocationResult allocation = AllocateEmptyFixedArray(); if (!allocation.To(&obj)) return false; } set_empty_fixed_array(FixedArray::cast(obj)); { AllocationResult allocation = Allocate(null_map(), OLD_POINTER_SPACE); if (!allocation.To(&obj)) return false; } set_null_value(Oddball::cast(obj)); Oddball::cast(obj)->set_kind(Oddball::kNull); { AllocationResult allocation = Allocate(undefined_map(), OLD_POINTER_SPACE); if (!allocation.To(&obj)) return false; } set_undefined_value(Oddball::cast(obj)); Oddball::cast(obj)->set_kind(Oddball::kUndefined); DCHECK(!InNewSpace(undefined_value())); // Set preliminary exception sentinel value before actually initializing it. set_exception(null_value()); // Allocate the empty descriptor array. { AllocationResult allocation = AllocateEmptyFixedArray(); if (!allocation.To(&obj)) return false; } set_empty_descriptor_array(DescriptorArray::cast(obj)); // Allocate the constant pool array. { AllocationResult allocation = AllocateEmptyConstantPoolArray(); if (!allocation.To(&obj)) return false; } set_empty_constant_pool_array(ConstantPoolArray::cast(obj)); // Fix the instance_descriptors for the existing maps. meta_map()->set_code_cache(empty_fixed_array()); meta_map()->set_dependent_code(DependentCode::cast(empty_fixed_array())); meta_map()->init_back_pointer(undefined_value()); meta_map()->set_instance_descriptors(empty_descriptor_array()); fixed_array_map()->set_code_cache(empty_fixed_array()); fixed_array_map()->set_dependent_code( DependentCode::cast(empty_fixed_array())); fixed_array_map()->init_back_pointer(undefined_value()); fixed_array_map()->set_instance_descriptors(empty_descriptor_array()); undefined_map()->set_code_cache(empty_fixed_array()); undefined_map()->set_dependent_code(DependentCode::cast(empty_fixed_array())); undefined_map()->init_back_pointer(undefined_value()); undefined_map()->set_instance_descriptors(empty_descriptor_array()); null_map()->set_code_cache(empty_fixed_array()); null_map()->set_dependent_code(DependentCode::cast(empty_fixed_array())); null_map()->init_back_pointer(undefined_value()); null_map()->set_instance_descriptors(empty_descriptor_array()); constant_pool_array_map()->set_code_cache(empty_fixed_array()); constant_pool_array_map()->set_dependent_code( DependentCode::cast(empty_fixed_array())); constant_pool_array_map()->init_back_pointer(undefined_value()); constant_pool_array_map()->set_instance_descriptors(empty_descriptor_array()); // Fix prototype object for existing maps. meta_map()->set_prototype(null_value()); meta_map()->set_constructor(null_value()); fixed_array_map()->set_prototype(null_value()); fixed_array_map()->set_constructor(null_value()); undefined_map()->set_prototype(null_value()); undefined_map()->set_constructor(null_value()); null_map()->set_prototype(null_value()); null_map()->set_constructor(null_value()); constant_pool_array_map()->set_prototype(null_value()); constant_pool_array_map()->set_constructor(null_value()); { // Map allocation #define ALLOCATE_MAP(instance_type, size, field_name) \ { \ Map* map; \ if (!AllocateMap((instance_type), size).To(&map)) return false; \ set_##field_name##_map(map); \ } #define ALLOCATE_VARSIZE_MAP(instance_type, field_name) \ ALLOCATE_MAP(instance_type, kVariableSizeSentinel, field_name) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, fixed_cow_array) DCHECK(fixed_array_map() != fixed_cow_array_map()); ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, scope_info) ALLOCATE_MAP(HEAP_NUMBER_TYPE, HeapNumber::kSize, heap_number) ALLOCATE_MAP(MUTABLE_HEAP_NUMBER_TYPE, HeapNumber::kSize, mutable_heap_number) ALLOCATE_MAP(SYMBOL_TYPE, Symbol::kSize, symbol) ALLOCATE_MAP(FOREIGN_TYPE, Foreign::kSize, foreign) ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, the_hole); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, boolean); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, uninitialized); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, arguments_marker); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, no_interceptor_result_sentinel); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, exception); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, termination_exception); for (unsigned i = 0; i < arraysize(string_type_table); i++) { const StringTypeTable& entry = string_type_table[i]; { AllocationResult allocation = AllocateMap(entry.type, entry.size); if (!allocation.To(&obj)) return false; } // Mark cons string maps as unstable, because their objects can change // maps during GC. Map* map = Map::cast(obj); if (StringShape(entry.type).IsCons()) map->mark_unstable(); roots_[entry.index] = map; } ALLOCATE_VARSIZE_MAP(STRING_TYPE, undetectable_string) undetectable_string_map()->set_is_undetectable(); ALLOCATE_VARSIZE_MAP(ONE_BYTE_STRING_TYPE, undetectable_one_byte_string); undetectable_one_byte_string_map()->set_is_undetectable(); ALLOCATE_VARSIZE_MAP(FIXED_DOUBLE_ARRAY_TYPE, fixed_double_array) ALLOCATE_VARSIZE_MAP(BYTE_ARRAY_TYPE, byte_array) ALLOCATE_VARSIZE_MAP(FREE_SPACE_TYPE, free_space) #define ALLOCATE_EXTERNAL_ARRAY_MAP(Type, type, TYPE, ctype, size) \ ALLOCATE_MAP(EXTERNAL_##TYPE##_ARRAY_TYPE, ExternalArray::kAlignedSize, \ external_##type##_array) TYPED_ARRAYS(ALLOCATE_EXTERNAL_ARRAY_MAP) #undef ALLOCATE_EXTERNAL_ARRAY_MAP #define ALLOCATE_FIXED_TYPED_ARRAY_MAP(Type, type, TYPE, ctype, size) \ ALLOCATE_VARSIZE_MAP(FIXED_##TYPE##_ARRAY_TYPE, fixed_##type##_array) TYPED_ARRAYS(ALLOCATE_FIXED_TYPED_ARRAY_MAP) #undef ALLOCATE_FIXED_TYPED_ARRAY_MAP ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, sloppy_arguments_elements) ALLOCATE_VARSIZE_MAP(CODE_TYPE, code) ALLOCATE_MAP(CELL_TYPE, Cell::kSize, cell) ALLOCATE_MAP(PROPERTY_CELL_TYPE, PropertyCell::kSize, global_property_cell) ALLOCATE_MAP(FILLER_TYPE, kPointerSize, one_pointer_filler) ALLOCATE_MAP(FILLER_TYPE, 2 * kPointerSize, two_pointer_filler) for (unsigned i = 0; i < arraysize(struct_table); i++) { const StructTable& entry = struct_table[i]; Map* map; if (!AllocateMap(entry.type, entry.size).To(&map)) return false; roots_[entry.index] = map; } ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, hash_table) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, ordered_hash_table) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, function_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, catch_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, with_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, block_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, module_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, global_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, native_context) native_context_map()->set_dictionary_map(true); native_context_map()->set_visitor_id( StaticVisitorBase::kVisitNativeContext); ALLOCATE_MAP(SHARED_FUNCTION_INFO_TYPE, SharedFunctionInfo::kAlignedSize, shared_function_info) ALLOCATE_MAP(JS_MESSAGE_OBJECT_TYPE, JSMessageObject::kSize, message_object) ALLOCATE_MAP(JS_OBJECT_TYPE, JSObject::kHeaderSize + kPointerSize, external) external_map()->set_is_extensible(false); #undef ALLOCATE_VARSIZE_MAP #undef ALLOCATE_MAP } { // Empty arrays { ByteArray* byte_array; if (!AllocateByteArray(0, TENURED).To(&byte_array)) return false; set_empty_byte_array(byte_array); } #define ALLOCATE_EMPTY_EXTERNAL_ARRAY(Type, type, TYPE, ctype, size) \ { \ ExternalArray* obj; \ if (!AllocateEmptyExternalArray(kExternal##Type##Array).To(&obj)) \ return false; \ set_empty_external_##type##_array(obj); \ } TYPED_ARRAYS(ALLOCATE_EMPTY_EXTERNAL_ARRAY) #undef ALLOCATE_EMPTY_EXTERNAL_ARRAY #define ALLOCATE_EMPTY_FIXED_TYPED_ARRAY(Type, type, TYPE, ctype, size) \ { \ FixedTypedArrayBase* obj; \ if (!AllocateEmptyFixedTypedArray(kExternal##Type##Array).To(&obj)) \ return false; \ set_empty_fixed_##type##_array(obj); \ } TYPED_ARRAYS(ALLOCATE_EMPTY_FIXED_TYPED_ARRAY) #undef ALLOCATE_EMPTY_FIXED_TYPED_ARRAY } DCHECK(!InNewSpace(empty_fixed_array())); return true; } AllocationResult Heap::AllocateHeapNumber(double value, MutableMode mode, PretenureFlag pretenure) { // Statically ensure that it is safe to allocate heap numbers in paged // spaces. int size = HeapNumber::kSize; STATIC_ASSERT(HeapNumber::kSize <= Page::kMaxRegularHeapObjectSize); AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure); HeapObject* result; { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE); if (!allocation.To(&result)) return allocation; } Map* map = mode == MUTABLE ? mutable_heap_number_map() : heap_number_map(); HeapObject::cast(result)->set_map_no_write_barrier(map); HeapNumber::cast(result)->set_value(value); return result; } AllocationResult Heap::AllocateCell(Object* value) { int size = Cell::kSize; STATIC_ASSERT(Cell::kSize <= Page::kMaxRegularHeapObjectSize); HeapObject* result; { AllocationResult allocation = AllocateRaw(size, CELL_SPACE, CELL_SPACE); if (!allocation.To(&result)) return allocation; } result->set_map_no_write_barrier(cell_map()); Cell::cast(result)->set_value(value); return result; } AllocationResult Heap::AllocatePropertyCell() { int size = PropertyCell::kSize; STATIC_ASSERT(PropertyCell::kSize <= Page::kMaxRegularHeapObjectSize); HeapObject* result; AllocationResult allocation = AllocateRaw(size, PROPERTY_CELL_SPACE, PROPERTY_CELL_SPACE); if (!allocation.To(&result)) return allocation; result->set_map_no_write_barrier(global_property_cell_map()); PropertyCell* cell = PropertyCell::cast(result); cell->set_dependent_code(DependentCode::cast(empty_fixed_array()), SKIP_WRITE_BARRIER); cell->set_value(the_hole_value()); cell->set_type(HeapType::None()); return result; } void Heap::CreateApiObjects() { HandleScope scope(isolate()); Factory* factory = isolate()->factory(); Handle new_neander_map = factory->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize); // Don't use Smi-only elements optimizations for objects with the neander // map. There are too many cases where element values are set directly with a // bottleneck to trap the Smi-only -> fast elements transition, and there // appears to be no benefit for optimize this case. new_neander_map->set_elements_kind(TERMINAL_FAST_ELEMENTS_KIND); set_neander_map(*new_neander_map); Handle listeners = factory->NewNeanderObject(); Handle elements = factory->NewFixedArray(2); elements->set(0, Smi::FromInt(0)); listeners->set_elements(*elements); set_message_listeners(*listeners); } void Heap::CreateJSEntryStub() { JSEntryStub stub(isolate(), StackFrame::ENTRY); set_js_entry_code(*stub.GetCode()); } void Heap::CreateJSConstructEntryStub() { JSEntryStub stub(isolate(), StackFrame::ENTRY_CONSTRUCT); set_js_construct_entry_code(*stub.GetCode()); } void Heap::CreateFixedStubs() { // Here we create roots for fixed stubs. They are needed at GC // for cooking and uncooking (check out frames.cc). // The eliminates the need for doing dictionary lookup in the // stub cache for these stubs. HandleScope scope(isolate()); // Create stubs that should be there, so we don't unexpectedly have to // create them if we need them during the creation of another stub. // Stub creation mixes raw pointers and handles in an unsafe manner so // we cannot create stubs while we are creating stubs. CodeStub::GenerateStubsAheadOfTime(isolate()); // MacroAssembler::Abort calls (usually enabled with --debug-code) depend on // CEntryStub, so we need to call GenerateStubsAheadOfTime before JSEntryStub // is created. // gcc-4.4 has problem generating correct code of following snippet: // { JSEntryStub stub; // js_entry_code_ = *stub.GetCode(); // } // { JSConstructEntryStub stub; // js_construct_entry_code_ = *stub.GetCode(); // } // To workaround the problem, make separate functions without inlining. Heap::CreateJSEntryStub(); Heap::CreateJSConstructEntryStub(); } void Heap::CreateInitialObjects() { HandleScope scope(isolate()); Factory* factory = isolate()->factory(); // The -0 value must be set before NewNumber works. set_minus_zero_value(*factory->NewHeapNumber(-0.0, IMMUTABLE, TENURED)); DCHECK(std::signbit(minus_zero_value()->Number()) != 0); set_nan_value( *factory->NewHeapNumber(base::OS::nan_value(), IMMUTABLE, TENURED)); set_infinity_value(*factory->NewHeapNumber(V8_INFINITY, IMMUTABLE, TENURED)); // The hole has not been created yet, but we want to put something // predictable in the gaps in the string table, so lets make that Smi zero. set_the_hole_value(reinterpret_cast(Smi::FromInt(0))); // Allocate initial string table. set_string_table(*StringTable::New(isolate(), kInitialStringTableSize)); // Finish initializing oddballs after creating the string table. Oddball::Initialize(isolate(), factory->undefined_value(), "undefined", factory->nan_value(), Oddball::kUndefined); // Initialize the null_value. Oddball::Initialize(isolate(), factory->null_value(), "null", handle(Smi::FromInt(0), isolate()), Oddball::kNull); set_true_value(*factory->NewOddball(factory->boolean_map(), "true", handle(Smi::FromInt(1), isolate()), Oddball::kTrue)); set_false_value(*factory->NewOddball(factory->boolean_map(), "false", handle(Smi::FromInt(0), isolate()), Oddball::kFalse)); set_the_hole_value(*factory->NewOddball(factory->the_hole_map(), "hole", handle(Smi::FromInt(-1), isolate()), Oddball::kTheHole)); set_uninitialized_value(*factory->NewOddball( factory->uninitialized_map(), "uninitialized", handle(Smi::FromInt(-1), isolate()), Oddball::kUninitialized)); set_arguments_marker(*factory->NewOddball( factory->arguments_marker_map(), "arguments_marker", handle(Smi::FromInt(-4), isolate()), Oddball::kArgumentMarker)); set_no_interceptor_result_sentinel(*factory->NewOddball( factory->no_interceptor_result_sentinel_map(), "no_interceptor_result_sentinel", handle(Smi::FromInt(-2), isolate()), Oddball::kOther)); set_termination_exception(*factory->NewOddball( factory->termination_exception_map(), "termination_exception", handle(Smi::FromInt(-3), isolate()), Oddball::kOther)); set_exception(*factory->NewOddball(factory->exception_map(), "exception", handle(Smi::FromInt(-5), isolate()), Oddball::kException)); for (unsigned i = 0; i < arraysize(constant_string_table); i++) { Handle str = factory->InternalizeUtf8String(constant_string_table[i].contents); roots_[constant_string_table[i].index] = *str; } // Allocate the hidden string which is used to identify the hidden properties // in JSObjects. The hash code has a special value so that it will not match // the empty string when searching for the property. It cannot be part of the // loop above because it needs to be allocated manually with the special // hash code in place. The hash code for the hidden_string is zero to ensure // that it will always be at the first entry in property descriptors. hidden_string_ = *factory->NewOneByteInternalizedString( OneByteVector("", 0), String::kEmptyStringHash); // Create the code_stubs dictionary. The initial size is set to avoid // expanding the dictionary during bootstrapping. set_code_stubs(*UnseededNumberDictionary::New(isolate(), 128)); // Create the non_monomorphic_cache used in stub-cache.cc. The initial size // is set to avoid expanding the dictionary during bootstrapping. set_non_monomorphic_cache(*UnseededNumberDictionary::New(isolate(), 64)); set_polymorphic_code_cache(PolymorphicCodeCache::cast( *factory->NewStruct(POLYMORPHIC_CODE_CACHE_TYPE))); set_instanceof_cache_function(Smi::FromInt(0)); set_instanceof_cache_map(Smi::FromInt(0)); set_instanceof_cache_answer(Smi::FromInt(0)); CreateFixedStubs(); // Allocate the dictionary of intrinsic function names. Handle intrinsic_names = NameDictionary::New(isolate(), Runtime::kNumFunctions, TENURED); Runtime::InitializeIntrinsicFunctionNames(isolate(), intrinsic_names); set_intrinsic_function_names(*intrinsic_names); set_number_string_cache( *factory->NewFixedArray(kInitialNumberStringCacheSize * 2, TENURED)); // Allocate cache for single character one byte strings. set_single_character_string_cache( *factory->NewFixedArray(String::kMaxOneByteCharCode + 1, TENURED)); // Allocate cache for string split and regexp-multiple. set_string_split_cache(*factory->NewFixedArray( RegExpResultsCache::kRegExpResultsCacheSize, TENURED)); set_regexp_multiple_cache(*factory->NewFixedArray( RegExpResultsCache::kRegExpResultsCacheSize, TENURED)); // Allocate cache for external strings pointing to native source code. set_natives_source_cache( *factory->NewFixedArray(Natives::GetBuiltinsCount())); set_undefined_cell(*factory->NewCell(factory->undefined_value())); // The symbol registry is initialized lazily. set_symbol_registry(undefined_value()); // Allocate object to hold object observation state. set_observation_state(*factory->NewJSObjectFromMap( factory->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize))); // Microtask queue uses the empty fixed array as a sentinel for "empty". // Number of queued microtasks stored in Isolate::pending_microtask_count(). set_microtask_queue(empty_fixed_array()); set_detailed_stack_trace_symbol(*factory->NewPrivateOwnSymbol()); set_elements_transition_symbol(*factory->NewPrivateOwnSymbol()); set_frozen_symbol(*factory->NewPrivateOwnSymbol()); set_megamorphic_symbol(*factory->NewPrivateOwnSymbol()); set_premonomorphic_symbol(*factory->NewPrivateOwnSymbol()); set_generic_symbol(*factory->NewPrivateOwnSymbol()); set_nonexistent_symbol(*factory->NewPrivateOwnSymbol()); set_normal_ic_symbol(*factory->NewPrivateOwnSymbol()); set_observed_symbol(*factory->NewPrivateOwnSymbol()); set_stack_trace_symbol(*factory->NewPrivateOwnSymbol()); set_uninitialized_symbol(*factory->NewPrivateOwnSymbol()); set_home_object_symbol(*factory->NewPrivateOwnSymbol()); Handle slow_element_dictionary = SeededNumberDictionary::New(isolate(), 0, TENURED); slow_element_dictionary->set_requires_slow_elements(); set_empty_slow_element_dictionary(*slow_element_dictionary); set_materialized_objects(*factory->NewFixedArray(0, TENURED)); // Handling of script id generation is in Factory::NewScript. set_last_script_id(Smi::FromInt(v8::UnboundScript::kNoScriptId)); set_allocation_sites_scratchpad( *factory->NewFixedArray(kAllocationSiteScratchpadSize, TENURED)); InitializeAllocationSitesScratchpad(); // Initialize keyed lookup cache. isolate_->keyed_lookup_cache()->Clear(); // Initialize context slot cache. isolate_->context_slot_cache()->Clear(); // Initialize descriptor cache. isolate_->descriptor_lookup_cache()->Clear(); // Initialize compilation cache. isolate_->compilation_cache()->Clear(); } bool Heap::RootCanBeWrittenAfterInitialization(Heap::RootListIndex root_index) { RootListIndex writable_roots[] = { kStoreBufferTopRootIndex, kStackLimitRootIndex, kNumberStringCacheRootIndex, kInstanceofCacheFunctionRootIndex, kInstanceofCacheMapRootIndex, kInstanceofCacheAnswerRootIndex, kCodeStubsRootIndex, kNonMonomorphicCacheRootIndex, kPolymorphicCodeCacheRootIndex, kLastScriptIdRootIndex, kEmptyScriptRootIndex, kRealStackLimitRootIndex, kArgumentsAdaptorDeoptPCOffsetRootIndex, kConstructStubDeoptPCOffsetRootIndex, kGetterStubDeoptPCOffsetRootIndex, kSetterStubDeoptPCOffsetRootIndex, kStringTableRootIndex, }; for (unsigned int i = 0; i < arraysize(writable_roots); i++) { if (root_index == writable_roots[i]) return true; } return false; } bool Heap::RootCanBeTreatedAsConstant(RootListIndex root_index) { return !RootCanBeWrittenAfterInitialization(root_index) && !InNewSpace(roots_array_start()[root_index]); } Object* RegExpResultsCache::Lookup(Heap* heap, String* key_string, Object* key_pattern, ResultsCacheType type) { FixedArray* cache; if (!key_string->IsInternalizedString()) return Smi::FromInt(0); if (type == STRING_SPLIT_SUBSTRINGS) { DCHECK(key_pattern->IsString()); if (!key_pattern->IsInternalizedString()) return Smi::FromInt(0); cache = heap->string_split_cache(); } else { DCHECK(type == REGEXP_MULTIPLE_INDICES); DCHECK(key_pattern->IsFixedArray()); cache = heap->regexp_multiple_cache(); } uint32_t hash = key_string->Hash(); uint32_t index = ((hash & (kRegExpResultsCacheSize - 1)) & ~(kArrayEntriesPerCacheEntry - 1)); if (cache->get(index + kStringOffset) == key_string && cache->get(index + kPatternOffset) == key_pattern) { return cache->get(index + kArrayOffset); } index = ((index + kArrayEntriesPerCacheEntry) & (kRegExpResultsCacheSize - 1)); if (cache->get(index + kStringOffset) == key_string && cache->get(index + kPatternOffset) == key_pattern) { return cache->get(index + kArrayOffset); } return Smi::FromInt(0); } void RegExpResultsCache::Enter(Isolate* isolate, Handle key_string, Handle key_pattern, Handle value_array, ResultsCacheType type) { Factory* factory = isolate->factory(); Handle cache; if (!key_string->IsInternalizedString()) return; if (type == STRING_SPLIT_SUBSTRINGS) { DCHECK(key_pattern->IsString()); if (!key_pattern->IsInternalizedString()) return; cache = factory->string_split_cache(); } else { DCHECK(type == REGEXP_MULTIPLE_INDICES); DCHECK(key_pattern->IsFixedArray()); cache = factory->regexp_multiple_cache(); } uint32_t hash = key_string->Hash(); uint32_t index = ((hash & (kRegExpResultsCacheSize - 1)) & ~(kArrayEntriesPerCacheEntry - 1)); if (cache->get(index + kStringOffset) == Smi::FromInt(0)) { cache->set(index + kStringOffset, *key_string); cache->set(index + kPatternOffset, *key_pattern); cache->set(index + kArrayOffset, *value_array); } else { uint32_t index2 = ((index + kArrayEntriesPerCacheEntry) & (kRegExpResultsCacheSize - 1)); if (cache->get(index2 + kStringOffset) == Smi::FromInt(0)) { cache->set(index2 + kStringOffset, *key_string); cache->set(index2 + kPatternOffset, *key_pattern); cache->set(index2 + kArrayOffset, *value_array); } else { cache->set(index2 + kStringOffset, Smi::FromInt(0)); cache->set(index2 + kPatternOffset, Smi::FromInt(0)); cache->set(index2 + kArrayOffset, Smi::FromInt(0)); cache->set(index + kStringOffset, *key_string); cache->set(index + kPatternOffset, *key_pattern); cache->set(index + kArrayOffset, *value_array); } } // If the array is a reasonably short list of substrings, convert it into a // list of internalized strings. if (type == STRING_SPLIT_SUBSTRINGS && value_array->length() < 100) { for (int i = 0; i < value_array->length(); i++) { Handle str(String::cast(value_array->get(i)), isolate); Handle internalized_str = factory->InternalizeString(str); value_array->set(i, *internalized_str); } } // Convert backing store to a copy-on-write array. value_array->set_map_no_write_barrier(*factory->fixed_cow_array_map()); } void RegExpResultsCache::Clear(FixedArray* cache) { for (int i = 0; i < kRegExpResultsCacheSize; i++) { cache->set(i, Smi::FromInt(0)); } } int Heap::FullSizeNumberStringCacheLength() { // Compute the size of the number string cache based on the max newspace size. // The number string cache has a minimum size based on twice the initial cache // size to ensure that it is bigger after being made 'full size'. int number_string_cache_size = max_semi_space_size_ / 512; number_string_cache_size = Max(kInitialNumberStringCacheSize * 2, Min(0x4000, number_string_cache_size)); // There is a string and a number per entry so the length is twice the number // of entries. return number_string_cache_size * 2; } void Heap::FlushNumberStringCache() { // Flush the number to string cache. int len = number_string_cache()->length(); for (int i = 0; i < len; i++) { number_string_cache()->set_undefined(i); } } void Heap::FlushAllocationSitesScratchpad() { for (int i = 0; i < allocation_sites_scratchpad_length_; i++) { allocation_sites_scratchpad()->set_undefined(i); } allocation_sites_scratchpad_length_ = 0; } void Heap::InitializeAllocationSitesScratchpad() { DCHECK(allocation_sites_scratchpad()->length() == kAllocationSiteScratchpadSize); for (int i = 0; i < kAllocationSiteScratchpadSize; i++) { allocation_sites_scratchpad()->set_undefined(i); } } void Heap::AddAllocationSiteToScratchpad(AllocationSite* site, ScratchpadSlotMode mode) { if (allocation_sites_scratchpad_length_ < kAllocationSiteScratchpadSize) { // We cannot use the normal write-barrier because slots need to be // recorded with non-incremental marking as well. We have to explicitly // record the slot to take evacuation candidates into account. allocation_sites_scratchpad()->set(allocation_sites_scratchpad_length_, site, SKIP_WRITE_BARRIER); Object** slot = allocation_sites_scratchpad()->RawFieldOfElementAt( allocation_sites_scratchpad_length_); if (mode == RECORD_SCRATCHPAD_SLOT) { // We need to allow slots buffer overflow here since the evacuation // candidates are not part of the global list of old space pages and // releasing an evacuation candidate due to a slots buffer overflow // results in lost pages. mark_compact_collector()->RecordSlot(slot, slot, *slot, SlotsBuffer::IGNORE_OVERFLOW); } allocation_sites_scratchpad_length_++; } } Map* Heap::MapForExternalArrayType(ExternalArrayType array_type) { return Map::cast(roots_[RootIndexForExternalArrayType(array_type)]); } Heap::RootListIndex Heap::RootIndexForExternalArrayType( ExternalArrayType array_type) { switch (array_type) { #define ARRAY_TYPE_TO_ROOT_INDEX(Type, type, TYPE, ctype, size) \ case kExternal##Type##Array: \ return kExternal##Type##ArrayMapRootIndex; TYPED_ARRAYS(ARRAY_TYPE_TO_ROOT_INDEX) #undef ARRAY_TYPE_TO_ROOT_INDEX default: UNREACHABLE(); return kUndefinedValueRootIndex; } } Map* Heap::MapForFixedTypedArray(ExternalArrayType array_type) { return Map::cast(roots_[RootIndexForFixedTypedArray(array_type)]); } Heap::RootListIndex Heap::RootIndexForFixedTypedArray( ExternalArrayType array_type) { switch (array_type) { #define ARRAY_TYPE_TO_ROOT_INDEX(Type, type, TYPE, ctype, size) \ case kExternal##Type##Array: \ return kFixed##Type##ArrayMapRootIndex; TYPED_ARRAYS(ARRAY_TYPE_TO_ROOT_INDEX) #undef ARRAY_TYPE_TO_ROOT_INDEX default: UNREACHABLE(); return kUndefinedValueRootIndex; } } Heap::RootListIndex Heap::RootIndexForEmptyExternalArray( ElementsKind elementsKind) { switch (elementsKind) { #define ELEMENT_KIND_TO_ROOT_INDEX(Type, type, TYPE, ctype, size) \ case EXTERNAL_##TYPE##_ELEMENTS: \ return kEmptyExternal##Type##ArrayRootIndex; TYPED_ARRAYS(ELEMENT_KIND_TO_ROOT_INDEX) #undef ELEMENT_KIND_TO_ROOT_INDEX default: UNREACHABLE(); return kUndefinedValueRootIndex; } } Heap::RootListIndex Heap::RootIndexForEmptyFixedTypedArray( ElementsKind elementsKind) { switch (elementsKind) { #define ELEMENT_KIND_TO_ROOT_INDEX(Type, type, TYPE, ctype, size) \ case TYPE##_ELEMENTS: \ return kEmptyFixed##Type##ArrayRootIndex; TYPED_ARRAYS(ELEMENT_KIND_TO_ROOT_INDEX) #undef ELEMENT_KIND_TO_ROOT_INDEX default: UNREACHABLE(); return kUndefinedValueRootIndex; } } ExternalArray* Heap::EmptyExternalArrayForMap(Map* map) { return ExternalArray::cast( roots_[RootIndexForEmptyExternalArray(map->elements_kind())]); } FixedTypedArrayBase* Heap::EmptyFixedTypedArrayForMap(Map* map) { return FixedTypedArrayBase::cast( roots_[RootIndexForEmptyFixedTypedArray(map->elements_kind())]); } AllocationResult Heap::AllocateForeign(Address address, PretenureFlag pretenure) { // Statically ensure that it is safe to allocate foreigns in paged spaces. STATIC_ASSERT(Foreign::kSize <= Page::kMaxRegularHeapObjectSize); AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE; Foreign* result; AllocationResult allocation = Allocate(foreign_map(), space); if (!allocation.To(&result)) return allocation; result->set_foreign_address(address); return result; } AllocationResult Heap::AllocateByteArray(int length, PretenureFlag pretenure) { if (length < 0 || length > ByteArray::kMaxLength) { v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", true); } int size = ByteArray::SizeFor(length); AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure); HeapObject* result; { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE); if (!allocation.To(&result)) return allocation; } result->set_map_no_write_barrier(byte_array_map()); ByteArray::cast(result)->set_length(length); return result; } void Heap::CreateFillerObjectAt(Address addr, int size) { if (size == 0) return; HeapObject* filler = HeapObject::FromAddress(addr); if (size == kPointerSize) { filler->set_map_no_write_barrier(one_pointer_filler_map()); } else if (size == 2 * kPointerSize) { filler->set_map_no_write_barrier(two_pointer_filler_map()); } else { filler->set_map_no_write_barrier(free_space_map()); FreeSpace::cast(filler)->set_size(size); } } bool Heap::CanMoveObjectStart(HeapObject* object) { Address address = object->address(); bool is_in_old_pointer_space = InOldPointerSpace(address); bool is_in_old_data_space = InOldDataSpace(address); if (lo_space()->Contains(object)) return false; Page* page = Page::FromAddress(address); // We can move the object start if: // (1) the object is not in old pointer or old data space, // (2) the page of the object was already swept, // (3) the page was already concurrently swept. This case is an optimization // for concurrent sweeping. The WasSwept predicate for concurrently swept // pages is set after sweeping all pages. return (!is_in_old_pointer_space && !is_in_old_data_space) || page->WasSwept() || page->SweepingCompleted(); } void Heap::AdjustLiveBytes(Address address, int by, InvocationMode mode) { if (incremental_marking()->IsMarking() && Marking::IsBlack(Marking::MarkBitFrom(address))) { if (mode == FROM_GC) { MemoryChunk::IncrementLiveBytesFromGC(address, by); } else { MemoryChunk::IncrementLiveBytesFromMutator(address, by); } } } FixedArrayBase* Heap::LeftTrimFixedArray(FixedArrayBase* object, int elements_to_trim) { const int element_size = object->IsFixedArray() ? kPointerSize : kDoubleSize; const int bytes_to_trim = elements_to_trim * element_size; Map* map = object->map(); // For now this trick is only applied to objects in new and paged space. // In large object space the object's start must coincide with chunk // and thus the trick is just not applicable. DCHECK(!lo_space()->Contains(object)); DCHECK(object->map() != fixed_cow_array_map()); STATIC_ASSERT(FixedArrayBase::kMapOffset == 0); STATIC_ASSERT(FixedArrayBase::kLengthOffset == kPointerSize); STATIC_ASSERT(FixedArrayBase::kHeaderSize == 2 * kPointerSize); const int len = object->length(); DCHECK(elements_to_trim <= len); // Calculate location of new array start. Address new_start = object->address() + bytes_to_trim; // Technically in new space this write might be omitted (except for // debug mode which iterates through the heap), but to play safer // we still do it. CreateFillerObjectAt(object->address(), bytes_to_trim); // Initialize header of the trimmed array. Since left trimming is only // performed on pages which are not concurrently swept creating a filler // object does not require synchronization. DCHECK(CanMoveObjectStart(object)); Object** former_start = HeapObject::RawField(object, 0); int new_start_index = elements_to_trim * (element_size / kPointerSize); former_start[new_start_index] = map; former_start[new_start_index + 1] = Smi::FromInt(len - elements_to_trim); FixedArrayBase* new_object = FixedArrayBase::cast(HeapObject::FromAddress(new_start)); // Maintain consistency of live bytes during incremental marking marking()->TransferMark(object->address(), new_start); AdjustLiveBytes(new_start, -bytes_to_trim, Heap::FROM_MUTATOR); // Notify the heap profiler of change in object layout. OnMoveEvent(new_object, object, new_object->Size()); return new_object; } // Force instantiation of templatized method. template void Heap::RightTrimFixedArray(FixedArrayBase*, int); template void Heap::RightTrimFixedArray(FixedArrayBase*, int); template void Heap::RightTrimFixedArray(FixedArrayBase* object, int elements_to_trim) { const int element_size = object->IsFixedArray() ? kPointerSize : kDoubleSize; const int bytes_to_trim = elements_to_trim * element_size; // For now this trick is only applied to objects in new and paged space. DCHECK(object->map() != fixed_cow_array_map()); const int len = object->length(); DCHECK(elements_to_trim < len); // Calculate location of new array end. Address new_end = object->address() + object->Size() - bytes_to_trim; // Technically in new space this write might be omitted (except for // debug mode which iterates through the heap), but to play safer // we still do it. // We do not create a filler for objects in large object space. // TODO(hpayer): We should shrink the large object page if the size // of the object changed significantly. if (!lo_space()->Contains(object)) { CreateFillerObjectAt(new_end, bytes_to_trim); } // Initialize header of the trimmed array. We are storing the new length // using release store after creating a filler for the left-over space to // avoid races with the sweeper thread. object->synchronized_set_length(len - elements_to_trim); // Maintain consistency of live bytes during incremental marking AdjustLiveBytes(object->address(), -bytes_to_trim, mode); // Notify the heap profiler of change in object layout. The array may not be // moved during GC, and size has to be adjusted nevertheless. HeapProfiler* profiler = isolate()->heap_profiler(); if (profiler->is_tracking_allocations()) { profiler->UpdateObjectSizeEvent(object->address(), object->Size()); } } AllocationResult Heap::AllocateExternalArray(int length, ExternalArrayType array_type, void* external_pointer, PretenureFlag pretenure) { int size = ExternalArray::kAlignedSize; AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure); HeapObject* result; { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE); if (!allocation.To(&result)) return allocation; } result->set_map_no_write_barrier(MapForExternalArrayType(array_type)); ExternalArray::cast(result)->set_length(length); ExternalArray::cast(result)->set_external_pointer(external_pointer); return result; } static void ForFixedTypedArray(ExternalArrayType array_type, int* element_size, ElementsKind* element_kind) { switch (array_type) { #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ case kExternal##Type##Array: \ *element_size = size; \ *element_kind = TYPE##_ELEMENTS; \ return; TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE default: *element_size = 0; // Bogus *element_kind = UINT8_ELEMENTS; // Bogus UNREACHABLE(); } } AllocationResult Heap::AllocateFixedTypedArray(int length, ExternalArrayType array_type, PretenureFlag pretenure) { int element_size; ElementsKind elements_kind; ForFixedTypedArray(array_type, &element_size, &elements_kind); int size = OBJECT_POINTER_ALIGN(length * element_size + FixedTypedArrayBase::kDataOffset); #ifndef V8_HOST_ARCH_64_BIT if (array_type == kExternalFloat64Array) { size += kPointerSize; } #endif AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure); HeapObject* object; AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE); if (!allocation.To(&object)) return allocation; if (array_type == kExternalFloat64Array) { object = EnsureDoubleAligned(this, object, size); } object->set_map(MapForFixedTypedArray(array_type)); FixedTypedArrayBase* elements = FixedTypedArrayBase::cast(object); elements->set_length(length); memset(elements->DataPtr(), 0, elements->DataSize()); return elements; } AllocationResult Heap::AllocateCode(int object_size, bool immovable) { DCHECK(IsAligned(static_cast(object_size), kCodeAlignment)); AllocationResult allocation = AllocateRaw(object_size, CODE_SPACE, CODE_SPACE); HeapObject* result; if (!allocation.To(&result)) return allocation; if (immovable) { Address address = result->address(); // Code objects which should stay at a fixed address are allocated either // in the first page of code space (objects on the first page of each space // are never moved) or in large object space. if (!code_space_->FirstPage()->Contains(address) && MemoryChunk::FromAddress(address)->owner()->identity() != LO_SPACE) { // Discard the first code allocation, which was on a page where it could // be moved. CreateFillerObjectAt(result->address(), object_size); allocation = lo_space_->AllocateRaw(object_size, EXECUTABLE); if (!allocation.To(&result)) return allocation; OnAllocationEvent(result, object_size); } } result->set_map_no_write_barrier(code_map()); Code* code = Code::cast(result); DCHECK(isolate_->code_range() == NULL || !isolate_->code_range()->valid() || isolate_->code_range()->contains(code->address())); code->set_gc_metadata(Smi::FromInt(0)); code->set_ic_age(global_ic_age_); return code; } AllocationResult Heap::CopyCode(Code* code) { AllocationResult allocation; HeapObject* new_constant_pool; if (FLAG_enable_ool_constant_pool && code->constant_pool() != empty_constant_pool_array()) { // Copy the constant pool, since edits to the copied code may modify // the constant pool. allocation = CopyConstantPoolArray(code->constant_pool()); if (!allocation.To(&new_constant_pool)) return allocation; } else { new_constant_pool = empty_constant_pool_array(); } HeapObject* result; // Allocate an object the same size as the code object. int obj_size = code->Size(); allocation = AllocateRaw(obj_size, CODE_SPACE, CODE_SPACE); if (!allocation.To(&result)) return allocation; // Copy code object. Address old_addr = code->address(); Address new_addr = result->address(); CopyBlock(new_addr, old_addr, obj_size); Code* new_code = Code::cast(result); // Update the constant pool. new_code->set_constant_pool(new_constant_pool); // Relocate the copy. DCHECK(isolate_->code_range() == NULL || !isolate_->code_range()->valid() || isolate_->code_range()->contains(code->address())); new_code->Relocate(new_addr - old_addr); return new_code; } AllocationResult Heap::CopyCode(Code* code, Vector reloc_info) { // Allocate ByteArray and ConstantPoolArray before the Code object, so that we // do not risk leaving uninitialized Code object (and breaking the heap). ByteArray* reloc_info_array; { AllocationResult allocation = AllocateByteArray(reloc_info.length(), TENURED); if (!allocation.To(&reloc_info_array)) return allocation; } HeapObject* new_constant_pool; if (FLAG_enable_ool_constant_pool && code->constant_pool() != empty_constant_pool_array()) { // Copy the constant pool, since edits to the copied code may modify // the constant pool. AllocationResult allocation = CopyConstantPoolArray(code->constant_pool()); if (!allocation.To(&new_constant_pool)) return allocation; } else { new_constant_pool = empty_constant_pool_array(); } int new_body_size = RoundUp(code->instruction_size(), kObjectAlignment); int new_obj_size = Code::SizeFor(new_body_size); Address old_addr = code->address(); size_t relocation_offset = static_cast(code->instruction_end() - old_addr); HeapObject* result; AllocationResult allocation = AllocateRaw(new_obj_size, CODE_SPACE, CODE_SPACE); if (!allocation.To(&result)) return allocation; // Copy code object. Address new_addr = result->address(); // Copy header and instructions. CopyBytes(new_addr, old_addr, relocation_offset); Code* new_code = Code::cast(result); new_code->set_relocation_info(reloc_info_array); // Update constant pool. new_code->set_constant_pool(new_constant_pool); // Copy patched rinfo. CopyBytes(new_code->relocation_start(), reloc_info.start(), static_cast(reloc_info.length())); // Relocate the copy. DCHECK(isolate_->code_range() == NULL || !isolate_->code_range()->valid() || isolate_->code_range()->contains(code->address())); new_code->Relocate(new_addr - old_addr); #ifdef VERIFY_HEAP if (FLAG_verify_heap) code->ObjectVerify(); #endif return new_code; } void Heap::InitializeAllocationMemento(AllocationMemento* memento, AllocationSite* allocation_site) { memento->set_map_no_write_barrier(allocation_memento_map()); DCHECK(allocation_site->map() == allocation_site_map()); memento->set_allocation_site(allocation_site, SKIP_WRITE_BARRIER); if (FLAG_allocation_site_pretenuring) { allocation_site->IncrementMementoCreateCount(); } } AllocationResult Heap::Allocate(Map* map, AllocationSpace space, AllocationSite* allocation_site) { DCHECK(gc_state_ == NOT_IN_GC); DCHECK(map->instance_type() != MAP_TYPE); // If allocation failures are disallowed, we may allocate in a different // space when new space is full and the object is not a large object. AllocationSpace retry_space = (space != NEW_SPACE) ? space : TargetSpaceId(map->instance_type()); int size = map->instance_size(); if (allocation_site != NULL) { size += AllocationMemento::kSize; } HeapObject* result; AllocationResult allocation = AllocateRaw(size, space, retry_space); if (!allocation.To(&result)) return allocation; // No need for write barrier since object is white and map is in old space. result->set_map_no_write_barrier(map); if (allocation_site != NULL) { AllocationMemento* alloc_memento = reinterpret_cast( reinterpret_cast
(result) + map->instance_size()); InitializeAllocationMemento(alloc_memento, allocation_site); } return result; } void Heap::InitializeJSObjectFromMap(JSObject* obj, FixedArray* properties, Map* map) { obj->set_properties(properties); obj->initialize_elements(); // TODO(1240798): Initialize the object's body using valid initial values // according to the object's initial map. For example, if the map's // instance type is JS_ARRAY_TYPE, the length field should be initialized // to a number (e.g. Smi::FromInt(0)) and the elements initialized to a // fixed array (e.g. Heap::empty_fixed_array()). Currently, the object // verification code has to cope with (temporarily) invalid objects. See // for example, JSArray::JSArrayVerify). Object* filler; // We cannot always fill with one_pointer_filler_map because objects // created from API functions expect their internal fields to be initialized // with undefined_value. // Pre-allocated fields need to be initialized with undefined_value as well // so that object accesses before the constructor completes (e.g. in the // debugger) will not cause a crash. if (map->constructor()->IsJSFunction() && JSFunction::cast(map->constructor()) ->IsInobjectSlackTrackingInProgress()) { // We might want to shrink the object later. DCHECK(obj->GetInternalFieldCount() == 0); filler = Heap::one_pointer_filler_map(); } else { filler = Heap::undefined_value(); } obj->InitializeBody(map, Heap::undefined_value(), filler); } AllocationResult Heap::AllocateJSObjectFromMap( Map* map, PretenureFlag pretenure, bool allocate_properties, AllocationSite* allocation_site) { // JSFunctions should be allocated using AllocateFunction to be // properly initialized. DCHECK(map->instance_type() != JS_FUNCTION_TYPE); // Both types of global objects should be allocated using // AllocateGlobalObject to be properly initialized. DCHECK(map->instance_type() != JS_GLOBAL_OBJECT_TYPE); DCHECK(map->instance_type() != JS_BUILTINS_OBJECT_TYPE); // Allocate the backing storage for the properties. FixedArray* properties; if (allocate_properties) { int prop_size = map->InitialPropertiesLength(); DCHECK(prop_size >= 0); { AllocationResult allocation = AllocateFixedArray(prop_size, pretenure); if (!allocation.To(&properties)) return allocation; } } else { properties = empty_fixed_array(); } // Allocate the JSObject. int size = map->instance_size(); AllocationSpace space = SelectSpace(size, OLD_POINTER_SPACE, pretenure); JSObject* js_obj; AllocationResult allocation = Allocate(map, space, allocation_site); if (!allocation.To(&js_obj)) return allocation; // Initialize the JSObject. InitializeJSObjectFromMap(js_obj, properties, map); DCHECK(js_obj->HasFastElements() || js_obj->HasExternalArrayElements() || js_obj->HasFixedTypedArrayElements()); return js_obj; } AllocationResult Heap::AllocateJSObject(JSFunction* constructor, PretenureFlag pretenure, AllocationSite* allocation_site) { DCHECK(constructor->has_initial_map()); // Allocate the object based on the constructors initial map. AllocationResult allocation = AllocateJSObjectFromMap( constructor->initial_map(), pretenure, true, allocation_site); #ifdef DEBUG // Make sure result is NOT a global object if valid. HeapObject* obj; DCHECK(!allocation.To(&obj) || !obj->IsGlobalObject()); #endif return allocation; } AllocationResult Heap::CopyJSObject(JSObject* source, AllocationSite* site) { // Never used to copy functions. If functions need to be copied we // have to be careful to clear the literals array. SLOW_DCHECK(!source->IsJSFunction()); // Make the clone. Map* map = source->map(); int object_size = map->instance_size(); HeapObject* clone; DCHECK(site == NULL || AllocationSite::CanTrack(map->instance_type())); WriteBarrierMode wb_mode = UPDATE_WRITE_BARRIER; // If we're forced to always allocate, we use the general allocation // functions which may leave us with an object in old space. if (always_allocate()) { { AllocationResult allocation = AllocateRaw(object_size, NEW_SPACE, OLD_POINTER_SPACE); if (!allocation.To(&clone)) return allocation; } Address clone_address = clone->address(); CopyBlock(clone_address, source->address(), object_size); // Update write barrier for all fields that lie beyond the header. RecordWrites(clone_address, JSObject::kHeaderSize, (object_size - JSObject::kHeaderSize) / kPointerSize); } else { wb_mode = SKIP_WRITE_BARRIER; { int adjusted_object_size = site != NULL ? object_size + AllocationMemento::kSize : object_size; AllocationResult allocation = AllocateRaw(adjusted_object_size, NEW_SPACE, NEW_SPACE); if (!allocation.To(&clone)) return allocation; } SLOW_DCHECK(InNewSpace(clone)); // Since we know the clone is allocated in new space, we can copy // the contents without worrying about updating the write barrier. CopyBlock(clone->address(), source->address(), object_size); if (site != NULL) { AllocationMemento* alloc_memento = reinterpret_cast( reinterpret_cast
(clone) + object_size); InitializeAllocationMemento(alloc_memento, site); } } SLOW_DCHECK(JSObject::cast(clone)->GetElementsKind() == source->GetElementsKind()); FixedArrayBase* elements = FixedArrayBase::cast(source->elements()); FixedArray* properties = FixedArray::cast(source->properties()); // Update elements if necessary. if (elements->length() > 0) { FixedArrayBase* elem; { AllocationResult allocation; if (elements->map() == fixed_cow_array_map()) { allocation = FixedArray::cast(elements); } else if (source->HasFastDoubleElements()) { allocation = CopyFixedDoubleArray(FixedDoubleArray::cast(elements)); } else { allocation = CopyFixedArray(FixedArray::cast(elements)); } if (!allocation.To(&elem)) return allocation; } JSObject::cast(clone)->set_elements(elem, wb_mode); } // Update properties if necessary. if (properties->length() > 0) { FixedArray* prop; { AllocationResult allocation = CopyFixedArray(properties); if (!allocation.To(&prop)) return allocation; } JSObject::cast(clone)->set_properties(prop, wb_mode); } // Return the new clone. return clone; } static inline void WriteOneByteData(Vector vector, uint8_t* chars, int len) { // Only works for one byte strings. DCHECK(vector.length() == len); MemCopy(chars, vector.start(), len); } static inline void WriteTwoByteData(Vector vector, uint16_t* chars, int len) { const uint8_t* stream = reinterpret_cast(vector.start()); unsigned stream_length = vector.length(); while (stream_length != 0) { unsigned consumed = 0; uint32_t c = unibrow::Utf8::ValueOf(stream, stream_length, &consumed); DCHECK(c != unibrow::Utf8::kBadChar); DCHECK(consumed <= stream_length); stream_length -= consumed; stream += consumed; if (c > unibrow::Utf16::kMaxNonSurrogateCharCode) { len -= 2; if (len < 0) break; *chars++ = unibrow::Utf16::LeadSurrogate(c); *chars++ = unibrow::Utf16::TrailSurrogate(c); } else { len -= 1; if (len < 0) break; *chars++ = c; } } DCHECK(stream_length == 0); DCHECK(len == 0); } static inline void WriteOneByteData(String* s, uint8_t* chars, int len) { DCHECK(s->length() == len); String::WriteToFlat(s, chars, 0, len); } static inline void WriteTwoByteData(String* s, uint16_t* chars, int len) { DCHECK(s->length() == len); String::WriteToFlat(s, chars, 0, len); } template AllocationResult Heap::AllocateInternalizedStringImpl(T t, int chars, uint32_t hash_field) { DCHECK(chars >= 0); // Compute map and object size. int size; Map* map; DCHECK_LE(0, chars); DCHECK_GE(String::kMaxLength, chars); if (is_one_byte) { map = one_byte_internalized_string_map(); size = SeqOneByteString::SizeFor(chars); } else { map = internalized_string_map(); size = SeqTwoByteString::SizeFor(chars); } AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, TENURED); // Allocate string. HeapObject* result; { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE); if (!allocation.To(&result)) return allocation; } result->set_map_no_write_barrier(map); // Set length and hash fields of the allocated string. String* answer = String::cast(result); answer->set_length(chars); answer->set_hash_field(hash_field); DCHECK_EQ(size, answer->Size()); if (is_one_byte) { WriteOneByteData(t, SeqOneByteString::cast(answer)->GetChars(), chars); } else { WriteTwoByteData(t, SeqTwoByteString::cast(answer)->GetChars(), chars); } return answer; } // Need explicit instantiations. template AllocationResult Heap::AllocateInternalizedStringImpl(String*, int, uint32_t); template AllocationResult Heap::AllocateInternalizedStringImpl(String*, int, uint32_t); template AllocationResult Heap::AllocateInternalizedStringImpl( Vector, int, uint32_t); AllocationResult Heap::AllocateRawOneByteString(int length, PretenureFlag pretenure) { DCHECK_LE(0, length); DCHECK_GE(String::kMaxLength, length); int size = SeqOneByteString::SizeFor(length); DCHECK(size <= SeqOneByteString::kMaxSize); AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure); HeapObject* result; { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE); if (!allocation.To(&result)) return allocation; } // Partially initialize the object. result->set_map_no_write_barrier(one_byte_string_map()); String::cast(result)->set_length(length); String::cast(result)->set_hash_field(String::kEmptyHashField); DCHECK_EQ(size, HeapObject::cast(result)->Size()); return result; } AllocationResult Heap::AllocateRawTwoByteString(int length, PretenureFlag pretenure) { DCHECK_LE(0, length); DCHECK_GE(String::kMaxLength, length); int size = SeqTwoByteString::SizeFor(length); DCHECK(size <= SeqTwoByteString::kMaxSize); AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure); HeapObject* result; { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE); if (!allocation.To(&result)) return allocation; } // Partially initialize the object. result->set_map_no_write_barrier(string_map()); String::cast(result)->set_length(length); String::cast(result)->set_hash_field(String::kEmptyHashField); DCHECK_EQ(size, HeapObject::cast(result)->Size()); return result; } AllocationResult Heap::AllocateEmptyFixedArray() { int size = FixedArray::SizeFor(0); HeapObject* result; { AllocationResult allocation = AllocateRaw(size, OLD_DATA_SPACE, OLD_DATA_SPACE); if (!allocation.To(&result)) return allocation; } // Initialize the object. result->set_map_no_write_barrier(fixed_array_map()); FixedArray::cast(result)->set_length(0); return result; } AllocationResult Heap::AllocateEmptyExternalArray( ExternalArrayType array_type) { return AllocateExternalArray(0, array_type, NULL, TENURED); } AllocationResult Heap::CopyAndTenureFixedCOWArray(FixedArray* src) { if (!InNewSpace(src)) { return src; } int len = src->length(); HeapObject* obj; { AllocationResult allocation = AllocateRawFixedArray(len, TENURED); if (!allocation.To(&obj)) return allocation; } obj->set_map_no_write_barrier(fixed_array_map()); FixedArray* result = FixedArray::cast(obj); result->set_length(len); // Copy the content DisallowHeapAllocation no_gc; WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); for (int i = 0; i < len; i++) result->set(i, src->get(i), mode); // TODO(mvstanton): The map is set twice because of protection against calling // set() on a COW FixedArray. Issue v8:3221 created to track this, and // we might then be able to remove this whole method. HeapObject::cast(obj)->set_map_no_write_barrier(fixed_cow_array_map()); return result; } AllocationResult Heap::AllocateEmptyFixedTypedArray( ExternalArrayType array_type) { return AllocateFixedTypedArray(0, array_type, TENURED); } AllocationResult Heap::CopyFixedArrayWithMap(FixedArray* src, Map* map) { int len = src->length(); HeapObject* obj; { AllocationResult allocation = AllocateRawFixedArray(len, NOT_TENURED); if (!allocation.To(&obj)) return allocation; } if (InNewSpace(obj)) { obj->set_map_no_write_barrier(map); CopyBlock(obj->address() + kPointerSize, src->address() + kPointerSize, FixedArray::SizeFor(len) - kPointerSize); return obj; } obj->set_map_no_write_barrier(map); FixedArray* result = FixedArray::cast(obj); result->set_length(len); // Copy the content DisallowHeapAllocation no_gc; WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); for (int i = 0; i < len; i++) result->set(i, src->get(i), mode); return result; } AllocationResult Heap::CopyFixedDoubleArrayWithMap(FixedDoubleArray* src, Map* map) { int len = src->length(); HeapObject* obj; { AllocationResult allocation = AllocateRawFixedDoubleArray(len, NOT_TENURED); if (!allocation.To(&obj)) return allocation; } obj->set_map_no_write_barrier(map); CopyBlock(obj->address() + FixedDoubleArray::kLengthOffset, src->address() + FixedDoubleArray::kLengthOffset, FixedDoubleArray::SizeFor(len) - FixedDoubleArray::kLengthOffset); return obj; } AllocationResult Heap::CopyConstantPoolArrayWithMap(ConstantPoolArray* src, Map* map) { HeapObject* obj; if (src->is_extended_layout()) { ConstantPoolArray::NumberOfEntries small(src, ConstantPoolArray::SMALL_SECTION); ConstantPoolArray::NumberOfEntries extended( src, ConstantPoolArray::EXTENDED_SECTION); AllocationResult allocation = AllocateExtendedConstantPoolArray(small, extended); if (!allocation.To(&obj)) return allocation; } else { ConstantPoolArray::NumberOfEntries small(src, ConstantPoolArray::SMALL_SECTION); AllocationResult allocation = AllocateConstantPoolArray(small); if (!allocation.To(&obj)) return allocation; } obj->set_map_no_write_barrier(map); CopyBlock(obj->address() + ConstantPoolArray::kFirstEntryOffset, src->address() + ConstantPoolArray::kFirstEntryOffset, src->size() - ConstantPoolArray::kFirstEntryOffset); return obj; } AllocationResult Heap::AllocateRawFixedArray(int length, PretenureFlag pretenure) { if (length < 0 || length > FixedArray::kMaxLength) { v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", true); } int size = FixedArray::SizeFor(length); AllocationSpace space = SelectSpace(size, OLD_POINTER_SPACE, pretenure); return AllocateRaw(size, space, OLD_POINTER_SPACE); } AllocationResult Heap::AllocateFixedArrayWithFiller(int length, PretenureFlag pretenure, Object* filler) { DCHECK(length >= 0); DCHECK(empty_fixed_array()->IsFixedArray()); if (length == 0) return empty_fixed_array(); DCHECK(!InNewSpace(filler)); HeapObject* result; { AllocationResult allocation = AllocateRawFixedArray(length, pretenure); if (!allocation.To(&result)) return allocation; } result->set_map_no_write_barrier(fixed_array_map()); FixedArray* array = FixedArray::cast(result); array->set_length(length); MemsetPointer(array->data_start(), filler, length); return array; } AllocationResult Heap::AllocateFixedArray(int length, PretenureFlag pretenure) { return AllocateFixedArrayWithFiller(length, pretenure, undefined_value()); } AllocationResult Heap::AllocateUninitializedFixedArray(int length) { if (length == 0) return empty_fixed_array(); HeapObject* obj; { AllocationResult allocation = AllocateRawFixedArray(length, NOT_TENURED); if (!allocation.To(&obj)) return allocation; } obj->set_map_no_write_barrier(fixed_array_map()); FixedArray::cast(obj)->set_length(length); return obj; } AllocationResult Heap::AllocateUninitializedFixedDoubleArray( int length, PretenureFlag pretenure) { if (length == 0) return empty_fixed_array(); HeapObject* elements; AllocationResult allocation = AllocateRawFixedDoubleArray(length, pretenure); if (!allocation.To(&elements)) return allocation; elements->set_map_no_write_barrier(fixed_double_array_map()); FixedDoubleArray::cast(elements)->set_length(length); return elements; } AllocationResult Heap::AllocateRawFixedDoubleArray(int length, PretenureFlag pretenure) { if (length < 0 || length > FixedDoubleArray::kMaxLength) { v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", true); } int size = FixedDoubleArray::SizeFor(length); #ifndef V8_HOST_ARCH_64_BIT size += kPointerSize; #endif AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure); HeapObject* object; { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE); if (!allocation.To(&object)) return allocation; } return EnsureDoubleAligned(this, object, size); } AllocationResult Heap::AllocateConstantPoolArray( const ConstantPoolArray::NumberOfEntries& small) { CHECK(small.are_in_range(0, ConstantPoolArray::kMaxSmallEntriesPerType)); int size = ConstantPoolArray::SizeFor(small); #ifndef V8_HOST_ARCH_64_BIT size += kPointerSize; #endif AllocationSpace space = SelectSpace(size, OLD_POINTER_SPACE, TENURED); HeapObject* object; { AllocationResult allocation = AllocateRaw(size, space, OLD_POINTER_SPACE); if (!allocation.To(&object)) return allocation; } object = EnsureDoubleAligned(this, object, size); object->set_map_no_write_barrier(constant_pool_array_map()); ConstantPoolArray* constant_pool = ConstantPoolArray::cast(object); constant_pool->Init(small); constant_pool->ClearPtrEntries(isolate()); return constant_pool; } AllocationResult Heap::AllocateExtendedConstantPoolArray( const ConstantPoolArray::NumberOfEntries& small, const ConstantPoolArray::NumberOfEntries& extended) { CHECK(small.are_in_range(0, ConstantPoolArray::kMaxSmallEntriesPerType)); CHECK(extended.are_in_range(0, kMaxInt)); int size = ConstantPoolArray::SizeForExtended(small, extended); #ifndef V8_HOST_ARCH_64_BIT size += kPointerSize; #endif AllocationSpace space = SelectSpace(size, OLD_POINTER_SPACE, TENURED); HeapObject* object; { AllocationResult allocation = AllocateRaw(size, space, OLD_POINTER_SPACE); if (!allocation.To(&object)) return allocation; } object = EnsureDoubleAligned(this, object, size); object->set_map_no_write_barrier(constant_pool_array_map()); ConstantPoolArray* constant_pool = ConstantPoolArray::cast(object); constant_pool->InitExtended(small, extended); constant_pool->ClearPtrEntries(isolate()); return constant_pool; } AllocationResult Heap::AllocateEmptyConstantPoolArray() { ConstantPoolArray::NumberOfEntries small(0, 0, 0, 0); int size = ConstantPoolArray::SizeFor(small); HeapObject* result; { AllocationResult allocation = AllocateRaw(size, OLD_DATA_SPACE, OLD_DATA_SPACE); if (!allocation.To(&result)) return allocation; } result->set_map_no_write_barrier(constant_pool_array_map()); ConstantPoolArray::cast(result)->Init(small); return result; } AllocationResult Heap::AllocateSymbol() { // Statically ensure that it is safe to allocate symbols in paged spaces. STATIC_ASSERT(Symbol::kSize <= Page::kMaxRegularHeapObjectSize); HeapObject* result; AllocationResult allocation = AllocateRaw(Symbol::kSize, OLD_POINTER_SPACE, OLD_POINTER_SPACE); if (!allocation.To(&result)) return allocation; result->set_map_no_write_barrier(symbol_map()); // Generate a random hash value. int hash; int attempts = 0; do { hash = isolate()->random_number_generator()->NextInt() & Name::kHashBitMask; attempts++; } while (hash == 0 && attempts < 30); if (hash == 0) hash = 1; // never return 0 Symbol::cast(result) ->set_hash_field(Name::kIsNotArrayIndexMask | (hash << Name::kHashShift)); Symbol::cast(result)->set_name(undefined_value()); Symbol::cast(result)->set_flags(Smi::FromInt(0)); DCHECK(!Symbol::cast(result)->is_private()); return result; } AllocationResult Heap::AllocateStruct(InstanceType type) { Map* map; switch (type) { #define MAKE_CASE(NAME, Name, name) \ case NAME##_TYPE: \ map = name##_map(); \ break; STRUCT_LIST(MAKE_CASE) #undef MAKE_CASE default: UNREACHABLE(); return exception(); } int size = map->instance_size(); AllocationSpace space = SelectSpace(size, OLD_POINTER_SPACE, TENURED); Struct* result; { AllocationResult allocation = Allocate(map, space); if (!allocation.To(&result)) return allocation; } result->InitializeBody(size); return result; } bool Heap::IsHeapIterable() { // TODO(hpayer): This function is not correct. Allocation folding in old // space breaks the iterability. return new_space_top_after_last_gc_ == new_space()->top(); } void Heap::MakeHeapIterable() { DCHECK(AllowHeapAllocation::IsAllowed()); if (!IsHeapIterable()) { CollectAllGarbage(kMakeHeapIterableMask, "Heap::MakeHeapIterable"); } if (mark_compact_collector()->sweeping_in_progress()) { mark_compact_collector()->EnsureSweepingCompleted(); } DCHECK(IsHeapIterable()); } void Heap::IdleMarkCompact(const char* message) { bool uncommit = false; if (gc_count_at_last_idle_gc_ == gc_count_) { // No GC since the last full GC, the mutator is probably not active. isolate_->compilation_cache()->Clear(); uncommit = true; } CollectAllGarbage(kReduceMemoryFootprintMask, message); gc_idle_time_handler_.NotifyIdleMarkCompact(); gc_count_at_last_idle_gc_ = gc_count_; if (uncommit) { new_space_.Shrink(); UncommitFromSpace(); } } void Heap::AdvanceIdleIncrementalMarking(intptr_t step_size) { incremental_marking()->Step(step_size, IncrementalMarking::NO_GC_VIA_STACK_GUARD, true); if (incremental_marking()->IsComplete()) { IdleMarkCompact("idle notification: finalize incremental"); } } bool Heap::WorthActivatingIncrementalMarking() { return incremental_marking()->IsStopped() && incremental_marking()->WorthActivating() && NextGCIsLikelyToBeFull(); } bool Heap::IdleNotification(int idle_time_in_ms) { // If incremental marking is off, we do not perform idle notification. if (!FLAG_incremental_marking) return true; base::ElapsedTimer timer; timer.Start(); isolate()->counters()->gc_idle_time_allotted_in_ms()->AddSample( idle_time_in_ms); HistogramTimerScope idle_notification_scope( isolate_->counters()->gc_idle_notification()); GCIdleTimeHandler::HeapState heap_state; heap_state.contexts_disposed = contexts_disposed_; heap_state.size_of_objects = static_cast(SizeOfObjects()); heap_state.incremental_marking_stopped = incremental_marking()->IsStopped(); // TODO(ulan): Start incremental marking only for large heaps. heap_state.can_start_incremental_marking = incremental_marking()->ShouldActivate(); heap_state.sweeping_in_progress = mark_compact_collector()->sweeping_in_progress(); heap_state.mark_compact_speed_in_bytes_per_ms = static_cast(tracer()->MarkCompactSpeedInBytesPerMillisecond()); heap_state.incremental_marking_speed_in_bytes_per_ms = static_cast( tracer()->IncrementalMarkingSpeedInBytesPerMillisecond()); heap_state.scavenge_speed_in_bytes_per_ms = static_cast(tracer()->ScavengeSpeedInBytesPerMillisecond()); heap_state.available_new_space_memory = new_space_.Available(); heap_state.new_space_capacity = new_space_.Capacity(); heap_state.new_space_allocation_throughput_in_bytes_per_ms = static_cast( tracer()->NewSpaceAllocationThroughputInBytesPerMillisecond()); GCIdleTimeAction action = gc_idle_time_handler_.Compute(idle_time_in_ms, heap_state); bool result = false; switch (action.type) { case DONE: result = true; break; case DO_INCREMENTAL_MARKING: if (incremental_marking()->IsStopped()) { incremental_marking()->Start(); } AdvanceIdleIncrementalMarking(action.parameter); break; case DO_FULL_GC: { HistogramTimerScope scope(isolate_->counters()->gc_context()); if (contexts_disposed_) { CollectAllGarbage(kReduceMemoryFootprintMask, "idle notification: contexts disposed"); gc_idle_time_handler_.NotifyIdleMarkCompact(); gc_count_at_last_idle_gc_ = gc_count_; } else { IdleMarkCompact("idle notification: finalize idle round"); } break; } case DO_SCAVENGE: CollectGarbage(NEW_SPACE, "idle notification: scavenge"); break; case DO_FINALIZE_SWEEPING: mark_compact_collector()->EnsureSweepingCompleted(); break; case DO_NOTHING: break; } int actual_time_ms = static_cast(timer.Elapsed().InMilliseconds()); if (actual_time_ms <= idle_time_in_ms) { isolate()->counters()->gc_idle_time_limit_undershot()->AddSample( idle_time_in_ms - actual_time_ms); } else { isolate()->counters()->gc_idle_time_limit_overshot()->AddSample( actual_time_ms - idle_time_in_ms); } if (FLAG_trace_idle_notification) { PrintF("Idle notification: requested idle time %d ms, actual time %d ms [", idle_time_in_ms, actual_time_ms); action.Print(); PrintF("]\n"); } contexts_disposed_ = 0; return result; } #ifdef DEBUG void Heap::Print() { if (!HasBeenSetUp()) return; isolate()->PrintStack(stdout); AllSpaces spaces(this); for (Space* space = spaces.next(); space != NULL; space = spaces.next()) { space->Print(); } } void Heap::ReportCodeStatistics(const char* title) { PrintF(">>>>>> Code Stats (%s) >>>>>>\n", title); PagedSpace::ResetCodeStatistics(isolate()); // We do not look for code in new space, map space, or old space. If code // somehow ends up in those spaces, we would miss it here. code_space_->CollectCodeStatistics(); lo_space_->CollectCodeStatistics(); PagedSpace::ReportCodeStatistics(isolate()); } // This function expects that NewSpace's allocated objects histogram is // populated (via a call to CollectStatistics or else as a side effect of a // just-completed scavenge collection). void Heap::ReportHeapStatistics(const char* title) { USE(title); PrintF(">>>>>> =============== %s (%d) =============== >>>>>>\n", title, gc_count_); PrintF("old_generation_allocation_limit_ %" V8_PTR_PREFIX "d\n", old_generation_allocation_limit_); PrintF("\n"); PrintF("Number of handles : %d\n", HandleScope::NumberOfHandles(isolate_)); isolate_->global_handles()->PrintStats(); PrintF("\n"); PrintF("Heap statistics : "); isolate_->memory_allocator()->ReportStatistics(); PrintF("To space : "); new_space_.ReportStatistics(); PrintF("Old pointer space : "); old_pointer_space_->ReportStatistics(); PrintF("Old data space : "); old_data_space_->ReportStatistics(); PrintF("Code space : "); code_space_->ReportStatistics(); PrintF("Map space : "); map_space_->ReportStatistics(); PrintF("Cell space : "); cell_space_->ReportStatistics(); PrintF("PropertyCell space : "); property_cell_space_->ReportStatistics(); PrintF("Large object space : "); lo_space_->ReportStatistics(); PrintF(">>>>>> ========================================= >>>>>>\n"); } #endif // DEBUG bool Heap::Contains(HeapObject* value) { return Contains(value->address()); } bool Heap::Contains(Address addr) { if (isolate_->memory_allocator()->IsOutsideAllocatedSpace(addr)) return false; return HasBeenSetUp() && (new_space_.ToSpaceContains(addr) || old_pointer_space_->Contains(addr) || old_data_space_->Contains(addr) || code_space_->Contains(addr) || map_space_->Contains(addr) || cell_space_->Contains(addr) || property_cell_space_->Contains(addr) || lo_space_->SlowContains(addr)); } bool Heap::InSpace(HeapObject* value, AllocationSpace space) { return InSpace(value->address(), space); } bool Heap::InSpace(Address addr, AllocationSpace space) { if (isolate_->memory_allocator()->IsOutsideAllocatedSpace(addr)) return false; if (!HasBeenSetUp()) return false; switch (space) { case NEW_SPACE: return new_space_.ToSpaceContains(addr); case OLD_POINTER_SPACE: return old_pointer_space_->Contains(addr); case OLD_DATA_SPACE: return old_data_space_->Contains(addr); case CODE_SPACE: return code_space_->Contains(addr); case MAP_SPACE: return map_space_->Contains(addr); case CELL_SPACE: return cell_space_->Contains(addr); case PROPERTY_CELL_SPACE: return property_cell_space_->Contains(addr); case LO_SPACE: return lo_space_->SlowContains(addr); case INVALID_SPACE: break; } UNREACHABLE(); return false; } #ifdef VERIFY_HEAP void Heap::Verify() { CHECK(HasBeenSetUp()); HandleScope scope(isolate()); store_buffer()->Verify(); if (mark_compact_collector()->sweeping_in_progress()) { // We have to wait here for the sweeper threads to have an iterable heap. mark_compact_collector()->EnsureSweepingCompleted(); } VerifyPointersVisitor visitor; IterateRoots(&visitor, VISIT_ONLY_STRONG); VerifySmisVisitor smis_visitor; IterateSmiRoots(&smis_visitor); new_space_.Verify(); old_pointer_space_->Verify(&visitor); map_space_->Verify(&visitor); VerifyPointersVisitor no_dirty_regions_visitor; old_data_space_->Verify(&no_dirty_regions_visitor); code_space_->Verify(&no_dirty_regions_visitor); cell_space_->Verify(&no_dirty_regions_visitor); property_cell_space_->Verify(&no_dirty_regions_visitor); lo_space_->Verify(); } #endif void Heap::ZapFromSpace() { NewSpacePageIterator it(new_space_.FromSpaceStart(), new_space_.FromSpaceEnd()); while (it.has_next()) { NewSpacePage* page = it.next(); for (Address cursor = page->area_start(), limit = page->area_end(); cursor < limit; cursor += kPointerSize) { Memory::Address_at(cursor) = kFromSpaceZapValue; } } } void Heap::IterateAndMarkPointersToFromSpace(Address start, Address end, ObjectSlotCallback callback) { Address slot_address = start; // We are not collecting slots on new space objects during mutation // thus we have to scan for pointers to evacuation candidates when we // promote objects. But we should not record any slots in non-black // objects. Grey object's slots would be rescanned. // White object might not survive until the end of collection // it would be a violation of the invariant to record it's slots. bool record_slots = false; if (incremental_marking()->IsCompacting()) { MarkBit mark_bit = Marking::MarkBitFrom(HeapObject::FromAddress(start)); record_slots = Marking::IsBlack(mark_bit); } while (slot_address < end) { Object** slot = reinterpret_cast(slot_address); Object* object = *slot; // If the store buffer becomes overfull we mark pages as being exempt from // the store buffer. These pages are scanned to find pointers that point // to the new space. In that case we may hit newly promoted objects and // fix the pointers before the promotion queue gets to them. Thus the 'if'. if (object->IsHeapObject()) { if (Heap::InFromSpace(object)) { callback(reinterpret_cast(slot), HeapObject::cast(object)); Object* new_object = *slot; if (InNewSpace(new_object)) { SLOW_DCHECK(Heap::InToSpace(new_object)); SLOW_DCHECK(new_object->IsHeapObject()); store_buffer_.EnterDirectlyIntoStoreBuffer( reinterpret_cast
(slot)); } SLOW_DCHECK(!MarkCompactCollector::IsOnEvacuationCandidate(new_object)); } else if (record_slots && MarkCompactCollector::IsOnEvacuationCandidate(object)) { mark_compact_collector()->RecordSlot(slot, slot, object); } } slot_address += kPointerSize; } } #ifdef DEBUG typedef bool (*CheckStoreBufferFilter)(Object** addr); bool IsAMapPointerAddress(Object** addr) { uintptr_t a = reinterpret_cast(addr); int mod = a % Map::kSize; return mod >= Map::kPointerFieldsBeginOffset && mod < Map::kPointerFieldsEndOffset; } bool EverythingsAPointer(Object** addr) { return true; } static void CheckStoreBuffer(Heap* heap, Object** current, Object** limit, Object**** store_buffer_position, Object*** store_buffer_top, CheckStoreBufferFilter filter, Address special_garbage_start, Address special_garbage_end) { Map* free_space_map = heap->free_space_map(); for (; current < limit; current++) { Object* o = *current; Address current_address = reinterpret_cast
(current); // Skip free space. if (o == free_space_map) { Address current_address = reinterpret_cast
(current); FreeSpace* free_space = FreeSpace::cast(HeapObject::FromAddress(current_address)); int skip = free_space->Size(); DCHECK(current_address + skip <= reinterpret_cast
(limit)); DCHECK(skip > 0); current_address += skip - kPointerSize; current = reinterpret_cast(current_address); continue; } // Skip the current linear allocation space between top and limit which is // unmarked with the free space map, but can contain junk. if (current_address == special_garbage_start && special_garbage_end != special_garbage_start) { current_address = special_garbage_end - kPointerSize; current = reinterpret_cast(current_address); continue; } if (!(*filter)(current)) continue; DCHECK(current_address < special_garbage_start || current_address >= special_garbage_end); DCHECK(reinterpret_cast(o) != kFreeListZapValue); // We have to check that the pointer does not point into new space // without trying to cast it to a heap object since the hash field of // a string can contain values like 1 and 3 which are tagged null // pointers. if (!heap->InNewSpace(o)) continue; while (**store_buffer_position < current && *store_buffer_position < store_buffer_top) { (*store_buffer_position)++; } if (**store_buffer_position != current || *store_buffer_position == store_buffer_top) { Object** obj_start = current; while (!(*obj_start)->IsMap()) obj_start--; UNREACHABLE(); } } } // Check that the store buffer contains all intergenerational pointers by // scanning a page and ensuring that all pointers to young space are in the // store buffer. void Heap::OldPointerSpaceCheckStoreBuffer() { OldSpace* space = old_pointer_space(); PageIterator pages(space); store_buffer()->SortUniq(); while (pages.has_next()) { Page* page = pages.next(); Object** current = reinterpret_cast(page->area_start()); Address end = page->area_end(); Object*** store_buffer_position = store_buffer()->Start(); Object*** store_buffer_top = store_buffer()->Top(); Object** limit = reinterpret_cast(end); CheckStoreBuffer(this, current, limit, &store_buffer_position, store_buffer_top, &EverythingsAPointer, space->top(), space->limit()); } } void Heap::MapSpaceCheckStoreBuffer() { MapSpace* space = map_space(); PageIterator pages(space); store_buffer()->SortUniq(); while (pages.has_next()) { Page* page = pages.next(); Object** current = reinterpret_cast(page->area_start()); Address end = page->area_end(); Object*** store_buffer_position = store_buffer()->Start(); Object*** store_buffer_top = store_buffer()->Top(); Object** limit = reinterpret_cast(end); CheckStoreBuffer(this, current, limit, &store_buffer_position, store_buffer_top, &IsAMapPointerAddress, space->top(), space->limit()); } } void Heap::LargeObjectSpaceCheckStoreBuffer() { LargeObjectIterator it(lo_space()); for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) { // We only have code, sequential strings, or fixed arrays in large // object space, and only fixed arrays can possibly contain pointers to // the young generation. if (object->IsFixedArray()) { Object*** store_buffer_position = store_buffer()->Start(); Object*** store_buffer_top = store_buffer()->Top(); Object** current = reinterpret_cast(object->address()); Object** limit = reinterpret_cast(object->address() + object->Size()); CheckStoreBuffer(this, current, limit, &store_buffer_position, store_buffer_top, &EverythingsAPointer, NULL, NULL); } } } #endif void Heap::IterateRoots(ObjectVisitor* v, VisitMode mode) { IterateStrongRoots(v, mode); IterateWeakRoots(v, mode); } void Heap::IterateWeakRoots(ObjectVisitor* v, VisitMode mode) { v->VisitPointer(reinterpret_cast(&roots_[kStringTableRootIndex])); v->Synchronize(VisitorSynchronization::kStringTable); if (mode != VISIT_ALL_IN_SCAVENGE && mode != VISIT_ALL_IN_SWEEP_NEWSPACE) { // Scavenge collections have special processing for this. external_string_table_.Iterate(v); } v->Synchronize(VisitorSynchronization::kExternalStringsTable); } void Heap::IterateSmiRoots(ObjectVisitor* v) { // Acquire execution access since we are going to read stack limit values. ExecutionAccess access(isolate()); v->VisitPointers(&roots_[kSmiRootsStart], &roots_[kRootListLength]); v->Synchronize(VisitorSynchronization::kSmiRootList); } void Heap::IterateStrongRoots(ObjectVisitor* v, VisitMode mode) { v->VisitPointers(&roots_[0], &roots_[kStrongRootListLength]); v->Synchronize(VisitorSynchronization::kStrongRootList); v->VisitPointer(bit_cast(&hidden_string_)); v->Synchronize(VisitorSynchronization::kInternalizedString); isolate_->bootstrapper()->Iterate(v); v->Synchronize(VisitorSynchronization::kBootstrapper); isolate_->Iterate(v); v->Synchronize(VisitorSynchronization::kTop); Relocatable::Iterate(isolate_, v); v->Synchronize(VisitorSynchronization::kRelocatable); if (isolate_->deoptimizer_data() != NULL) { isolate_->deoptimizer_data()->Iterate(v); } v->Synchronize(VisitorSynchronization::kDebug); isolate_->compilation_cache()->Iterate(v); v->Synchronize(VisitorSynchronization::kCompilationCache); // Iterate over local handles in handle scopes. isolate_->handle_scope_implementer()->Iterate(v); isolate_->IterateDeferredHandles(v); v->Synchronize(VisitorSynchronization::kHandleScope); // Iterate over the builtin code objects and code stubs in the // heap. Note that it is not necessary to iterate over code objects // on scavenge collections. if (mode != VISIT_ALL_IN_SCAVENGE) { isolate_->builtins()->IterateBuiltins(v); } v->Synchronize(VisitorSynchronization::kBuiltins); // Iterate over global handles. switch (mode) { case VISIT_ONLY_STRONG: isolate_->global_handles()->IterateStrongRoots(v); break; case VISIT_ALL_IN_SCAVENGE: isolate_->global_handles()->IterateNewSpaceStrongAndDependentRoots(v); break; case VISIT_ALL_IN_SWEEP_NEWSPACE: case VISIT_ALL: isolate_->global_handles()->IterateAllRoots(v); break; } v->Synchronize(VisitorSynchronization::kGlobalHandles); // Iterate over eternal handles. if (mode == VISIT_ALL_IN_SCAVENGE) { isolate_->eternal_handles()->IterateNewSpaceRoots(v); } else { isolate_->eternal_handles()->IterateAllRoots(v); } v->Synchronize(VisitorSynchronization::kEternalHandles); // Iterate over pointers being held by inactive threads. isolate_->thread_manager()->Iterate(v); v->Synchronize(VisitorSynchronization::kThreadManager); // Iterate over the pointers the Serialization/Deserialization code is // holding. // During garbage collection this keeps the partial snapshot cache alive. // During deserialization of the startup snapshot this creates the partial // snapshot cache and deserializes the objects it refers to. During // serialization this does nothing, since the partial snapshot cache is // empty. However the next thing we do is create the partial snapshot, // filling up the partial snapshot cache with objects it needs as we go. SerializerDeserializer::Iterate(isolate_, v); // We don't do a v->Synchronize call here, because in debug mode that will // output a flag to the snapshot. However at this point the serializer and // deserializer are deliberately a little unsynchronized (see above) so the // checking of the sync flag in the snapshot would fail. } // TODO(1236194): Since the heap size is configurable on the command line // and through the API, we should gracefully handle the case that the heap // size is not big enough to fit all the initial objects. bool Heap::ConfigureHeap(int max_semi_space_size, int max_old_space_size, int max_executable_size, size_t code_range_size) { if (HasBeenSetUp()) return false; // Overwrite default configuration. if (max_semi_space_size > 0) { max_semi_space_size_ = max_semi_space_size * MB; } if (max_old_space_size > 0) { max_old_generation_size_ = max_old_space_size * MB; } if (max_executable_size > 0) { max_executable_size_ = max_executable_size * MB; } // If max space size flags are specified overwrite the configuration. if (FLAG_max_semi_space_size > 0) { max_semi_space_size_ = FLAG_max_semi_space_size * MB; } if (FLAG_max_old_space_size > 0) { max_old_generation_size_ = FLAG_max_old_space_size * MB; } if (FLAG_max_executable_size > 0) { max_executable_size_ = FLAG_max_executable_size * MB; } if (FLAG_stress_compaction) { // This will cause more frequent GCs when stressing. max_semi_space_size_ = Page::kPageSize; } if (Snapshot::HaveASnapshotToStartFrom()) { // If we are using a snapshot we always reserve the default amount // of memory for each semispace because code in the snapshot has // write-barrier code that relies on the size and alignment of new // space. We therefore cannot use a larger max semispace size // than the default reserved semispace size. if (max_semi_space_size_ > reserved_semispace_size_) { max_semi_space_size_ = reserved_semispace_size_; if (FLAG_trace_gc) { PrintPID("Max semi-space size cannot be more than %d kbytes\n", reserved_semispace_size_ >> 10); } } } else { // If we are not using snapshots we reserve space for the actual // max semispace size. reserved_semispace_size_ = max_semi_space_size_; } // The max executable size must be less than or equal to the max old // generation size. if (max_executable_size_ > max_old_generation_size_) { max_executable_size_ = max_old_generation_size_; } // The new space size must be a power of two to support single-bit testing // for containment. max_semi_space_size_ = base::bits::RoundUpToPowerOfTwo32(max_semi_space_size_); reserved_semispace_size_ = base::bits::RoundUpToPowerOfTwo32(reserved_semispace_size_); if (FLAG_min_semi_space_size > 0) { int initial_semispace_size = FLAG_min_semi_space_size * MB; if (initial_semispace_size > max_semi_space_size_) { initial_semispace_size_ = max_semi_space_size_; if (FLAG_trace_gc) { PrintPID( "Min semi-space size cannot be more than the maximum" "semi-space size of %d MB\n", max_semi_space_size_); } } else { initial_semispace_size_ = initial_semispace_size; } } initial_semispace_size_ = Min(initial_semispace_size_, max_semi_space_size_); // The old generation is paged and needs at least one page for each space. int paged_space_count = LAST_PAGED_SPACE - FIRST_PAGED_SPACE + 1; max_old_generation_size_ = Max(static_cast(paged_space_count * Page::kPageSize), max_old_generation_size_); // We rely on being able to allocate new arrays in paged spaces. DCHECK(Page::kMaxRegularHeapObjectSize >= (JSArray::kSize + FixedArray::SizeFor(JSObject::kInitialMaxFastElementArray) + AllocationMemento::kSize)); code_range_size_ = code_range_size * MB; configured_ = true; return true; } bool Heap::ConfigureHeapDefault() { return ConfigureHeap(0, 0, 0, 0); } void Heap::RecordStats(HeapStats* stats, bool take_snapshot) { *stats->start_marker = HeapStats::kStartMarker; *stats->end_marker = HeapStats::kEndMarker; *stats->new_space_size = new_space_.SizeAsInt(); *stats->new_space_capacity = static_cast(new_space_.Capacity()); *stats->old_pointer_space_size = old_pointer_space_->SizeOfObjects(); *stats->old_pointer_space_capacity = old_pointer_space_->Capacity(); *stats->old_data_space_size = old_data_space_->SizeOfObjects(); *stats->old_data_space_capacity = old_data_space_->Capacity(); *stats->code_space_size = code_space_->SizeOfObjects(); *stats->code_space_capacity = code_space_->Capacity(); *stats->map_space_size = map_space_->SizeOfObjects(); *stats->map_space_capacity = map_space_->Capacity(); *stats->cell_space_size = cell_space_->SizeOfObjects(); *stats->cell_space_capacity = cell_space_->Capacity(); *stats->property_cell_space_size = property_cell_space_->SizeOfObjects(); *stats->property_cell_space_capacity = property_cell_space_->Capacity(); *stats->lo_space_size = lo_space_->Size(); isolate_->global_handles()->RecordStats(stats); *stats->memory_allocator_size = isolate()->memory_allocator()->Size(); *stats->memory_allocator_capacity = isolate()->memory_allocator()->Size() + isolate()->memory_allocator()->Available(); *stats->os_error = base::OS::GetLastError(); isolate()->memory_allocator()->Available(); if (take_snapshot) { HeapIterator iterator(this); for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { InstanceType type = obj->map()->instance_type(); DCHECK(0 <= type && type <= LAST_TYPE); stats->objects_per_type[type]++; stats->size_per_type[type] += obj->Size(); } } } intptr_t Heap::PromotedSpaceSizeOfObjects() { return old_pointer_space_->SizeOfObjects() + old_data_space_->SizeOfObjects() + code_space_->SizeOfObjects() + map_space_->SizeOfObjects() + cell_space_->SizeOfObjects() + property_cell_space_->SizeOfObjects() + lo_space_->SizeOfObjects(); } int64_t Heap::PromotedExternalMemorySize() { if (amount_of_external_allocated_memory_ <= amount_of_external_allocated_memory_at_last_global_gc_) return 0; return amount_of_external_allocated_memory_ - amount_of_external_allocated_memory_at_last_global_gc_; } intptr_t Heap::OldGenerationAllocationLimit(intptr_t old_gen_size, int freed_global_handles) { const int kMaxHandles = 1000; const int kMinHandles = 100; double min_factor = 1.1; double max_factor = 4; // We set the old generation growing factor to 2 to grow the heap slower on // memory-constrained devices. if (max_old_generation_size_ <= kMaxOldSpaceSizeMediumMemoryDevice) { max_factor = 2; } // If there are many freed global handles, then the next full GC will // likely collect a lot of garbage. Choose the heap growing factor // depending on freed global handles. // TODO(ulan, hpayer): Take into account mutator utilization. double factor; if (freed_global_handles <= kMinHandles) { factor = max_factor; } else if (freed_global_handles >= kMaxHandles) { factor = min_factor; } else { // Compute factor using linear interpolation between points // (kMinHandles, max_factor) and (kMaxHandles, min_factor). factor = max_factor - (freed_global_handles - kMinHandles) * (max_factor - min_factor) / (kMaxHandles - kMinHandles); } if (FLAG_stress_compaction || mark_compact_collector()->reduce_memory_footprint_) { factor = min_factor; } intptr_t limit = static_cast(old_gen_size * factor); limit = Max(limit, kMinimumOldGenerationAllocationLimit); limit += new_space_.Capacity(); intptr_t halfway_to_the_max = (old_gen_size + max_old_generation_size_) / 2; return Min(limit, halfway_to_the_max); } void Heap::EnableInlineAllocation() { if (!inline_allocation_disabled_) return; inline_allocation_disabled_ = false; // Update inline allocation limit for new space. new_space()->UpdateInlineAllocationLimit(0); } void Heap::DisableInlineAllocation() { if (inline_allocation_disabled_) return; inline_allocation_disabled_ = true; // Update inline allocation limit for new space. new_space()->UpdateInlineAllocationLimit(0); // Update inline allocation limit for old spaces. PagedSpaces spaces(this); for (PagedSpace* space = spaces.next(); space != NULL; space = spaces.next()) { space->EmptyAllocationInfo(); } } V8_DECLARE_ONCE(initialize_gc_once); static void InitializeGCOnce() { InitializeScavengingVisitorsTables(); NewSpaceScavenger::Initialize(); MarkCompactCollector::Initialize(); } bool Heap::SetUp() { #ifdef DEBUG allocation_timeout_ = FLAG_gc_interval; #endif // Initialize heap spaces and initial maps and objects. Whenever something // goes wrong, just return false. The caller should check the results and // call Heap::TearDown() to release allocated memory. // // If the heap is not yet configured (e.g. through the API), configure it. // Configuration is based on the flags new-space-size (really the semispace // size) and old-space-size if set or the initial values of semispace_size_ // and old_generation_size_ otherwise. if (!configured_) { if (!ConfigureHeapDefault()) return false; } base::CallOnce(&initialize_gc_once, &InitializeGCOnce); MarkMapPointersAsEncoded(false); // Set up memory allocator. if (!isolate_->memory_allocator()->SetUp(MaxReserved(), MaxExecutableSize())) return false; // Set up new space. if (!new_space_.SetUp(reserved_semispace_size_, max_semi_space_size_)) { return false; } new_space_top_after_last_gc_ = new_space()->top(); // Initialize old pointer space. old_pointer_space_ = new OldSpace(this, max_old_generation_size_, OLD_POINTER_SPACE, NOT_EXECUTABLE); if (old_pointer_space_ == NULL) return false; if (!old_pointer_space_->SetUp()) return false; // Initialize old data space. old_data_space_ = new OldSpace(this, max_old_generation_size_, OLD_DATA_SPACE, NOT_EXECUTABLE); if (old_data_space_ == NULL) return false; if (!old_data_space_->SetUp()) return false; if (!isolate_->code_range()->SetUp(code_range_size_)) return false; // Initialize the code space, set its maximum capacity to the old // generation size. It needs executable memory. code_space_ = new OldSpace(this, max_old_generation_size_, CODE_SPACE, EXECUTABLE); if (code_space_ == NULL) return false; if (!code_space_->SetUp()) return false; // Initialize map space. map_space_ = new MapSpace(this, max_old_generation_size_, MAP_SPACE); if (map_space_ == NULL) return false; if (!map_space_->SetUp()) return false; // Initialize simple cell space. cell_space_ = new CellSpace(this, max_old_generation_size_, CELL_SPACE); if (cell_space_ == NULL) return false; if (!cell_space_->SetUp()) return false; // Initialize global property cell space. property_cell_space_ = new PropertyCellSpace(this, max_old_generation_size_, PROPERTY_CELL_SPACE); if (property_cell_space_ == NULL) return false; if (!property_cell_space_->SetUp()) return false; // The large object code space may contain code or data. We set the memory // to be non-executable here for safety, but this means we need to enable it // explicitly when allocating large code objects. lo_space_ = new LargeObjectSpace(this, max_old_generation_size_, LO_SPACE); if (lo_space_ == NULL) return false; if (!lo_space_->SetUp()) return false; // Set up the seed that is used to randomize the string hash function. DCHECK(hash_seed() == 0); if (FLAG_randomize_hashes) { if (FLAG_hash_seed == 0) { int rnd = isolate()->random_number_generator()->NextInt(); set_hash_seed(Smi::FromInt(rnd & Name::kHashBitMask)); } else { set_hash_seed(Smi::FromInt(FLAG_hash_seed)); } } LOG(isolate_, IntPtrTEvent("heap-capacity", Capacity())); LOG(isolate_, IntPtrTEvent("heap-available", Available())); store_buffer()->SetUp(); mark_compact_collector()->SetUp(); return true; } bool Heap::CreateHeapObjects() { // Create initial maps. if (!CreateInitialMaps()) return false; CreateApiObjects(); // Create initial objects CreateInitialObjects(); CHECK_EQ(0, gc_count_); set_native_contexts_list(undefined_value()); set_array_buffers_list(undefined_value()); set_allocation_sites_list(undefined_value()); weak_object_to_code_table_ = undefined_value(); return true; } void Heap::SetStackLimits() { DCHECK(isolate_ != NULL); DCHECK(isolate_ == isolate()); // On 64 bit machines, pointers are generally out of range of Smis. We write // something that looks like an out of range Smi to the GC. // Set up the special root array entries containing the stack limits. // These are actually addresses, but the tag makes the GC ignore it. roots_[kStackLimitRootIndex] = reinterpret_cast( (isolate_->stack_guard()->jslimit() & ~kSmiTagMask) | kSmiTag); roots_[kRealStackLimitRootIndex] = reinterpret_cast( (isolate_->stack_guard()->real_jslimit() & ~kSmiTagMask) | kSmiTag); } void Heap::TearDown() { #ifdef VERIFY_HEAP if (FLAG_verify_heap) { Verify(); } #endif UpdateMaximumCommitted(); if (FLAG_print_cumulative_gc_stat) { PrintF("\n"); PrintF("gc_count=%d ", gc_count_); PrintF("mark_sweep_count=%d ", ms_count_); PrintF("max_gc_pause=%.1f ", get_max_gc_pause()); PrintF("total_gc_time=%.1f ", total_gc_time_ms_); PrintF("min_in_mutator=%.1f ", get_min_in_mutator()); PrintF("max_alive_after_gc=%" V8_PTR_PREFIX "d ", get_max_alive_after_gc()); PrintF("total_marking_time=%.1f ", tracer_.cumulative_sweeping_duration()); PrintF("total_sweeping_time=%.1f ", tracer_.cumulative_sweeping_duration()); PrintF("\n\n"); } if (FLAG_print_max_heap_committed) { PrintF("\n"); PrintF("maximum_committed_by_heap=%" V8_PTR_PREFIX "d ", MaximumCommittedMemory()); PrintF("maximum_committed_by_new_space=%" V8_PTR_PREFIX "d ", new_space_.MaximumCommittedMemory()); PrintF("maximum_committed_by_old_pointer_space=%" V8_PTR_PREFIX "d ", old_data_space_->MaximumCommittedMemory()); PrintF("maximum_committed_by_old_data_space=%" V8_PTR_PREFIX "d ", old_pointer_space_->MaximumCommittedMemory()); PrintF("maximum_committed_by_old_data_space=%" V8_PTR_PREFIX "d ", old_pointer_space_->MaximumCommittedMemory()); PrintF("maximum_committed_by_code_space=%" V8_PTR_PREFIX "d ", code_space_->MaximumCommittedMemory()); PrintF("maximum_committed_by_map_space=%" V8_PTR_PREFIX "d ", map_space_->MaximumCommittedMemory()); PrintF("maximum_committed_by_cell_space=%" V8_PTR_PREFIX "d ", cell_space_->MaximumCommittedMemory()); PrintF("maximum_committed_by_property_space=%" V8_PTR_PREFIX "d ", property_cell_space_->MaximumCommittedMemory()); PrintF("maximum_committed_by_lo_space=%" V8_PTR_PREFIX "d ", lo_space_->MaximumCommittedMemory()); PrintF("\n\n"); } if (FLAG_verify_predictable) { PrintAlloctionsHash(); } TearDownArrayBuffers(); isolate_->global_handles()->TearDown(); external_string_table_.TearDown(); mark_compact_collector()->TearDown(); new_space_.TearDown(); if (old_pointer_space_ != NULL) { old_pointer_space_->TearDown(); delete old_pointer_space_; old_pointer_space_ = NULL; } if (old_data_space_ != NULL) { old_data_space_->TearDown(); delete old_data_space_; old_data_space_ = NULL; } if (code_space_ != NULL) { code_space_->TearDown(); delete code_space_; code_space_ = NULL; } if (map_space_ != NULL) { map_space_->TearDown(); delete map_space_; map_space_ = NULL; } if (cell_space_ != NULL) { cell_space_->TearDown(); delete cell_space_; cell_space_ = NULL; } if (property_cell_space_ != NULL) { property_cell_space_->TearDown(); delete property_cell_space_; property_cell_space_ = NULL; } if (lo_space_ != NULL) { lo_space_->TearDown(); delete lo_space_; lo_space_ = NULL; } store_buffer()->TearDown(); incremental_marking()->TearDown(); isolate_->memory_allocator()->TearDown(); } void Heap::AddGCPrologueCallback(v8::Isolate::GCPrologueCallback callback, GCType gc_type, bool pass_isolate) { DCHECK(callback != NULL); GCPrologueCallbackPair pair(callback, gc_type, pass_isolate); DCHECK(!gc_prologue_callbacks_.Contains(pair)); return gc_prologue_callbacks_.Add(pair); } void Heap::RemoveGCPrologueCallback(v8::Isolate::GCPrologueCallback callback) { DCHECK(callback != NULL); for (int i = 0; i < gc_prologue_callbacks_.length(); ++i) { if (gc_prologue_callbacks_[i].callback == callback) { gc_prologue_callbacks_.Remove(i); return; } } UNREACHABLE(); } void Heap::AddGCEpilogueCallback(v8::Isolate::GCEpilogueCallback callback, GCType gc_type, bool pass_isolate) { DCHECK(callback != NULL); GCEpilogueCallbackPair pair(callback, gc_type, pass_isolate); DCHECK(!gc_epilogue_callbacks_.Contains(pair)); return gc_epilogue_callbacks_.Add(pair); } void Heap::RemoveGCEpilogueCallback(v8::Isolate::GCEpilogueCallback callback) { DCHECK(callback != NULL); for (int i = 0; i < gc_epilogue_callbacks_.length(); ++i) { if (gc_epilogue_callbacks_[i].callback == callback) { gc_epilogue_callbacks_.Remove(i); return; } } UNREACHABLE(); } // TODO(ishell): Find a better place for this. void Heap::AddWeakObjectToCodeDependency(Handle obj, Handle dep) { DCHECK(!InNewSpace(*obj)); DCHECK(!InNewSpace(*dep)); // This handle scope keeps the table handle local to this function, which // allows us to safely skip write barriers in table update operations. HandleScope scope(isolate()); Handle table(WeakHashTable::cast(weak_object_to_code_table_), isolate()); table = WeakHashTable::Put(table, obj, dep); if (ShouldZapGarbage() && weak_object_to_code_table_ != *table) { WeakHashTable::cast(weak_object_to_code_table_)->Zap(the_hole_value()); } set_weak_object_to_code_table(*table); DCHECK_EQ(*dep, table->Lookup(obj)); } DependentCode* Heap::LookupWeakObjectToCodeDependency(Handle obj) { Object* dep = WeakHashTable::cast(weak_object_to_code_table_)->Lookup(obj); if (dep->IsDependentCode()) return DependentCode::cast(dep); return DependentCode::cast(empty_fixed_array()); } void Heap::EnsureWeakObjectToCodeTable() { if (!weak_object_to_code_table()->IsHashTable()) { set_weak_object_to_code_table( *WeakHashTable::New(isolate(), 16, USE_DEFAULT_MINIMUM_CAPACITY, TENURED)); } } void Heap::FatalProcessOutOfMemory(const char* location, bool take_snapshot) { v8::internal::V8::FatalProcessOutOfMemory(location, take_snapshot); } #ifdef DEBUG class PrintHandleVisitor : public ObjectVisitor { public: void VisitPointers(Object** start, Object** end) { for (Object** p = start; p < end; p++) PrintF(" handle %p to %p\n", reinterpret_cast(p), reinterpret_cast(*p)); } }; void Heap::PrintHandles() { PrintF("Handles:\n"); PrintHandleVisitor v; isolate_->handle_scope_implementer()->Iterate(&v); } #endif Space* AllSpaces::next() { switch (counter_++) { case NEW_SPACE: return heap_->new_space(); case OLD_POINTER_SPACE: return heap_->old_pointer_space(); case OLD_DATA_SPACE: return heap_->old_data_space(); case CODE_SPACE: return heap_->code_space(); case MAP_SPACE: return heap_->map_space(); case CELL_SPACE: return heap_->cell_space(); case PROPERTY_CELL_SPACE: return heap_->property_cell_space(); case LO_SPACE: return heap_->lo_space(); default: return NULL; } } PagedSpace* PagedSpaces::next() { switch (counter_++) { case OLD_POINTER_SPACE: return heap_->old_pointer_space(); case OLD_DATA_SPACE: return heap_->old_data_space(); case CODE_SPACE: return heap_->code_space(); case MAP_SPACE: return heap_->map_space(); case CELL_SPACE: return heap_->cell_space(); case PROPERTY_CELL_SPACE: return heap_->property_cell_space(); default: return NULL; } } OldSpace* OldSpaces::next() { switch (counter_++) { case OLD_POINTER_SPACE: return heap_->old_pointer_space(); case OLD_DATA_SPACE: return heap_->old_data_space(); case CODE_SPACE: return heap_->code_space(); default: return NULL; } } SpaceIterator::SpaceIterator(Heap* heap) : heap_(heap), current_space_(FIRST_SPACE), iterator_(NULL), size_func_(NULL) {} SpaceIterator::SpaceIterator(Heap* heap, HeapObjectCallback size_func) : heap_(heap), current_space_(FIRST_SPACE), iterator_(NULL), size_func_(size_func) {} SpaceIterator::~SpaceIterator() { // Delete active iterator if any. delete iterator_; } bool SpaceIterator::has_next() { // Iterate until no more spaces. return current_space_ != LAST_SPACE; } ObjectIterator* SpaceIterator::next() { if (iterator_ != NULL) { delete iterator_; iterator_ = NULL; // Move to the next space current_space_++; if (current_space_ > LAST_SPACE) { return NULL; } } // Return iterator for the new current space. return CreateIterator(); } // Create an iterator for the space to iterate. ObjectIterator* SpaceIterator::CreateIterator() { DCHECK(iterator_ == NULL); switch (current_space_) { case NEW_SPACE: iterator_ = new SemiSpaceIterator(heap_->new_space(), size_func_); break; case OLD_POINTER_SPACE: iterator_ = new HeapObjectIterator(heap_->old_pointer_space(), size_func_); break; case OLD_DATA_SPACE: iterator_ = new HeapObjectIterator(heap_->old_data_space(), size_func_); break; case CODE_SPACE: iterator_ = new HeapObjectIterator(heap_->code_space(), size_func_); break; case MAP_SPACE: iterator_ = new HeapObjectIterator(heap_->map_space(), size_func_); break; case CELL_SPACE: iterator_ = new HeapObjectIterator(heap_->cell_space(), size_func_); break; case PROPERTY_CELL_SPACE: iterator_ = new HeapObjectIterator(heap_->property_cell_space(), size_func_); break; case LO_SPACE: iterator_ = new LargeObjectIterator(heap_->lo_space(), size_func_); break; } // Return the newly allocated iterator; DCHECK(iterator_ != NULL); return iterator_; } class HeapObjectsFilter { public: virtual ~HeapObjectsFilter() {} virtual bool SkipObject(HeapObject* object) = 0; }; class UnreachableObjectsFilter : public HeapObjectsFilter { public: explicit UnreachableObjectsFilter(Heap* heap) : heap_(heap) { MarkReachableObjects(); } ~UnreachableObjectsFilter() { heap_->mark_compact_collector()->ClearMarkbits(); } bool SkipObject(HeapObject* object) { MarkBit mark_bit = Marking::MarkBitFrom(object); return !mark_bit.Get(); } private: class MarkingVisitor : public ObjectVisitor { public: MarkingVisitor() : marking_stack_(10) {} void VisitPointers(Object** start, Object** end) { for (Object** p = start; p < end; p++) { if (!(*p)->IsHeapObject()) continue; HeapObject* obj = HeapObject::cast(*p); MarkBit mark_bit = Marking::MarkBitFrom(obj); if (!mark_bit.Get()) { mark_bit.Set(); marking_stack_.Add(obj); } } } void TransitiveClosure() { while (!marking_stack_.is_empty()) { HeapObject* obj = marking_stack_.RemoveLast(); obj->Iterate(this); } } private: List marking_stack_; }; void MarkReachableObjects() { MarkingVisitor visitor; heap_->IterateRoots(&visitor, VISIT_ALL); visitor.TransitiveClosure(); } Heap* heap_; DisallowHeapAllocation no_allocation_; }; HeapIterator::HeapIterator(Heap* heap) : make_heap_iterable_helper_(heap), no_heap_allocation_(), heap_(heap), filtering_(HeapIterator::kNoFiltering), filter_(NULL) { Init(); } HeapIterator::HeapIterator(Heap* heap, HeapIterator::HeapObjectsFiltering filtering) : make_heap_iterable_helper_(heap), no_heap_allocation_(), heap_(heap), filtering_(filtering), filter_(NULL) { Init(); } HeapIterator::~HeapIterator() { Shutdown(); } void HeapIterator::Init() { // Start the iteration. space_iterator_ = new SpaceIterator(heap_); switch (filtering_) { case kFilterUnreachable: filter_ = new UnreachableObjectsFilter(heap_); break; default: break; } object_iterator_ = space_iterator_->next(); } void HeapIterator::Shutdown() { #ifdef DEBUG // Assert that in filtering mode we have iterated through all // objects. Otherwise, heap will be left in an inconsistent state. if (filtering_ != kNoFiltering) { DCHECK(object_iterator_ == NULL); } #endif // Make sure the last iterator is deallocated. delete space_iterator_; space_iterator_ = NULL; object_iterator_ = NULL; delete filter_; filter_ = NULL; } HeapObject* HeapIterator::next() { if (filter_ == NULL) return NextObject(); HeapObject* obj = NextObject(); while (obj != NULL && filter_->SkipObject(obj)) obj = NextObject(); return obj; } HeapObject* HeapIterator::NextObject() { // No iterator means we are done. if (object_iterator_ == NULL) return NULL; if (HeapObject* obj = object_iterator_->next_object()) { // If the current iterator has more objects we are fine. return obj; } else { // Go though the spaces looking for one that has objects. while (space_iterator_->has_next()) { object_iterator_ = space_iterator_->next(); if (HeapObject* obj = object_iterator_->next_object()) { return obj; } } } // Done with the last space. object_iterator_ = NULL; return NULL; } void HeapIterator::reset() { // Restart the iterator. Shutdown(); Init(); } #ifdef DEBUG Object* const PathTracer::kAnyGlobalObject = NULL; class PathTracer::MarkVisitor : public ObjectVisitor { public: explicit MarkVisitor(PathTracer* tracer) : tracer_(tracer) {} void VisitPointers(Object** start, Object** end) { // Scan all HeapObject pointers in [start, end) for (Object** p = start; !tracer_->found() && (p < end); p++) { if ((*p)->IsHeapObject()) tracer_->MarkRecursively(p, this); } } private: PathTracer* tracer_; }; class PathTracer::UnmarkVisitor : public ObjectVisitor { public: explicit UnmarkVisitor(PathTracer* tracer) : tracer_(tracer) {} void VisitPointers(Object** start, Object** end) { // Scan all HeapObject pointers in [start, end) for (Object** p = start; p < end; p++) { if ((*p)->IsHeapObject()) tracer_->UnmarkRecursively(p, this); } } private: PathTracer* tracer_; }; void PathTracer::VisitPointers(Object** start, Object** end) { bool done = ((what_to_find_ == FIND_FIRST) && found_target_); // Visit all HeapObject pointers in [start, end) for (Object** p = start; !done && (p < end); p++) { if ((*p)->IsHeapObject()) { TracePathFrom(p); done = ((what_to_find_ == FIND_FIRST) && found_target_); } } } void PathTracer::Reset() { found_target_ = false; object_stack_.Clear(); } void PathTracer::TracePathFrom(Object** root) { DCHECK((search_target_ == kAnyGlobalObject) || search_target_->IsHeapObject()); found_target_in_trace_ = false; Reset(); MarkVisitor mark_visitor(this); MarkRecursively(root, &mark_visitor); UnmarkVisitor unmark_visitor(this); UnmarkRecursively(root, &unmark_visitor); ProcessResults(); } static bool SafeIsNativeContext(HeapObject* obj) { return obj->map() == obj->GetHeap()->raw_unchecked_native_context_map(); } void PathTracer::MarkRecursively(Object** p, MarkVisitor* mark_visitor) { if (!(*p)->IsHeapObject()) return; HeapObject* obj = HeapObject::cast(*p); MapWord map_word = obj->map_word(); if (!map_word.ToMap()->IsHeapObject()) return; // visited before if (found_target_in_trace_) return; // stop if target found object_stack_.Add(obj); if (((search_target_ == kAnyGlobalObject) && obj->IsJSGlobalObject()) || (obj == search_target_)) { found_target_in_trace_ = true; found_target_ = true; return; } bool is_native_context = SafeIsNativeContext(obj); // not visited yet Map* map = Map::cast(map_word.ToMap()); MapWord marked_map_word = MapWord::FromRawValue(obj->map_word().ToRawValue() + kMarkTag); obj->set_map_word(marked_map_word); // Scan the object body. if (is_native_context && (visit_mode_ == VISIT_ONLY_STRONG)) { // This is specialized to scan Context's properly. Object** start = reinterpret_cast(obj->address() + Context::kHeaderSize); Object** end = reinterpret_cast(obj->address() + Context::kHeaderSize + Context::FIRST_WEAK_SLOT * kPointerSize); mark_visitor->VisitPointers(start, end); } else { obj->IterateBody(map->instance_type(), obj->SizeFromMap(map), mark_visitor); } // Scan the map after the body because the body is a lot more interesting // when doing leak detection. MarkRecursively(reinterpret_cast(&map), mark_visitor); if (!found_target_in_trace_) { // don't pop if found the target object_stack_.RemoveLast(); } } void PathTracer::UnmarkRecursively(Object** p, UnmarkVisitor* unmark_visitor) { if (!(*p)->IsHeapObject()) return; HeapObject* obj = HeapObject::cast(*p); MapWord map_word = obj->map_word(); if (map_word.ToMap()->IsHeapObject()) return; // unmarked already MapWord unmarked_map_word = MapWord::FromRawValue(map_word.ToRawValue() - kMarkTag); obj->set_map_word(unmarked_map_word); Map* map = Map::cast(unmarked_map_word.ToMap()); UnmarkRecursively(reinterpret_cast(&map), unmark_visitor); obj->IterateBody(map->instance_type(), obj->SizeFromMap(map), unmark_visitor); } void PathTracer::ProcessResults() { if (found_target_) { OFStream os(stdout); os << "=====================================\n" << "==== Path to object ====\n" << "=====================================\n\n"; DCHECK(!object_stack_.is_empty()); for (int i = 0; i < object_stack_.length(); i++) { if (i > 0) os << "\n |\n |\n V\n\n"; object_stack_[i]->Print(os); } os << "=====================================\n"; } } // Triggers a depth-first traversal of reachable objects from one // given root object and finds a path to a specific heap object and // prints it. void Heap::TracePathToObjectFrom(Object* target, Object* root) { PathTracer tracer(target, PathTracer::FIND_ALL, VISIT_ALL); tracer.VisitPointer(&root); } // Triggers a depth-first traversal of reachable objects from roots // and finds a path to a specific heap object and prints it. void Heap::TracePathToObject(Object* target) { PathTracer tracer(target, PathTracer::FIND_ALL, VISIT_ALL); IterateRoots(&tracer, VISIT_ONLY_STRONG); } // Triggers a depth-first traversal of reachable objects from roots // and finds a path to any global object and prints it. Useful for // determining the source for leaks of global objects. void Heap::TracePathToGlobal() { PathTracer tracer(PathTracer::kAnyGlobalObject, PathTracer::FIND_ALL, VISIT_ALL); IterateRoots(&tracer, VISIT_ONLY_STRONG); } #endif void Heap::UpdateCumulativeGCStatistics(double duration, double spent_in_mutator, double marking_time) { if (FLAG_print_cumulative_gc_stat) { total_gc_time_ms_ += duration; max_gc_pause_ = Max(max_gc_pause_, duration); max_alive_after_gc_ = Max(max_alive_after_gc_, SizeOfObjects()); min_in_mutator_ = Min(min_in_mutator_, spent_in_mutator); } else if (FLAG_trace_gc_verbose) { total_gc_time_ms_ += duration; } marking_time_ += marking_time; } int KeyedLookupCache::Hash(Handle map, Handle name) { DisallowHeapAllocation no_gc; // Uses only lower 32 bits if pointers are larger. uintptr_t addr_hash = static_cast(reinterpret_cast(*map)) >> kMapHashShift; return static_cast((addr_hash ^ name->Hash()) & kCapacityMask); } int KeyedLookupCache::Lookup(Handle map, Handle name) { DisallowHeapAllocation no_gc; int index = (Hash(map, name) & kHashMask); for (int i = 0; i < kEntriesPerBucket; i++) { Key& key = keys_[index + i]; if ((key.map == *map) && key.name->Equals(*name)) { return field_offsets_[index + i]; } } return kNotFound; } void KeyedLookupCache::Update(Handle map, Handle name, int field_offset) { DisallowHeapAllocation no_gc; if (!name->IsUniqueName()) { if (!StringTable::InternalizeStringIfExists( name->GetIsolate(), Handle::cast(name)).ToHandle(&name)) { return; } } // This cache is cleared only between mark compact passes, so we expect the // cache to only contain old space names. DCHECK(!map->GetIsolate()->heap()->InNewSpace(*name)); int index = (Hash(map, name) & kHashMask); // After a GC there will be free slots, so we use them in order (this may // help to get the most frequently used one in position 0). for (int i = 0; i < kEntriesPerBucket; i++) { Key& key = keys_[index]; Object* free_entry_indicator = NULL; if (key.map == free_entry_indicator) { key.map = *map; key.name = *name; field_offsets_[index + i] = field_offset; return; } } // No free entry found in this bucket, so we move them all down one and // put the new entry at position zero. for (int i = kEntriesPerBucket - 1; i > 0; i--) { Key& key = keys_[index + i]; Key& key2 = keys_[index + i - 1]; key = key2; field_offsets_[index + i] = field_offsets_[index + i - 1]; } // Write the new first entry. Key& key = keys_[index]; key.map = *map; key.name = *name; field_offsets_[index] = field_offset; } void KeyedLookupCache::Clear() { for (int index = 0; index < kLength; index++) keys_[index].map = NULL; } void DescriptorLookupCache::Clear() { for (int index = 0; index < kLength; index++) keys_[index].source = NULL; } void ExternalStringTable::CleanUp() { int last = 0; for (int i = 0; i < new_space_strings_.length(); ++i) { if (new_space_strings_[i] == heap_->the_hole_value()) { continue; } DCHECK(new_space_strings_[i]->IsExternalString()); if (heap_->InNewSpace(new_space_strings_[i])) { new_space_strings_[last++] = new_space_strings_[i]; } else { old_space_strings_.Add(new_space_strings_[i]); } } new_space_strings_.Rewind(last); new_space_strings_.Trim(); last = 0; for (int i = 0; i < old_space_strings_.length(); ++i) { if (old_space_strings_[i] == heap_->the_hole_value()) { continue; } DCHECK(old_space_strings_[i]->IsExternalString()); DCHECK(!heap_->InNewSpace(old_space_strings_[i])); old_space_strings_[last++] = old_space_strings_[i]; } old_space_strings_.Rewind(last); old_space_strings_.Trim(); #ifdef VERIFY_HEAP if (FLAG_verify_heap) { Verify(); } #endif } void ExternalStringTable::TearDown() { for (int i = 0; i < new_space_strings_.length(); ++i) { heap_->FinalizeExternalString(ExternalString::cast(new_space_strings_[i])); } new_space_strings_.Free(); for (int i = 0; i < old_space_strings_.length(); ++i) { heap_->FinalizeExternalString(ExternalString::cast(old_space_strings_[i])); } old_space_strings_.Free(); } void Heap::QueueMemoryChunkForFree(MemoryChunk* chunk) { chunk->set_next_chunk(chunks_queued_for_free_); chunks_queued_for_free_ = chunk; } void Heap::FreeQueuedChunks() { if (chunks_queued_for_free_ == NULL) return; MemoryChunk* next; MemoryChunk* chunk; for (chunk = chunks_queued_for_free_; chunk != NULL; chunk = next) { next = chunk->next_chunk(); chunk->SetFlag(MemoryChunk::ABOUT_TO_BE_FREED); if (chunk->owner()->identity() == LO_SPACE) { // StoreBuffer::Filter relies on MemoryChunk::FromAnyPointerAddress. // If FromAnyPointerAddress encounters a slot that belongs to a large // chunk queued for deletion it will fail to find the chunk because // it try to perform a search in the list of pages owned by of the large // object space and queued chunks were detached from that list. // To work around this we split large chunk into normal kPageSize aligned // pieces and initialize size, owner and flags field of every piece. // If FromAnyPointerAddress encounters a slot that belongs to one of // these smaller pieces it will treat it as a slot on a normal Page. Address chunk_end = chunk->address() + chunk->size(); MemoryChunk* inner = MemoryChunk::FromAddress(chunk->address() + Page::kPageSize); MemoryChunk* inner_last = MemoryChunk::FromAddress(chunk_end - 1); while (inner <= inner_last) { // Size of a large chunk is always a multiple of // OS::AllocateAlignment() so there is always // enough space for a fake MemoryChunk header. Address area_end = Min(inner->address() + Page::kPageSize, chunk_end); // Guard against overflow. if (area_end < inner->address()) area_end = chunk_end; inner->SetArea(inner->address(), area_end); inner->set_size(Page::kPageSize); inner->set_owner(lo_space()); inner->SetFlag(MemoryChunk::ABOUT_TO_BE_FREED); inner = MemoryChunk::FromAddress(inner->address() + Page::kPageSize); } } } isolate_->heap()->store_buffer()->Compact(); isolate_->heap()->store_buffer()->Filter(MemoryChunk::ABOUT_TO_BE_FREED); for (chunk = chunks_queued_for_free_; chunk != NULL; chunk = next) { next = chunk->next_chunk(); isolate_->memory_allocator()->Free(chunk); } chunks_queued_for_free_ = NULL; } void Heap::RememberUnmappedPage(Address page, bool compacted) { uintptr_t p = reinterpret_cast(page); // Tag the page pointer to make it findable in the dump file. if (compacted) { p ^= 0xc1ead & (Page::kPageSize - 1); // Cleared. } else { p ^= 0x1d1ed & (Page::kPageSize - 1); // I died. } remembered_unmapped_pages_[remembered_unmapped_pages_index_] = reinterpret_cast
(p); remembered_unmapped_pages_index_++; remembered_unmapped_pages_index_ %= kRememberedUnmappedPages; } void Heap::ClearObjectStats(bool clear_last_time_stats) { memset(object_counts_, 0, sizeof(object_counts_)); memset(object_sizes_, 0, sizeof(object_sizes_)); if (clear_last_time_stats) { memset(object_counts_last_time_, 0, sizeof(object_counts_last_time_)); memset(object_sizes_last_time_, 0, sizeof(object_sizes_last_time_)); } } static base::LazyMutex checkpoint_object_stats_mutex = LAZY_MUTEX_INITIALIZER; void Heap::CheckpointObjectStats() { base::LockGuard lock_guard( checkpoint_object_stats_mutex.Pointer()); Counters* counters = isolate()->counters(); #define ADJUST_LAST_TIME_OBJECT_COUNT(name) \ counters->count_of_##name()->Increment( \ static_cast(object_counts_[name])); \ counters->count_of_##name()->Decrement( \ static_cast(object_counts_last_time_[name])); \ counters->size_of_##name()->Increment( \ static_cast(object_sizes_[name])); \ counters->size_of_##name()->Decrement( \ static_cast(object_sizes_last_time_[name])); INSTANCE_TYPE_LIST(ADJUST_LAST_TIME_OBJECT_COUNT) #undef ADJUST_LAST_TIME_OBJECT_COUNT int index; #define ADJUST_LAST_TIME_OBJECT_COUNT(name) \ index = FIRST_CODE_KIND_SUB_TYPE + Code::name; \ counters->count_of_CODE_TYPE_##name()->Increment( \ static_cast(object_counts_[index])); \ counters->count_of_CODE_TYPE_##name()->Decrement( \ static_cast(object_counts_last_time_[index])); \ counters->size_of_CODE_TYPE_##name()->Increment( \ static_cast(object_sizes_[index])); \ counters->size_of_CODE_TYPE_##name()->Decrement( \ static_cast(object_sizes_last_time_[index])); CODE_KIND_LIST(ADJUST_LAST_TIME_OBJECT_COUNT) #undef ADJUST_LAST_TIME_OBJECT_COUNT #define ADJUST_LAST_TIME_OBJECT_COUNT(name) \ index = FIRST_FIXED_ARRAY_SUB_TYPE + name; \ counters->count_of_FIXED_ARRAY_##name()->Increment( \ static_cast(object_counts_[index])); \ counters->count_of_FIXED_ARRAY_##name()->Decrement( \ static_cast(object_counts_last_time_[index])); \ counters->size_of_FIXED_ARRAY_##name()->Increment( \ static_cast(object_sizes_[index])); \ counters->size_of_FIXED_ARRAY_##name()->Decrement( \ static_cast(object_sizes_last_time_[index])); FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(ADJUST_LAST_TIME_OBJECT_COUNT) #undef ADJUST_LAST_TIME_OBJECT_COUNT #define ADJUST_LAST_TIME_OBJECT_COUNT(name) \ index = \ FIRST_CODE_AGE_SUB_TYPE + Code::k##name##CodeAge - Code::kFirstCodeAge; \ counters->count_of_CODE_AGE_##name()->Increment( \ static_cast(object_counts_[index])); \ counters->count_of_CODE_AGE_##name()->Decrement( \ static_cast(object_counts_last_time_[index])); \ counters->size_of_CODE_AGE_##name()->Increment( \ static_cast(object_sizes_[index])); \ counters->size_of_CODE_AGE_##name()->Decrement( \ static_cast(object_sizes_last_time_[index])); CODE_AGE_LIST_COMPLETE(ADJUST_LAST_TIME_OBJECT_COUNT) #undef ADJUST_LAST_TIME_OBJECT_COUNT MemCopy(object_counts_last_time_, object_counts_, sizeof(object_counts_)); MemCopy(object_sizes_last_time_, object_sizes_, sizeof(object_sizes_)); ClearObjectStats(); } } } // namespace v8::internal