//===--- Preprocess.cpp - C Language Family Preprocessor Implementation ---===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Preprocessor interface. // //===----------------------------------------------------------------------===// // // Options to support: // -H - Print the name of each header file used. // -d[DNI] - Dump various things. // -fworking-directory - #line's with preprocessor's working dir. // -fpreprocessed // -dependency-file,-M,-MM,-MF,-MG,-MP,-MT,-MQ,-MD,-MMD // -W* // -w // // Messages to emit: // "Multiple include guards may be useful for:\n" // //===----------------------------------------------------------------------===// #include "clang/Lex/Preprocessor.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/TargetInfo.h" #include "clang/Lex/CodeCompletionHandler.h" #include "clang/Lex/ExternalPreprocessorSource.h" #include "clang/Lex/HeaderSearch.h" #include "clang/Lex/LexDiagnostic.h" #include "clang/Lex/LiteralSupport.h" #include "clang/Lex/MacroArgs.h" #include "clang/Lex/MacroInfo.h" #include "clang/Lex/ModuleLoader.h" #include "clang/Lex/Pragma.h" #include "clang/Lex/PreprocessingRecord.h" #include "clang/Lex/PreprocessorOptions.h" #include "clang/Lex/ScratchBuffer.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/Capacity.h" #include "llvm/Support/ConvertUTF.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/raw_ostream.h" using namespace clang; //===----------------------------------------------------------------------===// ExternalPreprocessorSource::~ExternalPreprocessorSource() { } Preprocessor::Preprocessor(IntrusiveRefCntPtr PPOpts, DiagnosticsEngine &diags, LangOptions &opts, SourceManager &SM, HeaderSearch &Headers, ModuleLoader &TheModuleLoader, IdentifierInfoLookup *IILookup, bool OwnsHeaders, TranslationUnitKind TUKind) : PPOpts(PPOpts), Diags(&diags), LangOpts(opts), Target(nullptr), FileMgr(Headers.getFileMgr()), SourceMgr(SM), HeaderInfo(Headers), TheModuleLoader(TheModuleLoader), ExternalSource(nullptr), Identifiers(opts, IILookup), IncrementalProcessing(false), TUKind(TUKind), CodeComplete(nullptr), CodeCompletionFile(nullptr), CodeCompletionOffset(0), LastTokenWasAt(false), ModuleImportExpectsIdentifier(false), CodeCompletionReached(0), SkipMainFilePreamble(0, true), CurPPLexer(nullptr), CurDirLookup(nullptr), CurLexerKind(CLK_Lexer), CurSubmodule(nullptr), Callbacks(nullptr), MacroArgCache(nullptr), Record(nullptr), MIChainHead(nullptr), MICache(nullptr), DeserialMIChainHead(nullptr) { OwnsHeaderSearch = OwnsHeaders; ScratchBuf = new ScratchBuffer(SourceMgr); CounterValue = 0; // __COUNTER__ starts at 0. // Clear stats. NumDirectives = NumDefined = NumUndefined = NumPragma = 0; NumIf = NumElse = NumEndif = 0; NumEnteredSourceFiles = 0; NumMacroExpanded = NumFnMacroExpanded = NumBuiltinMacroExpanded = 0; NumFastMacroExpanded = NumTokenPaste = NumFastTokenPaste = 0; MaxIncludeStackDepth = 0; NumSkipped = 0; // Default to discarding comments. KeepComments = false; KeepMacroComments = false; SuppressIncludeNotFoundError = false; // Macro expansion is enabled. DisableMacroExpansion = false; MacroExpansionInDirectivesOverride = false; InMacroArgs = false; InMacroArgPreExpansion = false; NumCachedTokenLexers = 0; PragmasEnabled = true; ParsingIfOrElifDirective = false; PreprocessedOutput = false; CachedLexPos = 0; // We haven't read anything from the external source. ReadMacrosFromExternalSource = false; // "Poison" __VA_ARGS__, which can only appear in the expansion of a macro. // This gets unpoisoned where it is allowed. (Ident__VA_ARGS__ = getIdentifierInfo("__VA_ARGS__"))->setIsPoisoned(); SetPoisonReason(Ident__VA_ARGS__,diag::ext_pp_bad_vaargs_use); // Initialize the pragma handlers. PragmaHandlers = new PragmaNamespace(StringRef()); RegisterBuiltinPragmas(); // Initialize builtin macros like __LINE__ and friends. RegisterBuiltinMacros(); if(LangOpts.Borland) { Ident__exception_info = getIdentifierInfo("_exception_info"); Ident___exception_info = getIdentifierInfo("__exception_info"); Ident_GetExceptionInfo = getIdentifierInfo("GetExceptionInformation"); Ident__exception_code = getIdentifierInfo("_exception_code"); Ident___exception_code = getIdentifierInfo("__exception_code"); Ident_GetExceptionCode = getIdentifierInfo("GetExceptionCode"); Ident__abnormal_termination = getIdentifierInfo("_abnormal_termination"); Ident___abnormal_termination = getIdentifierInfo("__abnormal_termination"); Ident_AbnormalTermination = getIdentifierInfo("AbnormalTermination"); } else { Ident__exception_info = Ident__exception_code = nullptr; Ident__abnormal_termination = Ident___exception_info = nullptr; Ident___exception_code = Ident___abnormal_termination = nullptr; Ident_GetExceptionInfo = Ident_GetExceptionCode = nullptr; Ident_AbnormalTermination = nullptr; } } Preprocessor::~Preprocessor() { assert(BacktrackPositions.empty() && "EnableBacktrack/Backtrack imbalance!"); IncludeMacroStack.clear(); // Free any macro definitions. for (MacroInfoChain *I = MIChainHead ; I ; I = I->Next) I->MI.Destroy(); // Free any cached macro expanders. // This populates MacroArgCache, so all TokenLexers need to be destroyed // before the code below that frees up the MacroArgCache list. for (unsigned i = 0, e = NumCachedTokenLexers; i != e; ++i) delete TokenLexerCache[i]; CurTokenLexer.reset(); for (DeserializedMacroInfoChain *I = DeserialMIChainHead ; I ; I = I->Next) I->MI.Destroy(); // Free any cached MacroArgs. for (MacroArgs *ArgList = MacroArgCache; ArgList;) ArgList = ArgList->deallocate(); // Release pragma information. delete PragmaHandlers; // Delete the scratch buffer info. delete ScratchBuf; // Delete the header search info, if we own it. if (OwnsHeaderSearch) delete &HeaderInfo; delete Callbacks; } void Preprocessor::Initialize(const TargetInfo &Target) { assert((!this->Target || this->Target == &Target) && "Invalid override of target information"); this->Target = &Target; // Initialize information about built-ins. BuiltinInfo.InitializeTarget(Target); HeaderInfo.setTarget(Target); } void Preprocessor::setPTHManager(PTHManager* pm) { PTH.reset(pm); FileMgr.addStatCache(PTH->createStatCache()); } void Preprocessor::DumpToken(const Token &Tok, bool DumpFlags) const { llvm::errs() << tok::getTokenName(Tok.getKind()) << " '" << getSpelling(Tok) << "'"; if (!DumpFlags) return; llvm::errs() << "\t"; if (Tok.isAtStartOfLine()) llvm::errs() << " [StartOfLine]"; if (Tok.hasLeadingSpace()) llvm::errs() << " [LeadingSpace]"; if (Tok.isExpandDisabled()) llvm::errs() << " [ExpandDisabled]"; if (Tok.needsCleaning()) { const char *Start = SourceMgr.getCharacterData(Tok.getLocation()); llvm::errs() << " [UnClean='" << StringRef(Start, Tok.getLength()) << "']"; } llvm::errs() << "\tLoc=<"; DumpLocation(Tok.getLocation()); llvm::errs() << ">"; } void Preprocessor::DumpLocation(SourceLocation Loc) const { Loc.dump(SourceMgr); } void Preprocessor::DumpMacro(const MacroInfo &MI) const { llvm::errs() << "MACRO: "; for (unsigned i = 0, e = MI.getNumTokens(); i != e; ++i) { DumpToken(MI.getReplacementToken(i)); llvm::errs() << " "; } llvm::errs() << "\n"; } void Preprocessor::PrintStats() { llvm::errs() << "\n*** Preprocessor Stats:\n"; llvm::errs() << NumDirectives << " directives found:\n"; llvm::errs() << " " << NumDefined << " #define.\n"; llvm::errs() << " " << NumUndefined << " #undef.\n"; llvm::errs() << " #include/#include_next/#import:\n"; llvm::errs() << " " << NumEnteredSourceFiles << " source files entered.\n"; llvm::errs() << " " << MaxIncludeStackDepth << " max include stack depth\n"; llvm::errs() << " " << NumIf << " #if/#ifndef/#ifdef.\n"; llvm::errs() << " " << NumElse << " #else/#elif.\n"; llvm::errs() << " " << NumEndif << " #endif.\n"; llvm::errs() << " " << NumPragma << " #pragma.\n"; llvm::errs() << NumSkipped << " #if/#ifndef#ifdef regions skipped\n"; llvm::errs() << NumMacroExpanded << "/" << NumFnMacroExpanded << "/" << NumBuiltinMacroExpanded << " obj/fn/builtin macros expanded, " << NumFastMacroExpanded << " on the fast path.\n"; llvm::errs() << (NumFastTokenPaste+NumTokenPaste) << " token paste (##) operations performed, " << NumFastTokenPaste << " on the fast path.\n"; llvm::errs() << "\nPreprocessor Memory: " << getTotalMemory() << "B total"; llvm::errs() << "\n BumpPtr: " << BP.getTotalMemory(); llvm::errs() << "\n Macro Expanded Tokens: " << llvm::capacity_in_bytes(MacroExpandedTokens); llvm::errs() << "\n Predefines Buffer: " << Predefines.capacity(); llvm::errs() << "\n Macros: " << llvm::capacity_in_bytes(Macros); llvm::errs() << "\n #pragma push_macro Info: " << llvm::capacity_in_bytes(PragmaPushMacroInfo); llvm::errs() << "\n Poison Reasons: " << llvm::capacity_in_bytes(PoisonReasons); llvm::errs() << "\n Comment Handlers: " << llvm::capacity_in_bytes(CommentHandlers) << "\n"; } Preprocessor::macro_iterator Preprocessor::macro_begin(bool IncludeExternalMacros) const { if (IncludeExternalMacros && ExternalSource && !ReadMacrosFromExternalSource) { ReadMacrosFromExternalSource = true; ExternalSource->ReadDefinedMacros(); } return Macros.begin(); } size_t Preprocessor::getTotalMemory() const { return BP.getTotalMemory() + llvm::capacity_in_bytes(MacroExpandedTokens) + Predefines.capacity() /* Predefines buffer. */ + llvm::capacity_in_bytes(Macros) + llvm::capacity_in_bytes(PragmaPushMacroInfo) + llvm::capacity_in_bytes(PoisonReasons) + llvm::capacity_in_bytes(CommentHandlers); } Preprocessor::macro_iterator Preprocessor::macro_end(bool IncludeExternalMacros) const { if (IncludeExternalMacros && ExternalSource && !ReadMacrosFromExternalSource) { ReadMacrosFromExternalSource = true; ExternalSource->ReadDefinedMacros(); } return Macros.end(); } /// \brief Compares macro tokens with a specified token value sequence. static bool MacroDefinitionEquals(const MacroInfo *MI, ArrayRef Tokens) { return Tokens.size() == MI->getNumTokens() && std::equal(Tokens.begin(), Tokens.end(), MI->tokens_begin()); } StringRef Preprocessor::getLastMacroWithSpelling( SourceLocation Loc, ArrayRef Tokens) const { SourceLocation BestLocation; StringRef BestSpelling; for (Preprocessor::macro_iterator I = macro_begin(), E = macro_end(); I != E; ++I) { if (!I->second->getMacroInfo()->isObjectLike()) continue; const MacroDirective::DefInfo Def = I->second->findDirectiveAtLoc(Loc, SourceMgr); if (!Def) continue; if (!MacroDefinitionEquals(Def.getMacroInfo(), Tokens)) continue; SourceLocation Location = Def.getLocation(); // Choose the macro defined latest. if (BestLocation.isInvalid() || (Location.isValid() && SourceMgr.isBeforeInTranslationUnit(BestLocation, Location))) { BestLocation = Location; BestSpelling = I->first->getName(); } } return BestSpelling; } void Preprocessor::recomputeCurLexerKind() { if (CurLexer) CurLexerKind = CLK_Lexer; else if (CurPTHLexer) CurLexerKind = CLK_PTHLexer; else if (CurTokenLexer) CurLexerKind = CLK_TokenLexer; else CurLexerKind = CLK_CachingLexer; } bool Preprocessor::SetCodeCompletionPoint(const FileEntry *File, unsigned CompleteLine, unsigned CompleteColumn) { assert(File); assert(CompleteLine && CompleteColumn && "Starts from 1:1"); assert(!CodeCompletionFile && "Already set"); using llvm::MemoryBuffer; // Load the actual file's contents. bool Invalid = false; const MemoryBuffer *Buffer = SourceMgr.getMemoryBufferForFile(File, &Invalid); if (Invalid) return true; // Find the byte position of the truncation point. const char *Position = Buffer->getBufferStart(); for (unsigned Line = 1; Line < CompleteLine; ++Line) { for (; *Position; ++Position) { if (*Position != '\r' && *Position != '\n') continue; // Eat \r\n or \n\r as a single line. if ((Position[1] == '\r' || Position[1] == '\n') && Position[0] != Position[1]) ++Position; ++Position; break; } } Position += CompleteColumn - 1; // Insert '\0' at the code-completion point. if (Position < Buffer->getBufferEnd()) { CodeCompletionFile = File; CodeCompletionOffset = Position - Buffer->getBufferStart(); MemoryBuffer *NewBuffer = MemoryBuffer::getNewUninitMemBuffer(Buffer->getBufferSize() + 1, Buffer->getBufferIdentifier()); char *NewBuf = const_cast(NewBuffer->getBufferStart()); char *NewPos = std::copy(Buffer->getBufferStart(), Position, NewBuf); *NewPos = '\0'; std::copy(Position, Buffer->getBufferEnd(), NewPos+1); SourceMgr.overrideFileContents(File, NewBuffer); } return false; } void Preprocessor::CodeCompleteNaturalLanguage() { if (CodeComplete) CodeComplete->CodeCompleteNaturalLanguage(); setCodeCompletionReached(); } /// getSpelling - This method is used to get the spelling of a token into a /// SmallVector. Note that the returned StringRef may not point to the /// supplied buffer if a copy can be avoided. StringRef Preprocessor::getSpelling(const Token &Tok, SmallVectorImpl &Buffer, bool *Invalid) const { // NOTE: this has to be checked *before* testing for an IdentifierInfo. if (Tok.isNot(tok::raw_identifier) && !Tok.hasUCN()) { // Try the fast path. if (const IdentifierInfo *II = Tok.getIdentifierInfo()) return II->getName(); } // Resize the buffer if we need to copy into it. if (Tok.needsCleaning()) Buffer.resize(Tok.getLength()); const char *Ptr = Buffer.data(); unsigned Len = getSpelling(Tok, Ptr, Invalid); return StringRef(Ptr, Len); } /// CreateString - Plop the specified string into a scratch buffer and return a /// location for it. If specified, the source location provides a source /// location for the token. void Preprocessor::CreateString(StringRef Str, Token &Tok, SourceLocation ExpansionLocStart, SourceLocation ExpansionLocEnd) { Tok.setLength(Str.size()); const char *DestPtr; SourceLocation Loc = ScratchBuf->getToken(Str.data(), Str.size(), DestPtr); if (ExpansionLocStart.isValid()) Loc = SourceMgr.createExpansionLoc(Loc, ExpansionLocStart, ExpansionLocEnd, Str.size()); Tok.setLocation(Loc); // If this is a raw identifier or a literal token, set the pointer data. if (Tok.is(tok::raw_identifier)) Tok.setRawIdentifierData(DestPtr); else if (Tok.isLiteral()) Tok.setLiteralData(DestPtr); } Module *Preprocessor::getCurrentModule() { if (getLangOpts().CurrentModule.empty()) return nullptr; return getHeaderSearchInfo().lookupModule(getLangOpts().CurrentModule); } //===----------------------------------------------------------------------===// // Preprocessor Initialization Methods //===----------------------------------------------------------------------===// /// EnterMainSourceFile - Enter the specified FileID as the main source file, /// which implicitly adds the builtin defines etc. void Preprocessor::EnterMainSourceFile() { // We do not allow the preprocessor to reenter the main file. Doing so will // cause FileID's to accumulate information from both runs (e.g. #line // information) and predefined macros aren't guaranteed to be set properly. assert(NumEnteredSourceFiles == 0 && "Cannot reenter the main file!"); FileID MainFileID = SourceMgr.getMainFileID(); // If MainFileID is loaded it means we loaded an AST file, no need to enter // a main file. if (!SourceMgr.isLoadedFileID(MainFileID)) { // Enter the main file source buffer. EnterSourceFile(MainFileID, nullptr, SourceLocation()); // If we've been asked to skip bytes in the main file (e.g., as part of a // precompiled preamble), do so now. if (SkipMainFilePreamble.first > 0) CurLexer->SkipBytes(SkipMainFilePreamble.first, SkipMainFilePreamble.second); // Tell the header info that the main file was entered. If the file is later // #imported, it won't be re-entered. if (const FileEntry *FE = SourceMgr.getFileEntryForID(MainFileID)) HeaderInfo.IncrementIncludeCount(FE); } // Preprocess Predefines to populate the initial preprocessor state. llvm::MemoryBuffer *SB = llvm::MemoryBuffer::getMemBufferCopy(Predefines, ""); assert(SB && "Cannot create predefined source buffer"); FileID FID = SourceMgr.createFileID(SB); assert(!FID.isInvalid() && "Could not create FileID for predefines?"); setPredefinesFileID(FID); // Start parsing the predefines. EnterSourceFile(FID, nullptr, SourceLocation()); } void Preprocessor::EndSourceFile() { // Notify the client that we reached the end of the source file. if (Callbacks) Callbacks->EndOfMainFile(); } //===----------------------------------------------------------------------===// // Lexer Event Handling. //===----------------------------------------------------------------------===// /// LookUpIdentifierInfo - Given a tok::raw_identifier token, look up the /// identifier information for the token and install it into the token, /// updating the token kind accordingly. IdentifierInfo *Preprocessor::LookUpIdentifierInfo(Token &Identifier) const { assert(!Identifier.getRawIdentifier().empty() && "No raw identifier data!"); // Look up this token, see if it is a macro, or if it is a language keyword. IdentifierInfo *II; if (!Identifier.needsCleaning() && !Identifier.hasUCN()) { // No cleaning needed, just use the characters from the lexed buffer. II = getIdentifierInfo(Identifier.getRawIdentifier()); } else { // Cleaning needed, alloca a buffer, clean into it, then use the buffer. SmallString<64> IdentifierBuffer; StringRef CleanedStr = getSpelling(Identifier, IdentifierBuffer); if (Identifier.hasUCN()) { SmallString<64> UCNIdentifierBuffer; expandUCNs(UCNIdentifierBuffer, CleanedStr); II = getIdentifierInfo(UCNIdentifierBuffer); } else { II = getIdentifierInfo(CleanedStr); } } // Update the token info (identifier info and appropriate token kind). Identifier.setIdentifierInfo(II); Identifier.setKind(II->getTokenID()); return II; } void Preprocessor::SetPoisonReason(IdentifierInfo *II, unsigned DiagID) { PoisonReasons[II] = DiagID; } void Preprocessor::PoisonSEHIdentifiers(bool Poison) { assert(Ident__exception_code && Ident__exception_info); assert(Ident___exception_code && Ident___exception_info); Ident__exception_code->setIsPoisoned(Poison); Ident___exception_code->setIsPoisoned(Poison); Ident_GetExceptionCode->setIsPoisoned(Poison); Ident__exception_info->setIsPoisoned(Poison); Ident___exception_info->setIsPoisoned(Poison); Ident_GetExceptionInfo->setIsPoisoned(Poison); Ident__abnormal_termination->setIsPoisoned(Poison); Ident___abnormal_termination->setIsPoisoned(Poison); Ident_AbnormalTermination->setIsPoisoned(Poison); } void Preprocessor::HandlePoisonedIdentifier(Token & Identifier) { assert(Identifier.getIdentifierInfo() && "Can't handle identifiers without identifier info!"); llvm::DenseMap::const_iterator it = PoisonReasons.find(Identifier.getIdentifierInfo()); if(it == PoisonReasons.end()) Diag(Identifier, diag::err_pp_used_poisoned_id); else Diag(Identifier,it->second) << Identifier.getIdentifierInfo(); } /// HandleIdentifier - This callback is invoked when the lexer reads an /// identifier. This callback looks up the identifier in the map and/or /// potentially macro expands it or turns it into a named token (like 'for'). /// /// Note that callers of this method are guarded by checking the /// IdentifierInfo's 'isHandleIdentifierCase' bit. If this method changes, the /// IdentifierInfo methods that compute these properties will need to change to /// match. bool Preprocessor::HandleIdentifier(Token &Identifier) { assert(Identifier.getIdentifierInfo() && "Can't handle identifiers without identifier info!"); IdentifierInfo &II = *Identifier.getIdentifierInfo(); // If the information about this identifier is out of date, update it from // the external source. // We have to treat __VA_ARGS__ in a special way, since it gets // serialized with isPoisoned = true, but our preprocessor may have // unpoisoned it if we're defining a C99 macro. if (II.isOutOfDate()) { bool CurrentIsPoisoned = false; if (&II == Ident__VA_ARGS__) CurrentIsPoisoned = Ident__VA_ARGS__->isPoisoned(); ExternalSource->updateOutOfDateIdentifier(II); Identifier.setKind(II.getTokenID()); if (&II == Ident__VA_ARGS__) II.setIsPoisoned(CurrentIsPoisoned); } // If this identifier was poisoned, and if it was not produced from a macro // expansion, emit an error. if (II.isPoisoned() && CurPPLexer) { HandlePoisonedIdentifier(Identifier); } // If this is a macro to be expanded, do it. if (MacroDirective *MD = getMacroDirective(&II)) { MacroInfo *MI = MD->getMacroInfo(); if (!DisableMacroExpansion) { if (!Identifier.isExpandDisabled() && MI->isEnabled()) { // C99 6.10.3p10: If the preprocessing token immediately after the // macro name isn't a '(', this macro should not be expanded. if (!MI->isFunctionLike() || isNextPPTokenLParen()) return HandleMacroExpandedIdentifier(Identifier, MD); } else { // C99 6.10.3.4p2 says that a disabled macro may never again be // expanded, even if it's in a context where it could be expanded in the // future. Identifier.setFlag(Token::DisableExpand); if (MI->isObjectLike() || isNextPPTokenLParen()) Diag(Identifier, diag::pp_disabled_macro_expansion); } } } // If this identifier is a keyword in C++11, produce a warning. Don't warn if // we're not considering macro expansion, since this identifier might be the // name of a macro. // FIXME: This warning is disabled in cases where it shouldn't be, like // "#define constexpr constexpr", "int constexpr;" if (II.isCXX11CompatKeyword() && !DisableMacroExpansion) { Diag(Identifier, diag::warn_cxx11_keyword) << II.getName(); // Don't diagnose this keyword again in this translation unit. II.setIsCXX11CompatKeyword(false); } // C++ 2.11p2: If this is an alternative representation of a C++ operator, // then we act as if it is the actual operator and not the textual // representation of it. if (II.isCPlusPlusOperatorKeyword()) Identifier.setIdentifierInfo(nullptr); // If this is an extension token, diagnose its use. // We avoid diagnosing tokens that originate from macro definitions. // FIXME: This warning is disabled in cases where it shouldn't be, // like "#define TY typeof", "TY(1) x". if (II.isExtensionToken() && !DisableMacroExpansion) Diag(Identifier, diag::ext_token_used); // If this is the 'import' contextual keyword following an '@', note // that the next token indicates a module name. // // Note that we do not treat 'import' as a contextual // keyword when we're in a caching lexer, because caching lexers only get // used in contexts where import declarations are disallowed. if (LastTokenWasAt && II.isModulesImport() && !InMacroArgs && !DisableMacroExpansion && getLangOpts().Modules && CurLexerKind != CLK_CachingLexer) { ModuleImportLoc = Identifier.getLocation(); ModuleImportPath.clear(); ModuleImportExpectsIdentifier = true; CurLexerKind = CLK_LexAfterModuleImport; } return true; } void Preprocessor::Lex(Token &Result) { // We loop here until a lex function retuns a token; this avoids recursion. bool ReturnedToken; do { switch (CurLexerKind) { case CLK_Lexer: ReturnedToken = CurLexer->Lex(Result); break; case CLK_PTHLexer: ReturnedToken = CurPTHLexer->Lex(Result); break; case CLK_TokenLexer: ReturnedToken = CurTokenLexer->Lex(Result); break; case CLK_CachingLexer: CachingLex(Result); ReturnedToken = true; break; case CLK_LexAfterModuleImport: LexAfterModuleImport(Result); ReturnedToken = true; break; } } while (!ReturnedToken); LastTokenWasAt = Result.is(tok::at); } /// \brief Lex a token following the 'import' contextual keyword. /// void Preprocessor::LexAfterModuleImport(Token &Result) { // Figure out what kind of lexer we actually have. recomputeCurLexerKind(); // Lex the next token. Lex(Result); // The token sequence // // import identifier (. identifier)* // // indicates a module import directive. We already saw the 'import' // contextual keyword, so now we're looking for the identifiers. if (ModuleImportExpectsIdentifier && Result.getKind() == tok::identifier) { // We expected to see an identifier here, and we did; continue handling // identifiers. ModuleImportPath.push_back(std::make_pair(Result.getIdentifierInfo(), Result.getLocation())); ModuleImportExpectsIdentifier = false; CurLexerKind = CLK_LexAfterModuleImport; return; } // If we're expecting a '.' or a ';', and we got a '.', then wait until we // see the next identifier. if (!ModuleImportExpectsIdentifier && Result.getKind() == tok::period) { ModuleImportExpectsIdentifier = true; CurLexerKind = CLK_LexAfterModuleImport; return; } // If we have a non-empty module path, load the named module. if (!ModuleImportPath.empty() && getLangOpts().Modules) { Module *Imported = TheModuleLoader.loadModule(ModuleImportLoc, ModuleImportPath, Module::MacrosVisible, /*IsIncludeDirective=*/false); if (Callbacks) Callbacks->moduleImport(ModuleImportLoc, ModuleImportPath, Imported); } } bool Preprocessor::FinishLexStringLiteral(Token &Result, std::string &String, const char *DiagnosticTag, bool AllowMacroExpansion) { // We need at least one string literal. if (Result.isNot(tok::string_literal)) { Diag(Result, diag::err_expected_string_literal) << /*Source='in...'*/0 << DiagnosticTag; return false; } // Lex string literal tokens, optionally with macro expansion. SmallVector StrToks; do { StrToks.push_back(Result); if (Result.hasUDSuffix()) Diag(Result, diag::err_invalid_string_udl); if (AllowMacroExpansion) Lex(Result); else LexUnexpandedToken(Result); } while (Result.is(tok::string_literal)); // Concatenate and parse the strings. StringLiteralParser Literal(StrToks, *this); assert(Literal.isAscii() && "Didn't allow wide strings in"); if (Literal.hadError) return false; if (Literal.Pascal) { Diag(StrToks[0].getLocation(), diag::err_expected_string_literal) << /*Source='in...'*/0 << DiagnosticTag; return false; } String = Literal.GetString(); return true; } bool Preprocessor::parseSimpleIntegerLiteral(Token &Tok, uint64_t &Value) { assert(Tok.is(tok::numeric_constant)); SmallString<8> IntegerBuffer; bool NumberInvalid = false; StringRef Spelling = getSpelling(Tok, IntegerBuffer, &NumberInvalid); if (NumberInvalid) return false; NumericLiteralParser Literal(Spelling, Tok.getLocation(), *this); if (Literal.hadError || !Literal.isIntegerLiteral() || Literal.hasUDSuffix()) return false; llvm::APInt APVal(64, 0); if (Literal.GetIntegerValue(APVal)) return false; Lex(Tok); Value = APVal.getLimitedValue(); return true; } void Preprocessor::addCommentHandler(CommentHandler *Handler) { assert(Handler && "NULL comment handler"); assert(std::find(CommentHandlers.begin(), CommentHandlers.end(), Handler) == CommentHandlers.end() && "Comment handler already registered"); CommentHandlers.push_back(Handler); } void Preprocessor::removeCommentHandler(CommentHandler *Handler) { std::vector::iterator Pos = std::find(CommentHandlers.begin(), CommentHandlers.end(), Handler); assert(Pos != CommentHandlers.end() && "Comment handler not registered"); CommentHandlers.erase(Pos); } bool Preprocessor::HandleComment(Token &result, SourceRange Comment) { bool AnyPendingTokens = false; for (std::vector::iterator H = CommentHandlers.begin(), HEnd = CommentHandlers.end(); H != HEnd; ++H) { if ((*H)->HandleComment(*this, Comment)) AnyPendingTokens = true; } if (!AnyPendingTokens || getCommentRetentionState()) return false; Lex(result); return true; } ModuleLoader::~ModuleLoader() { } CommentHandler::~CommentHandler() { } CodeCompletionHandler::~CodeCompletionHandler() { } void Preprocessor::createPreprocessingRecord() { if (Record) return; Record = new PreprocessingRecord(getSourceManager()); addPPCallbacks(Record); }