//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // These classes wrap the information about a call or function // definition used to handle ABI compliancy. // //===----------------------------------------------------------------------===// #include "TargetInfo.h" #include "ABIInfo.h" #include "CGCXXABI.h" #include "CodeGenFunction.h" #include "clang/AST/RecordLayout.h" #include "clang/CodeGen/CGFunctionInfo.h" #include "clang/Frontend/CodeGenOptions.h" #include "llvm/ADT/Triple.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Type.h" #include "llvm/Support/raw_ostream.h" #include // std::sort using namespace clang; using namespace CodeGen; static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, llvm::Value *Array, llvm::Value *Value, unsigned FirstIndex, unsigned LastIndex) { // Alternatively, we could emit this as a loop in the source. for (unsigned I = FirstIndex; I <= LastIndex; ++I) { llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I); Builder.CreateStore(Value, Cell); } } static bool isAggregateTypeForABI(QualType T) { return !CodeGenFunction::hasScalarEvaluationKind(T) || T->isMemberFunctionPointerType(); } ABIInfo::~ABIInfo() {} static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, CGCXXABI &CXXABI) { const CXXRecordDecl *RD = dyn_cast(RT->getDecl()); if (!RD) return CGCXXABI::RAA_Default; return CXXABI.getRecordArgABI(RD); } static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, CGCXXABI &CXXABI) { const RecordType *RT = T->getAs(); if (!RT) return CGCXXABI::RAA_Default; return getRecordArgABI(RT, CXXABI); } CGCXXABI &ABIInfo::getCXXABI() const { return CGT.getCXXABI(); } ASTContext &ABIInfo::getContext() const { return CGT.getContext(); } llvm::LLVMContext &ABIInfo::getVMContext() const { return CGT.getLLVMContext(); } const llvm::DataLayout &ABIInfo::getDataLayout() const { return CGT.getDataLayout(); } const TargetInfo &ABIInfo::getTarget() const { return CGT.getTarget(); } void ABIArgInfo::dump() const { raw_ostream &OS = llvm::errs(); OS << "(ABIArgInfo Kind="; switch (TheKind) { case Direct: OS << "Direct Type="; if (llvm::Type *Ty = getCoerceToType()) Ty->print(OS); else OS << "null"; break; case Extend: OS << "Extend"; break; case Ignore: OS << "Ignore"; break; case InAlloca: OS << "InAlloca Offset=" << getInAllocaFieldIndex(); break; case Indirect: OS << "Indirect Align=" << getIndirectAlign() << " ByVal=" << getIndirectByVal() << " Realign=" << getIndirectRealign(); break; case Expand: OS << "Expand"; break; } OS << ")\n"; } TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } // If someone can figure out a general rule for this, that would be great. // It's probably just doomed to be platform-dependent, though. unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { // Verified for: // x86-64 FreeBSD, Linux, Darwin // x86-32 FreeBSD, Linux, Darwin // PowerPC Linux, Darwin // ARM Darwin (*not* EABI) // AArch64 Linux return 32; } bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, const FunctionNoProtoType *fnType) const { // The following conventions are known to require this to be false: // x86_stdcall // MIPS // For everything else, we just prefer false unless we opt out. return false; } void TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, llvm::SmallString<24> &Opt) const { // This assumes the user is passing a library name like "rt" instead of a // filename like "librt.a/so", and that they don't care whether it's static or // dynamic. Opt = "-l"; Opt += Lib; } static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); /// isEmptyField - Return true iff a the field is "empty", that is it /// is an unnamed bit-field or an (array of) empty record(s). static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, bool AllowArrays) { if (FD->isUnnamedBitfield()) return true; QualType FT = FD->getType(); // Constant arrays of empty records count as empty, strip them off. // Constant arrays of zero length always count as empty. if (AllowArrays) while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { if (AT->getSize() == 0) return true; FT = AT->getElementType(); } const RecordType *RT = FT->getAs(); if (!RT) return false; // C++ record fields are never empty, at least in the Itanium ABI. // // FIXME: We should use a predicate for whether this behavior is true in the // current ABI. if (isa(RT->getDecl())) return false; return isEmptyRecord(Context, FT, AllowArrays); } /// isEmptyRecord - Return true iff a structure contains only empty /// fields. Note that a structure with a flexible array member is not /// considered empty. static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { const RecordType *RT = T->getAs(); if (!RT) return 0; const RecordDecl *RD = RT->getDecl(); if (RD->hasFlexibleArrayMember()) return false; // If this is a C++ record, check the bases first. if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) for (const auto &I : CXXRD->bases()) if (!isEmptyRecord(Context, I.getType(), true)) return false; for (const auto *I : RD->fields()) if (!isEmptyField(Context, I, AllowArrays)) return false; return true; } /// isSingleElementStruct - Determine if a structure is a "single /// element struct", i.e. it has exactly one non-empty field or /// exactly one field which is itself a single element /// struct. Structures with flexible array members are never /// considered single element structs. /// /// \return The field declaration for the single non-empty field, if /// it exists. static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { const RecordType *RT = T->getAsStructureType(); if (!RT) return nullptr; const RecordDecl *RD = RT->getDecl(); if (RD->hasFlexibleArrayMember()) return nullptr; const Type *Found = nullptr; // If this is a C++ record, check the bases first. if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) { for (const auto &I : CXXRD->bases()) { // Ignore empty records. if (isEmptyRecord(Context, I.getType(), true)) continue; // If we already found an element then this isn't a single-element struct. if (Found) return nullptr; // If this is non-empty and not a single element struct, the composite // cannot be a single element struct. Found = isSingleElementStruct(I.getType(), Context); if (!Found) return nullptr; } } // Check for single element. for (const auto *FD : RD->fields()) { QualType FT = FD->getType(); // Ignore empty fields. if (isEmptyField(Context, FD, true)) continue; // If we already found an element then this isn't a single-element // struct. if (Found) return nullptr; // Treat single element arrays as the element. while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { if (AT->getSize().getZExtValue() != 1) break; FT = AT->getElementType(); } if (!isAggregateTypeForABI(FT)) { Found = FT.getTypePtr(); } else { Found = isSingleElementStruct(FT, Context); if (!Found) return nullptr; } } // We don't consider a struct a single-element struct if it has // padding beyond the element type. if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) return nullptr; return Found; } static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { // Treat complex types as the element type. if (const ComplexType *CTy = Ty->getAs()) Ty = CTy->getElementType(); // Check for a type which we know has a simple scalar argument-passing // convention without any padding. (We're specifically looking for 32 // and 64-bit integer and integer-equivalents, float, and double.) if (!Ty->getAs() && !Ty->hasPointerRepresentation() && !Ty->isEnumeralType() && !Ty->isBlockPointerType()) return false; uint64_t Size = Context.getTypeSize(Ty); return Size == 32 || Size == 64; } /// canExpandIndirectArgument - Test whether an argument type which is to be /// passed indirectly (on the stack) would have the equivalent layout if it was /// expanded into separate arguments. If so, we prefer to do the latter to avoid /// inhibiting optimizations. /// // FIXME: This predicate is missing many cases, currently it just follows // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We // should probably make this smarter, or better yet make the LLVM backend // capable of handling it. static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) { // We can only expand structure types. const RecordType *RT = Ty->getAs(); if (!RT) return false; // We can only expand (C) structures. // // FIXME: This needs to be generalized to handle classes as well. const RecordDecl *RD = RT->getDecl(); if (!RD->isStruct() || isa(RD)) return false; uint64_t Size = 0; for (const auto *FD : RD->fields()) { if (!is32Or64BitBasicType(FD->getType(), Context)) return false; // FIXME: Reject bit-fields wholesale; there are two problems, we don't know // how to expand them yet, and the predicate for telling if a bitfield still // counts as "basic" is more complicated than what we were doing previously. if (FD->isBitField()) return false; Size += Context.getTypeSize(FD->getType()); } // Make sure there are not any holes in the struct. if (Size != Context.getTypeSize(Ty)) return false; return true; } namespace { /// DefaultABIInfo - The default implementation for ABI specific /// details. This implementation provides information which results in /// self-consistent and sensible LLVM IR generation, but does not /// conform to any particular ABI. class DefaultABIInfo : public ABIInfo { public: DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType RetTy) const; void computeInfo(CGFunctionInfo &FI) const override { if (!getCXXABI().classifyReturnType(FI)) FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (auto &I : FI.arguments()) I.info = classifyArgumentType(I.type); } llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const override; }; class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { public: DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} }; llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { return nullptr; } ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { if (isAggregateTypeForABI(Ty)) return ABIArgInfo::getIndirect(0); // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); if (isAggregateTypeForABI(RetTy)) return ABIArgInfo::getIndirect(0); // Treat an enum type as its underlying type. if (const EnumType *EnumTy = RetTy->getAs()) RetTy = EnumTy->getDecl()->getIntegerType(); return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } //===----------------------------------------------------------------------===// // le32/PNaCl bitcode ABI Implementation // // This is a simplified version of the x86_32 ABI. Arguments and return values // are always passed on the stack. //===----------------------------------------------------------------------===// class PNaClABIInfo : public ABIInfo { public: PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType RetTy) const; void computeInfo(CGFunctionInfo &FI) const override; llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const override; }; class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { public: PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} }; void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { if (!getCXXABI().classifyReturnType(FI)) FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (auto &I : FI.arguments()) I.info = classifyArgumentType(I.type); } llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { return nullptr; } /// \brief Classify argument of given type \p Ty. ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { if (isAggregateTypeForABI(Ty)) { if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); return ABIArgInfo::getIndirect(0); } else if (const EnumType *EnumTy = Ty->getAs()) { // Treat an enum type as its underlying type. Ty = EnumTy->getDecl()->getIntegerType(); } else if (Ty->isFloatingType()) { // Floating-point types don't go inreg. return ABIArgInfo::getDirect(); } return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); // In the PNaCl ABI we always return records/structures on the stack. if (isAggregateTypeForABI(RetTy)) return ABIArgInfo::getIndirect(0); // Treat an enum type as its underlying type. if (const EnumType *EnumTy = RetTy->getAs()) RetTy = EnumTy->getDecl()->getIntegerType(); return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } /// IsX86_MMXType - Return true if this is an MMX type. bool IsX86_MMXType(llvm::Type *IRType) { // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && cast(IRType)->getElementType()->isIntegerTy() && IRType->getScalarSizeInBits() != 64; } static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, StringRef Constraint, llvm::Type* Ty) { if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { if (cast(Ty)->getBitWidth() != 64) { // Invalid MMX constraint return nullptr; } return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); } // No operation needed return Ty; } //===----------------------------------------------------------------------===// // X86-32 ABI Implementation //===----------------------------------------------------------------------===// /// \brief Similar to llvm::CCState, but for Clang. struct CCState { CCState(unsigned CC) : CC(CC), FreeRegs(0) {} unsigned CC; unsigned FreeRegs; unsigned StackOffset; bool UseInAlloca; }; /// X86_32ABIInfo - The X86-32 ABI information. class X86_32ABIInfo : public ABIInfo { enum Class { Integer, Float }; static const unsigned MinABIStackAlignInBytes = 4; bool IsDarwinVectorABI; bool IsSmallStructInRegABI; bool IsWin32StructABI; unsigned DefaultNumRegisterParameters; static bool isRegisterSize(unsigned Size) { return (Size == 8 || Size == 16 || Size == 32 || Size == 64); } bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; /// getIndirectResult - Give a source type \arg Ty, return a suitable result /// such that the argument will be passed in memory. ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; ABIArgInfo getIndirectReturnResult(CCState &State) const; /// \brief Return the alignment to use for the given type on the stack. unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; Class classify(QualType Ty) const; ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const; /// \brief Rewrite the function info so that all memory arguments use /// inalloca. void rewriteWithInAlloca(CGFunctionInfo &FI) const; void addFieldToArgStruct(SmallVector &FrameFields, unsigned &StackOffset, ABIArgInfo &Info, QualType Type) const; public: void computeInfo(CGFunctionInfo &FI) const override; llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const override; X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w, unsigned r) : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p), IsWin32StructABI(w), DefaultNumRegisterParameters(r) {} }; class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { public: X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w, unsigned r) :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {} static bool isStructReturnInRegABI( const llvm::Triple &Triple, const CodeGenOptions &Opts); void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const override; int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { // Darwin uses different dwarf register numbers for EH. if (CGM.getTarget().getTriple().isOSDarwin()) return 5; return 4; } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const override; llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, StringRef Constraint, llvm::Type* Ty) const override { return X86AdjustInlineAsmType(CGF, Constraint, Ty); } llvm::Constant * getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { unsigned Sig = (0xeb << 0) | // jmp rel8 (0x06 << 8) | // .+0x08 ('F' << 16) | ('T' << 24); return llvm::ConstantInt::get(CGM.Int32Ty, Sig); } }; } /// shouldReturnTypeInRegister - Determine if the given type should be /// passed in a register (for the Darwin ABI). bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const { uint64_t Size = Context.getTypeSize(Ty); // Type must be register sized. if (!isRegisterSize(Size)) return false; if (Ty->isVectorType()) { // 64- and 128- bit vectors inside structures are not returned in // registers. if (Size == 64 || Size == 128) return false; return true; } // If this is a builtin, pointer, enum, complex type, member pointer, or // member function pointer it is ok. if (Ty->getAs() || Ty->hasPointerRepresentation() || Ty->isAnyComplexType() || Ty->isEnumeralType() || Ty->isBlockPointerType() || Ty->isMemberPointerType()) return true; // Arrays are treated like records. if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) return shouldReturnTypeInRegister(AT->getElementType(), Context); // Otherwise, it must be a record type. const RecordType *RT = Ty->getAs(); if (!RT) return false; // FIXME: Traverse bases here too. // Structure types are passed in register if all fields would be // passed in a register. for (const auto *FD : RT->getDecl()->fields()) { // Empty fields are ignored. if (isEmptyField(Context, FD, true)) continue; // Check fields recursively. if (!shouldReturnTypeInRegister(FD->getType(), Context)) return false; } return true; } ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const { // If the return value is indirect, then the hidden argument is consuming one // integer register. if (State.FreeRegs) { --State.FreeRegs; return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false); } return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false); } ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, CCState &State) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); if (const VectorType *VT = RetTy->getAs()) { // On Darwin, some vectors are returned in registers. if (IsDarwinVectorABI) { uint64_t Size = getContext().getTypeSize(RetTy); // 128-bit vectors are a special case; they are returned in // registers and we need to make sure to pick a type the LLVM // backend will like. if (Size == 128) return ABIArgInfo::getDirect(llvm::VectorType::get( llvm::Type::getInt64Ty(getVMContext()), 2)); // Always return in register if it fits in a general purpose // register, or if it is 64 bits and has a single element. if ((Size == 8 || Size == 16 || Size == 32) || (Size == 64 && VT->getNumElements() == 1)) return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); return getIndirectReturnResult(State); } return ABIArgInfo::getDirect(); } if (isAggregateTypeForABI(RetTy)) { if (const RecordType *RT = RetTy->getAs()) { // Structures with flexible arrays are always indirect. if (RT->getDecl()->hasFlexibleArrayMember()) return getIndirectReturnResult(State); } // If specified, structs and unions are always indirect. if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType()) return getIndirectReturnResult(State); // Small structures which are register sized are generally returned // in a register. if (shouldReturnTypeInRegister(RetTy, getContext())) { uint64_t Size = getContext().getTypeSize(RetTy); // As a special-case, if the struct is a "single-element" struct, and // the field is of type "float" or "double", return it in a // floating-point register. (MSVC does not apply this special case.) // We apply a similar transformation for pointer types to improve the // quality of the generated IR. if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) || SeltTy->hasPointerRepresentation()) return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); // FIXME: We should be able to narrow this integer in cases with dead // padding. return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); } return getIndirectReturnResult(State); } // Treat an enum type as its underlying type. if (const EnumType *EnumTy = RetTy->getAs()) RetTy = EnumTy->getDecl()->getIntegerType(); return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } static bool isSSEVectorType(ASTContext &Context, QualType Ty) { return Ty->getAs() && Context.getTypeSize(Ty) == 128; } static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { const RecordType *RT = Ty->getAs(); if (!RT) return 0; const RecordDecl *RD = RT->getDecl(); // If this is a C++ record, check the bases first. if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) for (const auto &I : CXXRD->bases()) if (!isRecordWithSSEVectorType(Context, I.getType())) return false; for (const auto *i : RD->fields()) { QualType FT = i->getType(); if (isSSEVectorType(Context, FT)) return true; if (isRecordWithSSEVectorType(Context, FT)) return true; } return false; } unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, unsigned Align) const { // Otherwise, if the alignment is less than or equal to the minimum ABI // alignment, just use the default; the backend will handle this. if (Align <= MinABIStackAlignInBytes) return 0; // Use default alignment. // On non-Darwin, the stack type alignment is always 4. if (!IsDarwinVectorABI) { // Set explicit alignment, since we may need to realign the top. return MinABIStackAlignInBytes; } // Otherwise, if the type contains an SSE vector type, the alignment is 16. if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || isRecordWithSSEVectorType(getContext(), Ty))) return 16; return MinABIStackAlignInBytes; } ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, CCState &State) const { if (!ByVal) { if (State.FreeRegs) { --State.FreeRegs; // Non-byval indirects just use one pointer. return ABIArgInfo::getIndirectInReg(0, false); } return ABIArgInfo::getIndirect(0, false); } // Compute the byval alignment. unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); if (StackAlign == 0) return ABIArgInfo::getIndirect(4, /*ByVal=*/true); // If the stack alignment is less than the type alignment, realign the // argument. bool Realign = TypeAlign > StackAlign; return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign); } X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { const Type *T = isSingleElementStruct(Ty, getContext()); if (!T) T = Ty.getTypePtr(); if (const BuiltinType *BT = T->getAs()) { BuiltinType::Kind K = BT->getKind(); if (K == BuiltinType::Float || K == BuiltinType::Double) return Float; } return Integer; } bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const { NeedsPadding = false; Class C = classify(Ty); if (C == Float) return false; unsigned Size = getContext().getTypeSize(Ty); unsigned SizeInRegs = (Size + 31) / 32; if (SizeInRegs == 0) return false; if (SizeInRegs > State.FreeRegs) { State.FreeRegs = 0; return false; } State.FreeRegs -= SizeInRegs; if (State.CC == llvm::CallingConv::X86_FastCall) { if (Size > 32) return false; if (Ty->isIntegralOrEnumerationType()) return true; if (Ty->isPointerType()) return true; if (Ty->isReferenceType()) return true; if (State.FreeRegs) NeedsPadding = true; return false; } return true; } ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, CCState &State) const { // FIXME: Set alignment on indirect arguments. if (isAggregateTypeForABI(Ty)) { if (const RecordType *RT = Ty->getAs()) { // Check with the C++ ABI first. CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); if (RAA == CGCXXABI::RAA_Indirect) { return getIndirectResult(Ty, false, State); } else if (RAA == CGCXXABI::RAA_DirectInMemory) { // The field index doesn't matter, we'll fix it up later. return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); } // Structs are always byval on win32, regardless of what they contain. if (IsWin32StructABI) return getIndirectResult(Ty, true, State); // Structures with flexible arrays are always indirect. if (RT->getDecl()->hasFlexibleArrayMember()) return getIndirectResult(Ty, true, State); } // Ignore empty structs/unions. if (isEmptyRecord(getContext(), Ty, true)) return ABIArgInfo::getIgnore(); llvm::LLVMContext &LLVMContext = getVMContext(); llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); bool NeedsPadding; if (shouldUseInReg(Ty, State, NeedsPadding)) { unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; SmallVector Elements(SizeInRegs, Int32); llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); return ABIArgInfo::getDirectInReg(Result); } llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; // Expand small (<= 128-bit) record types when we know that the stack layout // of those arguments will match the struct. This is important because the // LLVM backend isn't smart enough to remove byval, which inhibits many // optimizations. if (getContext().getTypeSize(Ty) <= 4*32 && canExpandIndirectArgument(Ty, getContext())) return ABIArgInfo::getExpandWithPadding( State.CC == llvm::CallingConv::X86_FastCall, PaddingType); return getIndirectResult(Ty, true, State); } if (const VectorType *VT = Ty->getAs()) { // On Darwin, some vectors are passed in memory, we handle this by passing // it as an i8/i16/i32/i64. if (IsDarwinVectorABI) { uint64_t Size = getContext().getTypeSize(Ty); if ((Size == 8 || Size == 16 || Size == 32) || (Size == 64 && VT->getNumElements() == 1)) return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); } if (IsX86_MMXType(CGT.ConvertType(Ty))) return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); return ABIArgInfo::getDirect(); } if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); bool NeedsPadding; bool InReg = shouldUseInReg(Ty, State, NeedsPadding); if (Ty->isPromotableIntegerType()) { if (InReg) return ABIArgInfo::getExtendInReg(); return ABIArgInfo::getExtend(); } if (InReg) return ABIArgInfo::getDirectInReg(); return ABIArgInfo::getDirect(); } void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { CCState State(FI.getCallingConvention()); if (State.CC == llvm::CallingConv::X86_FastCall) State.FreeRegs = 2; else if (FI.getHasRegParm()) State.FreeRegs = FI.getRegParm(); else State.FreeRegs = DefaultNumRegisterParameters; if (!getCXXABI().classifyReturnType(FI)) { FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); } else if (FI.getReturnInfo().isIndirect()) { // The C++ ABI is not aware of register usage, so we have to check if the // return value was sret and put it in a register ourselves if appropriate. if (State.FreeRegs) { --State.FreeRegs; // The sret parameter consumes a register. FI.getReturnInfo().setInReg(true); } } bool UsedInAlloca = false; for (auto &I : FI.arguments()) { I.info = classifyArgumentType(I.type, State); UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); } // If we needed to use inalloca for any argument, do a second pass and rewrite // all the memory arguments to use inalloca. if (UsedInAlloca) rewriteWithInAlloca(FI); } void X86_32ABIInfo::addFieldToArgStruct(SmallVector &FrameFields, unsigned &StackOffset, ABIArgInfo &Info, QualType Type) const { assert(StackOffset % 4U == 0 && "unaligned inalloca struct"); Info = ABIArgInfo::getInAlloca(FrameFields.size()); FrameFields.push_back(CGT.ConvertTypeForMem(Type)); StackOffset += getContext().getTypeSizeInChars(Type).getQuantity(); // Insert padding bytes to respect alignment. For x86_32, each argument is 4 // byte aligned. if (StackOffset % 4U) { unsigned OldOffset = StackOffset; StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U); unsigned NumBytes = StackOffset - OldOffset; assert(NumBytes); llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); Ty = llvm::ArrayType::get(Ty, NumBytes); FrameFields.push_back(Ty); } } void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { assert(IsWin32StructABI && "inalloca only supported on win32"); // Build a packed struct type for all of the arguments in memory. SmallVector FrameFields; unsigned StackOffset = 0; // Put the sret parameter into the inalloca struct if it's in memory. ABIArgInfo &Ret = FI.getReturnInfo(); if (Ret.isIndirect() && !Ret.getInReg()) { CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); // On Windows, the hidden sret parameter is always returned in eax. Ret.setInAllocaSRet(IsWin32StructABI); } // Skip the 'this' parameter in ecx. CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); if (FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall) ++I; // Put arguments passed in memory into the struct. for (; I != E; ++I) { // Leave ignored and inreg arguments alone. switch (I->info.getKind()) { case ABIArgInfo::Indirect: assert(I->info.getIndirectByVal()); break; case ABIArgInfo::Ignore: continue; case ABIArgInfo::Direct: case ABIArgInfo::Extend: if (I->info.getInReg()) continue; break; default: break; } addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); } FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, /*isPacked=*/true)); } llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { llvm::Type *BPP = CGF.Int8PtrPtrTy; CGBuilderTy &Builder = CGF.Builder; llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); // Compute if the address needs to be aligned unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity(); Align = getTypeStackAlignInBytes(Ty, Align); Align = std::max(Align, 4U); if (Align > 4) { // addr = (addr + align - 1) & -align; llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); Addr = CGF.Builder.CreateGEP(Addr, Offset); llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr, CGF.Int32Ty); llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align); Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), Addr->getType(), "ap.cur.aligned"); } llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); uint64_t Offset = llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align); llvm::Value *NextAddr = Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); Builder.CreateStore(NextAddr, VAListAddrAsBPP); return AddrTyped; } bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( const llvm::Triple &Triple, const CodeGenOptions &Opts) { assert(Triple.getArch() == llvm::Triple::x86); switch (Opts.getStructReturnConvention()) { case CodeGenOptions::SRCK_Default: break; case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return return false; case CodeGenOptions::SRCK_InRegs: // -freg-struct-return return true; } if (Triple.isOSDarwin()) return true; switch (Triple.getOS()) { case llvm::Triple::AuroraUX: case llvm::Triple::DragonFly: case llvm::Triple::FreeBSD: case llvm::Triple::OpenBSD: case llvm::Triple::Bitrig: return true; case llvm::Triple::Win32: switch (Triple.getEnvironment()) { case llvm::Triple::UnknownEnvironment: case llvm::Triple::Cygnus: case llvm::Triple::GNU: case llvm::Triple::MSVC: return true; default: return false; } default: return false; } } void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { if (const FunctionDecl *FD = dyn_cast(D)) { if (FD->hasAttr()) { // Get the LLVM function. llvm::Function *Fn = cast(GV); // Now add the 'alignstack' attribute with a value of 16. llvm::AttrBuilder B; B.addStackAlignmentAttr(16); Fn->addAttributes(llvm::AttributeSet::FunctionIndex, llvm::AttributeSet::get(CGM.getLLVMContext(), llvm::AttributeSet::FunctionIndex, B)); } } } bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { CodeGen::CGBuilderTy &Builder = CGF.Builder; llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); // 0-7 are the eight integer registers; the order is different // on Darwin (for EH), but the range is the same. // 8 is %eip. AssignToArrayRange(Builder, Address, Four8, 0, 8); if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { // 12-16 are st(0..4). Not sure why we stop at 4. // These have size 16, which is sizeof(long double) on // platforms with 8-byte alignment for that type. llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); } else { // 9 is %eflags, which doesn't get a size on Darwin for some // reason. Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9)); // 11-16 are st(0..5). Not sure why we stop at 5. // These have size 12, which is sizeof(long double) on // platforms with 4-byte alignment for that type. llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); AssignToArrayRange(Builder, Address, Twelve8, 11, 16); } return false; } //===----------------------------------------------------------------------===// // X86-64 ABI Implementation //===----------------------------------------------------------------------===// namespace { /// X86_64ABIInfo - The X86_64 ABI information. class X86_64ABIInfo : public ABIInfo { enum Class { Integer = 0, SSE, SSEUp, X87, X87Up, ComplexX87, NoClass, Memory }; /// merge - Implement the X86_64 ABI merging algorithm. /// /// Merge an accumulating classification \arg Accum with a field /// classification \arg Field. /// /// \param Accum - The accumulating classification. This should /// always be either NoClass or the result of a previous merge /// call. In addition, this should never be Memory (the caller /// should just return Memory for the aggregate). static Class merge(Class Accum, Class Field); /// postMerge - Implement the X86_64 ABI post merging algorithm. /// /// Post merger cleanup, reduces a malformed Hi and Lo pair to /// final MEMORY or SSE classes when necessary. /// /// \param AggregateSize - The size of the current aggregate in /// the classification process. /// /// \param Lo - The classification for the parts of the type /// residing in the low word of the containing object. /// /// \param Hi - The classification for the parts of the type /// residing in the higher words of the containing object. /// void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; /// classify - Determine the x86_64 register classes in which the /// given type T should be passed. /// /// \param Lo - The classification for the parts of the type /// residing in the low word of the containing object. /// /// \param Hi - The classification for the parts of the type /// residing in the high word of the containing object. /// /// \param OffsetBase - The bit offset of this type in the /// containing object. Some parameters are classified different /// depending on whether they straddle an eightbyte boundary. /// /// \param isNamedArg - Whether the argument in question is a "named" /// argument, as used in AMD64-ABI 3.5.7. /// /// If a word is unused its result will be NoClass; if a type should /// be passed in Memory then at least the classification of \arg Lo /// will be Memory. /// /// The \arg Lo class will be NoClass iff the argument is ignored. /// /// If the \arg Lo class is ComplexX87, then the \arg Hi class will /// also be ComplexX87. void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, bool isNamedArg) const; llvm::Type *GetByteVectorType(QualType Ty) const; llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, QualType SourceTy, unsigned SourceOffset) const; llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, QualType SourceTy, unsigned SourceOffset) const; /// getIndirectResult - Give a source type \arg Ty, return a suitable result /// such that the argument will be returned in memory. ABIArgInfo getIndirectReturnResult(QualType Ty) const; /// getIndirectResult - Give a source type \arg Ty, return a suitable result /// such that the argument will be passed in memory. /// /// \param freeIntRegs - The number of free integer registers remaining /// available. ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, bool isNamedArg) const; bool IsIllegalVectorType(QualType Ty) const; /// The 0.98 ABI revision clarified a lot of ambiguities, /// unfortunately in ways that were not always consistent with /// certain previous compilers. In particular, platforms which /// required strict binary compatibility with older versions of GCC /// may need to exempt themselves. bool honorsRevision0_98() const { return !getTarget().getTriple().isOSDarwin(); } bool HasAVX; // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on // 64-bit hardware. bool Has64BitPointers; public: X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) : ABIInfo(CGT), HasAVX(hasavx), Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { } bool isPassedUsingAVXType(QualType type) const { unsigned neededInt, neededSSE; // The freeIntRegs argument doesn't matter here. ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, /*isNamedArg*/true); if (info.isDirect()) { llvm::Type *ty = info.getCoerceToType(); if (llvm::VectorType *vectorTy = dyn_cast_or_null(ty)) return (vectorTy->getBitWidth() > 128); } return false; } void computeInfo(CGFunctionInfo &FI) const override; llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const override; }; /// WinX86_64ABIInfo - The Windows X86_64 ABI information. class WinX86_64ABIInfo : public ABIInfo { ABIArgInfo classify(QualType Ty, bool IsReturnType) const; public: WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} void computeInfo(CGFunctionInfo &FI) const override; llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const override; }; class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { public: X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {} const X86_64ABIInfo &getABIInfo() const { return static_cast(TargetCodeGenInfo::getABIInfo()); } int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { return 7; } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const override { llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); // 0-15 are the 16 integer registers. // 16 is %rip. AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); return false; } llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, StringRef Constraint, llvm::Type* Ty) const override { return X86AdjustInlineAsmType(CGF, Constraint, Ty); } bool isNoProtoCallVariadic(const CallArgList &args, const FunctionNoProtoType *fnType) const override { // The default CC on x86-64 sets %al to the number of SSA // registers used, and GCC sets this when calling an unprototyped // function, so we override the default behavior. However, don't do // that when AVX types are involved: the ABI explicitly states it is // undefined, and it doesn't work in practice because of how the ABI // defines varargs anyway. if (fnType->getCallConv() == CC_C) { bool HasAVXType = false; for (CallArgList::const_iterator it = args.begin(), ie = args.end(); it != ie; ++it) { if (getABIInfo().isPassedUsingAVXType(it->Ty)) { HasAVXType = true; break; } } if (!HasAVXType) return true; } return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); } llvm::Constant * getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { unsigned Sig = (0xeb << 0) | // jmp rel8 (0x0a << 8) | // .+0x0c ('F' << 16) | ('T' << 24); return llvm::ConstantInt::get(CGM.Int32Ty, Sig); } }; static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { // If the argument does not end in .lib, automatically add the suffix. This // matches the behavior of MSVC. std::string ArgStr = Lib; if (!Lib.endswith_lower(".lib")) ArgStr += ".lib"; return ArgStr; } class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { public: WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w, unsigned RegParms) : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {} void getDependentLibraryOption(llvm::StringRef Lib, llvm::SmallString<24> &Opt) const override { Opt = "/DEFAULTLIB:"; Opt += qualifyWindowsLibrary(Lib); } void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, llvm::SmallString<32> &Opt) const override { Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; } }; class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { public: WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { return 7; } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const override { llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); // 0-15 are the 16 integer registers. // 16 is %rip. AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); return false; } void getDependentLibraryOption(llvm::StringRef Lib, llvm::SmallString<24> &Opt) const override { Opt = "/DEFAULTLIB:"; Opt += qualifyWindowsLibrary(Lib); } void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, llvm::SmallString<32> &Opt) const override { Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; } }; } void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const { // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: // // (a) If one of the classes is Memory, the whole argument is passed in // memory. // // (b) If X87UP is not preceded by X87, the whole argument is passed in // memory. // // (c) If the size of the aggregate exceeds two eightbytes and the first // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole // argument is passed in memory. NOTE: This is necessary to keep the // ABI working for processors that don't support the __m256 type. // // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. // // Some of these are enforced by the merging logic. Others can arise // only with unions; for example: // union { _Complex double; unsigned; } // // Note that clauses (b) and (c) were added in 0.98. // if (Hi == Memory) Lo = Memory; if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) Lo = Memory; if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) Lo = Memory; if (Hi == SSEUp && Lo != SSE) Hi = SSE; } X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is // classified recursively so that always two fields are // considered. The resulting class is calculated according to // the classes of the fields in the eightbyte: // // (a) If both classes are equal, this is the resulting class. // // (b) If one of the classes is NO_CLASS, the resulting class is // the other class. // // (c) If one of the classes is MEMORY, the result is the MEMORY // class. // // (d) If one of the classes is INTEGER, the result is the // INTEGER. // // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, // MEMORY is used as class. // // (f) Otherwise class SSE is used. // Accum should never be memory (we should have returned) or // ComplexX87 (because this cannot be passed in a structure). assert((Accum != Memory && Accum != ComplexX87) && "Invalid accumulated classification during merge."); if (Accum == Field || Field == NoClass) return Accum; if (Field == Memory) return Memory; if (Accum == NoClass) return Field; if (Accum == Integer || Field == Integer) return Integer; if (Field == X87 || Field == X87Up || Field == ComplexX87 || Accum == X87 || Accum == X87Up) return Memory; return SSE; } void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, Class &Lo, Class &Hi, bool isNamedArg) const { // FIXME: This code can be simplified by introducing a simple value class for // Class pairs with appropriate constructor methods for the various // situations. // FIXME: Some of the split computations are wrong; unaligned vectors // shouldn't be passed in registers for example, so there is no chance they // can straddle an eightbyte. Verify & simplify. Lo = Hi = NoClass; Class &Current = OffsetBase < 64 ? Lo : Hi; Current = Memory; if (const BuiltinType *BT = Ty->getAs()) { BuiltinType::Kind k = BT->getKind(); if (k == BuiltinType::Void) { Current = NoClass; } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { Lo = Integer; Hi = Integer; } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { Current = Integer; } else if ((k == BuiltinType::Float || k == BuiltinType::Double) || (k == BuiltinType::LongDouble && getTarget().getTriple().isOSNaCl())) { Current = SSE; } else if (k == BuiltinType::LongDouble) { Lo = X87; Hi = X87Up; } // FIXME: _Decimal32 and _Decimal64 are SSE. // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). return; } if (const EnumType *ET = Ty->getAs()) { // Classify the underlying integer type. classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); return; } if (Ty->hasPointerRepresentation()) { Current = Integer; return; } if (Ty->isMemberPointerType()) { if (Ty->isMemberFunctionPointerType() && Has64BitPointers) Lo = Hi = Integer; else Current = Integer; return; } if (const VectorType *VT = Ty->getAs()) { uint64_t Size = getContext().getTypeSize(VT); if (Size == 32) { // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x // float> as integer. Current = Integer; // If this type crosses an eightbyte boundary, it should be // split. uint64_t EB_Real = (OffsetBase) / 64; uint64_t EB_Imag = (OffsetBase + Size - 1) / 64; if (EB_Real != EB_Imag) Hi = Lo; } else if (Size == 64) { // gcc passes <1 x double> in memory. :( if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) return; // gcc passes <1 x long long> as INTEGER. if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) || VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) || VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) || VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong)) Current = Integer; else Current = SSE; // If this type crosses an eightbyte boundary, it should be // split. if (OffsetBase && OffsetBase != 64) Hi = Lo; } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) { // Arguments of 256-bits are split into four eightbyte chunks. The // least significant one belongs to class SSE and all the others to class // SSEUP. The original Lo and Hi design considers that types can't be // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. // This design isn't correct for 256-bits, but since there're no cases // where the upper parts would need to be inspected, avoid adding // complexity and just consider Hi to match the 64-256 part. // // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in // registers if they are "named", i.e. not part of the "..." of a // variadic function. Lo = SSE; Hi = SSEUp; } return; } if (const ComplexType *CT = Ty->getAs()) { QualType ET = getContext().getCanonicalType(CT->getElementType()); uint64_t Size = getContext().getTypeSize(Ty); if (ET->isIntegralOrEnumerationType()) { if (Size <= 64) Current = Integer; else if (Size <= 128) Lo = Hi = Integer; } else if (ET == getContext().FloatTy) Current = SSE; else if (ET == getContext().DoubleTy || (ET == getContext().LongDoubleTy && getTarget().getTriple().isOSNaCl())) Lo = Hi = SSE; else if (ET == getContext().LongDoubleTy) Current = ComplexX87; // If this complex type crosses an eightbyte boundary then it // should be split. uint64_t EB_Real = (OffsetBase) / 64; uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; if (Hi == NoClass && EB_Real != EB_Imag) Hi = Lo; return; } if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { // Arrays are treated like structures. uint64_t Size = getContext().getTypeSize(Ty); // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger // than four eightbytes, ..., it has class MEMORY. if (Size > 256) return; // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned // fields, it has class MEMORY. // // Only need to check alignment of array base. if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) return; // Otherwise implement simplified merge. We could be smarter about // this, but it isn't worth it and would be harder to verify. Current = NoClass; uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); uint64_t ArraySize = AT->getSize().getZExtValue(); // The only case a 256-bit wide vector could be used is when the array // contains a single 256-bit element. Since Lo and Hi logic isn't extended // to work for sizes wider than 128, early check and fallback to memory. if (Size > 128 && EltSize != 256) return; for (uint64_t i=0, Offset=OffsetBase; igetElementType(), Offset, FieldLo, FieldHi, isNamedArg); Lo = merge(Lo, FieldLo); Hi = merge(Hi, FieldHi); if (Lo == Memory || Hi == Memory) break; } postMerge(Size, Lo, Hi); assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); return; } if (const RecordType *RT = Ty->getAs()) { uint64_t Size = getContext().getTypeSize(Ty); // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger // than four eightbytes, ..., it has class MEMORY. if (Size > 256) return; // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial // copy constructor or a non-trivial destructor, it is passed by invisible // reference. if (getRecordArgABI(RT, getCXXABI())) return; const RecordDecl *RD = RT->getDecl(); // Assume variable sized types are passed in memory. if (RD->hasFlexibleArrayMember()) return; const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); // Reset Lo class, this will be recomputed. Current = NoClass; // If this is a C++ record, classify the bases first. if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) { for (const auto &I : CXXRD->bases()) { assert(!I.isVirtual() && !I.getType()->isDependentType() && "Unexpected base class!"); const CXXRecordDecl *Base = cast(I.getType()->getAs()->getDecl()); // Classify this field. // // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a // single eightbyte, each is classified separately. Each eightbyte gets // initialized to class NO_CLASS. Class FieldLo, FieldHi; uint64_t Offset = OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); Lo = merge(Lo, FieldLo); Hi = merge(Hi, FieldHi); if (Lo == Memory || Hi == Memory) break; } } // Classify the fields one at a time, merging the results. unsigned idx = 0; for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); i != e; ++i, ++idx) { uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); bool BitField = i->isBitField(); // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than // four eightbytes, or it contains unaligned fields, it has class MEMORY. // // The only case a 256-bit wide vector could be used is when the struct // contains a single 256-bit element. Since Lo and Hi logic isn't extended // to work for sizes wider than 128, early check and fallback to memory. // if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) { Lo = Memory; return; } // Note, skip this test for bit-fields, see below. if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { Lo = Memory; return; } // Classify this field. // // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate // exceeds a single eightbyte, each is classified // separately. Each eightbyte gets initialized to class // NO_CLASS. Class FieldLo, FieldHi; // Bit-fields require special handling, they do not force the // structure to be passed in memory even if unaligned, and // therefore they can straddle an eightbyte. if (BitField) { // Ignore padding bit-fields. if (i->isUnnamedBitfield()) continue; uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); uint64_t Size = i->getBitWidthValue(getContext()); uint64_t EB_Lo = Offset / 64; uint64_t EB_Hi = (Offset + Size - 1) / 64; if (EB_Lo) { assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); FieldLo = NoClass; FieldHi = Integer; } else { FieldLo = Integer; FieldHi = EB_Hi ? Integer : NoClass; } } else classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); Lo = merge(Lo, FieldLo); Hi = merge(Hi, FieldHi); if (Lo == Memory || Hi == Memory) break; } postMerge(Size, Lo, Hi); } } ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { // If this is a scalar LLVM value then assume LLVM will pass it in the right // place naturally. if (!isAggregateTypeForABI(Ty)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } return ABIArgInfo::getIndirect(0); } bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { if (const VectorType *VecTy = Ty->getAs()) { uint64_t Size = getContext().getTypeSize(VecTy); unsigned LargestVector = HasAVX ? 256 : 128; if (Size <= 64 || Size > LargestVector) return true; } return false; } ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, unsigned freeIntRegs) const { // If this is a scalar LLVM value then assume LLVM will pass it in the right // place naturally. // // This assumption is optimistic, as there could be free registers available // when we need to pass this argument in memory, and LLVM could try to pass // the argument in the free register. This does not seem to happen currently, // but this code would be much safer if we could mark the argument with // 'onstack'. See PR12193. if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); // Compute the byval alignment. We specify the alignment of the byval in all // cases so that the mid-level optimizer knows the alignment of the byval. unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); // Attempt to avoid passing indirect results using byval when possible. This // is important for good codegen. // // We do this by coercing the value into a scalar type which the backend can // handle naturally (i.e., without using byval). // // For simplicity, we currently only do this when we have exhausted all of the // free integer registers. Doing this when there are free integer registers // would require more care, as we would have to ensure that the coerced value // did not claim the unused register. That would require either reording the // arguments to the function (so that any subsequent inreg values came first), // or only doing this optimization when there were no following arguments that // might be inreg. // // We currently expect it to be rare (particularly in well written code) for // arguments to be passed on the stack when there are still free integer // registers available (this would typically imply large structs being passed // by value), so this seems like a fair tradeoff for now. // // We can revisit this if the backend grows support for 'onstack' parameter // attributes. See PR12193. if (freeIntRegs == 0) { uint64_t Size = getContext().getTypeSize(Ty); // If this type fits in an eightbyte, coerce it into the matching integral // type, which will end up on the stack (with alignment 8). if (Align == 8 && Size <= 64) return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); } return ABIArgInfo::getIndirect(Align); } /// GetByteVectorType - The ABI specifies that a value should be passed in an /// full vector XMM/YMM register. Pick an LLVM IR type that will be passed as a /// vector register. llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { llvm::Type *IRType = CGT.ConvertType(Ty); // Wrapper structs that just contain vectors are passed just like vectors, // strip them off if present. llvm::StructType *STy = dyn_cast(IRType); while (STy && STy->getNumElements() == 1) { IRType = STy->getElementType(0); STy = dyn_cast(IRType); } // If the preferred type is a 16-byte vector, prefer to pass it. if (llvm::VectorType *VT = dyn_cast(IRType)){ llvm::Type *EltTy = VT->getElementType(); unsigned BitWidth = VT->getBitWidth(); if ((BitWidth >= 128 && BitWidth <= 256) && (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) || EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) || EltTy->isIntegerTy(128))) return VT; } return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2); } /// BitsContainNoUserData - Return true if the specified [start,end) bit range /// is known to either be off the end of the specified type or being in /// alignment padding. The user type specified is known to be at most 128 bits /// in size, and have passed through X86_64ABIInfo::classify with a successful /// classification that put one of the two halves in the INTEGER class. /// /// It is conservatively correct to return false. static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, unsigned EndBit, ASTContext &Context) { // If the bytes being queried are off the end of the type, there is no user // data hiding here. This handles analysis of builtins, vectors and other // types that don't contain interesting padding. unsigned TySize = (unsigned)Context.getTypeSize(Ty); if (TySize <= StartBit) return true; if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); // Check each element to see if the element overlaps with the queried range. for (unsigned i = 0; i != NumElts; ++i) { // If the element is after the span we care about, then we're done.. unsigned EltOffset = i*EltSize; if (EltOffset >= EndBit) break; unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; if (!BitsContainNoUserData(AT->getElementType(), EltStart, EndBit-EltOffset, Context)) return false; } // If it overlaps no elements, then it is safe to process as padding. return true; } if (const RecordType *RT = Ty->getAs()) { const RecordDecl *RD = RT->getDecl(); const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); // If this is a C++ record, check the bases first. if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) { for (const auto &I : CXXRD->bases()) { assert(!I.isVirtual() && !I.getType()->isDependentType() && "Unexpected base class!"); const CXXRecordDecl *Base = cast(I.getType()->getAs()->getDecl()); // If the base is after the span we care about, ignore it. unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); if (BaseOffset >= EndBit) continue; unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; if (!BitsContainNoUserData(I.getType(), BaseStart, EndBit-BaseOffset, Context)) return false; } } // Verify that no field has data that overlaps the region of interest. Yes // this could be sped up a lot by being smarter about queried fields, // however we're only looking at structs up to 16 bytes, so we don't care // much. unsigned idx = 0; for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); i != e; ++i, ++idx) { unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); // If we found a field after the region we care about, then we're done. if (FieldOffset >= EndBit) break; unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, Context)) return false; } // If nothing in this record overlapped the area of interest, then we're // clean. return true; } return false; } /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a /// float member at the specified offset. For example, {int,{float}} has a /// float at offset 4. It is conservatively correct for this routine to return /// false. static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, const llvm::DataLayout &TD) { // Base case if we find a float. if (IROffset == 0 && IRType->isFloatTy()) return true; // If this is a struct, recurse into the field at the specified offset. if (llvm::StructType *STy = dyn_cast(IRType)) { const llvm::StructLayout *SL = TD.getStructLayout(STy); unsigned Elt = SL->getElementContainingOffset(IROffset); IROffset -= SL->getElementOffset(Elt); return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); } // If this is an array, recurse into the field at the specified offset. if (llvm::ArrayType *ATy = dyn_cast(IRType)) { llvm::Type *EltTy = ATy->getElementType(); unsigned EltSize = TD.getTypeAllocSize(EltTy); IROffset -= IROffset/EltSize*EltSize; return ContainsFloatAtOffset(EltTy, IROffset, TD); } return false; } /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the /// low 8 bytes of an XMM register, corresponding to the SSE class. llvm::Type *X86_64ABIInfo:: GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, QualType SourceTy, unsigned SourceOffset) const { // The only three choices we have are either double, <2 x float>, or float. We // pass as float if the last 4 bytes is just padding. This happens for // structs that contain 3 floats. if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, SourceOffset*8+64, getContext())) return llvm::Type::getFloatTy(getVMContext()); // We want to pass as <2 x float> if the LLVM IR type contains a float at // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the // case. if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); return llvm::Type::getDoubleTy(getVMContext()); } /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in /// an 8-byte GPR. This means that we either have a scalar or we are talking /// about the high or low part of an up-to-16-byte struct. This routine picks /// the best LLVM IR type to represent this, which may be i64 or may be anything /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, /// etc). /// /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for /// the source type. IROffset is an offset in bytes into the LLVM IR type that /// the 8-byte value references. PrefType may be null. /// /// SourceTy is the source-level type for the entire argument. SourceOffset is /// an offset into this that we're processing (which is always either 0 or 8). /// llvm::Type *X86_64ABIInfo:: GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, QualType SourceTy, unsigned SourceOffset) const { // If we're dealing with an un-offset LLVM IR type, then it means that we're // returning an 8-byte unit starting with it. See if we can safely use it. if (IROffset == 0) { // Pointers and int64's always fill the 8-byte unit. if ((isa(IRType) && Has64BitPointers) || IRType->isIntegerTy(64)) return IRType; // If we have a 1/2/4-byte integer, we can use it only if the rest of the // goodness in the source type is just tail padding. This is allowed to // kick in for struct {double,int} on the int, but not on // struct{double,int,int} because we wouldn't return the second int. We // have to do this analysis on the source type because we can't depend on // unions being lowered a specific way etc. if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || IRType->isIntegerTy(32) || (isa(IRType) && !Has64BitPointers)) { unsigned BitWidth = isa(IRType) ? 32 : cast(IRType)->getBitWidth(); if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, SourceOffset*8+64, getContext())) return IRType; } } if (llvm::StructType *STy = dyn_cast(IRType)) { // If this is a struct, recurse into the field at the specified offset. const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); if (IROffset < SL->getSizeInBytes()) { unsigned FieldIdx = SL->getElementContainingOffset(IROffset); IROffset -= SL->getElementOffset(FieldIdx); return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, SourceTy, SourceOffset); } } if (llvm::ArrayType *ATy = dyn_cast(IRType)) { llvm::Type *EltTy = ATy->getElementType(); unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); unsigned EltOffset = IROffset/EltSize*EltSize; return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, SourceOffset); } // Okay, we don't have any better idea of what to pass, so we pass this in an // integer register that isn't too big to fit the rest of the struct. unsigned TySizeInBytes = (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); assert(TySizeInBytes != SourceOffset && "Empty field?"); // It is always safe to classify this as an integer type up to i64 that // isn't larger than the structure. return llvm::IntegerType::get(getVMContext(), std::min(TySizeInBytes-SourceOffset, 8U)*8); } /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally /// be used as elements of a two register pair to pass or return, return a /// first class aggregate to represent them. For example, if the low part of /// a by-value argument should be passed as i32* and the high part as float, /// return {i32*, float}. static llvm::Type * GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, const llvm::DataLayout &TD) { // In order to correctly satisfy the ABI, we need to the high part to start // at offset 8. If the high and low parts we inferred are both 4-byte types // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have // the second element at offset 8. Check for this: unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); unsigned HiAlign = TD.getABITypeAlignment(Hi); unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign); assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); // To handle this, we have to increase the size of the low part so that the // second element will start at an 8 byte offset. We can't increase the size // of the second element because it might make us access off the end of the // struct. if (HiStart != 8) { // There are only two sorts of types the ABI generation code can produce for // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32. // Promote these to a larger type. if (Lo->isFloatTy()) Lo = llvm::Type::getDoubleTy(Lo->getContext()); else { assert(Lo->isIntegerTy() && "Invalid/unknown lo type"); Lo = llvm::Type::getInt64Ty(Lo->getContext()); } } llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL); // Verify that the second element is at an 8-byte offset. assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && "Invalid x86-64 argument pair!"); return Result; } ABIArgInfo X86_64ABIInfo:: classifyReturnType(QualType RetTy) const { // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the // classification algorithm. X86_64ABIInfo::Class Lo, Hi; classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); // Check some invariants. assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); llvm::Type *ResType = nullptr; switch (Lo) { case NoClass: if (Hi == NoClass) return ABIArgInfo::getIgnore(); // If the low part is just padding, it takes no register, leave ResType // null. assert((Hi == SSE || Hi == Integer || Hi == X87Up) && "Unknown missing lo part"); break; case SSEUp: case X87Up: llvm_unreachable("Invalid classification for lo word."); // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via // hidden argument. case Memory: return getIndirectReturnResult(RetTy); // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next // available register of the sequence %rax, %rdx is used. case Integer: ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); // If we have a sign or zero extended integer, make sure to return Extend // so that the parameter gets the right LLVM IR attributes. if (Hi == NoClass && isa(ResType)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = RetTy->getAs()) RetTy = EnumTy->getDecl()->getIntegerType(); if (RetTy->isIntegralOrEnumerationType() && RetTy->isPromotableIntegerType()) return ABIArgInfo::getExtend(); } break; // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next // available SSE register of the sequence %xmm0, %xmm1 is used. case SSE: ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); break; // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is // returned on the X87 stack in %st0 as 80-bit x87 number. case X87: ResType = llvm::Type::getX86_FP80Ty(getVMContext()); break; // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real // part of the value is returned in %st0 and the imaginary part in // %st1. case ComplexX87: assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), llvm::Type::getX86_FP80Ty(getVMContext()), NULL); break; } llvm::Type *HighPart = nullptr; switch (Hi) { // Memory was handled previously and X87 should // never occur as a hi class. case Memory: case X87: llvm_unreachable("Invalid classification for hi word."); case ComplexX87: // Previously handled. case NoClass: break; case Integer: HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); if (Lo == NoClass) // Return HighPart at offset 8 in memory. return ABIArgInfo::getDirect(HighPart, 8); break; case SSE: HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); if (Lo == NoClass) // Return HighPart at offset 8 in memory. return ABIArgInfo::getDirect(HighPart, 8); break; // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte // is passed in the next available eightbyte chunk if the last used // vector register. // // SSEUP should always be preceded by SSE, just widen. case SSEUp: assert(Lo == SSE && "Unexpected SSEUp classification."); ResType = GetByteVectorType(RetTy); break; // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is // returned together with the previous X87 value in %st0. case X87Up: // If X87Up is preceded by X87, we don't need to do // anything. However, in some cases with unions it may not be // preceded by X87. In such situations we follow gcc and pass the // extra bits in an SSE reg. if (Lo != X87) { HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); if (Lo == NoClass) // Return HighPart at offset 8 in memory. return ABIArgInfo::getDirect(HighPart, 8); } break; } // If a high part was specified, merge it together with the low part. It is // known to pass in the high eightbyte of the result. We do this by forming a // first class struct aggregate with the high and low part: {low, high} if (HighPart) ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); return ABIArgInfo::getDirect(ResType); } ABIArgInfo X86_64ABIInfo::classifyArgumentType( QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, bool isNamedArg) const { X86_64ABIInfo::Class Lo, Hi; classify(Ty, 0, Lo, Hi, isNamedArg); // Check some invariants. // FIXME: Enforce these by construction. assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); neededInt = 0; neededSSE = 0; llvm::Type *ResType = nullptr; switch (Lo) { case NoClass: if (Hi == NoClass) return ABIArgInfo::getIgnore(); // If the low part is just padding, it takes no register, leave ResType // null. assert((Hi == SSE || Hi == Integer || Hi == X87Up) && "Unknown missing lo part"); break; // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument // on the stack. case Memory: // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or // COMPLEX_X87, it is passed in memory. case X87: case ComplexX87: if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) ++neededInt; return getIndirectResult(Ty, freeIntRegs); case SSEUp: case X87Up: llvm_unreachable("Invalid classification for lo word."); // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 // and %r9 is used. case Integer: ++neededInt; // Pick an 8-byte type based on the preferred type. ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); // If we have a sign or zero extended integer, make sure to return Extend // so that the parameter gets the right LLVM IR attributes. if (Hi == NoClass && isa(ResType)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); if (Ty->isIntegralOrEnumerationType() && Ty->isPromotableIntegerType()) return ABIArgInfo::getExtend(); } break; // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next // available SSE register is used, the registers are taken in the // order from %xmm0 to %xmm7. case SSE: { llvm::Type *IRType = CGT.ConvertType(Ty); ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); ++neededSSE; break; } } llvm::Type *HighPart = nullptr; switch (Hi) { // Memory was handled previously, ComplexX87 and X87 should // never occur as hi classes, and X87Up must be preceded by X87, // which is passed in memory. case Memory: case X87: case ComplexX87: llvm_unreachable("Invalid classification for hi word."); case NoClass: break; case Integer: ++neededInt; // Pick an 8-byte type based on the preferred type. HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); if (Lo == NoClass) // Pass HighPart at offset 8 in memory. return ABIArgInfo::getDirect(HighPart, 8); break; // X87Up generally doesn't occur here (long double is passed in // memory), except in situations involving unions. case X87Up: case SSE: HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); if (Lo == NoClass) // Pass HighPart at offset 8 in memory. return ABIArgInfo::getDirect(HighPart, 8); ++neededSSE; break; // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the // eightbyte is passed in the upper half of the last used SSE // register. This only happens when 128-bit vectors are passed. case SSEUp: assert(Lo == SSE && "Unexpected SSEUp classification"); ResType = GetByteVectorType(Ty); break; } // If a high part was specified, merge it together with the low part. It is // known to pass in the high eightbyte of the result. We do this by forming a // first class struct aggregate with the high and low part: {low, high} if (HighPart) ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); return ABIArgInfo::getDirect(ResType); } void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { if (!getCXXABI().classifyReturnType(FI)) FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); // Keep track of the number of assigned registers. unsigned freeIntRegs = 6, freeSSERegs = 8; // If the return value is indirect, then the hidden argument is consuming one // integer register. if (FI.getReturnInfo().isIndirect()) --freeIntRegs; bool isVariadic = FI.isVariadic(); unsigned numRequiredArgs = 0; if (isVariadic) numRequiredArgs = FI.getRequiredArgs().getNumRequiredArgs(); // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers // get assigned (in left-to-right order) for passing as follows... for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); it != ie; ++it) { bool isNamedArg = true; if (isVariadic) isNamedArg = (it - FI.arg_begin()) < static_cast(numRequiredArgs); unsigned neededInt, neededSSE; it->info = classifyArgumentType(it->type, freeIntRegs, neededInt, neededSSE, isNamedArg); // AMD64-ABI 3.2.3p3: If there are no registers available for any // eightbyte of an argument, the whole argument is passed on the // stack. If registers have already been assigned for some // eightbytes of such an argument, the assignments get reverted. if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { freeIntRegs -= neededInt; freeSSERegs -= neededSSE; } else { it->info = getIndirectResult(it->type, freeIntRegs); } } } static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) { llvm::Value *overflow_arg_area_p = CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); llvm::Value *overflow_arg_area = CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 // byte boundary if alignment needed by type exceeds 8 byte boundary. // It isn't stated explicitly in the standard, but in practice we use // alignment greater than 16 where necessary. uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; if (Align > 8) { // overflow_arg_area = (overflow_arg_area + align - 1) & -align; llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, CGF.Int64Ty); llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align); overflow_arg_area = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), overflow_arg_area->getType(), "overflow_arg_area.align"); } // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); llvm::Value *Res = CGF.Builder.CreateBitCast(overflow_arg_area, llvm::PointerType::getUnqual(LTy)); // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: // l->overflow_arg_area + sizeof(type). // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to // an 8 byte boundary. uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, "overflow_arg_area.next"); CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. return Res; } llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { // Assume that va_list type is correct; should be pointer to LLVM type: // struct { // i32 gp_offset; // i32 fp_offset; // i8* overflow_arg_area; // i8* reg_save_area; // }; unsigned neededInt, neededSSE; Ty = CGF.getContext().getCanonicalType(Ty); ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, /*isNamedArg*/false); // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed // in the registers. If not go to step 7. if (!neededInt && !neededSSE) return EmitVAArgFromMemory(VAListAddr, Ty, CGF); // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of // general purpose registers needed to pass type and num_fp to hold // the number of floating point registers needed. // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into // registers. In the case: l->gp_offset > 48 - num_gp * 8 or // l->fp_offset > 304 - num_fp * 16 go to step 7. // // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of // register save space). llvm::Value *InRegs = nullptr; llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr; llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr; if (neededInt) { gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); } if (neededSSE) { fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); llvm::Value *FitsInFP = llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; } llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); // Emit code to load the value if it was passed in registers. CGF.EmitBlock(InRegBlock); // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with // an offset of l->gp_offset and/or l->fp_offset. This may require // copying to a temporary location in case the parameter is passed // in different register classes or requires an alignment greater // than 8 for general purpose registers and 16 for XMM registers. // // FIXME: This really results in shameful code when we end up needing to // collect arguments from different places; often what should result in a // simple assembling of a structure from scattered addresses has many more // loads than necessary. Can we clean this up? llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); llvm::Value *RegAddr = CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); if (neededInt && neededSSE) { // FIXME: Cleanup. assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); llvm::StructType *ST = cast(AI.getCoerceToType()); llvm::Value *Tmp = CGF.CreateMemTemp(Ty); Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); llvm::Type *TyLo = ST->getElementType(0); llvm::Type *TyHi = ST->getElementType(1); assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && "Unexpected ABI info for mixed regs"); llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; llvm::Value *V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); RegAddr = CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(LTy)); } else if (neededInt) { RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); RegAddr = CGF.Builder.CreateBitCast(RegAddr, llvm::PointerType::getUnqual(LTy)); // Copy to a temporary if necessary to ensure the appropriate alignment. std::pair SizeAlign = CGF.getContext().getTypeInfoInChars(Ty); uint64_t TySize = SizeAlign.first.getQuantity(); unsigned TyAlign = SizeAlign.second.getQuantity(); if (TyAlign > 8) { llvm::Value *Tmp = CGF.CreateMemTemp(Ty); CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false); RegAddr = Tmp; } } else if (neededSSE == 1) { RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); RegAddr = CGF.Builder.CreateBitCast(RegAddr, llvm::PointerType::getUnqual(LTy)); } else { assert(neededSSE == 2 && "Invalid number of needed registers!"); // SSE registers are spaced 16 bytes apart in the register save // area, we need to collect the two eightbytes together. llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16); llvm::Type *DoubleTy = CGF.DoubleTy; llvm::Type *DblPtrTy = llvm::PointerType::getUnqual(DoubleTy); llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, NULL); llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty); Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, DblPtrTy)); CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, DblPtrTy)); CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); RegAddr = CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(LTy)); } // AMD64-ABI 3.5.7p5: Step 5. Set: // l->gp_offset = l->gp_offset + num_gp * 8 // l->fp_offset = l->fp_offset + num_fp * 16. if (neededInt) { llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), gp_offset_p); } if (neededSSE) { llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), fp_offset_p); } CGF.EmitBranch(ContBlock); // Emit code to load the value if it was passed in memory. CGF.EmitBlock(InMemBlock); llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); // Return the appropriate result. CGF.EmitBlock(ContBlock); llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2, "vaarg.addr"); ResAddr->addIncoming(RegAddr, InRegBlock); ResAddr->addIncoming(MemAddr, InMemBlock); return ResAddr; } ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, bool IsReturnType) const { if (Ty->isVoidType()) return ABIArgInfo::getIgnore(); if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); uint64_t Size = getContext().getTypeSize(Ty); const RecordType *RT = Ty->getAs(); if (RT) { if (!IsReturnType) { if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); } if (RT->getDecl()->hasFlexibleArrayMember()) return ABIArgInfo::getIndirect(0, /*ByVal=*/false); // FIXME: mingw-w64-gcc emits 128-bit struct as i128 if (Size == 128 && getTarget().getTriple().isWindowsGNUEnvironment()) return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); } if (Ty->isMemberPointerType()) { // If the member pointer is represented by an LLVM int or ptr, pass it // directly. llvm::Type *LLTy = CGT.ConvertType(Ty); if (LLTy->isPointerTy() || LLTy->isIntegerTy()) return ABIArgInfo::getDirect(); } if (RT || Ty->isMemberPointerType()) { // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is // not 1, 2, 4, or 8 bytes, must be passed by reference." if (Size > 64 || !llvm::isPowerOf2_64(Size)) return ABIArgInfo::getIndirect(0, /*ByVal=*/false); // Otherwise, coerce it to a small integer. return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); } if (Ty->isPromotableIntegerType()) return ABIArgInfo::getExtend(); return ABIArgInfo::getDirect(); } void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { if (!getCXXABI().classifyReturnType(FI)) FI.getReturnInfo() = classify(FI.getReturnType(), true); for (auto &I : FI.arguments()) I.info = classify(I.type, false); } llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { llvm::Type *BPP = CGF.Int8PtrPtrTy; CGBuilderTy &Builder = CGF.Builder; llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); uint64_t Offset = llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8); llvm::Value *NextAddr = Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); Builder.CreateStore(NextAddr, VAListAddrAsBPP); return AddrTyped; } namespace { class NaClX86_64ABIInfo : public ABIInfo { public: NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {} void computeInfo(CGFunctionInfo &FI) const override; llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const override; private: PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv. X86_64ABIInfo NInfo; // Used for everything else. }; class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo { public: NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {} }; } void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { if (FI.getASTCallingConvention() == CC_PnaclCall) PInfo.computeInfo(FI); else NInfo.computeInfo(FI); } llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { // Always use the native convention; calling pnacl-style varargs functions // is unuspported. return NInfo.EmitVAArg(VAListAddr, Ty, CGF); } // PowerPC-32 namespace { class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo { public: PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { // This is recovered from gcc output. return 1; // r1 is the dedicated stack pointer } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const override; }; } bool PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { // This is calculated from the LLVM and GCC tables and verified // against gcc output. AFAIK all ABIs use the same encoding. CodeGen::CGBuilderTy &Builder = CGF.Builder; llvm::IntegerType *i8 = CGF.Int8Ty; llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); // 0-31: r0-31, the 4-byte general-purpose registers AssignToArrayRange(Builder, Address, Four8, 0, 31); // 32-63: fp0-31, the 8-byte floating-point registers AssignToArrayRange(Builder, Address, Eight8, 32, 63); // 64-76 are various 4-byte special-purpose registers: // 64: mq // 65: lr // 66: ctr // 67: ap // 68-75 cr0-7 // 76: xer AssignToArrayRange(Builder, Address, Four8, 64, 76); // 77-108: v0-31, the 16-byte vector registers AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); // 109: vrsave // 110: vscr // 111: spe_acc // 112: spefscr // 113: sfp AssignToArrayRange(Builder, Address, Four8, 109, 113); return false; } // PowerPC-64 namespace { /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. class PPC64_SVR4_ABIInfo : public DefaultABIInfo { public: PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} bool isPromotableTypeForABI(QualType Ty) const; bool isAlignedParamType(QualType Ty) const; ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType Ty) const; // TODO: We can add more logic to computeInfo to improve performance. // Example: For aggregate arguments that fit in a register, we could // use getDirectInReg (as is done below for structs containing a single // floating-point value) to avoid pushing them to memory on function // entry. This would require changing the logic in PPCISelLowering // when lowering the parameters in the caller and args in the callee. void computeInfo(CGFunctionInfo &FI) const override { if (!getCXXABI().classifyReturnType(FI)) FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (auto &I : FI.arguments()) { // We rely on the default argument classification for the most part. // One exception: An aggregate containing a single floating-point // or vector item must be passed in a register if one is available. const Type *T = isSingleElementStruct(I.type, getContext()); if (T) { const BuiltinType *BT = T->getAs(); if ((T->isVectorType() && getContext().getTypeSize(T) == 128) || (BT && BT->isFloatingPoint())) { QualType QT(T, 0); I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); continue; } } I.info = classifyArgumentType(I.type); } } llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const override; }; class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { public: PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT)) {} int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { // This is recovered from gcc output. return 1; // r1 is the dedicated stack pointer } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const override; }; class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { public: PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { // This is recovered from gcc output. return 1; // r1 is the dedicated stack pointer } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const override; }; } // Return true if the ABI requires Ty to be passed sign- or zero- // extended to 64 bits. bool PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); // Promotable integer types are required to be promoted by the ABI. if (Ty->isPromotableIntegerType()) return true; // In addition to the usual promotable integer types, we also need to // extend all 32-bit types, since the ABI requires promotion to 64 bits. if (const BuiltinType *BT = Ty->getAs()) switch (BT->getKind()) { case BuiltinType::Int: case BuiltinType::UInt: return true; default: break; } return false; } /// isAlignedParamType - Determine whether a type requires 16-byte /// alignment in the parameter area. bool PPC64_SVR4_ABIInfo::isAlignedParamType(QualType Ty) const { // Complex types are passed just like their elements. if (const ComplexType *CTy = Ty->getAs()) Ty = CTy->getElementType(); // Only vector types of size 16 bytes need alignment (larger types are // passed via reference, smaller types are not aligned). if (Ty->isVectorType()) return getContext().getTypeSize(Ty) == 128; // For single-element float/vector structs, we consider the whole type // to have the same alignment requirements as its single element. const Type *AlignAsType = nullptr; const Type *EltType = isSingleElementStruct(Ty, getContext()); if (EltType) { const BuiltinType *BT = EltType->getAs(); if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || (BT && BT->isFloatingPoint())) AlignAsType = EltType; } // With special case aggregates, only vector base types need alignment. if (AlignAsType) return AlignAsType->isVectorType(); // Otherwise, we only need alignment for any aggregate type that // has an alignment requirement of >= 16 bytes. if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) return true; return false; } ABIArgInfo PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { if (Ty->isAnyComplexType()) return ABIArgInfo::getDirect(); // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) // or via reference (larger than 16 bytes). if (Ty->isVectorType()) { uint64_t Size = getContext().getTypeSize(Ty); if (Size > 128) return ABIArgInfo::getIndirect(0, /*ByVal=*/false); else if (Size < 128) { llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); return ABIArgInfo::getDirect(CoerceTy); } } if (isAggregateTypeForABI(Ty)) { if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); uint64_t ABIAlign = isAlignedParamType(Ty)? 16 : 8; uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true, /*Realign=*/TyAlign > ABIAlign); } return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } ABIArgInfo PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); if (RetTy->isAnyComplexType()) return ABIArgInfo::getDirect(); // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) // or via reference (larger than 16 bytes). if (RetTy->isVectorType()) { uint64_t Size = getContext().getTypeSize(RetTy); if (Size > 128) return ABIArgInfo::getIndirect(0); else if (Size < 128) { llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); return ABIArgInfo::getDirect(CoerceTy); } } if (isAggregateTypeForABI(RetTy)) return ABIArgInfo::getIndirect(0); return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { llvm::Type *BP = CGF.Int8PtrTy; llvm::Type *BPP = CGF.Int8PtrPtrTy; CGBuilderTy &Builder = CGF.Builder; llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); // Handle types that require 16-byte alignment in the parameter save area. if (isAlignedParamType(Ty)) { llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(15)); AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt64(-16)); Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); } // Update the va_list pointer. The pointer should be bumped by the // size of the object. We can trust getTypeSize() except for a complex // type whose base type is smaller than a doubleword. For these, the // size of the object is 16 bytes; see below for further explanation. unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8; QualType BaseTy; unsigned CplxBaseSize = 0; if (const ComplexType *CTy = Ty->getAs()) { BaseTy = CTy->getElementType(); CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8; if (CplxBaseSize < 8) SizeInBytes = 16; } unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8); llvm::Value *NextAddr = Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "ap.next"); Builder.CreateStore(NextAddr, VAListAddrAsBPP); // If we have a complex type and the base type is smaller than 8 bytes, // the ABI calls for the real and imaginary parts to be right-adjusted // in separate doublewords. However, Clang expects us to produce a // pointer to a structure with the two parts packed tightly. So generate // loads of the real and imaginary parts relative to the va_list pointer, // and store them to a temporary structure. if (CplxBaseSize && CplxBaseSize < 8) { llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); llvm::Value *ImagAddr = RealAddr; if (CGF.CGM.getDataLayout().isBigEndian()) { RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize)); ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize)); } else { ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8)); } llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy)); RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy); ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy); llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal"); llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag"); llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty), "vacplx"); llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real"); llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag"); Builder.CreateStore(Real, RealPtr, false); Builder.CreateStore(Imag, ImagPtr, false); return Ptr; } // If the argument is smaller than 8 bytes, it is right-adjusted in // its doubleword slot. Adjust the pointer to pick it up from the // correct offset. if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) { llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes)); Addr = Builder.CreateIntToPtr(AddrAsInt, BP); } llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); return Builder.CreateBitCast(Addr, PTy); } static bool PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) { // This is calculated from the LLVM and GCC tables and verified // against gcc output. AFAIK all ABIs use the same encoding. CodeGen::CGBuilderTy &Builder = CGF.Builder; llvm::IntegerType *i8 = CGF.Int8Ty; llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); // 0-31: r0-31, the 8-byte general-purpose registers AssignToArrayRange(Builder, Address, Eight8, 0, 31); // 32-63: fp0-31, the 8-byte floating-point registers AssignToArrayRange(Builder, Address, Eight8, 32, 63); // 64-76 are various 4-byte special-purpose registers: // 64: mq // 65: lr // 66: ctr // 67: ap // 68-75 cr0-7 // 76: xer AssignToArrayRange(Builder, Address, Four8, 64, 76); // 77-108: v0-31, the 16-byte vector registers AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); // 109: vrsave // 110: vscr // 111: spe_acc // 112: spefscr // 113: sfp AssignToArrayRange(Builder, Address, Four8, 109, 113); return false; } bool PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { return PPC64_initDwarfEHRegSizeTable(CGF, Address); } bool PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { return PPC64_initDwarfEHRegSizeTable(CGF, Address); } //===----------------------------------------------------------------------===// // AArch64 ABI Implementation //===----------------------------------------------------------------------===// namespace { class AArch64ABIInfo : public ABIInfo { public: enum ABIKind { AAPCS = 0, DarwinPCS }; private: ABIKind Kind; public: AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {} private: ABIKind getABIKind() const { return Kind; } bool isDarwinPCS() const { return Kind == DarwinPCS; } ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &AllocatedVFP, bool &IsHA, unsigned &AllocatedGPR, bool &IsSmallAggr, bool IsNamedArg) const; bool isIllegalVectorType(QualType Ty) const; virtual void computeInfo(CGFunctionInfo &FI) const { // To correctly handle Homogeneous Aggregate, we need to keep track of the // number of SIMD and Floating-point registers allocated so far. // If the argument is an HFA or an HVA and there are sufficient unallocated // SIMD and Floating-point registers, then the argument is allocated to SIMD // and Floating-point Registers (with one register per member of the HFA or // HVA). Otherwise, the NSRN is set to 8. unsigned AllocatedVFP = 0; // To correctly handle small aggregates, we need to keep track of the number // of GPRs allocated so far. If the small aggregate can't all fit into // registers, it will be on stack. We don't allow the aggregate to be // partially in registers. unsigned AllocatedGPR = 0; // Find the number of named arguments. Variadic arguments get special // treatment with the Darwin ABI. unsigned NumRequiredArgs = (FI.isVariadic() ? FI.getRequiredArgs().getNumRequiredArgs() : FI.arg_size()); if (!getCXXABI().classifyReturnType(FI)) FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); it != ie; ++it) { unsigned PreAllocation = AllocatedVFP, PreGPR = AllocatedGPR; bool IsHA = false, IsSmallAggr = false; const unsigned NumVFPs = 8; const unsigned NumGPRs = 8; bool IsNamedArg = ((it - FI.arg_begin()) < static_cast(NumRequiredArgs)); it->info = classifyArgumentType(it->type, AllocatedVFP, IsHA, AllocatedGPR, IsSmallAggr, IsNamedArg); // Under AAPCS the 64-bit stack slot alignment means we can't pass HAs // as sequences of floats since they'll get "holes" inserted as // padding by the back end. if (IsHA && AllocatedVFP > NumVFPs && !isDarwinPCS() && getContext().getTypeAlign(it->type) < 64) { uint32_t NumStackSlots = getContext().getTypeSize(it->type); NumStackSlots = llvm::RoundUpToAlignment(NumStackSlots, 64) / 64; llvm::Type *CoerceTy = llvm::ArrayType::get( llvm::Type::getDoubleTy(getVMContext()), NumStackSlots); it->info = ABIArgInfo::getDirect(CoerceTy); } // If we do not have enough VFP registers for the HA, any VFP registers // that are unallocated are marked as unavailable. To achieve this, we add // padding of (NumVFPs - PreAllocation) floats. if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) { llvm::Type *PaddingTy = llvm::ArrayType::get( llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation); it->info.setPaddingType(PaddingTy); } // If we do not have enough GPRs for the small aggregate, any GPR regs // that are unallocated are marked as unavailable. if (IsSmallAggr && AllocatedGPR > NumGPRs && PreGPR < NumGPRs) { llvm::Type *PaddingTy = llvm::ArrayType::get( llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreGPR); it->info = ABIArgInfo::getDirect(it->info.getCoerceToType(), 0, PaddingTy); } } } llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const; llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const; virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) : EmitAAPCSVAArg(VAListAddr, Ty, CGF); } }; class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { public: AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} StringRef getARCRetainAutoreleasedReturnValueMarker() const { return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue"; } int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { return 31; } virtual bool doesReturnSlotInterfereWithArgs() const { return false; } }; } static bool isHomogeneousAggregate(QualType Ty, const Type *&Base, ASTContext &Context, uint64_t *HAMembers = nullptr); ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty, unsigned &AllocatedVFP, bool &IsHA, unsigned &AllocatedGPR, bool &IsSmallAggr, bool IsNamedArg) const { // Handle illegal vector types here. if (isIllegalVectorType(Ty)) { uint64_t Size = getContext().getTypeSize(Ty); // Android promotes <2 x i8> to i16, not i32 if (Size <= 16) { llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); AllocatedGPR++; return ABIArgInfo::getDirect(ResType); } if (Size == 32) { llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); AllocatedGPR++; return ABIArgInfo::getDirect(ResType); } if (Size == 64) { llvm::Type *ResType = llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); AllocatedVFP++; return ABIArgInfo::getDirect(ResType); } if (Size == 128) { llvm::Type *ResType = llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); AllocatedVFP++; return ABIArgInfo::getDirect(ResType); } AllocatedGPR++; return ABIArgInfo::getIndirect(0, /*ByVal=*/false); } if (Ty->isVectorType()) // Size of a legal vector should be either 64 or 128. AllocatedVFP++; if (const BuiltinType *BT = Ty->getAs()) { if (BT->getKind() == BuiltinType::Half || BT->getKind() == BuiltinType::Float || BT->getKind() == BuiltinType::Double || BT->getKind() == BuiltinType::LongDouble) AllocatedVFP++; } if (!isAggregateTypeForABI(Ty)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); if (!Ty->isFloatingType() && !Ty->isVectorType()) { unsigned Alignment = getContext().getTypeAlign(Ty); if (!isDarwinPCS() && Alignment > 64) AllocatedGPR = llvm::RoundUpToAlignment(AllocatedGPR, Alignment / 64); int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1; AllocatedGPR += RegsNeeded; } return (Ty->isPromotableIntegerType() && isDarwinPCS() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } // Structures with either a non-trivial destructor or a non-trivial // copy constructor are always indirect. if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { AllocatedGPR++; return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA == CGCXXABI::RAA_DirectInMemory); } // Empty records are always ignored on Darwin, but actually passed in C++ mode // elsewhere for GNU compatibility. if (isEmptyRecord(getContext(), Ty, true)) { if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) return ABIArgInfo::getIgnore(); ++AllocatedGPR; return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); } // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. const Type *Base = nullptr; uint64_t Members = 0; if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) { IsHA = true; if (!IsNamedArg && isDarwinPCS()) { // With the Darwin ABI, variadic arguments are always passed on the stack // and should not be expanded. Treat variadic HFAs as arrays of doubles. uint64_t Size = getContext().getTypeSize(Ty); llvm::Type *BaseTy = llvm::Type::getDoubleTy(getVMContext()); return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); } AllocatedVFP += Members; return ABIArgInfo::getExpand(); } // Aggregates <= 16 bytes are passed directly in registers or on the stack. uint64_t Size = getContext().getTypeSize(Ty); if (Size <= 128) { unsigned Alignment = getContext().getTypeAlign(Ty); if (!isDarwinPCS() && Alignment > 64) AllocatedGPR = llvm::RoundUpToAlignment(AllocatedGPR, Alignment / 64); Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes AllocatedGPR += Size / 64; IsSmallAggr = true; // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. // For aggregates with 16-byte alignment, we use i128. if (Alignment < 128 && Size == 128) { llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); } return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); } AllocatedGPR++; return ABIArgInfo::getIndirect(0, /*ByVal=*/false); } ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); // Large vector types should be returned via memory. if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) return ABIArgInfo::getIndirect(0); if (!isAggregateTypeForABI(RetTy)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = RetTy->getAs()) RetTy = EnumTy->getDecl()->getIntegerType(); return (RetTy->isPromotableIntegerType() && isDarwinPCS() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } if (isEmptyRecord(getContext(), RetTy, true)) return ABIArgInfo::getIgnore(); const Type *Base = nullptr; if (isHomogeneousAggregate(RetTy, Base, getContext())) // Homogeneous Floating-point Aggregates (HFAs) are returned directly. return ABIArgInfo::getDirect(); // Aggregates <= 16 bytes are returned directly in registers or on the stack. uint64_t Size = getContext().getTypeSize(RetTy); if (Size <= 128) { Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); } return ABIArgInfo::getIndirect(0); } /// isIllegalVectorType - check whether the vector type is legal for AArch64. bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { if (const VectorType *VT = Ty->getAs()) { // Check whether VT is legal. unsigned NumElements = VT->getNumElements(); uint64_t Size = getContext().getTypeSize(VT); // NumElements should be power of 2 between 1 and 16. if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16) return true; return Size != 64 && (Size != 128 || NumElements == 1); } return false; } static llvm::Value *EmitAArch64VAArg(llvm::Value *VAListAddr, QualType Ty, int AllocatedGPR, int AllocatedVFP, bool IsIndirect, CodeGenFunction &CGF) { // The AArch64 va_list type and handling is specified in the Procedure Call // Standard, section B.4: // // struct { // void *__stack; // void *__gr_top; // void *__vr_top; // int __gr_offs; // int __vr_offs; // }; llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); auto &Ctx = CGF.getContext(); llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr; int reg_top_index; int RegSize; if (AllocatedGPR) { assert(!AllocatedVFP && "Arguments never split between int & VFP regs"); // 3 is the field number of __gr_offs reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); reg_top_index = 1; // field number for __gr_top RegSize = 8 * AllocatedGPR; } else { assert(!AllocatedGPR && "Argument must go in VFP or int regs"); // 4 is the field number of __vr_offs. reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); reg_top_index = 2; // field number for __vr_top RegSize = 16 * AllocatedVFP; } //======================================= // Find out where argument was passed //======================================= // If reg_offs >= 0 we're already using the stack for this type of // argument. We don't want to keep updating reg_offs (in case it overflows, // though anyone passing 2GB of arguments, each at most 16 bytes, deserves // whatever they get). llvm::Value *UsingStack = nullptr; UsingStack = CGF.Builder.CreateICmpSGE( reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); // Otherwise, at least some kind of argument could go in these registers, the // question is whether this particular type is too big. CGF.EmitBlock(MaybeRegBlock); // Integer arguments may need to correct register alignment (for example a // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we // align __gr_offs to calculate the potential address. if (AllocatedGPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) { int Align = Ctx.getTypeAlign(Ty) / 8; reg_offs = CGF.Builder.CreateAdd( reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), "align_regoffs"); reg_offs = CGF.Builder.CreateAnd( reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), "aligned_regoffs"); } // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. llvm::Value *NewOffset = nullptr; NewOffset = CGF.Builder.CreateAdd( reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); CGF.Builder.CreateStore(NewOffset, reg_offs_p); // Now we're in a position to decide whether this argument really was in // registers or not. llvm::Value *InRegs = nullptr; InRegs = CGF.Builder.CreateICmpSLE( NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); //======================================= // Argument was in registers //======================================= // Now we emit the code for if the argument was originally passed in // registers. First start the appropriate block: CGF.EmitBlock(InRegBlock); llvm::Value *reg_top_p = nullptr, *reg_top = nullptr; reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs); llvm::Value *RegAddr = nullptr; llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); if (IsIndirect) { // If it's been passed indirectly (actually a struct), whatever we find from // stored registers or on the stack will actually be a struct **. MemTy = llvm::PointerType::getUnqual(MemTy); } const Type *Base = nullptr; uint64_t NumMembers; bool IsHFA = isHomogeneousAggregate(Ty, Base, Ctx, &NumMembers); if (IsHFA && NumMembers > 1) { // Homogeneous aggregates passed in registers will have their elements split // and stored 16-bytes apart regardless of size (they're notionally in qN, // qN+1, ...). We reload and store into a temporary local variable // contiguously. assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy); int Offset = 0; if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128) Offset = 16 - Ctx.getTypeSize(Base) / 8; for (unsigned i = 0; i < NumMembers; ++i) { llvm::Value *BaseOffset = llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset); llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset); LoadAddr = CGF.Builder.CreateBitCast( LoadAddr, llvm::PointerType::getUnqual(BaseTy)); llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i); llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); CGF.Builder.CreateStore(Elem, StoreAddr); } RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy); } else { // Otherwise the object is contiguous in memory unsigned BeAlign = reg_top_index == 2 ? 16 : 8; if (CGF.CGM.getDataLayout().isBigEndian() && (IsHFA || !isAggregateTypeForABI(Ty)) && Ctx.getTypeSize(Ty) < (BeAlign * 8)) { int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8; BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty); BaseAddr = CGF.Builder.CreateAdd( BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy); } RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy); } CGF.EmitBranch(ContBlock); //======================================= // Argument was on the stack //======================================= CGF.EmitBlock(OnStackBlock); llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr; stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack"); // Again, stack arguments may need realigmnent. In this case both integer and // floating-point ones might be affected. if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) { int Align = Ctx.getTypeAlign(Ty) / 8; OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); OnStackAddr = CGF.Builder.CreateAdd( OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), "align_stack"); OnStackAddr = CGF.Builder.CreateAnd( OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), "align_stack"); OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); } uint64_t StackSize; if (IsIndirect) StackSize = 8; else StackSize = Ctx.getTypeSize(Ty) / 8; // All stack slots are 8 bytes StackSize = llvm::RoundUpToAlignment(StackSize, 8); llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize); llvm::Value *NewStack = CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack"); // Write the new value of __stack for the next call to va_arg CGF.Builder.CreateStore(NewStack, stack_p); if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && Ctx.getTypeSize(Ty) < 64) { int Offset = 8 - Ctx.getTypeSize(Ty) / 8; OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); OnStackAddr = CGF.Builder.CreateAdd( OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); } OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy); CGF.EmitBranch(ContBlock); //======================================= // Tidy up //======================================= CGF.EmitBlock(ContBlock); llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr"); ResAddr->addIncoming(RegAddr, InRegBlock); ResAddr->addIncoming(OnStackAddr, OnStackBlock); if (IsIndirect) return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"); return ResAddr; } llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { unsigned AllocatedGPR = 0, AllocatedVFP = 0; bool IsHA = false, IsSmallAggr = false; ABIArgInfo AI = classifyArgumentType(Ty, AllocatedVFP, IsHA, AllocatedGPR, IsSmallAggr, false /*IsNamedArg*/); return EmitAArch64VAArg(VAListAddr, Ty, AllocatedGPR, AllocatedVFP, AI.isIndirect(), CGF); } llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { // We do not support va_arg for aggregates or illegal vector types. // Lower VAArg here for these cases and use the LLVM va_arg instruction for // other cases. if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) return nullptr; uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; const Type *Base = nullptr; bool isHA = isHomogeneousAggregate(Ty, Base, getContext()); bool isIndirect = false; // Arguments bigger than 16 bytes which aren't homogeneous aggregates should // be passed indirectly. if (Size > 16 && !isHA) { isIndirect = true; Size = 8; Align = 8; } llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); llvm::Type *BPP = llvm::PointerType::getUnqual(BP); CGBuilderTy &Builder = CGF.Builder; llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); if (isEmptyRecord(getContext(), Ty, true)) { // These are ignored for parameter passing purposes. llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); return Builder.CreateBitCast(Addr, PTy); } const uint64_t MinABIAlign = 8; if (Align > MinABIAlign) { llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); Addr = Builder.CreateGEP(Addr, Offset); llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1)); llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask); Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align"); } uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign); llvm::Value *NextAddr = Builder.CreateGEP( Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); Builder.CreateStore(NextAddr, VAListAddrAsBPP); if (isIndirect) Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); return AddrTyped; } //===----------------------------------------------------------------------===// // ARM ABI Implementation //===----------------------------------------------------------------------===// namespace { class ARMABIInfo : public ABIInfo { public: enum ABIKind { APCS = 0, AAPCS = 1, AAPCS_VFP }; private: ABIKind Kind; mutable int VFPRegs[16]; const unsigned NumVFPs; const unsigned NumGPRs; mutable unsigned AllocatedGPRs; mutable unsigned AllocatedVFPs; public: ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind), NumVFPs(16), NumGPRs(4) { setRuntimeCC(); resetAllocatedRegs(); } bool isEABI() const { switch (getTarget().getTriple().getEnvironment()) { case llvm::Triple::Android: case llvm::Triple::EABI: case llvm::Triple::EABIHF: case llvm::Triple::GNUEABI: case llvm::Triple::GNUEABIHF: return true; default: return false; } } bool isEABIHF() const { switch (getTarget().getTriple().getEnvironment()) { case llvm::Triple::EABIHF: case llvm::Triple::GNUEABIHF: return true; default: return false; } } ABIKind getABIKind() const { return Kind; } private: ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, bool &IsCPRC) const; bool isIllegalVectorType(QualType Ty) const; void computeInfo(CGFunctionInfo &FI) const override; llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const override; llvm::CallingConv::ID getLLVMDefaultCC() const; llvm::CallingConv::ID getABIDefaultCC() const; void setRuntimeCC(); void markAllocatedGPRs(unsigned Alignment, unsigned NumRequired) const; void markAllocatedVFPs(unsigned Alignment, unsigned NumRequired) const; void resetAllocatedRegs(void) const; }; class ARMTargetCodeGenInfo : public TargetCodeGenInfo { public: ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} const ARMABIInfo &getABIInfo() const { return static_cast(TargetCodeGenInfo::getABIInfo()); } int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { return 13; } StringRef getARCRetainAutoreleasedReturnValueMarker() const override { return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const override { llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); // 0-15 are the 16 integer registers. AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); return false; } unsigned getSizeOfUnwindException() const override { if (getABIInfo().isEABI()) return 88; return TargetCodeGenInfo::getSizeOfUnwindException(); } void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const override { const FunctionDecl *FD = dyn_cast(D); if (!FD) return; const ARMInterruptAttr *Attr = FD->getAttr(); if (!Attr) return; const char *Kind; switch (Attr->getInterrupt()) { case ARMInterruptAttr::Generic: Kind = ""; break; case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; case ARMInterruptAttr::SWI: Kind = "SWI"; break; case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; } llvm::Function *Fn = cast(GV); Fn->addFnAttr("interrupt", Kind); if (cast(getABIInfo()).getABIKind() == ARMABIInfo::APCS) return; // AAPCS guarantees that sp will be 8-byte aligned on any public interface, // however this is not necessarily true on taking any interrupt. Instruct // the backend to perform a realignment as part of the function prologue. llvm::AttrBuilder B; B.addStackAlignmentAttr(8); Fn->addAttributes(llvm::AttributeSet::FunctionIndex, llvm::AttributeSet::get(CGM.getLLVMContext(), llvm::AttributeSet::FunctionIndex, B)); } }; } void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { // To correctly handle Homogeneous Aggregate, we need to keep track of the // VFP registers allocated so far. // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive // VFP registers of the appropriate type unallocated then the argument is // allocated to the lowest-numbered sequence of such registers. // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are // unallocated are marked as unavailable. resetAllocatedRegs(); if (getCXXABI().classifyReturnType(FI)) { if (FI.getReturnInfo().isIndirect()) markAllocatedGPRs(1, 1); } else { FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic()); } for (auto &I : FI.arguments()) { unsigned PreAllocationVFPs = AllocatedVFPs; unsigned PreAllocationGPRs = AllocatedGPRs; bool IsCPRC = false; // 6.1.2.3 There is one VFP co-processor register class using registers // s0-s15 (d0-d7) for passing arguments. I.info = classifyArgumentType(I.type, FI.isVariadic(), IsCPRC); // If we have allocated some arguments onto the stack (due to running // out of VFP registers), we cannot split an argument between GPRs and // the stack. If this situation occurs, we add padding to prevent the // GPRs from being used. In this situation, the current argument could // only be allocated by rule C.8, so rule C.6 would mark these GPRs as // unusable anyway. const bool StackUsed = PreAllocationGPRs > NumGPRs || PreAllocationVFPs > NumVFPs; if (!IsCPRC && PreAllocationGPRs < NumGPRs && AllocatedGPRs > NumGPRs && StackUsed) { llvm::Type *PaddingTy = llvm::ArrayType::get( llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreAllocationGPRs); if (I.info.canHaveCoerceToType()) { I.info = ABIArgInfo::getDirect(I.info.getCoerceToType() /* type */, 0 /* offset */, PaddingTy); } else { I.info = ABIArgInfo::getDirect(nullptr /* type */, 0 /* offset */, PaddingTy); } } } // Always honor user-specified calling convention. if (FI.getCallingConvention() != llvm::CallingConv::C) return; llvm::CallingConv::ID cc = getRuntimeCC(); if (cc != llvm::CallingConv::C) FI.setEffectiveCallingConvention(cc); } /// Return the default calling convention that LLVM will use. llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { // The default calling convention that LLVM will infer. if (isEABIHF()) return llvm::CallingConv::ARM_AAPCS_VFP; else if (isEABI()) return llvm::CallingConv::ARM_AAPCS; else return llvm::CallingConv::ARM_APCS; } /// Return the calling convention that our ABI would like us to use /// as the C calling convention. llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { switch (getABIKind()) { case APCS: return llvm::CallingConv::ARM_APCS; case AAPCS: return llvm::CallingConv::ARM_AAPCS; case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; } llvm_unreachable("bad ABI kind"); } void ARMABIInfo::setRuntimeCC() { assert(getRuntimeCC() == llvm::CallingConv::C); // Don't muddy up the IR with a ton of explicit annotations if // they'd just match what LLVM will infer from the triple. llvm::CallingConv::ID abiCC = getABIDefaultCC(); if (abiCC != getLLVMDefaultCC()) RuntimeCC = abiCC; } /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous /// aggregate. If HAMembers is non-null, the number of base elements /// contained in the type is returned through it; this is used for the /// recursive calls that check aggregate component types. static bool isHomogeneousAggregate(QualType Ty, const Type *&Base, ASTContext &Context, uint64_t *HAMembers) { uint64_t Members = 0; if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members)) return false; Members *= AT->getSize().getZExtValue(); } else if (const RecordType *RT = Ty->getAs()) { const RecordDecl *RD = RT->getDecl(); if (RD->hasFlexibleArrayMember()) return false; Members = 0; for (const auto *FD : RD->fields()) { uint64_t FldMembers; if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers)) return false; Members = (RD->isUnion() ? std::max(Members, FldMembers) : Members + FldMembers); } } else { Members = 1; if (const ComplexType *CT = Ty->getAs()) { Members = 2; Ty = CT->getElementType(); } // Homogeneous aggregates for AAPCS-VFP must have base types of float, // double, or 64-bit or 128-bit vectors. if (const BuiltinType *BT = Ty->getAs()) { if (BT->getKind() != BuiltinType::Float && BT->getKind() != BuiltinType::Double && BT->getKind() != BuiltinType::LongDouble) return false; } else if (const VectorType *VT = Ty->getAs()) { unsigned VecSize = Context.getTypeSize(VT); if (VecSize != 64 && VecSize != 128) return false; } else { return false; } // The base type must be the same for all members. Vector types of the // same total size are treated as being equivalent here. const Type *TyPtr = Ty.getTypePtr(); if (!Base) Base = TyPtr; if (Base != TyPtr) { // Homogeneous aggregates are defined as containing members with the // same machine type. There are two cases in which two members have // different TypePtrs but the same machine type: // 1) Vectors of the same length, regardless of the type and number // of their members. const bool SameLengthVectors = Base->isVectorType() && TyPtr->isVectorType() && (Context.getTypeSize(Base) == Context.getTypeSize(TyPtr)); // 2) In the 32-bit AAPCS, `double' and `long double' have the same // machine type. This is not the case for the 64-bit AAPCS. const bool SameSizeDoubles = ( ( Base->isSpecificBuiltinType(BuiltinType::Double) && TyPtr->isSpecificBuiltinType(BuiltinType::LongDouble)) || ( Base->isSpecificBuiltinType(BuiltinType::LongDouble) && TyPtr->isSpecificBuiltinType(BuiltinType::Double))) && (Context.getTypeSize(Base) == Context.getTypeSize(TyPtr)); if (!SameLengthVectors && !SameSizeDoubles) return false; } } // Homogeneous Aggregates can have at most 4 members of the base type. if (HAMembers) *HAMembers = Members; return (Members > 0 && Members <= 4); } /// markAllocatedVFPs - update VFPRegs according to the alignment and /// number of VFP registers (unit is S register) requested. void ARMABIInfo::markAllocatedVFPs(unsigned Alignment, unsigned NumRequired) const { // Early Exit. if (AllocatedVFPs >= 16) { // We use AllocatedVFP > 16 to signal that some CPRCs were allocated on // the stack. AllocatedVFPs = 17; return; } // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive // VFP registers of the appropriate type unallocated then the argument is // allocated to the lowest-numbered sequence of such registers. for (unsigned I = 0; I < 16; I += Alignment) { bool FoundSlot = true; for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++) if (J >= 16 || VFPRegs[J]) { FoundSlot = false; break; } if (FoundSlot) { for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++) VFPRegs[J] = 1; AllocatedVFPs += NumRequired; return; } } // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are // unallocated are marked as unavailable. for (unsigned I = 0; I < 16; I++) VFPRegs[I] = 1; AllocatedVFPs = 17; // We do not have enough VFP registers. } /// Update AllocatedGPRs to record the number of general purpose registers /// which have been allocated. It is valid for AllocatedGPRs to go above 4, /// this represents arguments being stored on the stack. void ARMABIInfo::markAllocatedGPRs(unsigned Alignment, unsigned NumRequired) const { assert((Alignment == 1 || Alignment == 2) && "Alignment must be 4 or 8 bytes"); if (Alignment == 2 && AllocatedGPRs & 0x1) AllocatedGPRs += 1; AllocatedGPRs += NumRequired; } void ARMABIInfo::resetAllocatedRegs(void) const { AllocatedGPRs = 0; AllocatedVFPs = 0; for (unsigned i = 0; i < NumVFPs; ++i) VFPRegs[i] = 0; } ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, bool &IsCPRC) const { // We update number of allocated VFPs according to // 6.1.2.1 The following argument types are VFP CPRCs: // A single-precision floating-point type (including promoted // half-precision types); A double-precision floating-point type; // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate // with a Base Type of a single- or double-precision floating-point type, // 64-bit containerized vectors or 128-bit containerized vectors with one // to four Elements. // Handle illegal vector types here. if (isIllegalVectorType(Ty)) { uint64_t Size = getContext().getTypeSize(Ty); if (Size <= 32) { llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); markAllocatedGPRs(1, 1); return ABIArgInfo::getDirect(ResType); } if (Size == 64) { llvm::Type *ResType = llvm::VectorType::get( llvm::Type::getInt32Ty(getVMContext()), 2); if (getABIKind() == ARMABIInfo::AAPCS || isVariadic){ markAllocatedGPRs(2, 2); } else { markAllocatedVFPs(2, 2); IsCPRC = true; } return ABIArgInfo::getDirect(ResType); } if (Size == 128) { llvm::Type *ResType = llvm::VectorType::get( llvm::Type::getInt32Ty(getVMContext()), 4); if (getABIKind() == ARMABIInfo::AAPCS || isVariadic) { markAllocatedGPRs(2, 4); } else { markAllocatedVFPs(4, 4); IsCPRC = true; } return ABIArgInfo::getDirect(ResType); } markAllocatedGPRs(1, 1); return ABIArgInfo::getIndirect(0, /*ByVal=*/false); } // Update VFPRegs for legal vector types. if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) { if (const VectorType *VT = Ty->getAs()) { uint64_t Size = getContext().getTypeSize(VT); // Size of a legal vector should be power of 2 and above 64. markAllocatedVFPs(Size >= 128 ? 4 : 2, Size / 32); IsCPRC = true; } } // Update VFPRegs for floating point types. if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) { if (const BuiltinType *BT = Ty->getAs()) { if (BT->getKind() == BuiltinType::Half || BT->getKind() == BuiltinType::Float) { markAllocatedVFPs(1, 1); IsCPRC = true; } if (BT->getKind() == BuiltinType::Double || BT->getKind() == BuiltinType::LongDouble) { markAllocatedVFPs(2, 2); IsCPRC = true; } } } if (!isAggregateTypeForABI(Ty)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) { Ty = EnumTy->getDecl()->getIntegerType(); } unsigned Size = getContext().getTypeSize(Ty); if (!IsCPRC) markAllocatedGPRs(Size > 32 ? 2 : 1, (Size + 31) / 32); return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { markAllocatedGPRs(1, 1); return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); } // Ignore empty records. if (isEmptyRecord(getContext(), Ty, true)) return ABIArgInfo::getIgnore(); if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) { // Homogeneous Aggregates need to be expanded when we can fit the aggregate // into VFP registers. const Type *Base = nullptr; uint64_t Members = 0; if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) { assert(Base && "Base class should be set for homogeneous aggregate"); // Base can be a floating-point or a vector. if (Base->isVectorType()) { // ElementSize is in number of floats. unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4; markAllocatedVFPs(ElementSize, Members * ElementSize); } else if (Base->isSpecificBuiltinType(BuiltinType::Float)) markAllocatedVFPs(1, Members); else { assert(Base->isSpecificBuiltinType(BuiltinType::Double) || Base->isSpecificBuiltinType(BuiltinType::LongDouble)); markAllocatedVFPs(2, Members * 2); } IsCPRC = true; return ABIArgInfo::getDirect(); } } // Support byval for ARM. // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at // most 8-byte. We realign the indirect argument if type alignment is bigger // than ABI alignment. uint64_t ABIAlign = 4; uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; if (getABIKind() == ARMABIInfo::AAPCS_VFP || getABIKind() == ARMABIInfo::AAPCS) ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { // Update Allocated GPRs. Since this is only used when the size of the // argument is greater than 64 bytes, this will always use up any available // registers (of which there are 4). We also don't care about getting the // alignment right, because general-purpose registers cannot be back-filled. markAllocatedGPRs(1, 4); return ABIArgInfo::getIndirect(TyAlign, /*ByVal=*/true, /*Realign=*/TyAlign > ABIAlign); } // Otherwise, pass by coercing to a structure of the appropriate size. llvm::Type* ElemTy; unsigned SizeRegs; // FIXME: Try to match the types of the arguments more accurately where // we can. if (getContext().getTypeAlign(Ty) <= 32) { ElemTy = llvm::Type::getInt32Ty(getVMContext()); SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; markAllocatedGPRs(1, SizeRegs); } else { ElemTy = llvm::Type::getInt64Ty(getVMContext()); SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; markAllocatedGPRs(2, SizeRegs * 2); } llvm::Type *STy = llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL); return ABIArgInfo::getDirect(STy); } static bool isIntegerLikeType(QualType Ty, ASTContext &Context, llvm::LLVMContext &VMContext) { // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure // is called integer-like if its size is less than or equal to one word, and // the offset of each of its addressable sub-fields is zero. uint64_t Size = Context.getTypeSize(Ty); // Check that the type fits in a word. if (Size > 32) return false; // FIXME: Handle vector types! if (Ty->isVectorType()) return false; // Float types are never treated as "integer like". if (Ty->isRealFloatingType()) return false; // If this is a builtin or pointer type then it is ok. if (Ty->getAs() || Ty->isPointerType()) return true; // Small complex integer types are "integer like". if (const ComplexType *CT = Ty->getAs()) return isIntegerLikeType(CT->getElementType(), Context, VMContext); // Single element and zero sized arrays should be allowed, by the definition // above, but they are not. // Otherwise, it must be a record type. const RecordType *RT = Ty->getAs(); if (!RT) return false; // Ignore records with flexible arrays. const RecordDecl *RD = RT->getDecl(); if (RD->hasFlexibleArrayMember()) return false; // Check that all sub-fields are at offset 0, and are themselves "integer // like". const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); bool HadField = false; unsigned idx = 0; for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); i != e; ++i, ++idx) { const FieldDecl *FD = *i; // Bit-fields are not addressable, we only need to verify they are "integer // like". We still have to disallow a subsequent non-bitfield, for example: // struct { int : 0; int x } // is non-integer like according to gcc. if (FD->isBitField()) { if (!RD->isUnion()) HadField = true; if (!isIntegerLikeType(FD->getType(), Context, VMContext)) return false; continue; } // Check if this field is at offset 0. if (Layout.getFieldOffset(idx) != 0) return false; if (!isIntegerLikeType(FD->getType(), Context, VMContext)) return false; // Only allow at most one field in a structure. This doesn't match the // wording above, but follows gcc in situations with a field following an // empty structure. if (!RD->isUnion()) { if (HadField) return false; HadField = true; } } return true; } ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); // Large vector types should be returned via memory. if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { markAllocatedGPRs(1, 1); return ABIArgInfo::getIndirect(0); } if (!isAggregateTypeForABI(RetTy)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = RetTy->getAs()) RetTy = EnumTy->getDecl()->getIntegerType(); return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } // Are we following APCS? if (getABIKind() == APCS) { if (isEmptyRecord(getContext(), RetTy, false)) return ABIArgInfo::getIgnore(); // Complex types are all returned as packed integers. // // FIXME: Consider using 2 x vector types if the back end handles them // correctly. if (RetTy->isAnyComplexType()) return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), getContext().getTypeSize(RetTy))); // Integer like structures are returned in r0. if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { // Return in the smallest viable integer type. uint64_t Size = getContext().getTypeSize(RetTy); if (Size <= 8) return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); if (Size <= 16) return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); } // Otherwise return in memory. markAllocatedGPRs(1, 1); return ABIArgInfo::getIndirect(0); } // Otherwise this is an AAPCS variant. if (isEmptyRecord(getContext(), RetTy, true)) return ABIArgInfo::getIgnore(); // Check for homogeneous aggregates with AAPCS-VFP. if (getABIKind() == AAPCS_VFP && !isVariadic) { const Type *Base = nullptr; if (isHomogeneousAggregate(RetTy, Base, getContext())) { assert(Base && "Base class should be set for homogeneous aggregate"); // Homogeneous Aggregates are returned directly. return ABIArgInfo::getDirect(); } } // Aggregates <= 4 bytes are returned in r0; other aggregates // are returned indirectly. uint64_t Size = getContext().getTypeSize(RetTy); if (Size <= 32) { if (getDataLayout().isBigEndian()) // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); // Return in the smallest viable integer type. if (Size <= 8) return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); if (Size <= 16) return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); } markAllocatedGPRs(1, 1); return ABIArgInfo::getIndirect(0); } /// isIllegalVector - check whether Ty is an illegal vector type. bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { if (const VectorType *VT = Ty->getAs()) { // Check whether VT is legal. unsigned NumElements = VT->getNumElements(); // NumElements should be power of 2. if (((NumElements & (NumElements - 1)) != 0) && NumElements != 3) return true; } return false; } llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { llvm::Type *BP = CGF.Int8PtrTy; llvm::Type *BPP = CGF.Int8PtrPtrTy; CGBuilderTy &Builder = CGF.Builder; llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); if (isEmptyRecord(getContext(), Ty, true)) { // These are ignored for parameter passing purposes. llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); return Builder.CreateBitCast(Addr, PTy); } uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; bool IsIndirect = false; // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. if (getABIKind() == ARMABIInfo::AAPCS_VFP || getABIKind() == ARMABIInfo::AAPCS) TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); else TyAlign = 4; // Use indirect if size of the illegal vector is bigger than 32 bytes. if (isIllegalVectorType(Ty) && Size > 32) { IsIndirect = true; Size = 4; TyAlign = 4; } // Handle address alignment for ABI alignment > 4 bytes. if (TyAlign > 4) { assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); } uint64_t Offset = llvm::RoundUpToAlignment(Size, 4); llvm::Value *NextAddr = Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); Builder.CreateStore(NextAddr, VAListAddrAsBPP); if (IsIndirect) Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) { // We can't directly cast ap.cur to pointer to a vector type, since ap.cur // may not be correctly aligned for the vector type. We create an aligned // temporary space and copy the content over from ap.cur to the temporary // space. This is necessary if the natural alignment of the type is greater // than the ABI alignment. llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); CharUnits CharSize = getContext().getTypeSizeInChars(Ty); llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty), "var.align"); llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy); Builder.CreateMemCpy(Dst, Src, llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()), TyAlign, false); Addr = AlignedTemp; //The content is in aligned location. } llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); return AddrTyped; } namespace { class NaClARMABIInfo : public ABIInfo { public: NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind) : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {} void computeInfo(CGFunctionInfo &FI) const override; llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const override; private: PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv. ARMABIInfo NInfo; // Used for everything else. }; class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo { public: NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind) : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {} }; } void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const { if (FI.getASTCallingConvention() == CC_PnaclCall) PInfo.computeInfo(FI); else static_cast(NInfo).computeInfo(FI); } llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { // Always use the native convention; calling pnacl-style varargs functions // is unsupported. return static_cast(NInfo).EmitVAArg(VAListAddr, Ty, CGF); } //===----------------------------------------------------------------------===// // NVPTX ABI Implementation //===----------------------------------------------------------------------===// namespace { class NVPTXABIInfo : public ABIInfo { public: NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType Ty) const; void computeInfo(CGFunctionInfo &FI) const override; llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CFG) const override; }; class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { public: NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const override; private: // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the // resulting MDNode to the nvvm.annotations MDNode. static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); }; ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); // note: this is different from default ABI if (!RetTy->isScalarType()) return ABIArgInfo::getDirect(); // Treat an enum type as its underlying type. if (const EnumType *EnumTy = RetTy->getAs()) RetTy = EnumTy->getDecl()->getIntegerType(); return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { if (!getCXXABI().classifyReturnType(FI)) FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (auto &I : FI.arguments()) I.info = classifyArgumentType(I.type); // Always honor user-specified calling convention. if (FI.getCallingConvention() != llvm::CallingConv::C) return; FI.setEffectiveCallingConvention(getRuntimeCC()); } llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CFG) const { llvm_unreachable("NVPTX does not support varargs"); } void NVPTXTargetCodeGenInfo:: SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const{ const FunctionDecl *FD = dyn_cast(D); if (!FD) return; llvm::Function *F = cast(GV); // Perform special handling in OpenCL mode if (M.getLangOpts().OpenCL) { // Use OpenCL function attributes to check for kernel functions // By default, all functions are device functions if (FD->hasAttr()) { // OpenCL __kernel functions get kernel metadata // Create !{, metadata !"kernel", i32 1} node addNVVMMetadata(F, "kernel", 1); // And kernel functions are not subject to inlining F->addFnAttr(llvm::Attribute::NoInline); } } // Perform special handling in CUDA mode. if (M.getLangOpts().CUDA) { // CUDA __global__ functions get a kernel metadata entry. Since // __global__ functions cannot be called from the device, we do not // need to set the noinline attribute. if (FD->hasAttr()) { // Create !{, metadata !"kernel", i32 1} node addNVVMMetadata(F, "kernel", 1); } if (FD->hasAttr()) { // Create !{, metadata !"maxntidx", i32 } node addNVVMMetadata(F, "maxntidx", FD->getAttr()->getMaxThreads()); // min blocks is a default argument for CUDALaunchBoundsAttr, so getting a // zero value from getMinBlocks either means it was not specified in // __launch_bounds__ or the user specified a 0 value. In both cases, we // don't have to add a PTX directive. int MinCTASM = FD->getAttr()->getMinBlocks(); if (MinCTASM > 0) { // Create !{, metadata !"minctasm", i32 } node addNVVMMetadata(F, "minctasm", MinCTASM); } } } } void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand) { llvm::Module *M = F->getParent(); llvm::LLVMContext &Ctx = M->getContext(); // Get "nvvm.annotations" metadata node llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); llvm::Value *MDVals[] = { F, llvm::MDString::get(Ctx, Name), llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand)}; // Append metadata to nvvm.annotations MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); } } //===----------------------------------------------------------------------===// // SystemZ ABI Implementation //===----------------------------------------------------------------------===// namespace { class SystemZABIInfo : public ABIInfo { public: SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} bool isPromotableIntegerType(QualType Ty) const; bool isCompoundType(QualType Ty) const; bool isFPArgumentType(QualType Ty) const; ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType ArgTy) const; void computeInfo(CGFunctionInfo &FI) const override { if (!getCXXABI().classifyReturnType(FI)) FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (auto &I : FI.arguments()) I.info = classifyArgumentType(I.type); } llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const override; }; class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { public: SystemZTargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {} }; } bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); // Promotable integer types are required to be promoted by the ABI. if (Ty->isPromotableIntegerType()) return true; // 32-bit values must also be promoted. if (const BuiltinType *BT = Ty->getAs()) switch (BT->getKind()) { case BuiltinType::Int: case BuiltinType::UInt: return true; default: return false; } return false; } bool SystemZABIInfo::isCompoundType(QualType Ty) const { return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty); } bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { if (const BuiltinType *BT = Ty->getAs()) switch (BT->getKind()) { case BuiltinType::Float: case BuiltinType::Double: return true; default: return false; } if (const RecordType *RT = Ty->getAsStructureType()) { const RecordDecl *RD = RT->getDecl(); bool Found = false; // If this is a C++ record, check the bases first. if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) for (const auto &I : CXXRD->bases()) { QualType Base = I.getType(); // Empty bases don't affect things either way. if (isEmptyRecord(getContext(), Base, true)) continue; if (Found) return false; Found = isFPArgumentType(Base); if (!Found) return false; } // Check the fields. for (const auto *FD : RD->fields()) { // Empty bitfields don't affect things either way. // Unlike isSingleElementStruct(), empty structure and array fields // do count. So do anonymous bitfields that aren't zero-sized. if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) return true; // Unlike isSingleElementStruct(), arrays do not count. // Nested isFPArgumentType structures still do though. if (Found) return false; Found = isFPArgumentType(FD->getType()); if (!Found) return false; } // Unlike isSingleElementStruct(), trailing padding is allowed. // An 8-byte aligned struct s { float f; } is passed as a double. return Found; } return false; } llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { // Assume that va_list type is correct; should be pointer to LLVM type: // struct { // i64 __gpr; // i64 __fpr; // i8 *__overflow_arg_area; // i8 *__reg_save_area; // }; // Every argument occupies 8 bytes and is passed by preference in either // GPRs or FPRs. Ty = CGF.getContext().getCanonicalType(Ty); ABIArgInfo AI = classifyArgumentType(Ty); bool InFPRs = isFPArgumentType(Ty); llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); bool IsIndirect = AI.isIndirect(); unsigned UnpaddedBitSize; if (IsIndirect) { APTy = llvm::PointerType::getUnqual(APTy); UnpaddedBitSize = 64; } else UnpaddedBitSize = getContext().getTypeSize(Ty); unsigned PaddedBitSize = 64; assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size."); unsigned PaddedSize = PaddedBitSize / 8; unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8; unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding; if (InFPRs) { MaxRegs = 4; // Maximum of 4 FPR arguments RegCountField = 1; // __fpr RegSaveIndex = 16; // save offset for f0 RegPadding = 0; // floats are passed in the high bits of an FPR } else { MaxRegs = 5; // Maximum of 5 GPR arguments RegCountField = 0; // __gpr RegSaveIndex = 2; // save offset for r2 RegPadding = Padding; // values are passed in the low bits of a GPR } llvm::Value *RegCountPtr = CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); llvm::Type *IndexTy = RegCount->getType(); llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, "fits_in_regs"); llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); // Emit code to load the value if it was passed in registers. CGF.EmitBlock(InRegBlock); // Work out the address of an argument register. llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize); llvm::Value *ScaledRegCount = CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); llvm::Value *RegBase = llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding); llvm::Value *RegOffset = CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); llvm::Value *RegSaveAreaPtr = CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); llvm::Value *RawRegAddr = CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr"); llvm::Value *RegAddr = CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr"); // Update the register count llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); llvm::Value *NewRegCount = CGF.Builder.CreateAdd(RegCount, One, "reg_count"); CGF.Builder.CreateStore(NewRegCount, RegCountPtr); CGF.EmitBranch(ContBlock); // Emit code to load the value if it was passed in memory. CGF.EmitBlock(InMemBlock); // Work out the address of a stack argument. llvm::Value *OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); llvm::Value *OverflowArgArea = CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"); llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding); llvm::Value *RawMemAddr = CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr"); llvm::Value *MemAddr = CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr"); // Update overflow_arg_area_ptr pointer llvm::Value *NewOverflowArgArea = CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area"); CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); CGF.EmitBranch(ContBlock); // Return the appropriate result. CGF.EmitBlock(ContBlock); llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr"); ResAddr->addIncoming(RegAddr, InRegBlock); ResAddr->addIncoming(MemAddr, InMemBlock); if (IsIndirect) return CGF.Builder.CreateLoad(ResAddr, "indirect_arg"); return ResAddr; } ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) return ABIArgInfo::getIndirect(0); return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { // Handle the generic C++ ABI. if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); // Integers and enums are extended to full register width. if (isPromotableIntegerType(Ty)) return ABIArgInfo::getExtend(); // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. uint64_t Size = getContext().getTypeSize(Ty); if (Size != 8 && Size != 16 && Size != 32 && Size != 64) return ABIArgInfo::getIndirect(0, /*ByVal=*/false); // Handle small structures. if (const RecordType *RT = Ty->getAs()) { // Structures with flexible arrays have variable length, so really // fail the size test above. const RecordDecl *RD = RT->getDecl(); if (RD->hasFlexibleArrayMember()) return ABIArgInfo::getIndirect(0, /*ByVal=*/false); // The structure is passed as an unextended integer, a float, or a double. llvm::Type *PassTy; if (isFPArgumentType(Ty)) { assert(Size == 32 || Size == 64); if (Size == 32) PassTy = llvm::Type::getFloatTy(getVMContext()); else PassTy = llvm::Type::getDoubleTy(getVMContext()); } else PassTy = llvm::IntegerType::get(getVMContext(), Size); return ABIArgInfo::getDirect(PassTy); } // Non-structure compounds are passed indirectly. if (isCompoundType(Ty)) return ABIArgInfo::getIndirect(0, /*ByVal=*/false); return ABIArgInfo::getDirect(nullptr); } //===----------------------------------------------------------------------===// // MSP430 ABI Implementation //===----------------------------------------------------------------------===// namespace { class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { public: MSP430TargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const override; }; } void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { if (const FunctionDecl *FD = dyn_cast(D)) { if (const MSP430InterruptAttr *attr = FD->getAttr()) { // Handle 'interrupt' attribute: llvm::Function *F = cast(GV); // Step 1: Set ISR calling convention. F->setCallingConv(llvm::CallingConv::MSP430_INTR); // Step 2: Add attributes goodness. F->addFnAttr(llvm::Attribute::NoInline); // Step 3: Emit ISR vector alias. unsigned Num = attr->getNumber() / 2; llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, "__isr_" + Twine(Num), F); } } } //===----------------------------------------------------------------------===// // MIPS ABI Implementation. This works for both little-endian and // big-endian variants. //===----------------------------------------------------------------------===// namespace { class MipsABIInfo : public ABIInfo { bool IsO32; unsigned MinABIStackAlignInBytes, StackAlignInBytes; void CoerceToIntArgs(uint64_t TySize, SmallVectorImpl &ArgList) const; llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; public: MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), StackAlignInBytes(IsO32 ? 8 : 16) {} ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; void computeInfo(CGFunctionInfo &FI) const override; llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const override; }; class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { unsigned SizeOfUnwindException; public: MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), SizeOfUnwindException(IsO32 ? 24 : 32) {} int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { return 29; } void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const override { const FunctionDecl *FD = dyn_cast(D); if (!FD) return; llvm::Function *Fn = cast(GV); if (FD->hasAttr()) { Fn->addFnAttr("mips16"); } else if (FD->hasAttr()) { Fn->addFnAttr("nomips16"); } } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const override; unsigned getSizeOfUnwindException() const override { return SizeOfUnwindException; } }; } void MipsABIInfo::CoerceToIntArgs(uint64_t TySize, SmallVectorImpl &ArgList) const { llvm::IntegerType *IntTy = llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); // Add (TySize / MinABIStackAlignInBytes) args of IntTy. for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) ArgList.push_back(IntTy); // If necessary, add one more integer type to ArgList. unsigned R = TySize % (MinABIStackAlignInBytes * 8); if (R) ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); } // In N32/64, an aligned double precision floating point field is passed in // a register. llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { SmallVector ArgList, IntArgList; if (IsO32) { CoerceToIntArgs(TySize, ArgList); return llvm::StructType::get(getVMContext(), ArgList); } if (Ty->isComplexType()) return CGT.ConvertType(Ty); const RecordType *RT = Ty->getAs(); // Unions/vectors are passed in integer registers. if (!RT || !RT->isStructureOrClassType()) { CoerceToIntArgs(TySize, ArgList); return llvm::StructType::get(getVMContext(), ArgList); } const RecordDecl *RD = RT->getDecl(); const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); assert(!(TySize % 8) && "Size of structure must be multiple of 8."); uint64_t LastOffset = 0; unsigned idx = 0; llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); // Iterate over fields in the struct/class and check if there are any aligned // double fields. for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); i != e; ++i, ++idx) { const QualType Ty = i->getType(); const BuiltinType *BT = Ty->getAs(); if (!BT || BT->getKind() != BuiltinType::Double) continue; uint64_t Offset = Layout.getFieldOffset(idx); if (Offset % 64) // Ignore doubles that are not aligned. continue; // Add ((Offset - LastOffset) / 64) args of type i64. for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) ArgList.push_back(I64); // Add double type. ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); LastOffset = Offset + 64; } CoerceToIntArgs(TySize - LastOffset, IntArgList); ArgList.append(IntArgList.begin(), IntArgList.end()); return llvm::StructType::get(getVMContext(), ArgList); } llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, uint64_t Offset) const { if (OrigOffset + MinABIStackAlignInBytes > Offset) return nullptr; return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); } ABIArgInfo MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { uint64_t OrigOffset = Offset; uint64_t TySize = getContext().getTypeSize(Ty); uint64_t Align = getContext().getTypeAlign(Ty) / 8; Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), (uint64_t)StackAlignInBytes); unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align); Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8; if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { // Ignore empty aggregates. if (TySize == 0) return ABIArgInfo::getIgnore(); if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { Offset = OrigOffset + MinABIStackAlignInBytes; return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); } // If we have reached here, aggregates are passed directly by coercing to // another structure type. Padding is inserted if the offset of the // aggregate is unaligned. return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, getPaddingType(OrigOffset, CurrOffset)); } // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); if (Ty->isPromotableIntegerType()) return ABIArgInfo::getExtend(); return ABIArgInfo::getDirect( nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); } llvm::Type* MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { const RecordType *RT = RetTy->getAs(); SmallVector RTList; if (RT && RT->isStructureOrClassType()) { const RecordDecl *RD = RT->getDecl(); const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); unsigned FieldCnt = Layout.getFieldCount(); // N32/64 returns struct/classes in floating point registers if the // following conditions are met: // 1. The size of the struct/class is no larger than 128-bit. // 2. The struct/class has one or two fields all of which are floating // point types. // 3. The offset of the first field is zero (this follows what gcc does). // // Any other composite results are returned in integer registers. // if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); for (; b != e; ++b) { const BuiltinType *BT = b->getType()->getAs(); if (!BT || !BT->isFloatingPoint()) break; RTList.push_back(CGT.ConvertType(b->getType())); } if (b == e) return llvm::StructType::get(getVMContext(), RTList, RD->hasAttr()); RTList.clear(); } } CoerceToIntArgs(Size, RTList); return llvm::StructType::get(getVMContext(), RTList); } ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { uint64_t Size = getContext().getTypeSize(RetTy); if (RetTy->isVoidType() || Size == 0) return ABIArgInfo::getIgnore(); if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { if (Size <= 128) { if (RetTy->isAnyComplexType()) return ABIArgInfo::getDirect(); // O32 returns integer vectors in registers. if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation()) return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); if (!IsO32) return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); } return ABIArgInfo::getIndirect(0); } // Treat an enum type as its underlying type. if (const EnumType *EnumTy = RetTy->getAs()) RetTy = EnumTy->getDecl()->getIntegerType(); return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { ABIArgInfo &RetInfo = FI.getReturnInfo(); if (!getCXXABI().classifyReturnType(FI)) RetInfo = classifyReturnType(FI.getReturnType()); // Check if a pointer to an aggregate is passed as a hidden argument. uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; for (auto &I : FI.arguments()) I.info = classifyArgumentType(I.type, Offset); } llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { llvm::Type *BP = CGF.Int8PtrTy; llvm::Type *BPP = CGF.Int8PtrPtrTy; CGBuilderTy &Builder = CGF.Builder; llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8; llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); llvm::Value *AddrTyped; unsigned PtrWidth = getTarget().getPointerWidth(0); llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty; if (TypeAlign > MinABIStackAlignInBytes) { llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy); llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1); llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign); llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc); llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask); AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy); } else AddrTyped = Builder.CreateBitCast(Addr, PTy); llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP); TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes); uint64_t Offset = llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign); llvm::Value *NextAddr = Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset), "ap.next"); Builder.CreateStore(NextAddr, VAListAddrAsBPP); return AddrTyped; } bool MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { // This information comes from gcc's implementation, which seems to // as canonical as it gets. // Everything on MIPS is 4 bytes. Double-precision FP registers // are aliased to pairs of single-precision FP registers. llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); // 0-31 are the general purpose registers, $0 - $31. // 32-63 are the floating-point registers, $f0 - $f31. // 64 and 65 are the multiply/divide registers, $hi and $lo. // 66 is the (notional, I think) register for signal-handler return. AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); // 67-74 are the floating-point status registers, $fcc0 - $fcc7. // They are one bit wide and ignored here. // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. // (coprocessor 1 is the FP unit) // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. // 176-181 are the DSP accumulator registers. AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); return false; } //===----------------------------------------------------------------------===// // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. // Currently subclassed only to implement custom OpenCL C function attribute // handling. //===----------------------------------------------------------------------===// namespace { class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { public: TCETargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const override; }; void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { const FunctionDecl *FD = dyn_cast(D); if (!FD) return; llvm::Function *F = cast(GV); if (M.getLangOpts().OpenCL) { if (FD->hasAttr()) { // OpenCL C Kernel functions are not subject to inlining F->addFnAttr(llvm::Attribute::NoInline); const ReqdWorkGroupSizeAttr *Attr = FD->getAttr(); if (Attr) { // Convert the reqd_work_group_size() attributes to metadata. llvm::LLVMContext &Context = F->getContext(); llvm::NamedMDNode *OpenCLMetadata = M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info"); SmallVector Operands; Operands.push_back(F); Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, llvm::APInt(32, Attr->getXDim()))); Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, llvm::APInt(32, Attr->getYDim()))); Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, llvm::APInt(32, Attr->getZDim()))); // Add a boolean constant operand for "required" (true) or "hint" (false) // for implementing the work_group_size_hint attr later. Currently // always true as the hint is not yet implemented. Operands.push_back(llvm::ConstantInt::getTrue(Context)); OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); } } } } } //===----------------------------------------------------------------------===// // Hexagon ABI Implementation //===----------------------------------------------------------------------===// namespace { class HexagonABIInfo : public ABIInfo { public: HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} private: ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType RetTy) const; void computeInfo(CGFunctionInfo &FI) const override; llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const override; }; class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { public: HexagonTargetCodeGenInfo(CodeGenTypes &CGT) :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { return 29; } }; } void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { if (!getCXXABI().classifyReturnType(FI)) FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (auto &I : FI.arguments()) I.info = classifyArgumentType(I.type); } ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { if (!isAggregateTypeForABI(Ty)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } // Ignore empty records. if (isEmptyRecord(getContext(), Ty, true)) return ABIArgInfo::getIgnore(); if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); uint64_t Size = getContext().getTypeSize(Ty); if (Size > 64) return ABIArgInfo::getIndirect(0, /*ByVal=*/true); // Pass in the smallest viable integer type. else if (Size > 32) return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); else if (Size > 16) return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); else if (Size > 8) return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); else return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); } ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); // Large vector types should be returned via memory. if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) return ABIArgInfo::getIndirect(0); if (!isAggregateTypeForABI(RetTy)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = RetTy->getAs()) RetTy = EnumTy->getDecl()->getIntegerType(); return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } if (isEmptyRecord(getContext(), RetTy, true)) return ABIArgInfo::getIgnore(); // Aggregates <= 8 bytes are returned in r0; other aggregates // are returned indirectly. uint64_t Size = getContext().getTypeSize(RetTy); if (Size <= 64) { // Return in the smallest viable integer type. if (Size <= 8) return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); if (Size <= 16) return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); if (Size <= 32) return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); } return ABIArgInfo::getIndirect(0, /*ByVal=*/true); } llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { // FIXME: Need to handle alignment llvm::Type *BPP = CGF.Int8PtrPtrTy; CGBuilderTy &Builder = CGF.Builder; llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); uint64_t Offset = llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); llvm::Value *NextAddr = Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); Builder.CreateStore(NextAddr, VAListAddrAsBPP); return AddrTyped; } //===----------------------------------------------------------------------===// // SPARC v9 ABI Implementation. // Based on the SPARC Compliance Definition version 2.4.1. // // Function arguments a mapped to a nominal "parameter array" and promoted to // registers depending on their type. Each argument occupies 8 or 16 bytes in // the array, structs larger than 16 bytes are passed indirectly. // // One case requires special care: // // struct mixed { // int i; // float f; // }; // // When a struct mixed is passed by value, it only occupies 8 bytes in the // parameter array, but the int is passed in an integer register, and the float // is passed in a floating point register. This is represented as two arguments // with the LLVM IR inreg attribute: // // declare void f(i32 inreg %i, float inreg %f) // // The code generator will only allocate 4 bytes from the parameter array for // the inreg arguments. All other arguments are allocated a multiple of 8 // bytes. // namespace { class SparcV9ABIInfo : public ABIInfo { public: SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} private: ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; void computeInfo(CGFunctionInfo &FI) const override; llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const override; // Coercion type builder for structs passed in registers. The coercion type // serves two purposes: // // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' // in registers. // 2. Expose aligned floating point elements as first-level elements, so the // code generator knows to pass them in floating point registers. // // We also compute the InReg flag which indicates that the struct contains // aligned 32-bit floats. // struct CoerceBuilder { llvm::LLVMContext &Context; const llvm::DataLayout &DL; SmallVector Elems; uint64_t Size; bool InReg; CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) : Context(c), DL(dl), Size(0), InReg(false) {} // Pad Elems with integers until Size is ToSize. void pad(uint64_t ToSize) { assert(ToSize >= Size && "Cannot remove elements"); if (ToSize == Size) return; // Finish the current 64-bit word. uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64); if (Aligned > Size && Aligned <= ToSize) { Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); Size = Aligned; } // Add whole 64-bit words. while (Size + 64 <= ToSize) { Elems.push_back(llvm::Type::getInt64Ty(Context)); Size += 64; } // Final in-word padding. if (Size < ToSize) { Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); Size = ToSize; } } // Add a floating point element at Offset. void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { // Unaligned floats are treated as integers. if (Offset % Bits) return; // The InReg flag is only required if there are any floats < 64 bits. if (Bits < 64) InReg = true; pad(Offset); Elems.push_back(Ty); Size = Offset + Bits; } // Add a struct type to the coercion type, starting at Offset (in bits). void addStruct(uint64_t Offset, llvm::StructType *StrTy) { const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { llvm::Type *ElemTy = StrTy->getElementType(i); uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); switch (ElemTy->getTypeID()) { case llvm::Type::StructTyID: addStruct(ElemOffset, cast(ElemTy)); break; case llvm::Type::FloatTyID: addFloat(ElemOffset, ElemTy, 32); break; case llvm::Type::DoubleTyID: addFloat(ElemOffset, ElemTy, 64); break; case llvm::Type::FP128TyID: addFloat(ElemOffset, ElemTy, 128); break; case llvm::Type::PointerTyID: if (ElemOffset % 64 == 0) { pad(ElemOffset); Elems.push_back(ElemTy); Size += 64; } break; default: break; } } } // Check if Ty is a usable substitute for the coercion type. bool isUsableType(llvm::StructType *Ty) const { if (Ty->getNumElements() != Elems.size()) return false; for (unsigned i = 0, e = Elems.size(); i != e; ++i) if (Elems[i] != Ty->getElementType(i)) return false; return true; } // Get the coercion type as a literal struct type. llvm::Type *getType() const { if (Elems.size() == 1) return Elems.front(); else return llvm::StructType::get(Context, Elems); } }; }; } // end anonymous namespace ABIArgInfo SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { if (Ty->isVoidType()) return ABIArgInfo::getIgnore(); uint64_t Size = getContext().getTypeSize(Ty); // Anything too big to fit in registers is passed with an explicit indirect // pointer / sret pointer. if (Size > SizeLimit) return ABIArgInfo::getIndirect(0, /*ByVal=*/false); // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); // Integer types smaller than a register are extended. if (Size < 64 && Ty->isIntegerType()) return ABIArgInfo::getExtend(); // Other non-aggregates go in registers. if (!isAggregateTypeForABI(Ty)) return ABIArgInfo::getDirect(); // If a C++ object has either a non-trivial copy constructor or a non-trivial // destructor, it is passed with an explicit indirect pointer / sret pointer. if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); // This is a small aggregate type that should be passed in registers. // Build a coercion type from the LLVM struct type. llvm::StructType *StrTy = dyn_cast(CGT.ConvertType(Ty)); if (!StrTy) return ABIArgInfo::getDirect(); CoerceBuilder CB(getVMContext(), getDataLayout()); CB.addStruct(0, StrTy); CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64)); // Try to use the original type for coercion. llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); if (CB.InReg) return ABIArgInfo::getDirectInReg(CoerceTy); else return ABIArgInfo::getDirect(CoerceTy); } llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { ABIArgInfo AI = classifyType(Ty, 16 * 8); llvm::Type *ArgTy = CGT.ConvertType(Ty); if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) AI.setCoerceToType(ArgTy); llvm::Type *BPP = CGF.Int8PtrPtrTy; CGBuilderTy &Builder = CGF.Builder; llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); llvm::Value *ArgAddr; unsigned Stride; switch (AI.getKind()) { case ABIArgInfo::Expand: case ABIArgInfo::InAlloca: llvm_unreachable("Unsupported ABI kind for va_arg"); case ABIArgInfo::Extend: Stride = 8; ArgAddr = Builder .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy), "extend"); break; case ABIArgInfo::Direct: Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); ArgAddr = Addr; break; case ABIArgInfo::Indirect: Stride = 8; ArgAddr = Builder.CreateBitCast(Addr, llvm::PointerType::getUnqual(ArgPtrTy), "indirect"); ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg"); break; case ABIArgInfo::Ignore: return llvm::UndefValue::get(ArgPtrTy); } // Update VAList. Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next"); Builder.CreateStore(Addr, VAListAddrAsBPP); return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr"); } void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); for (auto &I : FI.arguments()) I.info = classifyType(I.type, 16 * 8); } namespace { class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { public: SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { return 14; } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const override; }; } // end anonymous namespace bool SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { // This is calculated from the LLVM and GCC tables and verified // against gcc output. AFAIK all ABIs use the same encoding. CodeGen::CGBuilderTy &Builder = CGF.Builder; llvm::IntegerType *i8 = CGF.Int8Ty; llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); // 0-31: the 8-byte general-purpose registers AssignToArrayRange(Builder, Address, Eight8, 0, 31); // 32-63: f0-31, the 4-byte floating-point registers AssignToArrayRange(Builder, Address, Four8, 32, 63); // Y = 64 // PSR = 65 // WIM = 66 // TBR = 67 // PC = 68 // NPC = 69 // FSR = 70 // CSR = 71 AssignToArrayRange(Builder, Address, Eight8, 64, 71); // 72-87: d0-15, the 8-byte floating-point registers AssignToArrayRange(Builder, Address, Eight8, 72, 87); return false; } //===----------------------------------------------------------------------===// // XCore ABI Implementation //===----------------------------------------------------------------------===// namespace { /// A SmallStringEnc instance is used to build up the TypeString by passing /// it by reference between functions that append to it. typedef llvm::SmallString<128> SmallStringEnc; /// TypeStringCache caches the meta encodings of Types. /// /// The reason for caching TypeStrings is two fold: /// 1. To cache a type's encoding for later uses; /// 2. As a means to break recursive member type inclusion. /// /// A cache Entry can have a Status of: /// NonRecursive: The type encoding is not recursive; /// Recursive: The type encoding is recursive; /// Incomplete: An incomplete TypeString; /// IncompleteUsed: An incomplete TypeString that has been used in a /// Recursive type encoding. /// /// A NonRecursive entry will have all of its sub-members expanded as fully /// as possible. Whilst it may contain types which are recursive, the type /// itself is not recursive and thus its encoding may be safely used whenever /// the type is encountered. /// /// A Recursive entry will have all of its sub-members expanded as fully as /// possible. The type itself is recursive and it may contain other types which /// are recursive. The Recursive encoding must not be used during the expansion /// of a recursive type's recursive branch. For simplicity the code uses /// IncompleteCount to reject all usage of Recursive encodings for member types. /// /// An Incomplete entry is always a RecordType and only encodes its /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and /// are placed into the cache during type expansion as a means to identify and /// handle recursive inclusion of types as sub-members. If there is recursion /// the entry becomes IncompleteUsed. /// /// During the expansion of a RecordType's members: /// /// If the cache contains a NonRecursive encoding for the member type, the /// cached encoding is used; /// /// If the cache contains a Recursive encoding for the member type, the /// cached encoding is 'Swapped' out, as it may be incorrect, and... /// /// If the member is a RecordType, an Incomplete encoding is placed into the /// cache to break potential recursive inclusion of itself as a sub-member; /// /// Once a member RecordType has been expanded, its temporary incomplete /// entry is removed from the cache. If a Recursive encoding was swapped out /// it is swapped back in; /// /// If an incomplete entry is used to expand a sub-member, the incomplete /// entry is marked as IncompleteUsed. The cache keeps count of how many /// IncompleteUsed entries it currently contains in IncompleteUsedCount; /// /// If a member's encoding is found to be a NonRecursive or Recursive viz: /// IncompleteUsedCount==0, the member's encoding is added to the cache. /// Else the member is part of a recursive type and thus the recursion has /// been exited too soon for the encoding to be correct for the member. /// class TypeStringCache { enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; struct Entry { std::string Str; // The encoded TypeString for the type. enum Status State; // Information about the encoding in 'Str'. std::string Swapped; // A temporary place holder for a Recursive encoding // during the expansion of RecordType's members. }; std::map Map; unsigned IncompleteCount; // Number of Incomplete entries in the Map. unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. public: TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}; void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); bool removeIncomplete(const IdentifierInfo *ID); void addIfComplete(const IdentifierInfo *ID, StringRef Str, bool IsRecursive); StringRef lookupStr(const IdentifierInfo *ID); }; /// TypeString encodings for enum & union fields must be order. /// FieldEncoding is a helper for this ordering process. class FieldEncoding { bool HasName; std::string Enc; public: FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}; StringRef str() {return Enc.c_str();}; bool operator<(const FieldEncoding &rhs) const { if (HasName != rhs.HasName) return HasName; return Enc < rhs.Enc; } }; class XCoreABIInfo : public DefaultABIInfo { public: XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const override; }; class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { mutable TypeStringCache TSC; public: XCoreTargetCodeGenInfo(CodeGenTypes &CGT) :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const override; }; } // End anonymous namespace. llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { CGBuilderTy &Builder = CGF.Builder; // Get the VAList. llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, CGF.Int8PtrPtrTy); llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP); // Handle the argument. ABIArgInfo AI = classifyArgumentType(Ty); llvm::Type *ArgTy = CGT.ConvertType(Ty); if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) AI.setCoerceToType(ArgTy); llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); llvm::Value *Val; uint64_t ArgSize = 0; switch (AI.getKind()) { case ABIArgInfo::Expand: case ABIArgInfo::InAlloca: llvm_unreachable("Unsupported ABI kind for va_arg"); case ABIArgInfo::Ignore: Val = llvm::UndefValue::get(ArgPtrTy); ArgSize = 0; break; case ABIArgInfo::Extend: case ABIArgInfo::Direct: Val = Builder.CreatePointerCast(AP, ArgPtrTy); ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); if (ArgSize < 4) ArgSize = 4; break; case ABIArgInfo::Indirect: llvm::Value *ArgAddr; ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy)); ArgAddr = Builder.CreateLoad(ArgAddr); Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy); ArgSize = 4; break; } // Increment the VAList. if (ArgSize) { llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize); Builder.CreateStore(APN, VAListAddrAsBPP); } return Val; } /// During the expansion of a RecordType, an incomplete TypeString is placed /// into the cache as a means to identify and break recursion. /// If there is a Recursive encoding in the cache, it is swapped out and will /// be reinserted by removeIncomplete(). /// All other types of encoding should have been used rather than arriving here. void TypeStringCache::addIncomplete(const IdentifierInfo *ID, std::string StubEnc) { if (!ID) return; Entry &E = Map[ID]; assert( (E.Str.empty() || E.State == Recursive) && "Incorrectly use of addIncomplete"); assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); E.Swapped.swap(E.Str); // swap out the Recursive E.Str.swap(StubEnc); E.State = Incomplete; ++IncompleteCount; } /// Once the RecordType has been expanded, the temporary incomplete TypeString /// must be removed from the cache. /// If a Recursive was swapped out by addIncomplete(), it will be replaced. /// Returns true if the RecordType was defined recursively. bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { if (!ID) return false; auto I = Map.find(ID); assert(I != Map.end() && "Entry not present"); Entry &E = I->second; assert( (E.State == Incomplete || E.State == IncompleteUsed) && "Entry must be an incomplete type"); bool IsRecursive = false; if (E.State == IncompleteUsed) { // We made use of our Incomplete encoding, thus we are recursive. IsRecursive = true; --IncompleteUsedCount; } if (E.Swapped.empty()) Map.erase(I); else { // Swap the Recursive back. E.Swapped.swap(E.Str); E.Swapped.clear(); E.State = Recursive; } --IncompleteCount; return IsRecursive; } /// Add the encoded TypeString to the cache only if it is NonRecursive or /// Recursive (viz: all sub-members were expanded as fully as possible). void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, bool IsRecursive) { if (!ID || IncompleteUsedCount) return; // No key or it is is an incomplete sub-type so don't add. Entry &E = Map[ID]; if (IsRecursive && !E.Str.empty()) { assert(E.State==Recursive && E.Str.size() == Str.size() && "This is not the same Recursive entry"); // The parent container was not recursive after all, so we could have used // this Recursive sub-member entry after all, but we assumed the worse when // we started viz: IncompleteCount!=0. return; } assert(E.Str.empty() && "Entry already present"); E.Str = Str.str(); E.State = IsRecursive? Recursive : NonRecursive; } /// Return a cached TypeString encoding for the ID. If there isn't one, or we /// are recursively expanding a type (IncompleteCount != 0) and the cached /// encoding is Recursive, return an empty StringRef. StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { if (!ID) return StringRef(); // We have no key. auto I = Map.find(ID); if (I == Map.end()) return StringRef(); // We have no encoding. Entry &E = I->second; if (E.State == Recursive && IncompleteCount) return StringRef(); // We don't use Recursive encodings for member types. if (E.State == Incomplete) { // The incomplete type is being used to break out of recursion. E.State = IncompleteUsed; ++IncompleteUsedCount; } return E.Str.c_str(); } /// The XCore ABI includes a type information section that communicates symbol /// type information to the linker. The linker uses this information to verify /// safety/correctness of things such as array bound and pointers et al. /// The ABI only requires C (and XC) language modules to emit TypeStrings. /// This type information (TypeString) is emitted into meta data for all global /// symbols: definitions, declarations, functions & variables. /// /// The TypeString carries type, qualifier, name, size & value details. /// Please see 'Tools Development Guide' section 2.16.2 for format details: /// /// The output is tested by test/CodeGen/xcore-stringtype.c. /// static bool getTypeString(SmallStringEnc &Enc, const Decl *D, CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { SmallStringEnc Enc; if (getTypeString(Enc, D, CGM, TSC)) { llvm::LLVMContext &Ctx = CGM.getModule().getContext(); llvm::SmallVector MDVals; MDVals.push_back(GV); MDVals.push_back(llvm::MDString::get(Ctx, Enc.str())); llvm::NamedMDNode *MD = CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); } } static bool appendType(SmallStringEnc &Enc, QualType QType, const CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); /// Helper function for appendRecordType(). /// Builds a SmallVector containing the encoded field types in declaration order. static bool extractFieldType(SmallVectorImpl &FE, const RecordDecl *RD, const CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); I != E; ++I) { SmallStringEnc Enc; Enc += "m("; Enc += I->getName(); Enc += "){"; if (I->isBitField()) { Enc += "b("; llvm::raw_svector_ostream OS(Enc); OS.resync(); OS << I->getBitWidthValue(CGM.getContext()); OS.flush(); Enc += ':'; } if (!appendType(Enc, I->getType(), CGM, TSC)) return false; if (I->isBitField()) Enc += ')'; Enc += '}'; FE.push_back(FieldEncoding(!I->getName().empty(), Enc)); } return true; } /// Appends structure and union types to Enc and adds encoding to cache. /// Recursively calls appendType (via extractFieldType) for each field. /// Union types have their fields ordered according to the ABI. static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, const CodeGen::CodeGenModule &CGM, TypeStringCache &TSC, const IdentifierInfo *ID) { // Append the cached TypeString if we have one. StringRef TypeString = TSC.lookupStr(ID); if (!TypeString.empty()) { Enc += TypeString; return true; } // Start to emit an incomplete TypeString. size_t Start = Enc.size(); Enc += (RT->isUnionType()? 'u' : 's'); Enc += '('; if (ID) Enc += ID->getName(); Enc += "){"; // We collect all encoded fields and order as necessary. bool IsRecursive = false; const RecordDecl *RD = RT->getDecl()->getDefinition(); if (RD && !RD->field_empty()) { // An incomplete TypeString stub is placed in the cache for this RecordType // so that recursive calls to this RecordType will use it whilst building a // complete TypeString for this RecordType. SmallVector FE; std::string StubEnc(Enc.substr(Start).str()); StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. TSC.addIncomplete(ID, std::move(StubEnc)); if (!extractFieldType(FE, RD, CGM, TSC)) { (void) TSC.removeIncomplete(ID); return false; } IsRecursive = TSC.removeIncomplete(ID); // The ABI requires unions to be sorted but not structures. // See FieldEncoding::operator< for sort algorithm. if (RT->isUnionType()) std::sort(FE.begin(), FE.end()); // We can now complete the TypeString. unsigned E = FE.size(); for (unsigned I = 0; I != E; ++I) { if (I) Enc += ','; Enc += FE[I].str(); } } Enc += '}'; TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); return true; } /// Appends enum types to Enc and adds the encoding to the cache. static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, TypeStringCache &TSC, const IdentifierInfo *ID) { // Append the cached TypeString if we have one. StringRef TypeString = TSC.lookupStr(ID); if (!TypeString.empty()) { Enc += TypeString; return true; } size_t Start = Enc.size(); Enc += "e("; if (ID) Enc += ID->getName(); Enc += "){"; // We collect all encoded enumerations and order them alphanumerically. if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { SmallVector FE; for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; ++I) { SmallStringEnc EnumEnc; EnumEnc += "m("; EnumEnc += I->getName(); EnumEnc += "){"; I->getInitVal().toString(EnumEnc); EnumEnc += '}'; FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); } std::sort(FE.begin(), FE.end()); unsigned E = FE.size(); for (unsigned I = 0; I != E; ++I) { if (I) Enc += ','; Enc += FE[I].str(); } } Enc += '}'; TSC.addIfComplete(ID, Enc.substr(Start), false); return true; } /// Appends type's qualifier to Enc. /// This is done prior to appending the type's encoding. static void appendQualifier(SmallStringEnc &Enc, QualType QT) { // Qualifiers are emitted in alphabetical order. static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"}; int Lookup = 0; if (QT.isConstQualified()) Lookup += 1<<0; if (QT.isRestrictQualified()) Lookup += 1<<1; if (QT.isVolatileQualified()) Lookup += 1<<2; Enc += Table[Lookup]; } /// Appends built-in types to Enc. static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { const char *EncType; switch (BT->getKind()) { case BuiltinType::Void: EncType = "0"; break; case BuiltinType::Bool: EncType = "b"; break; case BuiltinType::Char_U: EncType = "uc"; break; case BuiltinType::UChar: EncType = "uc"; break; case BuiltinType::SChar: EncType = "sc"; break; case BuiltinType::UShort: EncType = "us"; break; case BuiltinType::Short: EncType = "ss"; break; case BuiltinType::UInt: EncType = "ui"; break; case BuiltinType::Int: EncType = "si"; break; case BuiltinType::ULong: EncType = "ul"; break; case BuiltinType::Long: EncType = "sl"; break; case BuiltinType::ULongLong: EncType = "ull"; break; case BuiltinType::LongLong: EncType = "sll"; break; case BuiltinType::Float: EncType = "ft"; break; case BuiltinType::Double: EncType = "d"; break; case BuiltinType::LongDouble: EncType = "ld"; break; default: return false; } Enc += EncType; return true; } /// Appends a pointer encoding to Enc before calling appendType for the pointee. static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, const CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { Enc += "p("; if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) return false; Enc += ')'; return true; } /// Appends array encoding to Enc before calling appendType for the element. static bool appendArrayType(SmallStringEnc &Enc, QualType QT, const ArrayType *AT, const CodeGen::CodeGenModule &CGM, TypeStringCache &TSC, StringRef NoSizeEnc) { if (AT->getSizeModifier() != ArrayType::Normal) return false; Enc += "a("; if (const ConstantArrayType *CAT = dyn_cast(AT)) CAT->getSize().toStringUnsigned(Enc); else Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". Enc += ':'; // The Qualifiers should be attached to the type rather than the array. appendQualifier(Enc, QT); if (!appendType(Enc, AT->getElementType(), CGM, TSC)) return false; Enc += ')'; return true; } /// Appends a function encoding to Enc, calling appendType for the return type /// and the arguments. static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, const CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { Enc += "f{"; if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) return false; Enc += "}("; if (const FunctionProtoType *FPT = FT->getAs()) { // N.B. we are only interested in the adjusted param types. auto I = FPT->param_type_begin(); auto E = FPT->param_type_end(); if (I != E) { do { if (!appendType(Enc, *I, CGM, TSC)) return false; ++I; if (I != E) Enc += ','; } while (I != E); if (FPT->isVariadic()) Enc += ",va"; } else { if (FPT->isVariadic()) Enc += "va"; else Enc += '0'; } } Enc += ')'; return true; } /// Handles the type's qualifier before dispatching a call to handle specific /// type encodings. static bool appendType(SmallStringEnc &Enc, QualType QType, const CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { QualType QT = QType.getCanonicalType(); if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) // The Qualifiers should be attached to the type rather than the array. // Thus we don't call appendQualifier() here. return appendArrayType(Enc, QT, AT, CGM, TSC, ""); appendQualifier(Enc, QT); if (const BuiltinType *BT = QT->getAs()) return appendBuiltinType(Enc, BT); if (const PointerType *PT = QT->getAs()) return appendPointerType(Enc, PT, CGM, TSC); if (const EnumType *ET = QT->getAs()) return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); if (const RecordType *RT = QT->getAsStructureType()) return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); if (const RecordType *RT = QT->getAsUnionType()) return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); if (const FunctionType *FT = QT->getAs()) return appendFunctionType(Enc, FT, CGM, TSC); return false; } static bool getTypeString(SmallStringEnc &Enc, const Decl *D, CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { if (!D) return false; if (const FunctionDecl *FD = dyn_cast(D)) { if (FD->getLanguageLinkage() != CLanguageLinkage) return false; return appendType(Enc, FD->getType(), CGM, TSC); } if (const VarDecl *VD = dyn_cast(D)) { if (VD->getLanguageLinkage() != CLanguageLinkage) return false; QualType QT = VD->getType().getCanonicalType(); if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { // Global ArrayTypes are given a size of '*' if the size is unknown. // The Qualifiers should be attached to the type rather than the array. // Thus we don't call appendQualifier() here. return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); } return appendType(Enc, QT, CGM, TSC); } return false; } //===----------------------------------------------------------------------===// // Driver code //===----------------------------------------------------------------------===// const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { if (TheTargetCodeGenInfo) return *TheTargetCodeGenInfo; const llvm::Triple &Triple = getTarget().getTriple(); switch (Triple.getArch()) { default: return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types)); case llvm::Triple::le32: return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types)); case llvm::Triple::mips: case llvm::Triple::mipsel: return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true)); case llvm::Triple::mips64: case llvm::Triple::mips64el: return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false)); case llvm::Triple::aarch64: case llvm::Triple::aarch64_be: case llvm::Triple::arm64: case llvm::Triple::arm64_be: { AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; if (getTarget().getABI() == "darwinpcs") Kind = AArch64ABIInfo::DarwinPCS; return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind)); } case llvm::Triple::arm: case llvm::Triple::armeb: case llvm::Triple::thumb: case llvm::Triple::thumbeb: { ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; if (getTarget().getABI() == "apcs-gnu") Kind = ARMABIInfo::APCS; else if (CodeGenOpts.FloatABI == "hard" || (CodeGenOpts.FloatABI != "soft" && Triple.getEnvironment() == llvm::Triple::GNUEABIHF)) Kind = ARMABIInfo::AAPCS_VFP; switch (Triple.getOS()) { case llvm::Triple::NaCl: return *(TheTargetCodeGenInfo = new NaClARMTargetCodeGenInfo(Types, Kind)); default: return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind)); } } case llvm::Triple::ppc: return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types)); case llvm::Triple::ppc64: if (Triple.isOSBinFormatELF()) return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types)); else return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types)); case llvm::Triple::ppc64le: assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types)); case llvm::Triple::nvptx: case llvm::Triple::nvptx64: return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types)); case llvm::Triple::msp430: return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types)); case llvm::Triple::systemz: return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types)); case llvm::Triple::tce: return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types)); case llvm::Triple::x86: { bool IsDarwinVectorABI = Triple.isOSDarwin(); bool IsSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); bool IsWin32FloatStructABI = Triple.isWindowsMSVCEnvironment(); if (Triple.getOS() == llvm::Triple::Win32) { return *(TheTargetCodeGenInfo = new WinX86_32TargetCodeGenInfo(Types, IsDarwinVectorABI, IsSmallStructInRegABI, IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); } else { return *(TheTargetCodeGenInfo = new X86_32TargetCodeGenInfo(Types, IsDarwinVectorABI, IsSmallStructInRegABI, IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); } } case llvm::Triple::x86_64: { bool HasAVX = getTarget().getABI() == "avx"; switch (Triple.getOS()) { case llvm::Triple::Win32: return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types)); case llvm::Triple::NaCl: return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types, HasAVX)); default: return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types, HasAVX)); } } case llvm::Triple::hexagon: return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types)); case llvm::Triple::sparcv9: return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types)); case llvm::Triple::xcore: return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types)); } }