// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/v8.h" #if V8_TARGET_ARCH_MIPS #include "src/code-stubs.h" #include "src/log.h" #include "src/macro-assembler.h" #include "src/regexp-macro-assembler.h" #include "src/regexp-stack.h" #include "src/unicode.h" #include "src/mips/regexp-macro-assembler-mips.h" namespace v8 { namespace internal { #ifndef V8_INTERPRETED_REGEXP /* * This assembler uses the following register assignment convention * - t7 : Temporarily stores the index of capture start after a matching pass * for a global regexp. * - t1 : Pointer to current code object (Code*) including heap object tag. * - t2 : Current position in input, as negative offset from end of string. * Please notice that this is the byte offset, not the character offset! * - t3 : Currently loaded character. Must be loaded using * LoadCurrentCharacter before using any of the dispatch methods. * - t4 : Points to tip of backtrack stack * - t5 : Unused. * - t6 : End of input (points to byte after last character in input). * - fp : Frame pointer. Used to access arguments, local variables and * RegExp registers. * - sp : Points to tip of C stack. * * The remaining registers are free for computations. * Each call to a public method should retain this convention. * * The stack will have the following structure: * * - fp[64] Isolate* isolate (address of the current isolate) * - fp[60] direct_call (if 1, direct call from JavaScript code, * if 0, call through the runtime system). * - fp[56] stack_area_base (High end of the memory area to use as * backtracking stack). * - fp[52] capture array size (may fit multiple sets of matches) * - fp[48] int* capture_array (int[num_saved_registers_], for output). * - fp[44] secondary link/return address used by native call. * --- sp when called --- * - fp[40] return address (lr). * - fp[36] old frame pointer (r11). * - fp[0..32] backup of registers s0..s7. * --- frame pointer ---- * - fp[-4] end of input (address of end of string). * - fp[-8] start of input (address of first character in string). * - fp[-12] start index (character index of start). * - fp[-16] void* input_string (location of a handle containing the string). * - fp[-20] success counter (only for global regexps to count matches). * - fp[-24] Offset of location before start of input (effectively character * position -1). Used to initialize capture registers to a * non-position. * - fp[-28] At start (if 1, we are starting at the start of the * string, otherwise 0) * - fp[-32] register 0 (Only positions must be stored in the first * - register 1 num_saved_registers_ registers) * - ... * - register num_registers-1 * --- sp --- * * The first num_saved_registers_ registers are initialized to point to * "character -1" in the string (i.e., char_size() bytes before the first * character of the string). The remaining registers start out as garbage. * * The data up to the return address must be placed there by the calling * code and the remaining arguments are passed in registers, e.g. by calling the * code entry as cast to a function with the signature: * int (*match)(String* input_string, * int start_index, * Address start, * Address end, * Address secondary_return_address, // Only used by native call. * int* capture_output_array, * byte* stack_area_base, * bool direct_call = false) * The call is performed by NativeRegExpMacroAssembler::Execute() * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro * in mips/simulator-mips.h. * When calling as a non-direct call (i.e., from C++ code), the return address * area is overwritten with the ra register by the RegExp code. When doing a * direct call from generated code, the return address is placed there by * the calling code, as in a normal exit frame. */ #define __ ACCESS_MASM(masm_) RegExpMacroAssemblerMIPS::RegExpMacroAssemblerMIPS( Mode mode, int registers_to_save, Zone* zone) : NativeRegExpMacroAssembler(zone), masm_(new MacroAssembler(zone->isolate(), NULL, kRegExpCodeSize)), mode_(mode), num_registers_(registers_to_save), num_saved_registers_(registers_to_save), entry_label_(), start_label_(), success_label_(), backtrack_label_(), exit_label_(), internal_failure_label_() { DCHECK_EQ(0, registers_to_save % 2); __ jmp(&entry_label_); // We'll write the entry code later. // If the code gets too big or corrupted, an internal exception will be // raised, and we will exit right away. __ bind(&internal_failure_label_); __ li(v0, Operand(FAILURE)); __ Ret(); __ bind(&start_label_); // And then continue from here. } RegExpMacroAssemblerMIPS::~RegExpMacroAssemblerMIPS() { delete masm_; // Unuse labels in case we throw away the assembler without calling GetCode. entry_label_.Unuse(); start_label_.Unuse(); success_label_.Unuse(); backtrack_label_.Unuse(); exit_label_.Unuse(); check_preempt_label_.Unuse(); stack_overflow_label_.Unuse(); internal_failure_label_.Unuse(); } int RegExpMacroAssemblerMIPS::stack_limit_slack() { return RegExpStack::kStackLimitSlack; } void RegExpMacroAssemblerMIPS::AdvanceCurrentPosition(int by) { if (by != 0) { __ Addu(current_input_offset(), current_input_offset(), Operand(by * char_size())); } } void RegExpMacroAssemblerMIPS::AdvanceRegister(int reg, int by) { DCHECK(reg >= 0); DCHECK(reg < num_registers_); if (by != 0) { __ lw(a0, register_location(reg)); __ Addu(a0, a0, Operand(by)); __ sw(a0, register_location(reg)); } } void RegExpMacroAssemblerMIPS::Backtrack() { CheckPreemption(); // Pop Code* offset from backtrack stack, add Code* and jump to location. Pop(a0); __ Addu(a0, a0, code_pointer()); __ Jump(a0); } void RegExpMacroAssemblerMIPS::Bind(Label* label) { __ bind(label); } void RegExpMacroAssemblerMIPS::CheckCharacter(uint32_t c, Label* on_equal) { BranchOrBacktrack(on_equal, eq, current_character(), Operand(c)); } void RegExpMacroAssemblerMIPS::CheckCharacterGT(uc16 limit, Label* on_greater) { BranchOrBacktrack(on_greater, gt, current_character(), Operand(limit)); } void RegExpMacroAssemblerMIPS::CheckAtStart(Label* on_at_start) { Label not_at_start; // Did we start the match at the start of the string at all? __ lw(a0, MemOperand(frame_pointer(), kStartIndex)); BranchOrBacktrack(¬_at_start, ne, a0, Operand(zero_reg)); // If we did, are we still at the start of the input? __ lw(a1, MemOperand(frame_pointer(), kInputStart)); __ Addu(a0, end_of_input_address(), Operand(current_input_offset())); BranchOrBacktrack(on_at_start, eq, a0, Operand(a1)); __ bind(¬_at_start); } void RegExpMacroAssemblerMIPS::CheckNotAtStart(Label* on_not_at_start) { // Did we start the match at the start of the string at all? __ lw(a0, MemOperand(frame_pointer(), kStartIndex)); BranchOrBacktrack(on_not_at_start, ne, a0, Operand(zero_reg)); // If we did, are we still at the start of the input? __ lw(a1, MemOperand(frame_pointer(), kInputStart)); __ Addu(a0, end_of_input_address(), Operand(current_input_offset())); BranchOrBacktrack(on_not_at_start, ne, a0, Operand(a1)); } void RegExpMacroAssemblerMIPS::CheckCharacterLT(uc16 limit, Label* on_less) { BranchOrBacktrack(on_less, lt, current_character(), Operand(limit)); } void RegExpMacroAssemblerMIPS::CheckGreedyLoop(Label* on_equal) { Label backtrack_non_equal; __ lw(a0, MemOperand(backtrack_stackpointer(), 0)); __ Branch(&backtrack_non_equal, ne, current_input_offset(), Operand(a0)); __ Addu(backtrack_stackpointer(), backtrack_stackpointer(), Operand(kPointerSize)); __ bind(&backtrack_non_equal); BranchOrBacktrack(on_equal, eq, current_input_offset(), Operand(a0)); } void RegExpMacroAssemblerMIPS::CheckNotBackReferenceIgnoreCase( int start_reg, Label* on_no_match) { Label fallthrough; __ lw(a0, register_location(start_reg)); // Index of start of capture. __ lw(a1, register_location(start_reg + 1)); // Index of end of capture. __ Subu(a1, a1, a0); // Length of capture. // If length is zero, either the capture is empty or it is not participating. // In either case succeed immediately. __ Branch(&fallthrough, eq, a1, Operand(zero_reg)); __ Addu(t5, a1, current_input_offset()); // Check that there are enough characters left in the input. BranchOrBacktrack(on_no_match, gt, t5, Operand(zero_reg)); if (mode_ == LATIN1) { Label success; Label fail; Label loop_check; // a0 - offset of start of capture. // a1 - length of capture. __ Addu(a0, a0, Operand(end_of_input_address())); __ Addu(a2, end_of_input_address(), Operand(current_input_offset())); __ Addu(a1, a0, Operand(a1)); // a0 - Address of start of capture. // a1 - Address of end of capture. // a2 - Address of current input position. Label loop; __ bind(&loop); __ lbu(a3, MemOperand(a0, 0)); __ addiu(a0, a0, char_size()); __ lbu(t0, MemOperand(a2, 0)); __ addiu(a2, a2, char_size()); __ Branch(&loop_check, eq, t0, Operand(a3)); // Mismatch, try case-insensitive match (converting letters to lower-case). __ Or(a3, a3, Operand(0x20)); // Convert capture character to lower-case. __ Or(t0, t0, Operand(0x20)); // Also convert input character. __ Branch(&fail, ne, t0, Operand(a3)); __ Subu(a3, a3, Operand('a')); __ Branch(&loop_check, ls, a3, Operand('z' - 'a')); // Latin-1: Check for values in range [224,254] but not 247. __ Subu(a3, a3, Operand(224 - 'a')); // Weren't Latin-1 letters. __ Branch(&fail, hi, a3, Operand(254 - 224)); // Check for 247. __ Branch(&fail, eq, a3, Operand(247 - 224)); __ bind(&loop_check); __ Branch(&loop, lt, a0, Operand(a1)); __ jmp(&success); __ bind(&fail); GoTo(on_no_match); __ bind(&success); // Compute new value of character position after the matched part. __ Subu(current_input_offset(), a2, end_of_input_address()); } else { DCHECK(mode_ == UC16); // Put regexp engine registers on stack. RegList regexp_registers_to_retain = current_input_offset().bit() | current_character().bit() | backtrack_stackpointer().bit(); __ MultiPush(regexp_registers_to_retain); int argument_count = 4; __ PrepareCallCFunction(argument_count, a2); // a0 - offset of start of capture. // a1 - length of capture. // Put arguments into arguments registers. // Parameters are // a0: Address byte_offset1 - Address captured substring's start. // a1: Address byte_offset2 - Address of current character position. // a2: size_t byte_length - length of capture in bytes(!). // a3: Isolate* isolate. // Address of start of capture. __ Addu(a0, a0, Operand(end_of_input_address())); // Length of capture. __ mov(a2, a1); // Save length in callee-save register for use on return. __ mov(s3, a1); // Address of current input position. __ Addu(a1, current_input_offset(), Operand(end_of_input_address())); // Isolate. __ li(a3, Operand(ExternalReference::isolate_address(masm_->isolate()))); { AllowExternalCallThatCantCauseGC scope(masm_); ExternalReference function = ExternalReference::re_case_insensitive_compare_uc16(masm_->isolate()); __ CallCFunction(function, argument_count); } // Restore regexp engine registers. __ MultiPop(regexp_registers_to_retain); __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE); __ lw(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd)); // Check if function returned non-zero for success or zero for failure. BranchOrBacktrack(on_no_match, eq, v0, Operand(zero_reg)); // On success, increment position by length of capture. __ Addu(current_input_offset(), current_input_offset(), Operand(s3)); } __ bind(&fallthrough); } void RegExpMacroAssemblerMIPS::CheckNotBackReference( int start_reg, Label* on_no_match) { Label fallthrough; Label success; // Find length of back-referenced capture. __ lw(a0, register_location(start_reg)); __ lw(a1, register_location(start_reg + 1)); __ Subu(a1, a1, a0); // Length to check. // Succeed on empty capture (including no capture). __ Branch(&fallthrough, eq, a1, Operand(zero_reg)); __ Addu(t5, a1, current_input_offset()); // Check that there are enough characters left in the input. BranchOrBacktrack(on_no_match, gt, t5, Operand(zero_reg)); // Compute pointers to match string and capture string. __ Addu(a0, a0, Operand(end_of_input_address())); __ Addu(a2, end_of_input_address(), Operand(current_input_offset())); __ Addu(a1, a1, Operand(a0)); Label loop; __ bind(&loop); if (mode_ == LATIN1) { __ lbu(a3, MemOperand(a0, 0)); __ addiu(a0, a0, char_size()); __ lbu(t0, MemOperand(a2, 0)); __ addiu(a2, a2, char_size()); } else { DCHECK(mode_ == UC16); __ lhu(a3, MemOperand(a0, 0)); __ addiu(a0, a0, char_size()); __ lhu(t0, MemOperand(a2, 0)); __ addiu(a2, a2, char_size()); } BranchOrBacktrack(on_no_match, ne, a3, Operand(t0)); __ Branch(&loop, lt, a0, Operand(a1)); // Move current character position to position after match. __ Subu(current_input_offset(), a2, end_of_input_address()); __ bind(&fallthrough); } void RegExpMacroAssemblerMIPS::CheckNotCharacter(uint32_t c, Label* on_not_equal) { BranchOrBacktrack(on_not_equal, ne, current_character(), Operand(c)); } void RegExpMacroAssemblerMIPS::CheckCharacterAfterAnd(uint32_t c, uint32_t mask, Label* on_equal) { __ And(a0, current_character(), Operand(mask)); Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c); BranchOrBacktrack(on_equal, eq, a0, rhs); } void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterAnd(uint32_t c, uint32_t mask, Label* on_not_equal) { __ And(a0, current_character(), Operand(mask)); Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c); BranchOrBacktrack(on_not_equal, ne, a0, rhs); } void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterMinusAnd( uc16 c, uc16 minus, uc16 mask, Label* on_not_equal) { DCHECK(minus < String::kMaxUtf16CodeUnit); __ Subu(a0, current_character(), Operand(minus)); __ And(a0, a0, Operand(mask)); BranchOrBacktrack(on_not_equal, ne, a0, Operand(c)); } void RegExpMacroAssemblerMIPS::CheckCharacterInRange( uc16 from, uc16 to, Label* on_in_range) { __ Subu(a0, current_character(), Operand(from)); // Unsigned lower-or-same condition. BranchOrBacktrack(on_in_range, ls, a0, Operand(to - from)); } void RegExpMacroAssemblerMIPS::CheckCharacterNotInRange( uc16 from, uc16 to, Label* on_not_in_range) { __ Subu(a0, current_character(), Operand(from)); // Unsigned higher condition. BranchOrBacktrack(on_not_in_range, hi, a0, Operand(to - from)); } void RegExpMacroAssemblerMIPS::CheckBitInTable( Handle table, Label* on_bit_set) { __ li(a0, Operand(table)); if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) { __ And(a1, current_character(), Operand(kTableSize - 1)); __ Addu(a0, a0, a1); } else { __ Addu(a0, a0, current_character()); } __ lbu(a0, FieldMemOperand(a0, ByteArray::kHeaderSize)); BranchOrBacktrack(on_bit_set, ne, a0, Operand(zero_reg)); } bool RegExpMacroAssemblerMIPS::CheckSpecialCharacterClass(uc16 type, Label* on_no_match) { // Range checks (c in min..max) are generally implemented by an unsigned // (c - min) <= (max - min) check. switch (type) { case 's': // Match space-characters. if (mode_ == LATIN1) { // One byte space characters are '\t'..'\r', ' ' and \u00a0. Label success; __ Branch(&success, eq, current_character(), Operand(' ')); // Check range 0x09..0x0d. __ Subu(a0, current_character(), Operand('\t')); __ Branch(&success, ls, a0, Operand('\r' - '\t')); // \u00a0 (NBSP). BranchOrBacktrack(on_no_match, ne, a0, Operand(0x00a0 - '\t')); __ bind(&success); return true; } return false; case 'S': // The emitted code for generic character classes is good enough. return false; case 'd': // Match Latin1 digits ('0'..'9'). __ Subu(a0, current_character(), Operand('0')); BranchOrBacktrack(on_no_match, hi, a0, Operand('9' - '0')); return true; case 'D': // Match non Latin1-digits. __ Subu(a0, current_character(), Operand('0')); BranchOrBacktrack(on_no_match, ls, a0, Operand('9' - '0')); return true; case '.': { // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029). __ Xor(a0, current_character(), Operand(0x01)); // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c. __ Subu(a0, a0, Operand(0x0b)); BranchOrBacktrack(on_no_match, ls, a0, Operand(0x0c - 0x0b)); if (mode_ == UC16) { // Compare original value to 0x2028 and 0x2029, using the already // computed (current_char ^ 0x01 - 0x0b). I.e., check for // 0x201d (0x2028 - 0x0b) or 0x201e. __ Subu(a0, a0, Operand(0x2028 - 0x0b)); BranchOrBacktrack(on_no_match, ls, a0, Operand(1)); } return true; } case 'n': { // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029). __ Xor(a0, current_character(), Operand(0x01)); // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c. __ Subu(a0, a0, Operand(0x0b)); if (mode_ == LATIN1) { BranchOrBacktrack(on_no_match, hi, a0, Operand(0x0c - 0x0b)); } else { Label done; BranchOrBacktrack(&done, ls, a0, Operand(0x0c - 0x0b)); // Compare original value to 0x2028 and 0x2029, using the already // computed (current_char ^ 0x01 - 0x0b). I.e., check for // 0x201d (0x2028 - 0x0b) or 0x201e. __ Subu(a0, a0, Operand(0x2028 - 0x0b)); BranchOrBacktrack(on_no_match, hi, a0, Operand(1)); __ bind(&done); } return true; } case 'w': { if (mode_ != LATIN1) { // Table is 256 entries, so all Latin1 characters can be tested. BranchOrBacktrack(on_no_match, hi, current_character(), Operand('z')); } ExternalReference map = ExternalReference::re_word_character_map(); __ li(a0, Operand(map)); __ Addu(a0, a0, current_character()); __ lbu(a0, MemOperand(a0, 0)); BranchOrBacktrack(on_no_match, eq, a0, Operand(zero_reg)); return true; } case 'W': { Label done; if (mode_ != LATIN1) { // Table is 256 entries, so all Latin1 characters can be tested. __ Branch(&done, hi, current_character(), Operand('z')); } ExternalReference map = ExternalReference::re_word_character_map(); __ li(a0, Operand(map)); __ Addu(a0, a0, current_character()); __ lbu(a0, MemOperand(a0, 0)); BranchOrBacktrack(on_no_match, ne, a0, Operand(zero_reg)); if (mode_ != LATIN1) { __ bind(&done); } return true; } case '*': // Match any character. return true; // No custom implementation (yet): s(UC16), S(UC16). default: return false; } } void RegExpMacroAssemblerMIPS::Fail() { __ li(v0, Operand(FAILURE)); __ jmp(&exit_label_); } Handle RegExpMacroAssemblerMIPS::GetCode(Handle source) { Label return_v0; if (masm_->has_exception()) { // If the code gets corrupted due to long regular expressions and lack of // space on trampolines, an internal exception flag is set. If this case // is detected, we will jump into exit sequence right away. __ bind_to(&entry_label_, internal_failure_label_.pos()); } else { // Finalize code - write the entry point code now we know how many // registers we need. // Entry code: __ bind(&entry_label_); // Tell the system that we have a stack frame. Because the type is MANUAL, // no is generated. FrameScope scope(masm_, StackFrame::MANUAL); // Actually emit code to start a new stack frame. // Push arguments // Save callee-save registers. // Start new stack frame. // Store link register in existing stack-cell. // Order here should correspond to order of offset constants in header file. RegList registers_to_retain = s0.bit() | s1.bit() | s2.bit() | s3.bit() | s4.bit() | s5.bit() | s6.bit() | s7.bit() | fp.bit(); RegList argument_registers = a0.bit() | a1.bit() | a2.bit() | a3.bit(); __ MultiPush(argument_registers | registers_to_retain | ra.bit()); // Set frame pointer in space for it if this is not a direct call // from generated code. __ Addu(frame_pointer(), sp, Operand(4 * kPointerSize)); __ mov(a0, zero_reg); __ push(a0); // Make room for success counter and initialize it to 0. __ push(a0); // Make room for "position - 1" constant (value irrelevant). // Check if we have space on the stack for registers. Label stack_limit_hit; Label stack_ok; ExternalReference stack_limit = ExternalReference::address_of_stack_limit(masm_->isolate()); __ li(a0, Operand(stack_limit)); __ lw(a0, MemOperand(a0)); __ Subu(a0, sp, a0); // Handle it if the stack pointer is already below the stack limit. __ Branch(&stack_limit_hit, le, a0, Operand(zero_reg)); // Check if there is room for the variable number of registers above // the stack limit. __ Branch(&stack_ok, hs, a0, Operand(num_registers_ * kPointerSize)); // Exit with OutOfMemory exception. There is not enough space on the stack // for our working registers. __ li(v0, Operand(EXCEPTION)); __ jmp(&return_v0); __ bind(&stack_limit_hit); CallCheckStackGuardState(a0); // If returned value is non-zero, we exit with the returned value as result. __ Branch(&return_v0, ne, v0, Operand(zero_reg)); __ bind(&stack_ok); // Allocate space on stack for registers. __ Subu(sp, sp, Operand(num_registers_ * kPointerSize)); // Load string end. __ lw(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd)); // Load input start. __ lw(a0, MemOperand(frame_pointer(), kInputStart)); // Find negative length (offset of start relative to end). __ Subu(current_input_offset(), a0, end_of_input_address()); // Set a0 to address of char before start of the input string // (effectively string position -1). __ lw(a1, MemOperand(frame_pointer(), kStartIndex)); __ Subu(a0, current_input_offset(), Operand(char_size())); __ sll(t5, a1, (mode_ == UC16) ? 1 : 0); __ Subu(a0, a0, t5); // Store this value in a local variable, for use when clearing // position registers. __ sw(a0, MemOperand(frame_pointer(), kInputStartMinusOne)); // Initialize code pointer register __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE); Label load_char_start_regexp, start_regexp; // Load newline if index is at start, previous character otherwise. __ Branch(&load_char_start_regexp, ne, a1, Operand(zero_reg)); __ li(current_character(), Operand('\n')); __ jmp(&start_regexp); // Global regexp restarts matching here. __ bind(&load_char_start_regexp); // Load previous char as initial value of current character register. LoadCurrentCharacterUnchecked(-1, 1); __ bind(&start_regexp); // Initialize on-stack registers. if (num_saved_registers_ > 0) { // Always is, if generated from a regexp. // Fill saved registers with initial value = start offset - 1. if (num_saved_registers_ > 8) { // Address of register 0. __ Addu(a1, frame_pointer(), Operand(kRegisterZero)); __ li(a2, Operand(num_saved_registers_)); Label init_loop; __ bind(&init_loop); __ sw(a0, MemOperand(a1)); __ Addu(a1, a1, Operand(-kPointerSize)); __ Subu(a2, a2, Operand(1)); __ Branch(&init_loop, ne, a2, Operand(zero_reg)); } else { for (int i = 0; i < num_saved_registers_; i++) { __ sw(a0, register_location(i)); } } } // Initialize backtrack stack pointer. __ lw(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd)); __ jmp(&start_label_); // Exit code: if (success_label_.is_linked()) { // Save captures when successful. __ bind(&success_label_); if (num_saved_registers_ > 0) { // Copy captures to output. __ lw(a1, MemOperand(frame_pointer(), kInputStart)); __ lw(a0, MemOperand(frame_pointer(), kRegisterOutput)); __ lw(a2, MemOperand(frame_pointer(), kStartIndex)); __ Subu(a1, end_of_input_address(), a1); // a1 is length of input in bytes. if (mode_ == UC16) { __ srl(a1, a1, 1); } // a1 is length of input in characters. __ Addu(a1, a1, Operand(a2)); // a1 is length of string in characters. DCHECK_EQ(0, num_saved_registers_ % 2); // Always an even number of capture registers. This allows us to // unroll the loop once to add an operation between a load of a register // and the following use of that register. for (int i = 0; i < num_saved_registers_; i += 2) { __ lw(a2, register_location(i)); __ lw(a3, register_location(i + 1)); if (i == 0 && global_with_zero_length_check()) { // Keep capture start in a4 for the zero-length check later. __ mov(t7, a2); } if (mode_ == UC16) { __ sra(a2, a2, 1); __ Addu(a2, a2, a1); __ sra(a3, a3, 1); __ Addu(a3, a3, a1); } else { __ Addu(a2, a1, Operand(a2)); __ Addu(a3, a1, Operand(a3)); } __ sw(a2, MemOperand(a0)); __ Addu(a0, a0, kPointerSize); __ sw(a3, MemOperand(a0)); __ Addu(a0, a0, kPointerSize); } } if (global()) { // Restart matching if the regular expression is flagged as global. __ lw(a0, MemOperand(frame_pointer(), kSuccessfulCaptures)); __ lw(a1, MemOperand(frame_pointer(), kNumOutputRegisters)); __ lw(a2, MemOperand(frame_pointer(), kRegisterOutput)); // Increment success counter. __ Addu(a0, a0, 1); __ sw(a0, MemOperand(frame_pointer(), kSuccessfulCaptures)); // Capture results have been stored, so the number of remaining global // output registers is reduced by the number of stored captures. __ Subu(a1, a1, num_saved_registers_); // Check whether we have enough room for another set of capture results. __ mov(v0, a0); __ Branch(&return_v0, lt, a1, Operand(num_saved_registers_)); __ sw(a1, MemOperand(frame_pointer(), kNumOutputRegisters)); // Advance the location for output. __ Addu(a2, a2, num_saved_registers_ * kPointerSize); __ sw(a2, MemOperand(frame_pointer(), kRegisterOutput)); // Prepare a0 to initialize registers with its value in the next run. __ lw(a0, MemOperand(frame_pointer(), kInputStartMinusOne)); if (global_with_zero_length_check()) { // Special case for zero-length matches. // t7: capture start index // Not a zero-length match, restart. __ Branch( &load_char_start_regexp, ne, current_input_offset(), Operand(t7)); // Offset from the end is zero if we already reached the end. __ Branch(&exit_label_, eq, current_input_offset(), Operand(zero_reg)); // Advance current position after a zero-length match. __ Addu(current_input_offset(), current_input_offset(), Operand((mode_ == UC16) ? 2 : 1)); } __ Branch(&load_char_start_regexp); } else { __ li(v0, Operand(SUCCESS)); } } // Exit and return v0. __ bind(&exit_label_); if (global()) { __ lw(v0, MemOperand(frame_pointer(), kSuccessfulCaptures)); } __ bind(&return_v0); // Skip sp past regexp registers and local variables.. __ mov(sp, frame_pointer()); // Restore registers s0..s7 and return (restoring ra to pc). __ MultiPop(registers_to_retain | ra.bit()); __ Ret(); // Backtrack code (branch target for conditional backtracks). if (backtrack_label_.is_linked()) { __ bind(&backtrack_label_); Backtrack(); } Label exit_with_exception; // Preempt-code. if (check_preempt_label_.is_linked()) { SafeCallTarget(&check_preempt_label_); // Put regexp engine registers on stack. RegList regexp_registers_to_retain = current_input_offset().bit() | current_character().bit() | backtrack_stackpointer().bit(); __ MultiPush(regexp_registers_to_retain); CallCheckStackGuardState(a0); __ MultiPop(regexp_registers_to_retain); // If returning non-zero, we should end execution with the given // result as return value. __ Branch(&return_v0, ne, v0, Operand(zero_reg)); // String might have moved: Reload end of string from frame. __ lw(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd)); __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE); SafeReturn(); } // Backtrack stack overflow code. if (stack_overflow_label_.is_linked()) { SafeCallTarget(&stack_overflow_label_); // Reached if the backtrack-stack limit has been hit. // Put regexp engine registers on stack first. RegList regexp_registers = current_input_offset().bit() | current_character().bit(); __ MultiPush(regexp_registers); Label grow_failed; // Call GrowStack(backtrack_stackpointer(), &stack_base) static const int num_arguments = 3; __ PrepareCallCFunction(num_arguments, a0); __ mov(a0, backtrack_stackpointer()); __ Addu(a1, frame_pointer(), Operand(kStackHighEnd)); __ li(a2, Operand(ExternalReference::isolate_address(masm_->isolate()))); ExternalReference grow_stack = ExternalReference::re_grow_stack(masm_->isolate()); __ CallCFunction(grow_stack, num_arguments); // Restore regexp registers. __ MultiPop(regexp_registers); // If return NULL, we have failed to grow the stack, and // must exit with a stack-overflow exception. __ Branch(&exit_with_exception, eq, v0, Operand(zero_reg)); // Otherwise use return value as new stack pointer. __ mov(backtrack_stackpointer(), v0); // Restore saved registers and continue. __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE); __ lw(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd)); SafeReturn(); } if (exit_with_exception.is_linked()) { // If any of the code above needed to exit with an exception. __ bind(&exit_with_exception); // Exit with Result EXCEPTION(-1) to signal thrown exception. __ li(v0, Operand(EXCEPTION)); __ jmp(&return_v0); } } CodeDesc code_desc; masm_->GetCode(&code_desc); Handle code = isolate()->factory()->NewCode( code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject()); LOG(masm_->isolate(), RegExpCodeCreateEvent(*code, *source)); return Handle::cast(code); } void RegExpMacroAssemblerMIPS::GoTo(Label* to) { if (to == NULL) { Backtrack(); return; } __ jmp(to); return; } void RegExpMacroAssemblerMIPS::IfRegisterGE(int reg, int comparand, Label* if_ge) { __ lw(a0, register_location(reg)); BranchOrBacktrack(if_ge, ge, a0, Operand(comparand)); } void RegExpMacroAssemblerMIPS::IfRegisterLT(int reg, int comparand, Label* if_lt) { __ lw(a0, register_location(reg)); BranchOrBacktrack(if_lt, lt, a0, Operand(comparand)); } void RegExpMacroAssemblerMIPS::IfRegisterEqPos(int reg, Label* if_eq) { __ lw(a0, register_location(reg)); BranchOrBacktrack(if_eq, eq, a0, Operand(current_input_offset())); } RegExpMacroAssembler::IrregexpImplementation RegExpMacroAssemblerMIPS::Implementation() { return kMIPSImplementation; } void RegExpMacroAssemblerMIPS::LoadCurrentCharacter(int cp_offset, Label* on_end_of_input, bool check_bounds, int characters) { DCHECK(cp_offset >= -1); // ^ and \b can look behind one character. DCHECK(cp_offset < (1<<30)); // Be sane! (And ensure negation works). if (check_bounds) { CheckPosition(cp_offset + characters - 1, on_end_of_input); } LoadCurrentCharacterUnchecked(cp_offset, characters); } void RegExpMacroAssemblerMIPS::PopCurrentPosition() { Pop(current_input_offset()); } void RegExpMacroAssemblerMIPS::PopRegister(int register_index) { Pop(a0); __ sw(a0, register_location(register_index)); } void RegExpMacroAssemblerMIPS::PushBacktrack(Label* label) { if (label->is_bound()) { int target = label->pos(); __ li(a0, Operand(target + Code::kHeaderSize - kHeapObjectTag)); } else { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); Label after_constant; __ Branch(&after_constant); int offset = masm_->pc_offset(); int cp_offset = offset + Code::kHeaderSize - kHeapObjectTag; __ emit(0); masm_->label_at_put(label, offset); __ bind(&after_constant); if (is_int16(cp_offset)) { __ lw(a0, MemOperand(code_pointer(), cp_offset)); } else { __ Addu(a0, code_pointer(), cp_offset); __ lw(a0, MemOperand(a0, 0)); } } Push(a0); CheckStackLimit(); } void RegExpMacroAssemblerMIPS::PushCurrentPosition() { Push(current_input_offset()); } void RegExpMacroAssemblerMIPS::PushRegister(int register_index, StackCheckFlag check_stack_limit) { __ lw(a0, register_location(register_index)); Push(a0); if (check_stack_limit) CheckStackLimit(); } void RegExpMacroAssemblerMIPS::ReadCurrentPositionFromRegister(int reg) { __ lw(current_input_offset(), register_location(reg)); } void RegExpMacroAssemblerMIPS::ReadStackPointerFromRegister(int reg) { __ lw(backtrack_stackpointer(), register_location(reg)); __ lw(a0, MemOperand(frame_pointer(), kStackHighEnd)); __ Addu(backtrack_stackpointer(), backtrack_stackpointer(), Operand(a0)); } void RegExpMacroAssemblerMIPS::SetCurrentPositionFromEnd(int by) { Label after_position; __ Branch(&after_position, ge, current_input_offset(), Operand(-by * char_size())); __ li(current_input_offset(), -by * char_size()); // On RegExp code entry (where this operation is used), the character before // the current position is expected to be already loaded. // We have advanced the position, so it's safe to read backwards. LoadCurrentCharacterUnchecked(-1, 1); __ bind(&after_position); } void RegExpMacroAssemblerMIPS::SetRegister(int register_index, int to) { DCHECK(register_index >= num_saved_registers_); // Reserved for positions! __ li(a0, Operand(to)); __ sw(a0, register_location(register_index)); } bool RegExpMacroAssemblerMIPS::Succeed() { __ jmp(&success_label_); return global(); } void RegExpMacroAssemblerMIPS::WriteCurrentPositionToRegister(int reg, int cp_offset) { if (cp_offset == 0) { __ sw(current_input_offset(), register_location(reg)); } else { __ Addu(a0, current_input_offset(), Operand(cp_offset * char_size())); __ sw(a0, register_location(reg)); } } void RegExpMacroAssemblerMIPS::ClearRegisters(int reg_from, int reg_to) { DCHECK(reg_from <= reg_to); __ lw(a0, MemOperand(frame_pointer(), kInputStartMinusOne)); for (int reg = reg_from; reg <= reg_to; reg++) { __ sw(a0, register_location(reg)); } } void RegExpMacroAssemblerMIPS::WriteStackPointerToRegister(int reg) { __ lw(a1, MemOperand(frame_pointer(), kStackHighEnd)); __ Subu(a0, backtrack_stackpointer(), a1); __ sw(a0, register_location(reg)); } bool RegExpMacroAssemblerMIPS::CanReadUnaligned() { return false; } // Private methods: void RegExpMacroAssemblerMIPS::CallCheckStackGuardState(Register scratch) { int stack_alignment = base::OS::ActivationFrameAlignment(); // Align the stack pointer and save the original sp value on the stack. __ mov(scratch, sp); __ Subu(sp, sp, Operand(kPointerSize)); DCHECK(base::bits::IsPowerOfTwo32(stack_alignment)); __ And(sp, sp, Operand(-stack_alignment)); __ sw(scratch, MemOperand(sp)); __ mov(a2, frame_pointer()); // Code* of self. __ li(a1, Operand(masm_->CodeObject()), CONSTANT_SIZE); // We need to make room for the return address on the stack. DCHECK(IsAligned(stack_alignment, kPointerSize)); __ Subu(sp, sp, Operand(stack_alignment)); // Stack pointer now points to cell where return address is to be written. // Arguments are in registers, meaning we teat the return address as // argument 5. Since DirectCEntryStub will handleallocating space for the C // argument slots, we don't need to care about that here. This is how the // stack will look (sp meaning the value of sp at this moment): // [sp + 3] - empty slot if needed for alignment. // [sp + 2] - saved sp. // [sp + 1] - second word reserved for return value. // [sp + 0] - first word reserved for return value. // a0 will point to the return address, placed by DirectCEntry. __ mov(a0, sp); ExternalReference stack_guard_check = ExternalReference::re_check_stack_guard_state(masm_->isolate()); __ li(t9, Operand(stack_guard_check)); DirectCEntryStub stub(isolate()); stub.GenerateCall(masm_, t9); // DirectCEntryStub allocated space for the C argument slots so we have to // drop them with the return address from the stack with loading saved sp. // At this point stack must look: // [sp + 7] - empty slot if needed for alignment. // [sp + 6] - saved sp. // [sp + 5] - second word reserved for return value. // [sp + 4] - first word reserved for return value. // [sp + 3] - C argument slot. // [sp + 2] - C argument slot. // [sp + 1] - C argument slot. // [sp + 0] - C argument slot. __ lw(sp, MemOperand(sp, stack_alignment + kCArgsSlotsSize)); __ li(code_pointer(), Operand(masm_->CodeObject())); } // Helper function for reading a value out of a stack frame. template static T& frame_entry(Address re_frame, int frame_offset) { return reinterpret_cast(Memory::int32_at(re_frame + frame_offset)); } int RegExpMacroAssemblerMIPS::CheckStackGuardState(Address* return_address, Code* re_code, Address re_frame) { Isolate* isolate = frame_entry(re_frame, kIsolate); StackLimitCheck check(isolate); if (check.JsHasOverflowed()) { isolate->StackOverflow(); return EXCEPTION; } // If not real stack overflow the stack guard was used to interrupt // execution for another purpose. // If this is a direct call from JavaScript retry the RegExp forcing the call // through the runtime system. Currently the direct call cannot handle a GC. if (frame_entry(re_frame, kDirectCall) == 1) { return RETRY; } // Prepare for possible GC. HandleScope handles(isolate); Handle code_handle(re_code); Handle subject(frame_entry(re_frame, kInputString)); // Current string. bool is_one_byte = subject->IsOneByteRepresentationUnderneath(); DCHECK(re_code->instruction_start() <= *return_address); DCHECK(*return_address <= re_code->instruction_start() + re_code->instruction_size()); Object* result = isolate->stack_guard()->HandleInterrupts(); if (*code_handle != re_code) { // Return address no longer valid. int delta = code_handle->address() - re_code->address(); // Overwrite the return address on the stack. *return_address += delta; } if (result->IsException()) { return EXCEPTION; } Handle subject_tmp = subject; int slice_offset = 0; // Extract the underlying string and the slice offset. if (StringShape(*subject_tmp).IsCons()) { subject_tmp = Handle(ConsString::cast(*subject_tmp)->first()); } else if (StringShape(*subject_tmp).IsSliced()) { SlicedString* slice = SlicedString::cast(*subject_tmp); subject_tmp = Handle(slice->parent()); slice_offset = slice->offset(); } // String might have changed. if (subject_tmp->IsOneByteRepresentation() != is_one_byte) { // If we changed between an Latin1 and an UC16 string, the specialized // code cannot be used, and we need to restart regexp matching from // scratch (including, potentially, compiling a new version of the code). return RETRY; } // Otherwise, the content of the string might have moved. It must still // be a sequential or external string with the same content. // Update the start and end pointers in the stack frame to the current // location (whether it has actually moved or not). DCHECK(StringShape(*subject_tmp).IsSequential() || StringShape(*subject_tmp).IsExternal()); // The original start address of the characters to match. const byte* start_address = frame_entry(re_frame, kInputStart); // Find the current start address of the same character at the current string // position. int start_index = frame_entry(re_frame, kStartIndex); const byte* new_address = StringCharacterPosition(*subject_tmp, start_index + slice_offset); if (start_address != new_address) { // If there is a difference, update the object pointer and start and end // addresses in the RegExp stack frame to match the new value. const byte* end_address = frame_entry(re_frame, kInputEnd); int byte_length = static_cast(end_address - start_address); frame_entry(re_frame, kInputString) = *subject; frame_entry(re_frame, kInputStart) = new_address; frame_entry(re_frame, kInputEnd) = new_address + byte_length; } else if (frame_entry(re_frame, kInputString) != *subject) { // Subject string might have been a ConsString that underwent // short-circuiting during GC. That will not change start_address but // will change pointer inside the subject handle. frame_entry(re_frame, kInputString) = *subject; } return 0; } MemOperand RegExpMacroAssemblerMIPS::register_location(int register_index) { DCHECK(register_index < (1<<30)); if (num_registers_ <= register_index) { num_registers_ = register_index + 1; } return MemOperand(frame_pointer(), kRegisterZero - register_index * kPointerSize); } void RegExpMacroAssemblerMIPS::CheckPosition(int cp_offset, Label* on_outside_input) { BranchOrBacktrack(on_outside_input, ge, current_input_offset(), Operand(-cp_offset * char_size())); } void RegExpMacroAssemblerMIPS::BranchOrBacktrack(Label* to, Condition condition, Register rs, const Operand& rt) { if (condition == al) { // Unconditional. if (to == NULL) { Backtrack(); return; } __ jmp(to); return; } if (to == NULL) { __ Branch(&backtrack_label_, condition, rs, rt); return; } __ Branch(to, condition, rs, rt); } void RegExpMacroAssemblerMIPS::SafeCall(Label* to, Condition cond, Register rs, const Operand& rt) { __ BranchAndLink(to, cond, rs, rt); } void RegExpMacroAssemblerMIPS::SafeReturn() { __ pop(ra); __ Addu(t5, ra, Operand(masm_->CodeObject())); __ Jump(t5); } void RegExpMacroAssemblerMIPS::SafeCallTarget(Label* name) { __ bind(name); __ Subu(ra, ra, Operand(masm_->CodeObject())); __ push(ra); } void RegExpMacroAssemblerMIPS::Push(Register source) { DCHECK(!source.is(backtrack_stackpointer())); __ Addu(backtrack_stackpointer(), backtrack_stackpointer(), Operand(-kPointerSize)); __ sw(source, MemOperand(backtrack_stackpointer())); } void RegExpMacroAssemblerMIPS::Pop(Register target) { DCHECK(!target.is(backtrack_stackpointer())); __ lw(target, MemOperand(backtrack_stackpointer())); __ Addu(backtrack_stackpointer(), backtrack_stackpointer(), kPointerSize); } void RegExpMacroAssemblerMIPS::CheckPreemption() { // Check for preemption. ExternalReference stack_limit = ExternalReference::address_of_stack_limit(masm_->isolate()); __ li(a0, Operand(stack_limit)); __ lw(a0, MemOperand(a0)); SafeCall(&check_preempt_label_, ls, sp, Operand(a0)); } void RegExpMacroAssemblerMIPS::CheckStackLimit() { ExternalReference stack_limit = ExternalReference::address_of_regexp_stack_limit(masm_->isolate()); __ li(a0, Operand(stack_limit)); __ lw(a0, MemOperand(a0)); SafeCall(&stack_overflow_label_, ls, backtrack_stackpointer(), Operand(a0)); } void RegExpMacroAssemblerMIPS::LoadCurrentCharacterUnchecked(int cp_offset, int characters) { Register offset = current_input_offset(); if (cp_offset != 0) { // t7 is not being used to store the capture start index at this point. __ Addu(t7, current_input_offset(), Operand(cp_offset * char_size())); offset = t7; } // We assume that we cannot do unaligned loads on MIPS, so this function // must only be used to load a single character at a time. DCHECK(characters == 1); __ Addu(t5, end_of_input_address(), Operand(offset)); if (mode_ == LATIN1) { __ lbu(current_character(), MemOperand(t5, 0)); } else { DCHECK(mode_ == UC16); __ lhu(current_character(), MemOperand(t5, 0)); } } #undef __ #endif // V8_INTERPRETED_REGEXP }} // namespace v8::internal #endif // V8_TARGET_ARCH_MIPS