//===------- TreeTransform.h - Semantic Tree Transformation -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. //===----------------------------------------------------------------------===// // // This file implements a semantic tree transformation that takes a given // AST and rebuilds it, possibly transforming some nodes in the process. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_SEMA_TREETRANSFORM_H #define LLVM_CLANG_SEMA_TREETRANSFORM_H #include "TypeLocBuilder.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/Stmt.h" #include "clang/AST/StmtCXX.h" #include "clang/AST/StmtObjC.h" #include "clang/AST/StmtOpenMP.h" #include "clang/Sema/Designator.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/Ownership.h" #include "clang/Sema/ParsedTemplate.h" #include "clang/Sema/ScopeInfo.h" #include "clang/Sema/SemaDiagnostic.h" #include "clang/Sema/SemaInternal.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/Support/ErrorHandling.h" #include namespace clang { using namespace sema; /// \brief A semantic tree transformation that allows one to transform one /// abstract syntax tree into another. /// /// A new tree transformation is defined by creating a new subclass \c X of /// \c TreeTransform and then overriding certain operations to provide /// behavior specific to that transformation. For example, template /// instantiation is implemented as a tree transformation where the /// transformation of TemplateTypeParmType nodes involves substituting the /// template arguments for their corresponding template parameters; a similar /// transformation is performed for non-type template parameters and /// template template parameters. /// /// This tree-transformation template uses static polymorphism to allow /// subclasses to customize any of its operations. Thus, a subclass can /// override any of the transformation or rebuild operators by providing an /// operation with the same signature as the default implementation. The /// overridding function should not be virtual. /// /// Semantic tree transformations are split into two stages, either of which /// can be replaced by a subclass. The "transform" step transforms an AST node /// or the parts of an AST node using the various transformation functions, /// then passes the pieces on to the "rebuild" step, which constructs a new AST /// node of the appropriate kind from the pieces. The default transformation /// routines recursively transform the operands to composite AST nodes (e.g., /// the pointee type of a PointerType node) and, if any of those operand nodes /// were changed by the transformation, invokes the rebuild operation to create /// a new AST node. /// /// Subclasses can customize the transformation at various levels. The /// most coarse-grained transformations involve replacing TransformType(), /// TransformExpr(), TransformDecl(), TransformNestedNameSpecifierLoc(), /// TransformTemplateName(), or TransformTemplateArgument() with entirely /// new implementations. /// /// For more fine-grained transformations, subclasses can replace any of the /// \c TransformXXX functions (where XXX is the name of an AST node, e.g., /// PointerType, StmtExpr) to alter the transformation. As mentioned previously, /// replacing TransformTemplateTypeParmType() allows template instantiation /// to substitute template arguments for their corresponding template /// parameters. Additionally, subclasses can override the \c RebuildXXX /// functions to control how AST nodes are rebuilt when their operands change. /// By default, \c TreeTransform will invoke semantic analysis to rebuild /// AST nodes. However, certain other tree transformations (e.g, cloning) may /// be able to use more efficient rebuild steps. /// /// There are a handful of other functions that can be overridden, allowing one /// to avoid traversing nodes that don't need any transformation /// (\c AlreadyTransformed()), force rebuilding AST nodes even when their /// operands have not changed (\c AlwaysRebuild()), and customize the /// default locations and entity names used for type-checking /// (\c getBaseLocation(), \c getBaseEntity()). template class TreeTransform { /// \brief Private RAII object that helps us forget and then re-remember /// the template argument corresponding to a partially-substituted parameter /// pack. class ForgetPartiallySubstitutedPackRAII { Derived &Self; TemplateArgument Old; public: ForgetPartiallySubstitutedPackRAII(Derived &Self) : Self(Self) { Old = Self.ForgetPartiallySubstitutedPack(); } ~ForgetPartiallySubstitutedPackRAII() { Self.RememberPartiallySubstitutedPack(Old); } }; protected: Sema &SemaRef; /// \brief The set of local declarations that have been transformed, for /// cases where we are forced to build new declarations within the transformer /// rather than in the subclass (e.g., lambda closure types). llvm::DenseMap TransformedLocalDecls; public: /// \brief Initializes a new tree transformer. TreeTransform(Sema &SemaRef) : SemaRef(SemaRef) { } /// \brief Retrieves a reference to the derived class. Derived &getDerived() { return static_cast(*this); } /// \brief Retrieves a reference to the derived class. const Derived &getDerived() const { return static_cast(*this); } static inline ExprResult Owned(Expr *E) { return E; } static inline StmtResult Owned(Stmt *S) { return S; } /// \brief Retrieves a reference to the semantic analysis object used for /// this tree transform. Sema &getSema() const { return SemaRef; } /// \brief Whether the transformation should always rebuild AST nodes, even /// if none of the children have changed. /// /// Subclasses may override this function to specify when the transformation /// should rebuild all AST nodes. /// /// We must always rebuild all AST nodes when performing variadic template /// pack expansion, in order to avoid violating the AST invariant that each /// statement node appears at most once in its containing declaration. bool AlwaysRebuild() { return SemaRef.ArgumentPackSubstitutionIndex != -1; } /// \brief Returns the location of the entity being transformed, if that /// information was not available elsewhere in the AST. /// /// By default, returns no source-location information. Subclasses can /// provide an alternative implementation that provides better location /// information. SourceLocation getBaseLocation() { return SourceLocation(); } /// \brief Returns the name of the entity being transformed, if that /// information was not available elsewhere in the AST. /// /// By default, returns an empty name. Subclasses can provide an alternative /// implementation with a more precise name. DeclarationName getBaseEntity() { return DeclarationName(); } /// \brief Sets the "base" location and entity when that /// information is known based on another transformation. /// /// By default, the source location and entity are ignored. Subclasses can /// override this function to provide a customized implementation. void setBase(SourceLocation Loc, DeclarationName Entity) { } /// \brief RAII object that temporarily sets the base location and entity /// used for reporting diagnostics in types. class TemporaryBase { TreeTransform &Self; SourceLocation OldLocation; DeclarationName OldEntity; public: TemporaryBase(TreeTransform &Self, SourceLocation Location, DeclarationName Entity) : Self(Self) { OldLocation = Self.getDerived().getBaseLocation(); OldEntity = Self.getDerived().getBaseEntity(); if (Location.isValid()) Self.getDerived().setBase(Location, Entity); } ~TemporaryBase() { Self.getDerived().setBase(OldLocation, OldEntity); } }; /// \brief Determine whether the given type \p T has already been /// transformed. /// /// Subclasses can provide an alternative implementation of this routine /// to short-circuit evaluation when it is known that a given type will /// not change. For example, template instantiation need not traverse /// non-dependent types. bool AlreadyTransformed(QualType T) { return T.isNull(); } /// \brief Determine whether the given call argument should be dropped, e.g., /// because it is a default argument. /// /// Subclasses can provide an alternative implementation of this routine to /// determine which kinds of call arguments get dropped. By default, /// CXXDefaultArgument nodes are dropped (prior to transformation). bool DropCallArgument(Expr *E) { return E->isDefaultArgument(); } /// \brief Determine whether we should expand a pack expansion with the /// given set of parameter packs into separate arguments by repeatedly /// transforming the pattern. /// /// By default, the transformer never tries to expand pack expansions. /// Subclasses can override this routine to provide different behavior. /// /// \param EllipsisLoc The location of the ellipsis that identifies the /// pack expansion. /// /// \param PatternRange The source range that covers the entire pattern of /// the pack expansion. /// /// \param Unexpanded The set of unexpanded parameter packs within the /// pattern. /// /// \param ShouldExpand Will be set to \c true if the transformer should /// expand the corresponding pack expansions into separate arguments. When /// set, \c NumExpansions must also be set. /// /// \param RetainExpansion Whether the caller should add an unexpanded /// pack expansion after all of the expanded arguments. This is used /// when extending explicitly-specified template argument packs per /// C++0x [temp.arg.explicit]p9. /// /// \param NumExpansions The number of separate arguments that will be in /// the expanded form of the corresponding pack expansion. This is both an /// input and an output parameter, which can be set by the caller if the /// number of expansions is known a priori (e.g., due to a prior substitution) /// and will be set by the callee when the number of expansions is known. /// The callee must set this value when \c ShouldExpand is \c true; it may /// set this value in other cases. /// /// \returns true if an error occurred (e.g., because the parameter packs /// are to be instantiated with arguments of different lengths), false /// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions) /// must be set. bool TryExpandParameterPacks(SourceLocation EllipsisLoc, SourceRange PatternRange, ArrayRef Unexpanded, bool &ShouldExpand, bool &RetainExpansion, Optional &NumExpansions) { ShouldExpand = false; return false; } /// \brief "Forget" about the partially-substituted pack template argument, /// when performing an instantiation that must preserve the parameter pack /// use. /// /// This routine is meant to be overridden by the template instantiator. TemplateArgument ForgetPartiallySubstitutedPack() { return TemplateArgument(); } /// \brief "Remember" the partially-substituted pack template argument /// after performing an instantiation that must preserve the parameter pack /// use. /// /// This routine is meant to be overridden by the template instantiator. void RememberPartiallySubstitutedPack(TemplateArgument Arg) { } /// \brief Note to the derived class when a function parameter pack is /// being expanded. void ExpandingFunctionParameterPack(ParmVarDecl *Pack) { } /// \brief Transforms the given type into another type. /// /// By default, this routine transforms a type by creating a /// TypeSourceInfo for it and delegating to the appropriate /// function. This is expensive, but we don't mind, because /// this method is deprecated anyway; all users should be /// switched to storing TypeSourceInfos. /// /// \returns the transformed type. QualType TransformType(QualType T); /// \brief Transforms the given type-with-location into a new /// type-with-location. /// /// By default, this routine transforms a type by delegating to the /// appropriate TransformXXXType to build a new type. Subclasses /// may override this function (to take over all type /// transformations) or some set of the TransformXXXType functions /// to alter the transformation. TypeSourceInfo *TransformType(TypeSourceInfo *DI); /// \brief Transform the given type-with-location into a new /// type, collecting location information in the given builder /// as necessary. /// QualType TransformType(TypeLocBuilder &TLB, TypeLoc TL); /// \brief Transform the given statement. /// /// By default, this routine transforms a statement by delegating to the /// appropriate TransformXXXStmt function to transform a specific kind of /// statement or the TransformExpr() function to transform an expression. /// Subclasses may override this function to transform statements using some /// other mechanism. /// /// \returns the transformed statement. StmtResult TransformStmt(Stmt *S); /// \brief Transform the given statement. /// /// By default, this routine transforms a statement by delegating to the /// appropriate TransformOMPXXXClause function to transform a specific kind /// of clause. Subclasses may override this function to transform statements /// using some other mechanism. /// /// \returns the transformed OpenMP clause. OMPClause *TransformOMPClause(OMPClause *S); /// \brief Transform the given expression. /// /// By default, this routine transforms an expression by delegating to the /// appropriate TransformXXXExpr function to build a new expression. /// Subclasses may override this function to transform expressions using some /// other mechanism. /// /// \returns the transformed expression. ExprResult TransformExpr(Expr *E); /// \brief Transform the given initializer. /// /// By default, this routine transforms an initializer by stripping off the /// semantic nodes added by initialization, then passing the result to /// TransformExpr or TransformExprs. /// /// \returns the transformed initializer. ExprResult TransformInitializer(Expr *Init, bool CXXDirectInit); /// \brief Transform the given list of expressions. /// /// This routine transforms a list of expressions by invoking /// \c TransformExpr() for each subexpression. However, it also provides /// support for variadic templates by expanding any pack expansions (if the /// derived class permits such expansion) along the way. When pack expansions /// are present, the number of outputs may not equal the number of inputs. /// /// \param Inputs The set of expressions to be transformed. /// /// \param NumInputs The number of expressions in \c Inputs. /// /// \param IsCall If \c true, then this transform is being performed on /// function-call arguments, and any arguments that should be dropped, will /// be. /// /// \param Outputs The transformed input expressions will be added to this /// vector. /// /// \param ArgChanged If non-NULL, will be set \c true if any argument changed /// due to transformation. /// /// \returns true if an error occurred, false otherwise. bool TransformExprs(Expr **Inputs, unsigned NumInputs, bool IsCall, SmallVectorImpl &Outputs, bool *ArgChanged = nullptr); /// \brief Transform the given declaration, which is referenced from a type /// or expression. /// /// By default, acts as the identity function on declarations, unless the /// transformer has had to transform the declaration itself. Subclasses /// may override this function to provide alternate behavior. Decl *TransformDecl(SourceLocation Loc, Decl *D) { llvm::DenseMap::iterator Known = TransformedLocalDecls.find(D); if (Known != TransformedLocalDecls.end()) return Known->second; return D; } /// \brief Transform the attributes associated with the given declaration and /// place them on the new declaration. /// /// By default, this operation does nothing. Subclasses may override this /// behavior to transform attributes. void transformAttrs(Decl *Old, Decl *New) { } /// \brief Note that a local declaration has been transformed by this /// transformer. /// /// Local declarations are typically transformed via a call to /// TransformDefinition. However, in some cases (e.g., lambda expressions), /// the transformer itself has to transform the declarations. This routine /// can be overridden by a subclass that keeps track of such mappings. void transformedLocalDecl(Decl *Old, Decl *New) { TransformedLocalDecls[Old] = New; } /// \brief Transform the definition of the given declaration. /// /// By default, invokes TransformDecl() to transform the declaration. /// Subclasses may override this function to provide alternate behavior. Decl *TransformDefinition(SourceLocation Loc, Decl *D) { return getDerived().TransformDecl(Loc, D); } /// \brief Transform the given declaration, which was the first part of a /// nested-name-specifier in a member access expression. /// /// This specific declaration transformation only applies to the first /// identifier in a nested-name-specifier of a member access expression, e.g., /// the \c T in \c x->T::member /// /// By default, invokes TransformDecl() to transform the declaration. /// Subclasses may override this function to provide alternate behavior. NamedDecl *TransformFirstQualifierInScope(NamedDecl *D, SourceLocation Loc) { return cast_or_null(getDerived().TransformDecl(Loc, D)); } /// \brief Transform the given nested-name-specifier with source-location /// information. /// /// By default, transforms all of the types and declarations within the /// nested-name-specifier. Subclasses may override this function to provide /// alternate behavior. NestedNameSpecifierLoc TransformNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS, QualType ObjectType = QualType(), NamedDecl *FirstQualifierInScope = nullptr); /// \brief Transform the given declaration name. /// /// By default, transforms the types of conversion function, constructor, /// and destructor names and then (if needed) rebuilds the declaration name. /// Identifiers and selectors are returned unmodified. Sublcasses may /// override this function to provide alternate behavior. DeclarationNameInfo TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo); /// \brief Transform the given template name. /// /// \param SS The nested-name-specifier that qualifies the template /// name. This nested-name-specifier must already have been transformed. /// /// \param Name The template name to transform. /// /// \param NameLoc The source location of the template name. /// /// \param ObjectType If we're translating a template name within a member /// access expression, this is the type of the object whose member template /// is being referenced. /// /// \param FirstQualifierInScope If the first part of a nested-name-specifier /// also refers to a name within the current (lexical) scope, this is the /// declaration it refers to. /// /// By default, transforms the template name by transforming the declarations /// and nested-name-specifiers that occur within the template name. /// Subclasses may override this function to provide alternate behavior. TemplateName TransformTemplateName(CXXScopeSpec &SS, TemplateName Name, SourceLocation NameLoc, QualType ObjectType = QualType(), NamedDecl *FirstQualifierInScope = nullptr); /// \brief Transform the given template argument. /// /// By default, this operation transforms the type, expression, or /// declaration stored within the template argument and constructs a /// new template argument from the transformed result. Subclasses may /// override this function to provide alternate behavior. /// /// Returns true if there was an error. bool TransformTemplateArgument(const TemplateArgumentLoc &Input, TemplateArgumentLoc &Output); /// \brief Transform the given set of template arguments. /// /// By default, this operation transforms all of the template arguments /// in the input set using \c TransformTemplateArgument(), and appends /// the transformed arguments to the output list. /// /// Note that this overload of \c TransformTemplateArguments() is merely /// a convenience function. Subclasses that wish to override this behavior /// should override the iterator-based member template version. /// /// \param Inputs The set of template arguments to be transformed. /// /// \param NumInputs The number of template arguments in \p Inputs. /// /// \param Outputs The set of transformed template arguments output by this /// routine. /// /// Returns true if an error occurred. bool TransformTemplateArguments(const TemplateArgumentLoc *Inputs, unsigned NumInputs, TemplateArgumentListInfo &Outputs) { return TransformTemplateArguments(Inputs, Inputs + NumInputs, Outputs); } /// \brief Transform the given set of template arguments. /// /// By default, this operation transforms all of the template arguments /// in the input set using \c TransformTemplateArgument(), and appends /// the transformed arguments to the output list. /// /// \param First An iterator to the first template argument. /// /// \param Last An iterator one step past the last template argument. /// /// \param Outputs The set of transformed template arguments output by this /// routine. /// /// Returns true if an error occurred. template bool TransformTemplateArguments(InputIterator First, InputIterator Last, TemplateArgumentListInfo &Outputs); /// \brief Fakes up a TemplateArgumentLoc for a given TemplateArgument. void InventTemplateArgumentLoc(const TemplateArgument &Arg, TemplateArgumentLoc &ArgLoc); /// \brief Fakes up a TypeSourceInfo for a type. TypeSourceInfo *InventTypeSourceInfo(QualType T) { return SemaRef.Context.getTrivialTypeSourceInfo(T, getDerived().getBaseLocation()); } #define ABSTRACT_TYPELOC(CLASS, PARENT) #define TYPELOC(CLASS, PARENT) \ QualType Transform##CLASS##Type(TypeLocBuilder &TLB, CLASS##TypeLoc T); #include "clang/AST/TypeLocNodes.def" QualType TransformFunctionProtoType(TypeLocBuilder &TLB, FunctionProtoTypeLoc TL, CXXRecordDecl *ThisContext, unsigned ThisTypeQuals); StmtResult TransformSEHHandler(Stmt *Handler); QualType TransformTemplateSpecializationType(TypeLocBuilder &TLB, TemplateSpecializationTypeLoc TL, TemplateName Template); QualType TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB, DependentTemplateSpecializationTypeLoc TL, TemplateName Template, CXXScopeSpec &SS); QualType TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB, DependentTemplateSpecializationTypeLoc TL, NestedNameSpecifierLoc QualifierLoc); /// \brief Transforms the parameters of a function type into the /// given vectors. /// /// The result vectors should be kept in sync; null entries in the /// variables vector are acceptable. /// /// Return true on error. bool TransformFunctionTypeParams(SourceLocation Loc, ParmVarDecl **Params, unsigned NumParams, const QualType *ParamTypes, SmallVectorImpl &PTypes, SmallVectorImpl *PVars); /// \brief Transforms a single function-type parameter. Return null /// on error. /// /// \param indexAdjustment - A number to add to the parameter's /// scope index; can be negative ParmVarDecl *TransformFunctionTypeParam(ParmVarDecl *OldParm, int indexAdjustment, Optional NumExpansions, bool ExpectParameterPack); QualType TransformReferenceType(TypeLocBuilder &TLB, ReferenceTypeLoc TL); StmtResult TransformCompoundStmt(CompoundStmt *S, bool IsStmtExpr); ExprResult TransformCXXNamedCastExpr(CXXNamedCastExpr *E); typedef std::pair InitCaptureInfoTy; /// \brief Transform the captures and body of a lambda expression. ExprResult TransformLambdaScope(LambdaExpr *E, CXXMethodDecl *CallOperator, ArrayRef InitCaptureExprsAndTypes); TemplateParameterList *TransformTemplateParameterList( TemplateParameterList *TPL) { return TPL; } ExprResult TransformAddressOfOperand(Expr *E); ExprResult TransformDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E, bool IsAddressOfOperand, TypeSourceInfo **RecoveryTSI); ExprResult TransformParenDependentScopeDeclRefExpr( ParenExpr *PE, DependentScopeDeclRefExpr *DRE, bool IsAddressOfOperand, TypeSourceInfo **RecoveryTSI); StmtResult TransformOMPExecutableDirective(OMPExecutableDirective *S); // FIXME: We use LLVM_ATTRIBUTE_NOINLINE because inlining causes a ridiculous // amount of stack usage with clang. #define STMT(Node, Parent) \ LLVM_ATTRIBUTE_NOINLINE \ StmtResult Transform##Node(Node *S); #define EXPR(Node, Parent) \ LLVM_ATTRIBUTE_NOINLINE \ ExprResult Transform##Node(Node *E); #define ABSTRACT_STMT(Stmt) #include "clang/AST/StmtNodes.inc" #define OPENMP_CLAUSE(Name, Class) \ LLVM_ATTRIBUTE_NOINLINE \ OMPClause *Transform ## Class(Class *S); #include "clang/Basic/OpenMPKinds.def" /// \brief Build a new pointer type given its pointee type. /// /// By default, performs semantic analysis when building the pointer type. /// Subclasses may override this routine to provide different behavior. QualType RebuildPointerType(QualType PointeeType, SourceLocation Sigil); /// \brief Build a new block pointer type given its pointee type. /// /// By default, performs semantic analysis when building the block pointer /// type. Subclasses may override this routine to provide different behavior. QualType RebuildBlockPointerType(QualType PointeeType, SourceLocation Sigil); /// \brief Build a new reference type given the type it references. /// /// By default, performs semantic analysis when building the /// reference type. Subclasses may override this routine to provide /// different behavior. /// /// \param LValue whether the type was written with an lvalue sigil /// or an rvalue sigil. QualType RebuildReferenceType(QualType ReferentType, bool LValue, SourceLocation Sigil); /// \brief Build a new member pointer type given the pointee type and the /// class type it refers into. /// /// By default, performs semantic analysis when building the member pointer /// type. Subclasses may override this routine to provide different behavior. QualType RebuildMemberPointerType(QualType PointeeType, QualType ClassType, SourceLocation Sigil); /// \brief Build a new array type given the element type, size /// modifier, size of the array (if known), size expression, and index type /// qualifiers. /// /// By default, performs semantic analysis when building the array type. /// Subclasses may override this routine to provide different behavior. /// Also by default, all of the other Rebuild*Array QualType RebuildArrayType(QualType ElementType, ArrayType::ArraySizeModifier SizeMod, const llvm::APInt *Size, Expr *SizeExpr, unsigned IndexTypeQuals, SourceRange BracketsRange); /// \brief Build a new constant array type given the element type, size /// modifier, (known) size of the array, and index type qualifiers. /// /// By default, performs semantic analysis when building the array type. /// Subclasses may override this routine to provide different behavior. QualType RebuildConstantArrayType(QualType ElementType, ArrayType::ArraySizeModifier SizeMod, const llvm::APInt &Size, unsigned IndexTypeQuals, SourceRange BracketsRange); /// \brief Build a new incomplete array type given the element type, size /// modifier, and index type qualifiers. /// /// By default, performs semantic analysis when building the array type. /// Subclasses may override this routine to provide different behavior. QualType RebuildIncompleteArrayType(QualType ElementType, ArrayType::ArraySizeModifier SizeMod, unsigned IndexTypeQuals, SourceRange BracketsRange); /// \brief Build a new variable-length array type given the element type, /// size modifier, size expression, and index type qualifiers. /// /// By default, performs semantic analysis when building the array type. /// Subclasses may override this routine to provide different behavior. QualType RebuildVariableArrayType(QualType ElementType, ArrayType::ArraySizeModifier SizeMod, Expr *SizeExpr, unsigned IndexTypeQuals, SourceRange BracketsRange); /// \brief Build a new dependent-sized array type given the element type, /// size modifier, size expression, and index type qualifiers. /// /// By default, performs semantic analysis when building the array type. /// Subclasses may override this routine to provide different behavior. QualType RebuildDependentSizedArrayType(QualType ElementType, ArrayType::ArraySizeModifier SizeMod, Expr *SizeExpr, unsigned IndexTypeQuals, SourceRange BracketsRange); /// \brief Build a new vector type given the element type and /// number of elements. /// /// By default, performs semantic analysis when building the vector type. /// Subclasses may override this routine to provide different behavior. QualType RebuildVectorType(QualType ElementType, unsigned NumElements, VectorType::VectorKind VecKind); /// \brief Build a new extended vector type given the element type and /// number of elements. /// /// By default, performs semantic analysis when building the vector type. /// Subclasses may override this routine to provide different behavior. QualType RebuildExtVectorType(QualType ElementType, unsigned NumElements, SourceLocation AttributeLoc); /// \brief Build a new potentially dependently-sized extended vector type /// given the element type and number of elements. /// /// By default, performs semantic analysis when building the vector type. /// Subclasses may override this routine to provide different behavior. QualType RebuildDependentSizedExtVectorType(QualType ElementType, Expr *SizeExpr, SourceLocation AttributeLoc); /// \brief Build a new function type. /// /// By default, performs semantic analysis when building the function type. /// Subclasses may override this routine to provide different behavior. QualType RebuildFunctionProtoType(QualType T, MutableArrayRef ParamTypes, const FunctionProtoType::ExtProtoInfo &EPI); /// \brief Build a new unprototyped function type. QualType RebuildFunctionNoProtoType(QualType ResultType); /// \brief Rebuild an unresolved typename type, given the decl that /// the UnresolvedUsingTypenameDecl was transformed to. QualType RebuildUnresolvedUsingType(Decl *D); /// \brief Build a new typedef type. QualType RebuildTypedefType(TypedefNameDecl *Typedef) { return SemaRef.Context.getTypeDeclType(Typedef); } /// \brief Build a new class/struct/union type. QualType RebuildRecordType(RecordDecl *Record) { return SemaRef.Context.getTypeDeclType(Record); } /// \brief Build a new Enum type. QualType RebuildEnumType(EnumDecl *Enum) { return SemaRef.Context.getTypeDeclType(Enum); } /// \brief Build a new typeof(expr) type. /// /// By default, performs semantic analysis when building the typeof type. /// Subclasses may override this routine to provide different behavior. QualType RebuildTypeOfExprType(Expr *Underlying, SourceLocation Loc); /// \brief Build a new typeof(type) type. /// /// By default, builds a new TypeOfType with the given underlying type. QualType RebuildTypeOfType(QualType Underlying); /// \brief Build a new unary transform type. QualType RebuildUnaryTransformType(QualType BaseType, UnaryTransformType::UTTKind UKind, SourceLocation Loc); /// \brief Build a new C++11 decltype type. /// /// By default, performs semantic analysis when building the decltype type. /// Subclasses may override this routine to provide different behavior. QualType RebuildDecltypeType(Expr *Underlying, SourceLocation Loc); /// \brief Build a new C++11 auto type. /// /// By default, builds a new AutoType with the given deduced type. QualType RebuildAutoType(QualType Deduced, bool IsDecltypeAuto) { // Note, IsDependent is always false here: we implicitly convert an 'auto' // which has been deduced to a dependent type into an undeduced 'auto', so // that we'll retry deduction after the transformation. return SemaRef.Context.getAutoType(Deduced, IsDecltypeAuto, /*IsDependent*/ false); } /// \brief Build a new template specialization type. /// /// By default, performs semantic analysis when building the template /// specialization type. Subclasses may override this routine to provide /// different behavior. QualType RebuildTemplateSpecializationType(TemplateName Template, SourceLocation TemplateLoc, TemplateArgumentListInfo &Args); /// \brief Build a new parenthesized type. /// /// By default, builds a new ParenType type from the inner type. /// Subclasses may override this routine to provide different behavior. QualType RebuildParenType(QualType InnerType) { return SemaRef.Context.getParenType(InnerType); } /// \brief Build a new qualified name type. /// /// By default, builds a new ElaboratedType type from the keyword, /// the nested-name-specifier and the named type. /// Subclasses may override this routine to provide different behavior. QualType RebuildElaboratedType(SourceLocation KeywordLoc, ElaboratedTypeKeyword Keyword, NestedNameSpecifierLoc QualifierLoc, QualType Named) { return SemaRef.Context.getElaboratedType(Keyword, QualifierLoc.getNestedNameSpecifier(), Named); } /// \brief Build a new typename type that refers to a template-id. /// /// By default, builds a new DependentNameType type from the /// nested-name-specifier and the given type. Subclasses may override /// this routine to provide different behavior. QualType RebuildDependentTemplateSpecializationType( ElaboratedTypeKeyword Keyword, NestedNameSpecifierLoc QualifierLoc, const IdentifierInfo *Name, SourceLocation NameLoc, TemplateArgumentListInfo &Args) { // Rebuild the template name. // TODO: avoid TemplateName abstraction CXXScopeSpec SS; SS.Adopt(QualifierLoc); TemplateName InstName = getDerived().RebuildTemplateName(SS, *Name, NameLoc, QualType(), nullptr); if (InstName.isNull()) return QualType(); // If it's still dependent, make a dependent specialization. if (InstName.getAsDependentTemplateName()) return SemaRef.Context.getDependentTemplateSpecializationType(Keyword, QualifierLoc.getNestedNameSpecifier(), Name, Args); // Otherwise, make an elaborated type wrapping a non-dependent // specialization. QualType T = getDerived().RebuildTemplateSpecializationType(InstName, NameLoc, Args); if (T.isNull()) return QualType(); if (Keyword == ETK_None && QualifierLoc.getNestedNameSpecifier() == nullptr) return T; return SemaRef.Context.getElaboratedType(Keyword, QualifierLoc.getNestedNameSpecifier(), T); } /// \brief Build a new typename type that refers to an identifier. /// /// By default, performs semantic analysis when building the typename type /// (or elaborated type). Subclasses may override this routine to provide /// different behavior. QualType RebuildDependentNameType(ElaboratedTypeKeyword Keyword, SourceLocation KeywordLoc, NestedNameSpecifierLoc QualifierLoc, const IdentifierInfo *Id, SourceLocation IdLoc) { CXXScopeSpec SS; SS.Adopt(QualifierLoc); if (QualifierLoc.getNestedNameSpecifier()->isDependent()) { // If the name is still dependent, just build a new dependent name type. if (!SemaRef.computeDeclContext(SS)) return SemaRef.Context.getDependentNameType(Keyword, QualifierLoc.getNestedNameSpecifier(), Id); } if (Keyword == ETK_None || Keyword == ETK_Typename) return SemaRef.CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, *Id, IdLoc); TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForKeyword(Keyword); // We had a dependent elaborated-type-specifier that has been transformed // into a non-dependent elaborated-type-specifier. Find the tag we're // referring to. LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName); DeclContext *DC = SemaRef.computeDeclContext(SS, false); if (!DC) return QualType(); if (SemaRef.RequireCompleteDeclContext(SS, DC)) return QualType(); TagDecl *Tag = nullptr; SemaRef.LookupQualifiedName(Result, DC); switch (Result.getResultKind()) { case LookupResult::NotFound: case LookupResult::NotFoundInCurrentInstantiation: break; case LookupResult::Found: Tag = Result.getAsSingle(); break; case LookupResult::FoundOverloaded: case LookupResult::FoundUnresolvedValue: llvm_unreachable("Tag lookup cannot find non-tags"); case LookupResult::Ambiguous: // Let the LookupResult structure handle ambiguities. return QualType(); } if (!Tag) { // Check where the name exists but isn't a tag type and use that to emit // better diagnostics. LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName); SemaRef.LookupQualifiedName(Result, DC); switch (Result.getResultKind()) { case LookupResult::Found: case LookupResult::FoundOverloaded: case LookupResult::FoundUnresolvedValue: { NamedDecl *SomeDecl = Result.getRepresentativeDecl(); unsigned Kind = 0; if (isa(SomeDecl)) Kind = 1; else if (isa(SomeDecl)) Kind = 2; else if (isa(SomeDecl)) Kind = 3; SemaRef.Diag(IdLoc, diag::err_tag_reference_non_tag) << Kind; SemaRef.Diag(SomeDecl->getLocation(), diag::note_declared_at); break; } default: SemaRef.Diag(IdLoc, diag::err_not_tag_in_scope) << Kind << Id << DC << QualifierLoc.getSourceRange(); break; } return QualType(); } if (!SemaRef.isAcceptableTagRedeclaration(Tag, Kind, /*isDefinition*/false, IdLoc, *Id)) { SemaRef.Diag(KeywordLoc, diag::err_use_with_wrong_tag) << Id; SemaRef.Diag(Tag->getLocation(), diag::note_previous_use); return QualType(); } // Build the elaborated-type-specifier type. QualType T = SemaRef.Context.getTypeDeclType(Tag); return SemaRef.Context.getElaboratedType(Keyword, QualifierLoc.getNestedNameSpecifier(), T); } /// \brief Build a new pack expansion type. /// /// By default, builds a new PackExpansionType type from the given pattern. /// Subclasses may override this routine to provide different behavior. QualType RebuildPackExpansionType(QualType Pattern, SourceRange PatternRange, SourceLocation EllipsisLoc, Optional NumExpansions) { return getSema().CheckPackExpansion(Pattern, PatternRange, EllipsisLoc, NumExpansions); } /// \brief Build a new atomic type given its value type. /// /// By default, performs semantic analysis when building the atomic type. /// Subclasses may override this routine to provide different behavior. QualType RebuildAtomicType(QualType ValueType, SourceLocation KWLoc); /// \brief Build a new template name given a nested name specifier, a flag /// indicating whether the "template" keyword was provided, and the template /// that the template name refers to. /// /// By default, builds the new template name directly. Subclasses may override /// this routine to provide different behavior. TemplateName RebuildTemplateName(CXXScopeSpec &SS, bool TemplateKW, TemplateDecl *Template); /// \brief Build a new template name given a nested name specifier and the /// name that is referred to as a template. /// /// By default, performs semantic analysis to determine whether the name can /// be resolved to a specific template, then builds the appropriate kind of /// template name. Subclasses may override this routine to provide different /// behavior. TemplateName RebuildTemplateName(CXXScopeSpec &SS, const IdentifierInfo &Name, SourceLocation NameLoc, QualType ObjectType, NamedDecl *FirstQualifierInScope); /// \brief Build a new template name given a nested name specifier and the /// overloaded operator name that is referred to as a template. /// /// By default, performs semantic analysis to determine whether the name can /// be resolved to a specific template, then builds the appropriate kind of /// template name. Subclasses may override this routine to provide different /// behavior. TemplateName RebuildTemplateName(CXXScopeSpec &SS, OverloadedOperatorKind Operator, SourceLocation NameLoc, QualType ObjectType); /// \brief Build a new template name given a template template parameter pack /// and the /// /// By default, performs semantic analysis to determine whether the name can /// be resolved to a specific template, then builds the appropriate kind of /// template name. Subclasses may override this routine to provide different /// behavior. TemplateName RebuildTemplateName(TemplateTemplateParmDecl *Param, const TemplateArgument &ArgPack) { return getSema().Context.getSubstTemplateTemplateParmPack(Param, ArgPack); } /// \brief Build a new compound statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildCompoundStmt(SourceLocation LBraceLoc, MultiStmtArg Statements, SourceLocation RBraceLoc, bool IsStmtExpr) { return getSema().ActOnCompoundStmt(LBraceLoc, RBraceLoc, Statements, IsStmtExpr); } /// \brief Build a new case statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildCaseStmt(SourceLocation CaseLoc, Expr *LHS, SourceLocation EllipsisLoc, Expr *RHS, SourceLocation ColonLoc) { return getSema().ActOnCaseStmt(CaseLoc, LHS, EllipsisLoc, RHS, ColonLoc); } /// \brief Attach the body to a new case statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildCaseStmtBody(Stmt *S, Stmt *Body) { getSema().ActOnCaseStmtBody(S, Body); return S; } /// \brief Build a new default statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc, Stmt *SubStmt) { return getSema().ActOnDefaultStmt(DefaultLoc, ColonLoc, SubStmt, /*CurScope=*/nullptr); } /// \brief Build a new label statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildLabelStmt(SourceLocation IdentLoc, LabelDecl *L, SourceLocation ColonLoc, Stmt *SubStmt) { return SemaRef.ActOnLabelStmt(IdentLoc, L, ColonLoc, SubStmt); } /// \brief Build a new label statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildAttributedStmt(SourceLocation AttrLoc, ArrayRef Attrs, Stmt *SubStmt) { return SemaRef.ActOnAttributedStmt(AttrLoc, Attrs, SubStmt); } /// \brief Build a new "if" statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildIfStmt(SourceLocation IfLoc, Sema::FullExprArg Cond, VarDecl *CondVar, Stmt *Then, SourceLocation ElseLoc, Stmt *Else) { return getSema().ActOnIfStmt(IfLoc, Cond, CondVar, Then, ElseLoc, Else); } /// \brief Start building a new switch statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildSwitchStmtStart(SourceLocation SwitchLoc, Expr *Cond, VarDecl *CondVar) { return getSema().ActOnStartOfSwitchStmt(SwitchLoc, Cond, CondVar); } /// \brief Attach the body to the switch statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildSwitchStmtBody(SourceLocation SwitchLoc, Stmt *Switch, Stmt *Body) { return getSema().ActOnFinishSwitchStmt(SwitchLoc, Switch, Body); } /// \brief Build a new while statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildWhileStmt(SourceLocation WhileLoc, Sema::FullExprArg Cond, VarDecl *CondVar, Stmt *Body) { return getSema().ActOnWhileStmt(WhileLoc, Cond, CondVar, Body); } /// \brief Build a new do-while statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildDoStmt(SourceLocation DoLoc, Stmt *Body, SourceLocation WhileLoc, SourceLocation LParenLoc, Expr *Cond, SourceLocation RParenLoc) { return getSema().ActOnDoStmt(DoLoc, Body, WhileLoc, LParenLoc, Cond, RParenLoc); } /// \brief Build a new for statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, Stmt *Init, Sema::FullExprArg Cond, VarDecl *CondVar, Sema::FullExprArg Inc, SourceLocation RParenLoc, Stmt *Body) { return getSema().ActOnForStmt(ForLoc, LParenLoc, Init, Cond, CondVar, Inc, RParenLoc, Body); } /// \brief Build a new goto statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc, LabelDecl *Label) { return getSema().ActOnGotoStmt(GotoLoc, LabelLoc, Label); } /// \brief Build a new indirect goto statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc, Expr *Target) { return getSema().ActOnIndirectGotoStmt(GotoLoc, StarLoc, Target); } /// \brief Build a new return statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildReturnStmt(SourceLocation ReturnLoc, Expr *Result) { return getSema().BuildReturnStmt(ReturnLoc, Result); } /// \brief Build a new declaration statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildDeclStmt(MutableArrayRef Decls, SourceLocation StartLoc, SourceLocation EndLoc) { Sema::DeclGroupPtrTy DG = getSema().BuildDeclaratorGroup(Decls); return getSema().ActOnDeclStmt(DG, StartLoc, EndLoc); } /// \brief Build a new inline asm statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple, bool IsVolatile, unsigned NumOutputs, unsigned NumInputs, IdentifierInfo **Names, MultiExprArg Constraints, MultiExprArg Exprs, Expr *AsmString, MultiExprArg Clobbers, SourceLocation RParenLoc) { return getSema().ActOnGCCAsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs, Names, Constraints, Exprs, AsmString, Clobbers, RParenLoc); } /// \brief Build a new MS style inline asm statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc, ArrayRef AsmToks, StringRef AsmString, unsigned NumOutputs, unsigned NumInputs, ArrayRef Constraints, ArrayRef Clobbers, ArrayRef Exprs, SourceLocation EndLoc) { return getSema().ActOnMSAsmStmt(AsmLoc, LBraceLoc, AsmToks, AsmString, NumOutputs, NumInputs, Constraints, Clobbers, Exprs, EndLoc); } /// \brief Build a new Objective-C \@try statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildObjCAtTryStmt(SourceLocation AtLoc, Stmt *TryBody, MultiStmtArg CatchStmts, Stmt *Finally) { return getSema().ActOnObjCAtTryStmt(AtLoc, TryBody, CatchStmts, Finally); } /// \brief Rebuild an Objective-C exception declaration. /// /// By default, performs semantic analysis to build the new declaration. /// Subclasses may override this routine to provide different behavior. VarDecl *RebuildObjCExceptionDecl(VarDecl *ExceptionDecl, TypeSourceInfo *TInfo, QualType T) { return getSema().BuildObjCExceptionDecl(TInfo, T, ExceptionDecl->getInnerLocStart(), ExceptionDecl->getLocation(), ExceptionDecl->getIdentifier()); } /// \brief Build a new Objective-C \@catch statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildObjCAtCatchStmt(SourceLocation AtLoc, SourceLocation RParenLoc, VarDecl *Var, Stmt *Body) { return getSema().ActOnObjCAtCatchStmt(AtLoc, RParenLoc, Var, Body); } /// \brief Build a new Objective-C \@finally statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) { return getSema().ActOnObjCAtFinallyStmt(AtLoc, Body); } /// \brief Build a new Objective-C \@throw statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Operand) { return getSema().BuildObjCAtThrowStmt(AtLoc, Operand); } /// \brief Build a new OpenMP executable directive. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildOMPExecutableDirective(OpenMPDirectiveKind Kind, ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc) { return getSema().ActOnOpenMPExecutableDirective(Kind, Clauses, AStmt, StartLoc, EndLoc); } /// \brief Build a new OpenMP 'if' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPIfClause(Expr *Condition, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().ActOnOpenMPIfClause(Condition, StartLoc, LParenLoc, EndLoc); } /// \brief Build a new OpenMP 'num_threads' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPNumThreadsClause(Expr *NumThreads, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().ActOnOpenMPNumThreadsClause(NumThreads, StartLoc, LParenLoc, EndLoc); } /// \brief Build a new OpenMP 'safelen' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPSafelenClause(Expr *Len, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().ActOnOpenMPSafelenClause(Len, StartLoc, LParenLoc, EndLoc); } /// \brief Build a new OpenMP 'collapse' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPCollapseClause(Expr *Num, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().ActOnOpenMPCollapseClause(Num, StartLoc, LParenLoc, EndLoc); } /// \brief Build a new OpenMP 'default' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPDefaultClause(OpenMPDefaultClauseKind Kind, SourceLocation KindKwLoc, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().ActOnOpenMPDefaultClause(Kind, KindKwLoc, StartLoc, LParenLoc, EndLoc); } /// \brief Build a new OpenMP 'proc_bind' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPProcBindClause(OpenMPProcBindClauseKind Kind, SourceLocation KindKwLoc, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().ActOnOpenMPProcBindClause(Kind, KindKwLoc, StartLoc, LParenLoc, EndLoc); } /// \brief Build a new OpenMP 'schedule' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPScheduleClause(OpenMPScheduleClauseKind Kind, Expr *ChunkSize, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation KindLoc, SourceLocation CommaLoc, SourceLocation EndLoc) { return getSema().ActOnOpenMPScheduleClause( Kind, ChunkSize, StartLoc, LParenLoc, KindLoc, CommaLoc, EndLoc); } /// \brief Build a new OpenMP 'private' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPPrivateClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().ActOnOpenMPPrivateClause(VarList, StartLoc, LParenLoc, EndLoc); } /// \brief Build a new OpenMP 'firstprivate' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPFirstprivateClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().ActOnOpenMPFirstprivateClause(VarList, StartLoc, LParenLoc, EndLoc); } /// \brief Build a new OpenMP 'lastprivate' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPLastprivateClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().ActOnOpenMPLastprivateClause(VarList, StartLoc, LParenLoc, EndLoc); } /// \brief Build a new OpenMP 'shared' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPSharedClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().ActOnOpenMPSharedClause(VarList, StartLoc, LParenLoc, EndLoc); } /// \brief Build a new OpenMP 'reduction' clause. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPReductionClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc, CXXScopeSpec &ReductionIdScopeSpec, const DeclarationNameInfo &ReductionId) { return getSema().ActOnOpenMPReductionClause( VarList, StartLoc, LParenLoc, ColonLoc, EndLoc, ReductionIdScopeSpec, ReductionId); } /// \brief Build a new OpenMP 'linear' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPLinearClause(ArrayRef VarList, Expr *Step, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc) { return getSema().ActOnOpenMPLinearClause(VarList, Step, StartLoc, LParenLoc, ColonLoc, EndLoc); } /// \brief Build a new OpenMP 'aligned' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPAlignedClause(ArrayRef VarList, Expr *Alignment, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc) { return getSema().ActOnOpenMPAlignedClause(VarList, Alignment, StartLoc, LParenLoc, ColonLoc, EndLoc); } /// \brief Build a new OpenMP 'copyin' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPCopyinClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().ActOnOpenMPCopyinClause(VarList, StartLoc, LParenLoc, EndLoc); } /// \brief Build a new OpenMP 'copyprivate' clause. /// /// By default, performs semantic analysis to build the new OpenMP clause. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPCopyprivateClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().ActOnOpenMPCopyprivateClause(VarList, StartLoc, LParenLoc, EndLoc); } /// \brief Rebuild the operand to an Objective-C \@synchronized statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *object) { return getSema().ActOnObjCAtSynchronizedOperand(atLoc, object); } /// \brief Build a new Objective-C \@synchronized statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *Object, Stmt *Body) { return getSema().ActOnObjCAtSynchronizedStmt(AtLoc, Object, Body); } /// \brief Build a new Objective-C \@autoreleasepool statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) { return getSema().ActOnObjCAutoreleasePoolStmt(AtLoc, Body); } /// \brief Build a new Objective-C fast enumeration statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildObjCForCollectionStmt(SourceLocation ForLoc, Stmt *Element, Expr *Collection, SourceLocation RParenLoc, Stmt *Body) { StmtResult ForEachStmt = getSema().ActOnObjCForCollectionStmt(ForLoc, Element, Collection, RParenLoc); if (ForEachStmt.isInvalid()) return StmtError(); return getSema().FinishObjCForCollectionStmt(ForEachStmt.get(), Body); } /// \brief Build a new C++ exception declaration. /// /// By default, performs semantic analysis to build the new decaration. /// Subclasses may override this routine to provide different behavior. VarDecl *RebuildExceptionDecl(VarDecl *ExceptionDecl, TypeSourceInfo *Declarator, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id) { VarDecl *Var = getSema().BuildExceptionDeclaration(nullptr, Declarator, StartLoc, IdLoc, Id); if (Var) getSema().CurContext->addDecl(Var); return Var; } /// \brief Build a new C++ catch statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildCXXCatchStmt(SourceLocation CatchLoc, VarDecl *ExceptionDecl, Stmt *Handler) { return Owned(new (getSema().Context) CXXCatchStmt(CatchLoc, ExceptionDecl, Handler)); } /// \brief Build a new C++ try statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildCXXTryStmt(SourceLocation TryLoc, Stmt *TryBlock, ArrayRef Handlers) { return getSema().ActOnCXXTryBlock(TryLoc, TryBlock, Handlers); } /// \brief Build a new C++0x range-based for statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc, Stmt *Range, Stmt *BeginEnd, Expr *Cond, Expr *Inc, Stmt *LoopVar, SourceLocation RParenLoc) { // If we've just learned that the range is actually an Objective-C // collection, treat this as an Objective-C fast enumeration loop. if (DeclStmt *RangeStmt = dyn_cast(Range)) { if (RangeStmt->isSingleDecl()) { if (VarDecl *RangeVar = dyn_cast(RangeStmt->getSingleDecl())) { if (RangeVar->isInvalidDecl()) return StmtError(); Expr *RangeExpr = RangeVar->getInit(); if (!RangeExpr->isTypeDependent() && RangeExpr->getType()->isObjCObjectPointerType()) return getSema().ActOnObjCForCollectionStmt(ForLoc, LoopVar, RangeExpr, RParenLoc); } } } return getSema().BuildCXXForRangeStmt(ForLoc, ColonLoc, Range, BeginEnd, Cond, Inc, LoopVar, RParenLoc, Sema::BFRK_Rebuild); } /// \brief Build a new C++0x range-based for statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildMSDependentExistsStmt(SourceLocation KeywordLoc, bool IsIfExists, NestedNameSpecifierLoc QualifierLoc, DeclarationNameInfo NameInfo, Stmt *Nested) { return getSema().BuildMSDependentExistsStmt(KeywordLoc, IsIfExists, QualifierLoc, NameInfo, Nested); } /// \brief Attach body to a C++0x range-based for statement. /// /// By default, performs semantic analysis to finish the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body) { return getSema().FinishCXXForRangeStmt(ForRange, Body); } StmtResult RebuildSEHTryStmt(bool IsCXXTry, SourceLocation TryLoc, Stmt *TryBlock, Stmt *Handler) { return getSema().ActOnSEHTryBlock(IsCXXTry, TryLoc, TryBlock, Handler); } StmtResult RebuildSEHExceptStmt(SourceLocation Loc, Expr *FilterExpr, Stmt *Block) { return getSema().ActOnSEHExceptBlock(Loc, FilterExpr, Block); } StmtResult RebuildSEHFinallyStmt(SourceLocation Loc, Stmt *Block) { return getSema().ActOnSEHFinallyBlock(Loc, Block); } /// \brief Build a new expression that references a declaration. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildDeclarationNameExpr(const CXXScopeSpec &SS, LookupResult &R, bool RequiresADL) { return getSema().BuildDeclarationNameExpr(SS, R, RequiresADL); } /// \brief Build a new expression that references a declaration. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildDeclRefExpr(NestedNameSpecifierLoc QualifierLoc, ValueDecl *VD, const DeclarationNameInfo &NameInfo, TemplateArgumentListInfo *TemplateArgs) { CXXScopeSpec SS; SS.Adopt(QualifierLoc); // FIXME: loses template args. return getSema().BuildDeclarationNameExpr(SS, NameInfo, VD); } /// \brief Build a new expression in parentheses. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildParenExpr(Expr *SubExpr, SourceLocation LParen, SourceLocation RParen) { return getSema().ActOnParenExpr(LParen, RParen, SubExpr); } /// \brief Build a new pseudo-destructor expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXPseudoDestructorExpr(Expr *Base, SourceLocation OperatorLoc, bool isArrow, CXXScopeSpec &SS, TypeSourceInfo *ScopeType, SourceLocation CCLoc, SourceLocation TildeLoc, PseudoDestructorTypeStorage Destroyed); /// \brief Build a new unary operator expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildUnaryOperator(SourceLocation OpLoc, UnaryOperatorKind Opc, Expr *SubExpr) { return getSema().BuildUnaryOp(/*Scope=*/nullptr, OpLoc, Opc, SubExpr); } /// \brief Build a new builtin offsetof expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildOffsetOfExpr(SourceLocation OperatorLoc, TypeSourceInfo *Type, Sema::OffsetOfComponent *Components, unsigned NumComponents, SourceLocation RParenLoc) { return getSema().BuildBuiltinOffsetOf(OperatorLoc, Type, Components, NumComponents, RParenLoc); } /// \brief Build a new sizeof, alignof or vec_step expression with a /// type argument. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildUnaryExprOrTypeTrait(TypeSourceInfo *TInfo, SourceLocation OpLoc, UnaryExprOrTypeTrait ExprKind, SourceRange R) { return getSema().CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, R); } /// \brief Build a new sizeof, alignof or vec step expression with an /// expression argument. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildUnaryExprOrTypeTrait(Expr *SubExpr, SourceLocation OpLoc, UnaryExprOrTypeTrait ExprKind, SourceRange R) { ExprResult Result = getSema().CreateUnaryExprOrTypeTraitExpr(SubExpr, OpLoc, ExprKind); if (Result.isInvalid()) return ExprError(); return Result; } /// \brief Build a new array subscript expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildArraySubscriptExpr(Expr *LHS, SourceLocation LBracketLoc, Expr *RHS, SourceLocation RBracketLoc) { return getSema().ActOnArraySubscriptExpr(/*Scope=*/nullptr, LHS, LBracketLoc, RHS, RBracketLoc); } /// \brief Build a new call expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc, MultiExprArg Args, SourceLocation RParenLoc, Expr *ExecConfig = nullptr) { return getSema().ActOnCallExpr(/*Scope=*/nullptr, Callee, LParenLoc, Args, RParenLoc, ExecConfig); } /// \brief Build a new member access expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildMemberExpr(Expr *Base, SourceLocation OpLoc, bool isArrow, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, const DeclarationNameInfo &MemberNameInfo, ValueDecl *Member, NamedDecl *FoundDecl, const TemplateArgumentListInfo *ExplicitTemplateArgs, NamedDecl *FirstQualifierInScope) { ExprResult BaseResult = getSema().PerformMemberExprBaseConversion(Base, isArrow); if (!Member->getDeclName()) { // We have a reference to an unnamed field. This is always the // base of an anonymous struct/union member access, i.e. the // field is always of record type. assert(!QualifierLoc && "Can't have an unnamed field with a qualifier!"); assert(Member->getType()->isRecordType() && "unnamed member not of record type?"); BaseResult = getSema().PerformObjectMemberConversion(BaseResult.get(), QualifierLoc.getNestedNameSpecifier(), FoundDecl, Member); if (BaseResult.isInvalid()) return ExprError(); Base = BaseResult.get(); ExprValueKind VK = isArrow ? VK_LValue : Base->getValueKind(); MemberExpr *ME = new (getSema().Context) MemberExpr(Base, isArrow, Member, MemberNameInfo, cast(Member)->getType(), VK, OK_Ordinary); return ME; } CXXScopeSpec SS; SS.Adopt(QualifierLoc); Base = BaseResult.get(); QualType BaseType = Base->getType(); // FIXME: this involves duplicating earlier analysis in a lot of // cases; we should avoid this when possible. LookupResult R(getSema(), MemberNameInfo, Sema::LookupMemberName); R.addDecl(FoundDecl); R.resolveKind(); return getSema().BuildMemberReferenceExpr(Base, BaseType, OpLoc, isArrow, SS, TemplateKWLoc, FirstQualifierInScope, R, ExplicitTemplateArgs); } /// \brief Build a new binary operator expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildBinaryOperator(SourceLocation OpLoc, BinaryOperatorKind Opc, Expr *LHS, Expr *RHS) { return getSema().BuildBinOp(/*Scope=*/nullptr, OpLoc, Opc, LHS, RHS); } /// \brief Build a new conditional operator expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildConditionalOperator(Expr *Cond, SourceLocation QuestionLoc, Expr *LHS, SourceLocation ColonLoc, Expr *RHS) { return getSema().ActOnConditionalOp(QuestionLoc, ColonLoc, Cond, LHS, RHS); } /// \brief Build a new C-style cast expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo, SourceLocation RParenLoc, Expr *SubExpr) { return getSema().BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, SubExpr); } /// \brief Build a new compound literal expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo, SourceLocation RParenLoc, Expr *Init) { return getSema().BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, Init); } /// \brief Build a new extended vector element access expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildExtVectorElementExpr(Expr *Base, SourceLocation OpLoc, SourceLocation AccessorLoc, IdentifierInfo &Accessor) { CXXScopeSpec SS; DeclarationNameInfo NameInfo(&Accessor, AccessorLoc); return getSema().BuildMemberReferenceExpr(Base, Base->getType(), OpLoc, /*IsArrow*/ false, SS, SourceLocation(), /*FirstQualifierInScope*/ nullptr, NameInfo, /* TemplateArgs */ nullptr); } /// \brief Build a new initializer list expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildInitList(SourceLocation LBraceLoc, MultiExprArg Inits, SourceLocation RBraceLoc, QualType ResultTy) { ExprResult Result = SemaRef.ActOnInitList(LBraceLoc, Inits, RBraceLoc); if (Result.isInvalid() || ResultTy->isDependentType()) return Result; // Patch in the result type we were given, which may have been computed // when the initial InitListExpr was built. InitListExpr *ILE = cast((Expr *)Result.get()); ILE->setType(ResultTy); return Result; } /// \brief Build a new designated initializer expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildDesignatedInitExpr(Designation &Desig, MultiExprArg ArrayExprs, SourceLocation EqualOrColonLoc, bool GNUSyntax, Expr *Init) { ExprResult Result = SemaRef.ActOnDesignatedInitializer(Desig, EqualOrColonLoc, GNUSyntax, Init); if (Result.isInvalid()) return ExprError(); return Result; } /// \brief Build a new value-initialized expression. /// /// By default, builds the implicit value initialization without performing /// any semantic analysis. Subclasses may override this routine to provide /// different behavior. ExprResult RebuildImplicitValueInitExpr(QualType T) { return new (SemaRef.Context) ImplicitValueInitExpr(T); } /// \brief Build a new \c va_arg expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildVAArgExpr(SourceLocation BuiltinLoc, Expr *SubExpr, TypeSourceInfo *TInfo, SourceLocation RParenLoc) { return getSema().BuildVAArgExpr(BuiltinLoc, SubExpr, TInfo, RParenLoc); } /// \brief Build a new expression list in parentheses. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildParenListExpr(SourceLocation LParenLoc, MultiExprArg SubExprs, SourceLocation RParenLoc) { return getSema().ActOnParenListExpr(LParenLoc, RParenLoc, SubExprs); } /// \brief Build a new address-of-label expression. /// /// By default, performs semantic analysis, using the name of the label /// rather than attempting to map the label statement itself. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildAddrLabelExpr(SourceLocation AmpAmpLoc, SourceLocation LabelLoc, LabelDecl *Label) { return getSema().ActOnAddrLabel(AmpAmpLoc, LabelLoc, Label); } /// \brief Build a new GNU statement expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildStmtExpr(SourceLocation LParenLoc, Stmt *SubStmt, SourceLocation RParenLoc) { return getSema().ActOnStmtExpr(LParenLoc, SubStmt, RParenLoc); } /// \brief Build a new __builtin_choose_expr expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildChooseExpr(SourceLocation BuiltinLoc, Expr *Cond, Expr *LHS, Expr *RHS, SourceLocation RParenLoc) { return SemaRef.ActOnChooseExpr(BuiltinLoc, Cond, LHS, RHS, RParenLoc); } /// \brief Build a new generic selection expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildGenericSelectionExpr(SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc, Expr *ControllingExpr, ArrayRef Types, ArrayRef Exprs) { return getSema().CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc, ControllingExpr, Types, Exprs); } /// \brief Build a new overloaded operator call expression. /// /// By default, performs semantic analysis to build the new expression. /// The semantic analysis provides the behavior of template instantiation, /// copying with transformations that turn what looks like an overloaded /// operator call into a use of a builtin operator, performing /// argument-dependent lookup, etc. Subclasses may override this routine to /// provide different behavior. ExprResult RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op, SourceLocation OpLoc, Expr *Callee, Expr *First, Expr *Second); /// \brief Build a new C++ "named" cast expression, such as static_cast or /// reinterpret_cast. /// /// By default, this routine dispatches to one of the more-specific routines /// for a particular named case, e.g., RebuildCXXStaticCastExpr(). /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXNamedCastExpr(SourceLocation OpLoc, Stmt::StmtClass Class, SourceLocation LAngleLoc, TypeSourceInfo *TInfo, SourceLocation RAngleLoc, SourceLocation LParenLoc, Expr *SubExpr, SourceLocation RParenLoc) { switch (Class) { case Stmt::CXXStaticCastExprClass: return getDerived().RebuildCXXStaticCastExpr(OpLoc, LAngleLoc, TInfo, RAngleLoc, LParenLoc, SubExpr, RParenLoc); case Stmt::CXXDynamicCastExprClass: return getDerived().RebuildCXXDynamicCastExpr(OpLoc, LAngleLoc, TInfo, RAngleLoc, LParenLoc, SubExpr, RParenLoc); case Stmt::CXXReinterpretCastExprClass: return getDerived().RebuildCXXReinterpretCastExpr(OpLoc, LAngleLoc, TInfo, RAngleLoc, LParenLoc, SubExpr, RParenLoc); case Stmt::CXXConstCastExprClass: return getDerived().RebuildCXXConstCastExpr(OpLoc, LAngleLoc, TInfo, RAngleLoc, LParenLoc, SubExpr, RParenLoc); default: llvm_unreachable("Invalid C++ named cast"); } } /// \brief Build a new C++ static_cast expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXStaticCastExpr(SourceLocation OpLoc, SourceLocation LAngleLoc, TypeSourceInfo *TInfo, SourceLocation RAngleLoc, SourceLocation LParenLoc, Expr *SubExpr, SourceLocation RParenLoc) { return getSema().BuildCXXNamedCast(OpLoc, tok::kw_static_cast, TInfo, SubExpr, SourceRange(LAngleLoc, RAngleLoc), SourceRange(LParenLoc, RParenLoc)); } /// \brief Build a new C++ dynamic_cast expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXDynamicCastExpr(SourceLocation OpLoc, SourceLocation LAngleLoc, TypeSourceInfo *TInfo, SourceLocation RAngleLoc, SourceLocation LParenLoc, Expr *SubExpr, SourceLocation RParenLoc) { return getSema().BuildCXXNamedCast(OpLoc, tok::kw_dynamic_cast, TInfo, SubExpr, SourceRange(LAngleLoc, RAngleLoc), SourceRange(LParenLoc, RParenLoc)); } /// \brief Build a new C++ reinterpret_cast expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXReinterpretCastExpr(SourceLocation OpLoc, SourceLocation LAngleLoc, TypeSourceInfo *TInfo, SourceLocation RAngleLoc, SourceLocation LParenLoc, Expr *SubExpr, SourceLocation RParenLoc) { return getSema().BuildCXXNamedCast(OpLoc, tok::kw_reinterpret_cast, TInfo, SubExpr, SourceRange(LAngleLoc, RAngleLoc), SourceRange(LParenLoc, RParenLoc)); } /// \brief Build a new C++ const_cast expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXConstCastExpr(SourceLocation OpLoc, SourceLocation LAngleLoc, TypeSourceInfo *TInfo, SourceLocation RAngleLoc, SourceLocation LParenLoc, Expr *SubExpr, SourceLocation RParenLoc) { return getSema().BuildCXXNamedCast(OpLoc, tok::kw_const_cast, TInfo, SubExpr, SourceRange(LAngleLoc, RAngleLoc), SourceRange(LParenLoc, RParenLoc)); } /// \brief Build a new C++ functional-style cast expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo, SourceLocation LParenLoc, Expr *Sub, SourceLocation RParenLoc) { return getSema().BuildCXXTypeConstructExpr(TInfo, LParenLoc, MultiExprArg(&Sub, 1), RParenLoc); } /// \brief Build a new C++ typeid(type) expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType, SourceLocation TypeidLoc, TypeSourceInfo *Operand, SourceLocation RParenLoc) { return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand, RParenLoc); } /// \brief Build a new C++ typeid(expr) expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType, SourceLocation TypeidLoc, Expr *Operand, SourceLocation RParenLoc) { return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand, RParenLoc); } /// \brief Build a new C++ __uuidof(type) expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXUuidofExpr(QualType TypeInfoType, SourceLocation TypeidLoc, TypeSourceInfo *Operand, SourceLocation RParenLoc) { return getSema().BuildCXXUuidof(TypeInfoType, TypeidLoc, Operand, RParenLoc); } /// \brief Build a new C++ __uuidof(expr) expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXUuidofExpr(QualType TypeInfoType, SourceLocation TypeidLoc, Expr *Operand, SourceLocation RParenLoc) { return getSema().BuildCXXUuidof(TypeInfoType, TypeidLoc, Operand, RParenLoc); } /// \brief Build a new C++ "this" expression. /// /// By default, builds a new "this" expression without performing any /// semantic analysis. Subclasses may override this routine to provide /// different behavior. ExprResult RebuildCXXThisExpr(SourceLocation ThisLoc, QualType ThisType, bool isImplicit) { getSema().CheckCXXThisCapture(ThisLoc); return new (getSema().Context) CXXThisExpr(ThisLoc, ThisType, isImplicit); } /// \brief Build a new C++ throw expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXThrowExpr(SourceLocation ThrowLoc, Expr *Sub, bool IsThrownVariableInScope) { return getSema().BuildCXXThrow(ThrowLoc, Sub, IsThrownVariableInScope); } /// \brief Build a new C++ default-argument expression. /// /// By default, builds a new default-argument expression, which does not /// require any semantic analysis. Subclasses may override this routine to /// provide different behavior. ExprResult RebuildCXXDefaultArgExpr(SourceLocation Loc, ParmVarDecl *Param) { return CXXDefaultArgExpr::Create(getSema().Context, Loc, Param); } /// \brief Build a new C++11 default-initialization expression. /// /// By default, builds a new default field initialization expression, which /// does not require any semantic analysis. Subclasses may override this /// routine to provide different behavior. ExprResult RebuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) { return CXXDefaultInitExpr::Create(getSema().Context, Loc, Field); } /// \brief Build a new C++ zero-initialization expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXScalarValueInitExpr(TypeSourceInfo *TSInfo, SourceLocation LParenLoc, SourceLocation RParenLoc) { return getSema().BuildCXXTypeConstructExpr(TSInfo, LParenLoc, None, RParenLoc); } /// \brief Build a new C++ "new" expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXNewExpr(SourceLocation StartLoc, bool UseGlobal, SourceLocation PlacementLParen, MultiExprArg PlacementArgs, SourceLocation PlacementRParen, SourceRange TypeIdParens, QualType AllocatedType, TypeSourceInfo *AllocatedTypeInfo, Expr *ArraySize, SourceRange DirectInitRange, Expr *Initializer) { return getSema().BuildCXXNew(StartLoc, UseGlobal, PlacementLParen, PlacementArgs, PlacementRParen, TypeIdParens, AllocatedType, AllocatedTypeInfo, ArraySize, DirectInitRange, Initializer); } /// \brief Build a new C++ "delete" expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXDeleteExpr(SourceLocation StartLoc, bool IsGlobalDelete, bool IsArrayForm, Expr *Operand) { return getSema().ActOnCXXDelete(StartLoc, IsGlobalDelete, IsArrayForm, Operand); } /// \brief Build a new type trait expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildTypeTrait(TypeTrait Trait, SourceLocation StartLoc, ArrayRef Args, SourceLocation RParenLoc) { return getSema().BuildTypeTrait(Trait, StartLoc, Args, RParenLoc); } /// \brief Build a new array type trait expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildArrayTypeTrait(ArrayTypeTrait Trait, SourceLocation StartLoc, TypeSourceInfo *TSInfo, Expr *DimExpr, SourceLocation RParenLoc) { return getSema().BuildArrayTypeTrait(Trait, StartLoc, TSInfo, DimExpr, RParenLoc); } /// \brief Build a new expression trait expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildExpressionTrait(ExpressionTrait Trait, SourceLocation StartLoc, Expr *Queried, SourceLocation RParenLoc) { return getSema().BuildExpressionTrait(Trait, StartLoc, Queried, RParenLoc); } /// \brief Build a new (previously unresolved) declaration reference /// expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildDependentScopeDeclRefExpr( NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *TemplateArgs, bool IsAddressOfOperand, TypeSourceInfo **RecoveryTSI) { CXXScopeSpec SS; SS.Adopt(QualifierLoc); if (TemplateArgs || TemplateKWLoc.isValid()) return getSema().BuildQualifiedTemplateIdExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); return getSema().BuildQualifiedDeclarationNameExpr( SS, NameInfo, IsAddressOfOperand, RecoveryTSI); } /// \brief Build a new template-id expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildTemplateIdExpr(const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R, bool RequiresADL, const TemplateArgumentListInfo *TemplateArgs) { return getSema().BuildTemplateIdExpr(SS, TemplateKWLoc, R, RequiresADL, TemplateArgs); } /// \brief Build a new object-construction expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXConstructExpr(QualType T, SourceLocation Loc, CXXConstructorDecl *Constructor, bool IsElidable, MultiExprArg Args, bool HadMultipleCandidates, bool ListInitialization, bool RequiresZeroInit, CXXConstructExpr::ConstructionKind ConstructKind, SourceRange ParenRange) { SmallVector ConvertedArgs; if (getSema().CompleteConstructorCall(Constructor, Args, Loc, ConvertedArgs)) return ExprError(); return getSema().BuildCXXConstructExpr(Loc, T, Constructor, IsElidable, ConvertedArgs, HadMultipleCandidates, ListInitialization, RequiresZeroInit, ConstructKind, ParenRange); } /// \brief Build a new object-construction expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXTemporaryObjectExpr(TypeSourceInfo *TSInfo, SourceLocation LParenLoc, MultiExprArg Args, SourceLocation RParenLoc) { return getSema().BuildCXXTypeConstructExpr(TSInfo, LParenLoc, Args, RParenLoc); } /// \brief Build a new object-construction expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXUnresolvedConstructExpr(TypeSourceInfo *TSInfo, SourceLocation LParenLoc, MultiExprArg Args, SourceLocation RParenLoc) { return getSema().BuildCXXTypeConstructExpr(TSInfo, LParenLoc, Args, RParenLoc); } /// \brief Build a new member reference expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXDependentScopeMemberExpr(Expr *BaseE, QualType BaseType, bool IsArrow, SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierInScope, const DeclarationNameInfo &MemberNameInfo, const TemplateArgumentListInfo *TemplateArgs) { CXXScopeSpec SS; SS.Adopt(QualifierLoc); return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType, OperatorLoc, IsArrow, SS, TemplateKWLoc, FirstQualifierInScope, MemberNameInfo, TemplateArgs); } /// \brief Build a new member reference expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildUnresolvedMemberExpr(Expr *BaseE, QualType BaseType, SourceLocation OperatorLoc, bool IsArrow, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierInScope, LookupResult &R, const TemplateArgumentListInfo *TemplateArgs) { CXXScopeSpec SS; SS.Adopt(QualifierLoc); return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType, OperatorLoc, IsArrow, SS, TemplateKWLoc, FirstQualifierInScope, R, TemplateArgs); } /// \brief Build a new noexcept expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXNoexceptExpr(SourceRange Range, Expr *Arg) { return SemaRef.BuildCXXNoexceptExpr(Range.getBegin(), Arg, Range.getEnd()); } /// \brief Build a new expression to compute the length of a parameter pack. ExprResult RebuildSizeOfPackExpr(SourceLocation OperatorLoc, NamedDecl *Pack, SourceLocation PackLoc, SourceLocation RParenLoc, Optional Length) { if (Length) return new (SemaRef.Context) SizeOfPackExpr(SemaRef.Context.getSizeType(), OperatorLoc, Pack, PackLoc, RParenLoc, *Length); return new (SemaRef.Context) SizeOfPackExpr(SemaRef.Context.getSizeType(), OperatorLoc, Pack, PackLoc, RParenLoc); } /// \brief Build a new Objective-C boxed expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr) { return getSema().BuildObjCBoxedExpr(SR, ValueExpr); } /// \brief Build a new Objective-C array literal. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildObjCArrayLiteral(SourceRange Range, Expr **Elements, unsigned NumElements) { return getSema().BuildObjCArrayLiteral(Range, MultiExprArg(Elements, NumElements)); } ExprResult RebuildObjCSubscriptRefExpr(SourceLocation RB, Expr *Base, Expr *Key, ObjCMethodDecl *getterMethod, ObjCMethodDecl *setterMethod) { return getSema().BuildObjCSubscriptExpression(RB, Base, Key, getterMethod, setterMethod); } /// \brief Build a new Objective-C dictionary literal. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildObjCDictionaryLiteral(SourceRange Range, ObjCDictionaryElement *Elements, unsigned NumElements) { return getSema().BuildObjCDictionaryLiteral(Range, Elements, NumElements); } /// \brief Build a new Objective-C \@encode expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildObjCEncodeExpr(SourceLocation AtLoc, TypeSourceInfo *EncodeTypeInfo, SourceLocation RParenLoc) { return SemaRef.BuildObjCEncodeExpression(AtLoc, EncodeTypeInfo, RParenLoc); } /// \brief Build a new Objective-C class message. ExprResult RebuildObjCMessageExpr(TypeSourceInfo *ReceiverTypeInfo, Selector Sel, ArrayRef SelectorLocs, ObjCMethodDecl *Method, SourceLocation LBracLoc, MultiExprArg Args, SourceLocation RBracLoc) { return SemaRef.BuildClassMessage(ReceiverTypeInfo, ReceiverTypeInfo->getType(), /*SuperLoc=*/SourceLocation(), Sel, Method, LBracLoc, SelectorLocs, RBracLoc, Args); } /// \brief Build a new Objective-C instance message. ExprResult RebuildObjCMessageExpr(Expr *Receiver, Selector Sel, ArrayRef SelectorLocs, ObjCMethodDecl *Method, SourceLocation LBracLoc, MultiExprArg Args, SourceLocation RBracLoc) { return SemaRef.BuildInstanceMessage(Receiver, Receiver->getType(), /*SuperLoc=*/SourceLocation(), Sel, Method, LBracLoc, SelectorLocs, RBracLoc, Args); } /// \brief Build a new Objective-C ivar reference expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildObjCIvarRefExpr(Expr *BaseArg, ObjCIvarDecl *Ivar, SourceLocation IvarLoc, bool IsArrow, bool IsFreeIvar) { // FIXME: We lose track of the IsFreeIvar bit. CXXScopeSpec SS; DeclarationNameInfo NameInfo(Ivar->getDeclName(), IvarLoc); return getSema().BuildMemberReferenceExpr(BaseArg, BaseArg->getType(), /*FIXME:*/IvarLoc, IsArrow, SS, SourceLocation(), /*FirstQualifierInScope=*/nullptr, NameInfo, /*TemplateArgs=*/nullptr); } /// \brief Build a new Objective-C property reference expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildObjCPropertyRefExpr(Expr *BaseArg, ObjCPropertyDecl *Property, SourceLocation PropertyLoc) { CXXScopeSpec SS; DeclarationNameInfo NameInfo(Property->getDeclName(), PropertyLoc); return getSema().BuildMemberReferenceExpr(BaseArg, BaseArg->getType(), /*FIXME:*/PropertyLoc, /*IsArrow=*/false, SS, SourceLocation(), /*FirstQualifierInScope=*/nullptr, NameInfo, /*TemplateArgs=*/nullptr); } /// \brief Build a new Objective-C property reference expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildObjCPropertyRefExpr(Expr *Base, QualType T, ObjCMethodDecl *Getter, ObjCMethodDecl *Setter, SourceLocation PropertyLoc) { // Since these expressions can only be value-dependent, we do not // need to perform semantic analysis again. return Owned( new (getSema().Context) ObjCPropertyRefExpr(Getter, Setter, T, VK_LValue, OK_ObjCProperty, PropertyLoc, Base)); } /// \brief Build a new Objective-C "isa" expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildObjCIsaExpr(Expr *BaseArg, SourceLocation IsaLoc, SourceLocation OpLoc, bool IsArrow) { CXXScopeSpec SS; DeclarationNameInfo NameInfo(&getSema().Context.Idents.get("isa"), IsaLoc); return getSema().BuildMemberReferenceExpr(BaseArg, BaseArg->getType(), OpLoc, IsArrow, SS, SourceLocation(), /*FirstQualifierInScope=*/nullptr, NameInfo, /*TemplateArgs=*/nullptr); } /// \brief Build a new shuffle vector expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildShuffleVectorExpr(SourceLocation BuiltinLoc, MultiExprArg SubExprs, SourceLocation RParenLoc) { // Find the declaration for __builtin_shufflevector const IdentifierInfo &Name = SemaRef.Context.Idents.get("__builtin_shufflevector"); TranslationUnitDecl *TUDecl = SemaRef.Context.getTranslationUnitDecl(); DeclContext::lookup_result Lookup = TUDecl->lookup(DeclarationName(&Name)); assert(!Lookup.empty() && "No __builtin_shufflevector?"); // Build a reference to the __builtin_shufflevector builtin FunctionDecl *Builtin = cast(Lookup.front()); Expr *Callee = new (SemaRef.Context) DeclRefExpr(Builtin, false, SemaRef.Context.BuiltinFnTy, VK_RValue, BuiltinLoc); QualType CalleePtrTy = SemaRef.Context.getPointerType(Builtin->getType()); Callee = SemaRef.ImpCastExprToType(Callee, CalleePtrTy, CK_BuiltinFnToFnPtr).get(); // Build the CallExpr ExprResult TheCall = new (SemaRef.Context) CallExpr( SemaRef.Context, Callee, SubExprs, Builtin->getCallResultType(), Expr::getValueKindForType(Builtin->getReturnType()), RParenLoc); // Type-check the __builtin_shufflevector expression. return SemaRef.SemaBuiltinShuffleVector(cast(TheCall.get())); } /// \brief Build a new convert vector expression. ExprResult RebuildConvertVectorExpr(SourceLocation BuiltinLoc, Expr *SrcExpr, TypeSourceInfo *DstTInfo, SourceLocation RParenLoc) { return SemaRef.SemaConvertVectorExpr(SrcExpr, DstTInfo, BuiltinLoc, RParenLoc); } /// \brief Build a new template argument pack expansion. /// /// By default, performs semantic analysis to build a new pack expansion /// for a template argument. Subclasses may override this routine to provide /// different behavior. TemplateArgumentLoc RebuildPackExpansion(TemplateArgumentLoc Pattern, SourceLocation EllipsisLoc, Optional NumExpansions) { switch (Pattern.getArgument().getKind()) { case TemplateArgument::Expression: { ExprResult Result = getSema().CheckPackExpansion(Pattern.getSourceExpression(), EllipsisLoc, NumExpansions); if (Result.isInvalid()) return TemplateArgumentLoc(); return TemplateArgumentLoc(Result.get(), Result.get()); } case TemplateArgument::Template: return TemplateArgumentLoc(TemplateArgument( Pattern.getArgument().getAsTemplate(), NumExpansions), Pattern.getTemplateQualifierLoc(), Pattern.getTemplateNameLoc(), EllipsisLoc); case TemplateArgument::Null: case TemplateArgument::Integral: case TemplateArgument::Declaration: case TemplateArgument::Pack: case TemplateArgument::TemplateExpansion: case TemplateArgument::NullPtr: llvm_unreachable("Pack expansion pattern has no parameter packs"); case TemplateArgument::Type: if (TypeSourceInfo *Expansion = getSema().CheckPackExpansion(Pattern.getTypeSourceInfo(), EllipsisLoc, NumExpansions)) return TemplateArgumentLoc(TemplateArgument(Expansion->getType()), Expansion); break; } return TemplateArgumentLoc(); } /// \brief Build a new expression pack expansion. /// /// By default, performs semantic analysis to build a new pack expansion /// for an expression. Subclasses may override this routine to provide /// different behavior. ExprResult RebuildPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc, Optional NumExpansions) { return getSema().CheckPackExpansion(Pattern, EllipsisLoc, NumExpansions); } /// \brief Build a new atomic operation expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildAtomicExpr(SourceLocation BuiltinLoc, MultiExprArg SubExprs, QualType RetTy, AtomicExpr::AtomicOp Op, SourceLocation RParenLoc) { // Just create the expression; there is not any interesting semantic // analysis here because we can't actually build an AtomicExpr until // we are sure it is semantically sound. return new (SemaRef.Context) AtomicExpr(BuiltinLoc, SubExprs, RetTy, Op, RParenLoc); } private: TypeLoc TransformTypeInObjectScope(TypeLoc TL, QualType ObjectType, NamedDecl *FirstQualifierInScope, CXXScopeSpec &SS); TypeSourceInfo *TransformTypeInObjectScope(TypeSourceInfo *TSInfo, QualType ObjectType, NamedDecl *FirstQualifierInScope, CXXScopeSpec &SS); TypeSourceInfo *TransformTSIInObjectScope(TypeLoc TL, QualType ObjectType, NamedDecl *FirstQualifierInScope, CXXScopeSpec &SS); }; template StmtResult TreeTransform::TransformStmt(Stmt *S) { if (!S) return S; switch (S->getStmtClass()) { case Stmt::NoStmtClass: break; // Transform individual statement nodes #define STMT(Node, Parent) \ case Stmt::Node##Class: return getDerived().Transform##Node(cast(S)); #define ABSTRACT_STMT(Node) #define EXPR(Node, Parent) #include "clang/AST/StmtNodes.inc" // Transform expressions by calling TransformExpr. #define STMT(Node, Parent) #define ABSTRACT_STMT(Stmt) #define EXPR(Node, Parent) case Stmt::Node##Class: #include "clang/AST/StmtNodes.inc" { ExprResult E = getDerived().TransformExpr(cast(S)); if (E.isInvalid()) return StmtError(); return getSema().ActOnExprStmt(E); } } return S; } template OMPClause *TreeTransform::TransformOMPClause(OMPClause *S) { if (!S) return S; switch (S->getClauseKind()) { default: break; // Transform individual clause nodes #define OPENMP_CLAUSE(Name, Class) \ case OMPC_ ## Name : \ return getDerived().Transform ## Class(cast(S)); #include "clang/Basic/OpenMPKinds.def" } return S; } template ExprResult TreeTransform::TransformExpr(Expr *E) { if (!E) return E; switch (E->getStmtClass()) { case Stmt::NoStmtClass: break; #define STMT(Node, Parent) case Stmt::Node##Class: break; #define ABSTRACT_STMT(Stmt) #define EXPR(Node, Parent) \ case Stmt::Node##Class: return getDerived().Transform##Node(cast(E)); #include "clang/AST/StmtNodes.inc" } return E; } template ExprResult TreeTransform::TransformInitializer(Expr *Init, bool CXXDirectInit) { // Initializers are instantiated like expressions, except that various outer // layers are stripped. if (!Init) return Init; if (ExprWithCleanups *ExprTemp = dyn_cast(Init)) Init = ExprTemp->getSubExpr(); if (MaterializeTemporaryExpr *MTE = dyn_cast(Init)) Init = MTE->GetTemporaryExpr(); while (CXXBindTemporaryExpr *Binder = dyn_cast(Init)) Init = Binder->getSubExpr(); if (ImplicitCastExpr *ICE = dyn_cast(Init)) Init = ICE->getSubExprAsWritten(); if (CXXStdInitializerListExpr *ILE = dyn_cast(Init)) return TransformInitializer(ILE->getSubExpr(), CXXDirectInit); // If this is not a direct-initializer, we only need to reconstruct // InitListExprs. Other forms of copy-initialization will be a no-op if // the initializer is already the right type. CXXConstructExpr *Construct = dyn_cast(Init); if (!CXXDirectInit && !(Construct && Construct->isListInitialization())) return getDerived().TransformExpr(Init); // Revert value-initialization back to empty parens. if (CXXScalarValueInitExpr *VIE = dyn_cast(Init)) { SourceRange Parens = VIE->getSourceRange(); return getDerived().RebuildParenListExpr(Parens.getBegin(), None, Parens.getEnd()); } // FIXME: We shouldn't build ImplicitValueInitExprs for direct-initialization. if (isa(Init)) return getDerived().RebuildParenListExpr(SourceLocation(), None, SourceLocation()); // Revert initialization by constructor back to a parenthesized or braced list // of expressions. Any other form of initializer can just be reused directly. if (!Construct || isa(Construct)) return getDerived().TransformExpr(Init); SmallVector NewArgs; bool ArgChanged = false; if (getDerived().TransformExprs(Construct->getArgs(), Construct->getNumArgs(), /*IsCall*/true, NewArgs, &ArgChanged)) return ExprError(); // If this was list initialization, revert to list form. if (Construct->isListInitialization()) return getDerived().RebuildInitList(Construct->getLocStart(), NewArgs, Construct->getLocEnd(), Construct->getType()); // Build a ParenListExpr to represent anything else. SourceRange Parens = Construct->getParenOrBraceRange(); return getDerived().RebuildParenListExpr(Parens.getBegin(), NewArgs, Parens.getEnd()); } template bool TreeTransform::TransformExprs(Expr **Inputs, unsigned NumInputs, bool IsCall, SmallVectorImpl &Outputs, bool *ArgChanged) { for (unsigned I = 0; I != NumInputs; ++I) { // If requested, drop call arguments that need to be dropped. if (IsCall && getDerived().DropCallArgument(Inputs[I])) { if (ArgChanged) *ArgChanged = true; break; } if (PackExpansionExpr *Expansion = dyn_cast(Inputs[I])) { Expr *Pattern = Expansion->getPattern(); SmallVector Unexpanded; getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded); assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); // Determine whether the set of unexpanded parameter packs can and should // be expanded. bool Expand = true; bool RetainExpansion = false; Optional OrigNumExpansions = Expansion->getNumExpansions(); Optional NumExpansions = OrigNumExpansions; if (getDerived().TryExpandParameterPacks(Expansion->getEllipsisLoc(), Pattern->getSourceRange(), Unexpanded, Expand, RetainExpansion, NumExpansions)) return true; if (!Expand) { // The transform has determined that we should perform a simple // transformation on the pack expansion, producing another pack // expansion. Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); ExprResult OutPattern = getDerived().TransformExpr(Pattern); if (OutPattern.isInvalid()) return true; ExprResult Out = getDerived().RebuildPackExpansion(OutPattern.get(), Expansion->getEllipsisLoc(), NumExpansions); if (Out.isInvalid()) return true; if (ArgChanged) *ArgChanged = true; Outputs.push_back(Out.get()); continue; } // Record right away that the argument was changed. This needs // to happen even if the array expands to nothing. if (ArgChanged) *ArgChanged = true; // The transform has determined that we should perform an elementwise // expansion of the pattern. Do so. for (unsigned I = 0; I != *NumExpansions; ++I) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); ExprResult Out = getDerived().TransformExpr(Pattern); if (Out.isInvalid()) return true; // FIXME: Can this happen? We should not try to expand the pack // in this case. if (Out.get()->containsUnexpandedParameterPack()) { Out = getDerived().RebuildPackExpansion( Out.get(), Expansion->getEllipsisLoc(), OrigNumExpansions); if (Out.isInvalid()) return true; } Outputs.push_back(Out.get()); } // If we're supposed to retain a pack expansion, do so by temporarily // forgetting the partially-substituted parameter pack. if (RetainExpansion) { ForgetPartiallySubstitutedPackRAII Forget(getDerived()); ExprResult Out = getDerived().TransformExpr(Pattern); if (Out.isInvalid()) return true; Out = getDerived().RebuildPackExpansion( Out.get(), Expansion->getEllipsisLoc(), OrigNumExpansions); if (Out.isInvalid()) return true; Outputs.push_back(Out.get()); } continue; } ExprResult Result = IsCall ? getDerived().TransformInitializer(Inputs[I], /*DirectInit*/false) : getDerived().TransformExpr(Inputs[I]); if (Result.isInvalid()) return true; if (Result.get() != Inputs[I] && ArgChanged) *ArgChanged = true; Outputs.push_back(Result.get()); } return false; } template NestedNameSpecifierLoc TreeTransform::TransformNestedNameSpecifierLoc( NestedNameSpecifierLoc NNS, QualType ObjectType, NamedDecl *FirstQualifierInScope) { SmallVector Qualifiers; for (NestedNameSpecifierLoc Qualifier = NNS; Qualifier; Qualifier = Qualifier.getPrefix()) Qualifiers.push_back(Qualifier); CXXScopeSpec SS; while (!Qualifiers.empty()) { NestedNameSpecifierLoc Q = Qualifiers.pop_back_val(); NestedNameSpecifier *QNNS = Q.getNestedNameSpecifier(); switch (QNNS->getKind()) { case NestedNameSpecifier::Identifier: if (SemaRef.BuildCXXNestedNameSpecifier(/*Scope=*/nullptr, *QNNS->getAsIdentifier(), Q.getLocalBeginLoc(), Q.getLocalEndLoc(), ObjectType, false, SS, FirstQualifierInScope, false)) return NestedNameSpecifierLoc(); break; case NestedNameSpecifier::Namespace: { NamespaceDecl *NS = cast_or_null( getDerived().TransformDecl( Q.getLocalBeginLoc(), QNNS->getAsNamespace())); SS.Extend(SemaRef.Context, NS, Q.getLocalBeginLoc(), Q.getLocalEndLoc()); break; } case NestedNameSpecifier::NamespaceAlias: { NamespaceAliasDecl *Alias = cast_or_null( getDerived().TransformDecl(Q.getLocalBeginLoc(), QNNS->getAsNamespaceAlias())); SS.Extend(SemaRef.Context, Alias, Q.getLocalBeginLoc(), Q.getLocalEndLoc()); break; } case NestedNameSpecifier::Global: // There is no meaningful transformation that one could perform on the // global scope. SS.MakeGlobal(SemaRef.Context, Q.getBeginLoc()); break; case NestedNameSpecifier::TypeSpecWithTemplate: case NestedNameSpecifier::TypeSpec: { TypeLoc TL = TransformTypeInObjectScope(Q.getTypeLoc(), ObjectType, FirstQualifierInScope, SS); if (!TL) return NestedNameSpecifierLoc(); if (TL.getType()->isDependentType() || TL.getType()->isRecordType() || (SemaRef.getLangOpts().CPlusPlus11 && TL.getType()->isEnumeralType())) { assert(!TL.getType().hasLocalQualifiers() && "Can't get cv-qualifiers here"); if (TL.getType()->isEnumeralType()) SemaRef.Diag(TL.getBeginLoc(), diag::warn_cxx98_compat_enum_nested_name_spec); SS.Extend(SemaRef.Context, /*FIXME:*/SourceLocation(), TL, Q.getLocalEndLoc()); break; } // If the nested-name-specifier is an invalid type def, don't emit an // error because a previous error should have already been emitted. TypedefTypeLoc TTL = TL.getAs(); if (!TTL || !TTL.getTypedefNameDecl()->isInvalidDecl()) { SemaRef.Diag(TL.getBeginLoc(), diag::err_nested_name_spec_non_tag) << TL.getType() << SS.getRange(); } return NestedNameSpecifierLoc(); } } // The qualifier-in-scope and object type only apply to the leftmost entity. FirstQualifierInScope = nullptr; ObjectType = QualType(); } // Don't rebuild the nested-name-specifier if we don't have to. if (SS.getScopeRep() == NNS.getNestedNameSpecifier() && !getDerived().AlwaysRebuild()) return NNS; // If we can re-use the source-location data from the original // nested-name-specifier, do so. if (SS.location_size() == NNS.getDataLength() && memcmp(SS.location_data(), NNS.getOpaqueData(), SS.location_size()) == 0) return NestedNameSpecifierLoc(SS.getScopeRep(), NNS.getOpaqueData()); // Allocate new nested-name-specifier location information. return SS.getWithLocInContext(SemaRef.Context); } template DeclarationNameInfo TreeTransform ::TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo) { DeclarationName Name = NameInfo.getName(); if (!Name) return DeclarationNameInfo(); switch (Name.getNameKind()) { case DeclarationName::Identifier: case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: case DeclarationName::CXXOperatorName: case DeclarationName::CXXLiteralOperatorName: case DeclarationName::CXXUsingDirective: return NameInfo; case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: { TypeSourceInfo *NewTInfo; CanQualType NewCanTy; if (TypeSourceInfo *OldTInfo = NameInfo.getNamedTypeInfo()) { NewTInfo = getDerived().TransformType(OldTInfo); if (!NewTInfo) return DeclarationNameInfo(); NewCanTy = SemaRef.Context.getCanonicalType(NewTInfo->getType()); } else { NewTInfo = nullptr; TemporaryBase Rebase(*this, NameInfo.getLoc(), Name); QualType NewT = getDerived().TransformType(Name.getCXXNameType()); if (NewT.isNull()) return DeclarationNameInfo(); NewCanTy = SemaRef.Context.getCanonicalType(NewT); } DeclarationName NewName = SemaRef.Context.DeclarationNames.getCXXSpecialName(Name.getNameKind(), NewCanTy); DeclarationNameInfo NewNameInfo(NameInfo); NewNameInfo.setName(NewName); NewNameInfo.setNamedTypeInfo(NewTInfo); return NewNameInfo; } } llvm_unreachable("Unknown name kind."); } template TemplateName TreeTransform::TransformTemplateName(CXXScopeSpec &SS, TemplateName Name, SourceLocation NameLoc, QualType ObjectType, NamedDecl *FirstQualifierInScope) { if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) { TemplateDecl *Template = QTN->getTemplateDecl(); assert(Template && "qualified template name must refer to a template"); TemplateDecl *TransTemplate = cast_or_null(getDerived().TransformDecl(NameLoc, Template)); if (!TransTemplate) return TemplateName(); if (!getDerived().AlwaysRebuild() && SS.getScopeRep() == QTN->getQualifier() && TransTemplate == Template) return Name; return getDerived().RebuildTemplateName(SS, QTN->hasTemplateKeyword(), TransTemplate); } if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) { if (SS.getScopeRep()) { // These apply to the scope specifier, not the template. ObjectType = QualType(); FirstQualifierInScope = nullptr; } if (!getDerived().AlwaysRebuild() && SS.getScopeRep() == DTN->getQualifier() && ObjectType.isNull()) return Name; if (DTN->isIdentifier()) { return getDerived().RebuildTemplateName(SS, *DTN->getIdentifier(), NameLoc, ObjectType, FirstQualifierInScope); } return getDerived().RebuildTemplateName(SS, DTN->getOperator(), NameLoc, ObjectType); } if (TemplateDecl *Template = Name.getAsTemplateDecl()) { TemplateDecl *TransTemplate = cast_or_null(getDerived().TransformDecl(NameLoc, Template)); if (!TransTemplate) return TemplateName(); if (!getDerived().AlwaysRebuild() && TransTemplate == Template) return Name; return TemplateName(TransTemplate); } if (SubstTemplateTemplateParmPackStorage *SubstPack = Name.getAsSubstTemplateTemplateParmPack()) { TemplateTemplateParmDecl *TransParam = cast_or_null( getDerived().TransformDecl(NameLoc, SubstPack->getParameterPack())); if (!TransParam) return TemplateName(); if (!getDerived().AlwaysRebuild() && TransParam == SubstPack->getParameterPack()) return Name; return getDerived().RebuildTemplateName(TransParam, SubstPack->getArgumentPack()); } // These should be getting filtered out before they reach the AST. llvm_unreachable("overloaded function decl survived to here"); } template void TreeTransform::InventTemplateArgumentLoc( const TemplateArgument &Arg, TemplateArgumentLoc &Output) { SourceLocation Loc = getDerived().getBaseLocation(); switch (Arg.getKind()) { case TemplateArgument::Null: llvm_unreachable("null template argument in TreeTransform"); break; case TemplateArgument::Type: Output = TemplateArgumentLoc(Arg, SemaRef.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc)); break; case TemplateArgument::Template: case TemplateArgument::TemplateExpansion: { NestedNameSpecifierLocBuilder Builder; TemplateName Template = Arg.getAsTemplate(); if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) Builder.MakeTrivial(SemaRef.Context, DTN->getQualifier(), Loc); else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) Builder.MakeTrivial(SemaRef.Context, QTN->getQualifier(), Loc); if (Arg.getKind() == TemplateArgument::Template) Output = TemplateArgumentLoc(Arg, Builder.getWithLocInContext(SemaRef.Context), Loc); else Output = TemplateArgumentLoc(Arg, Builder.getWithLocInContext(SemaRef.Context), Loc, Loc); break; } case TemplateArgument::Expression: Output = TemplateArgumentLoc(Arg, Arg.getAsExpr()); break; case TemplateArgument::Declaration: case TemplateArgument::Integral: case TemplateArgument::Pack: case TemplateArgument::NullPtr: Output = TemplateArgumentLoc(Arg, TemplateArgumentLocInfo()); break; } } template bool TreeTransform::TransformTemplateArgument( const TemplateArgumentLoc &Input, TemplateArgumentLoc &Output) { const TemplateArgument &Arg = Input.getArgument(); switch (Arg.getKind()) { case TemplateArgument::Null: case TemplateArgument::Integral: case TemplateArgument::Pack: case TemplateArgument::Declaration: case TemplateArgument::NullPtr: llvm_unreachable("Unexpected TemplateArgument"); case TemplateArgument::Type: { TypeSourceInfo *DI = Input.getTypeSourceInfo(); if (!DI) DI = InventTypeSourceInfo(Input.getArgument().getAsType()); DI = getDerived().TransformType(DI); if (!DI) return true; Output = TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); return false; } case TemplateArgument::Template: { NestedNameSpecifierLoc QualifierLoc = Input.getTemplateQualifierLoc(); if (QualifierLoc) { QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(QualifierLoc); if (!QualifierLoc) return true; } CXXScopeSpec SS; SS.Adopt(QualifierLoc); TemplateName Template = getDerived().TransformTemplateName(SS, Arg.getAsTemplate(), Input.getTemplateNameLoc()); if (Template.isNull()) return true; Output = TemplateArgumentLoc(TemplateArgument(Template), QualifierLoc, Input.getTemplateNameLoc()); return false; } case TemplateArgument::TemplateExpansion: llvm_unreachable("Caller should expand pack expansions"); case TemplateArgument::Expression: { // Template argument expressions are constant expressions. EnterExpressionEvaluationContext Unevaluated(getSema(), Sema::ConstantEvaluated); Expr *InputExpr = Input.getSourceExpression(); if (!InputExpr) InputExpr = Input.getArgument().getAsExpr(); ExprResult E = getDerived().TransformExpr(InputExpr); E = SemaRef.ActOnConstantExpression(E); if (E.isInvalid()) return true; Output = TemplateArgumentLoc(TemplateArgument(E.get()), E.get()); return false; } } // Work around bogus GCC warning return true; } /// \brief Iterator adaptor that invents template argument location information /// for each of the template arguments in its underlying iterator. template class TemplateArgumentLocInventIterator { TreeTransform &Self; InputIterator Iter; public: typedef TemplateArgumentLoc value_type; typedef TemplateArgumentLoc reference; typedef typename std::iterator_traits::difference_type difference_type; typedef std::input_iterator_tag iterator_category; class pointer { TemplateArgumentLoc Arg; public: explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { } const TemplateArgumentLoc *operator->() const { return &Arg; } }; TemplateArgumentLocInventIterator() { } explicit TemplateArgumentLocInventIterator(TreeTransform &Self, InputIterator Iter) : Self(Self), Iter(Iter) { } TemplateArgumentLocInventIterator &operator++() { ++Iter; return *this; } TemplateArgumentLocInventIterator operator++(int) { TemplateArgumentLocInventIterator Old(*this); ++(*this); return Old; } reference operator*() const { TemplateArgumentLoc Result; Self.InventTemplateArgumentLoc(*Iter, Result); return Result; } pointer operator->() const { return pointer(**this); } friend bool operator==(const TemplateArgumentLocInventIterator &X, const TemplateArgumentLocInventIterator &Y) { return X.Iter == Y.Iter; } friend bool operator!=(const TemplateArgumentLocInventIterator &X, const TemplateArgumentLocInventIterator &Y) { return X.Iter != Y.Iter; } }; template template bool TreeTransform::TransformTemplateArguments(InputIterator First, InputIterator Last, TemplateArgumentListInfo &Outputs) { for (; First != Last; ++First) { TemplateArgumentLoc Out; TemplateArgumentLoc In = *First; if (In.getArgument().getKind() == TemplateArgument::Pack) { // Unpack argument packs, which we translate them into separate // arguments. // FIXME: We could do much better if we could guarantee that the // TemplateArgumentLocInfo for the pack expansion would be usable for // all of the template arguments in the argument pack. typedef TemplateArgumentLocInventIterator PackLocIterator; if (TransformTemplateArguments(PackLocIterator(*this, In.getArgument().pack_begin()), PackLocIterator(*this, In.getArgument().pack_end()), Outputs)) return true; continue; } if (In.getArgument().isPackExpansion()) { // We have a pack expansion, for which we will be substituting into // the pattern. SourceLocation Ellipsis; Optional OrigNumExpansions; TemplateArgumentLoc Pattern = getSema().getTemplateArgumentPackExpansionPattern( In, Ellipsis, OrigNumExpansions); SmallVector Unexpanded; getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded); assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); // Determine whether the set of unexpanded parameter packs can and should // be expanded. bool Expand = true; bool RetainExpansion = false; Optional NumExpansions = OrigNumExpansions; if (getDerived().TryExpandParameterPacks(Ellipsis, Pattern.getSourceRange(), Unexpanded, Expand, RetainExpansion, NumExpansions)) return true; if (!Expand) { // The transform has determined that we should perform a simple // transformation on the pack expansion, producing another pack // expansion. TemplateArgumentLoc OutPattern; Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); if (getDerived().TransformTemplateArgument(Pattern, OutPattern)) return true; Out = getDerived().RebuildPackExpansion(OutPattern, Ellipsis, NumExpansions); if (Out.getArgument().isNull()) return true; Outputs.addArgument(Out); continue; } // The transform has determined that we should perform an elementwise // expansion of the pattern. Do so. for (unsigned I = 0; I != *NumExpansions; ++I) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); if (getDerived().TransformTemplateArgument(Pattern, Out)) return true; if (Out.getArgument().containsUnexpandedParameterPack()) { Out = getDerived().RebuildPackExpansion(Out, Ellipsis, OrigNumExpansions); if (Out.getArgument().isNull()) return true; } Outputs.addArgument(Out); } // If we're supposed to retain a pack expansion, do so by temporarily // forgetting the partially-substituted parameter pack. if (RetainExpansion) { ForgetPartiallySubstitutedPackRAII Forget(getDerived()); if (getDerived().TransformTemplateArgument(Pattern, Out)) return true; Out = getDerived().RebuildPackExpansion(Out, Ellipsis, OrigNumExpansions); if (Out.getArgument().isNull()) return true; Outputs.addArgument(Out); } continue; } // The simple case: if (getDerived().TransformTemplateArgument(In, Out)) return true; Outputs.addArgument(Out); } return false; } //===----------------------------------------------------------------------===// // Type transformation //===----------------------------------------------------------------------===// template QualType TreeTransform::TransformType(QualType T) { if (getDerived().AlreadyTransformed(T)) return T; // Temporary workaround. All of these transformations should // eventually turn into transformations on TypeLocs. TypeSourceInfo *DI = getSema().Context.getTrivialTypeSourceInfo(T, getDerived().getBaseLocation()); TypeSourceInfo *NewDI = getDerived().TransformType(DI); if (!NewDI) return QualType(); return NewDI->getType(); } template TypeSourceInfo *TreeTransform::TransformType(TypeSourceInfo *DI) { // Refine the base location to the type's location. TemporaryBase Rebase(*this, DI->getTypeLoc().getBeginLoc(), getDerived().getBaseEntity()); if (getDerived().AlreadyTransformed(DI->getType())) return DI; TypeLocBuilder TLB; TypeLoc TL = DI->getTypeLoc(); TLB.reserve(TL.getFullDataSize()); QualType Result = getDerived().TransformType(TLB, TL); if (Result.isNull()) return nullptr; return TLB.getTypeSourceInfo(SemaRef.Context, Result); } template QualType TreeTransform::TransformType(TypeLocBuilder &TLB, TypeLoc T) { switch (T.getTypeLocClass()) { #define ABSTRACT_TYPELOC(CLASS, PARENT) #define TYPELOC(CLASS, PARENT) \ case TypeLoc::CLASS: \ return getDerived().Transform##CLASS##Type(TLB, \ T.castAs()); #include "clang/AST/TypeLocNodes.def" } llvm_unreachable("unhandled type loc!"); } /// FIXME: By default, this routine adds type qualifiers only to types /// that can have qualifiers, and silently suppresses those qualifiers /// that are not permitted (e.g., qualifiers on reference or function /// types). This is the right thing for template instantiation, but /// probably not for other clients. template QualType TreeTransform::TransformQualifiedType(TypeLocBuilder &TLB, QualifiedTypeLoc T) { Qualifiers Quals = T.getType().getLocalQualifiers(); QualType Result = getDerived().TransformType(TLB, T.getUnqualifiedLoc()); if (Result.isNull()) return QualType(); // Silently suppress qualifiers if the result type can't be qualified. // FIXME: this is the right thing for template instantiation, but // probably not for other clients. if (Result->isFunctionType() || Result->isReferenceType()) return Result; // Suppress Objective-C lifetime qualifiers if they don't make sense for the // resulting type. if (Quals.hasObjCLifetime()) { if (!Result->isObjCLifetimeType() && !Result->isDependentType()) Quals.removeObjCLifetime(); else if (Result.getObjCLifetime()) { // Objective-C ARC: // A lifetime qualifier applied to a substituted template parameter // overrides the lifetime qualifier from the template argument. const AutoType *AutoTy; if (const SubstTemplateTypeParmType *SubstTypeParam = dyn_cast(Result)) { QualType Replacement = SubstTypeParam->getReplacementType(); Qualifiers Qs = Replacement.getQualifiers(); Qs.removeObjCLifetime(); Replacement = SemaRef.Context.getQualifiedType(Replacement.getUnqualifiedType(), Qs); Result = SemaRef.Context.getSubstTemplateTypeParmType( SubstTypeParam->getReplacedParameter(), Replacement); TLB.TypeWasModifiedSafely(Result); } else if ((AutoTy = dyn_cast(Result)) && AutoTy->isDeduced()) { // 'auto' types behave the same way as template parameters. QualType Deduced = AutoTy->getDeducedType(); Qualifiers Qs = Deduced.getQualifiers(); Qs.removeObjCLifetime(); Deduced = SemaRef.Context.getQualifiedType(Deduced.getUnqualifiedType(), Qs); Result = SemaRef.Context.getAutoType(Deduced, AutoTy->isDecltypeAuto(), AutoTy->isDependentType()); TLB.TypeWasModifiedSafely(Result); } else { // Otherwise, complain about the addition of a qualifier to an // already-qualified type. SourceRange R = T.getUnqualifiedLoc().getSourceRange(); SemaRef.Diag(R.getBegin(), diag::err_attr_objc_ownership_redundant) << Result << R; Quals.removeObjCLifetime(); } } } if (!Quals.empty()) { Result = SemaRef.BuildQualifiedType(Result, T.getBeginLoc(), Quals); // BuildQualifiedType might not add qualifiers if they are invalid. if (Result.hasLocalQualifiers()) TLB.push(Result); // No location information to preserve. } return Result; } template TypeLoc TreeTransform::TransformTypeInObjectScope(TypeLoc TL, QualType ObjectType, NamedDecl *UnqualLookup, CXXScopeSpec &SS) { if (getDerived().AlreadyTransformed(TL.getType())) return TL; TypeSourceInfo *TSI = TransformTSIInObjectScope(TL, ObjectType, UnqualLookup, SS); if (TSI) return TSI->getTypeLoc(); return TypeLoc(); } template TypeSourceInfo * TreeTransform::TransformTypeInObjectScope(TypeSourceInfo *TSInfo, QualType ObjectType, NamedDecl *UnqualLookup, CXXScopeSpec &SS) { if (getDerived().AlreadyTransformed(TSInfo->getType())) return TSInfo; return TransformTSIInObjectScope(TSInfo->getTypeLoc(), ObjectType, UnqualLookup, SS); } template TypeSourceInfo *TreeTransform::TransformTSIInObjectScope( TypeLoc TL, QualType ObjectType, NamedDecl *UnqualLookup, CXXScopeSpec &SS) { QualType T = TL.getType(); assert(!getDerived().AlreadyTransformed(T)); TypeLocBuilder TLB; QualType Result; if (isa(T)) { TemplateSpecializationTypeLoc SpecTL = TL.castAs(); TemplateName Template = getDerived().TransformTemplateName(SS, SpecTL.getTypePtr()->getTemplateName(), SpecTL.getTemplateNameLoc(), ObjectType, UnqualLookup); if (Template.isNull()) return nullptr; Result = getDerived().TransformTemplateSpecializationType(TLB, SpecTL, Template); } else if (isa(T)) { DependentTemplateSpecializationTypeLoc SpecTL = TL.castAs(); TemplateName Template = getDerived().RebuildTemplateName(SS, *SpecTL.getTypePtr()->getIdentifier(), SpecTL.getTemplateNameLoc(), ObjectType, UnqualLookup); if (Template.isNull()) return nullptr; Result = getDerived().TransformDependentTemplateSpecializationType(TLB, SpecTL, Template, SS); } else { // Nothing special needs to be done for these. Result = getDerived().TransformType(TLB, TL); } if (Result.isNull()) return nullptr; return TLB.getTypeSourceInfo(SemaRef.Context, Result); } template static inline QualType TransformTypeSpecType(TypeLocBuilder &TLB, TyLoc T) { TyLoc NewT = TLB.push(T.getType()); NewT.setNameLoc(T.getNameLoc()); return T.getType(); } template QualType TreeTransform::TransformBuiltinType(TypeLocBuilder &TLB, BuiltinTypeLoc T) { BuiltinTypeLoc NewT = TLB.push(T.getType()); NewT.setBuiltinLoc(T.getBuiltinLoc()); if (T.needsExtraLocalData()) NewT.getWrittenBuiltinSpecs() = T.getWrittenBuiltinSpecs(); return T.getType(); } template QualType TreeTransform::TransformComplexType(TypeLocBuilder &TLB, ComplexTypeLoc T) { // FIXME: recurse? return TransformTypeSpecType(TLB, T); } template QualType TreeTransform::TransformAdjustedType(TypeLocBuilder &TLB, AdjustedTypeLoc TL) { // Adjustments applied during transformation are handled elsewhere. return getDerived().TransformType(TLB, TL.getOriginalLoc()); } template QualType TreeTransform::TransformDecayedType(TypeLocBuilder &TLB, DecayedTypeLoc TL) { QualType OriginalType = getDerived().TransformType(TLB, TL.getOriginalLoc()); if (OriginalType.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || OriginalType != TL.getOriginalLoc().getType()) Result = SemaRef.Context.getDecayedType(OriginalType); TLB.push(Result); // Nothing to set for DecayedTypeLoc. return Result; } template QualType TreeTransform::TransformPointerType(TypeLocBuilder &TLB, PointerTypeLoc TL) { QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc()); if (PointeeType.isNull()) return QualType(); QualType Result = TL.getType(); if (PointeeType->getAs()) { // A dependent pointer type 'T *' has is being transformed such // that an Objective-C class type is being replaced for 'T'. The // resulting pointer type is an ObjCObjectPointerType, not a // PointerType. Result = SemaRef.Context.getObjCObjectPointerType(PointeeType); ObjCObjectPointerTypeLoc NewT = TLB.push(Result); NewT.setStarLoc(TL.getStarLoc()); return Result; } if (getDerived().AlwaysRebuild() || PointeeType != TL.getPointeeLoc().getType()) { Result = getDerived().RebuildPointerType(PointeeType, TL.getSigilLoc()); if (Result.isNull()) return QualType(); } // Objective-C ARC can add lifetime qualifiers to the type that we're // pointing to. TLB.TypeWasModifiedSafely(Result->getPointeeType()); PointerTypeLoc NewT = TLB.push(Result); NewT.setSigilLoc(TL.getSigilLoc()); return Result; } template QualType TreeTransform::TransformBlockPointerType(TypeLocBuilder &TLB, BlockPointerTypeLoc TL) { QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc()); if (PointeeType.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || PointeeType != TL.getPointeeLoc().getType()) { Result = getDerived().RebuildBlockPointerType(PointeeType, TL.getSigilLoc()); if (Result.isNull()) return QualType(); } BlockPointerTypeLoc NewT = TLB.push(Result); NewT.setSigilLoc(TL.getSigilLoc()); return Result; } /// Transforms a reference type. Note that somewhat paradoxically we /// don't care whether the type itself is an l-value type or an r-value /// type; we only care if the type was *written* as an l-value type /// or an r-value type. template QualType TreeTransform::TransformReferenceType(TypeLocBuilder &TLB, ReferenceTypeLoc TL) { const ReferenceType *T = TL.getTypePtr(); // Note that this works with the pointee-as-written. QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc()); if (PointeeType.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || PointeeType != T->getPointeeTypeAsWritten()) { Result = getDerived().RebuildReferenceType(PointeeType, T->isSpelledAsLValue(), TL.getSigilLoc()); if (Result.isNull()) return QualType(); } // Objective-C ARC can add lifetime qualifiers to the type that we're // referring to. TLB.TypeWasModifiedSafely( Result->getAs()->getPointeeTypeAsWritten()); // r-value references can be rebuilt as l-value references. ReferenceTypeLoc NewTL; if (isa(Result)) NewTL = TLB.push(Result); else NewTL = TLB.push(Result); NewTL.setSigilLoc(TL.getSigilLoc()); return Result; } template QualType TreeTransform::TransformLValueReferenceType(TypeLocBuilder &TLB, LValueReferenceTypeLoc TL) { return TransformReferenceType(TLB, TL); } template QualType TreeTransform::TransformRValueReferenceType(TypeLocBuilder &TLB, RValueReferenceTypeLoc TL) { return TransformReferenceType(TLB, TL); } template QualType TreeTransform::TransformMemberPointerType(TypeLocBuilder &TLB, MemberPointerTypeLoc TL) { QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc()); if (PointeeType.isNull()) return QualType(); TypeSourceInfo* OldClsTInfo = TL.getClassTInfo(); TypeSourceInfo *NewClsTInfo = nullptr; if (OldClsTInfo) { NewClsTInfo = getDerived().TransformType(OldClsTInfo); if (!NewClsTInfo) return QualType(); } const MemberPointerType *T = TL.getTypePtr(); QualType OldClsType = QualType(T->getClass(), 0); QualType NewClsType; if (NewClsTInfo) NewClsType = NewClsTInfo->getType(); else { NewClsType = getDerived().TransformType(OldClsType); if (NewClsType.isNull()) return QualType(); } QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || PointeeType != T->getPointeeType() || NewClsType != OldClsType) { Result = getDerived().RebuildMemberPointerType(PointeeType, NewClsType, TL.getStarLoc()); if (Result.isNull()) return QualType(); } // If we had to adjust the pointee type when building a member pointer, make // sure to push TypeLoc info for it. const MemberPointerType *MPT = Result->getAs(); if (MPT && PointeeType != MPT->getPointeeType()) { assert(isa(MPT->getPointeeType())); TLB.push(MPT->getPointeeType()); } MemberPointerTypeLoc NewTL = TLB.push(Result); NewTL.setSigilLoc(TL.getSigilLoc()); NewTL.setClassTInfo(NewClsTInfo); return Result; } template QualType TreeTransform::TransformConstantArrayType(TypeLocBuilder &TLB, ConstantArrayTypeLoc TL) { const ConstantArrayType *T = TL.getTypePtr(); QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); if (ElementType.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ElementType != T->getElementType()) { Result = getDerived().RebuildConstantArrayType(ElementType, T->getSizeModifier(), T->getSize(), T->getIndexTypeCVRQualifiers(), TL.getBracketsRange()); if (Result.isNull()) return QualType(); } // We might have either a ConstantArrayType or a VariableArrayType now: // a ConstantArrayType is allowed to have an element type which is a // VariableArrayType if the type is dependent. Fortunately, all array // types have the same location layout. ArrayTypeLoc NewTL = TLB.push(Result); NewTL.setLBracketLoc(TL.getLBracketLoc()); NewTL.setRBracketLoc(TL.getRBracketLoc()); Expr *Size = TL.getSizeExpr(); if (Size) { EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::ConstantEvaluated); Size = getDerived().TransformExpr(Size).template getAs(); Size = SemaRef.ActOnConstantExpression(Size).get(); } NewTL.setSizeExpr(Size); return Result; } template QualType TreeTransform::TransformIncompleteArrayType( TypeLocBuilder &TLB, IncompleteArrayTypeLoc TL) { const IncompleteArrayType *T = TL.getTypePtr(); QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); if (ElementType.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ElementType != T->getElementType()) { Result = getDerived().RebuildIncompleteArrayType(ElementType, T->getSizeModifier(), T->getIndexTypeCVRQualifiers(), TL.getBracketsRange()); if (Result.isNull()) return QualType(); } IncompleteArrayTypeLoc NewTL = TLB.push(Result); NewTL.setLBracketLoc(TL.getLBracketLoc()); NewTL.setRBracketLoc(TL.getRBracketLoc()); NewTL.setSizeExpr(nullptr); return Result; } template QualType TreeTransform::TransformVariableArrayType(TypeLocBuilder &TLB, VariableArrayTypeLoc TL) { const VariableArrayType *T = TL.getTypePtr(); QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); if (ElementType.isNull()) return QualType(); ExprResult SizeResult = getDerived().TransformExpr(T->getSizeExpr()); if (SizeResult.isInvalid()) return QualType(); Expr *Size = SizeResult.get(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ElementType != T->getElementType() || Size != T->getSizeExpr()) { Result = getDerived().RebuildVariableArrayType(ElementType, T->getSizeModifier(), Size, T->getIndexTypeCVRQualifiers(), TL.getBracketsRange()); if (Result.isNull()) return QualType(); } // We might have constant size array now, but fortunately it has the same // location layout. ArrayTypeLoc NewTL = TLB.push(Result); NewTL.setLBracketLoc(TL.getLBracketLoc()); NewTL.setRBracketLoc(TL.getRBracketLoc()); NewTL.setSizeExpr(Size); return Result; } template QualType TreeTransform::TransformDependentSizedArrayType(TypeLocBuilder &TLB, DependentSizedArrayTypeLoc TL) { const DependentSizedArrayType *T = TL.getTypePtr(); QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); if (ElementType.isNull()) return QualType(); // Array bounds are constant expressions. EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::ConstantEvaluated); // Prefer the expression from the TypeLoc; the other may have been uniqued. Expr *origSize = TL.getSizeExpr(); if (!origSize) origSize = T->getSizeExpr(); ExprResult sizeResult = getDerived().TransformExpr(origSize); sizeResult = SemaRef.ActOnConstantExpression(sizeResult); if (sizeResult.isInvalid()) return QualType(); Expr *size = sizeResult.get(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ElementType != T->getElementType() || size != origSize) { Result = getDerived().RebuildDependentSizedArrayType(ElementType, T->getSizeModifier(), size, T->getIndexTypeCVRQualifiers(), TL.getBracketsRange()); if (Result.isNull()) return QualType(); } // We might have any sort of array type now, but fortunately they // all have the same location layout. ArrayTypeLoc NewTL = TLB.push(Result); NewTL.setLBracketLoc(TL.getLBracketLoc()); NewTL.setRBracketLoc(TL.getRBracketLoc()); NewTL.setSizeExpr(size); return Result; } template QualType TreeTransform::TransformDependentSizedExtVectorType( TypeLocBuilder &TLB, DependentSizedExtVectorTypeLoc TL) { const DependentSizedExtVectorType *T = TL.getTypePtr(); // FIXME: ext vector locs should be nested QualType ElementType = getDerived().TransformType(T->getElementType()); if (ElementType.isNull()) return QualType(); // Vector sizes are constant expressions. EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::ConstantEvaluated); ExprResult Size = getDerived().TransformExpr(T->getSizeExpr()); Size = SemaRef.ActOnConstantExpression(Size); if (Size.isInvalid()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ElementType != T->getElementType() || Size.get() != T->getSizeExpr()) { Result = getDerived().RebuildDependentSizedExtVectorType(ElementType, Size.get(), T->getAttributeLoc()); if (Result.isNull()) return QualType(); } // Result might be dependent or not. if (isa(Result)) { DependentSizedExtVectorTypeLoc NewTL = TLB.push(Result); NewTL.setNameLoc(TL.getNameLoc()); } else { ExtVectorTypeLoc NewTL = TLB.push(Result); NewTL.setNameLoc(TL.getNameLoc()); } return Result; } template QualType TreeTransform::TransformVectorType(TypeLocBuilder &TLB, VectorTypeLoc TL) { const VectorType *T = TL.getTypePtr(); QualType ElementType = getDerived().TransformType(T->getElementType()); if (ElementType.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ElementType != T->getElementType()) { Result = getDerived().RebuildVectorType(ElementType, T->getNumElements(), T->getVectorKind()); if (Result.isNull()) return QualType(); } VectorTypeLoc NewTL = TLB.push(Result); NewTL.setNameLoc(TL.getNameLoc()); return Result; } template QualType TreeTransform::TransformExtVectorType(TypeLocBuilder &TLB, ExtVectorTypeLoc TL) { const VectorType *T = TL.getTypePtr(); QualType ElementType = getDerived().TransformType(T->getElementType()); if (ElementType.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ElementType != T->getElementType()) { Result = getDerived().RebuildExtVectorType(ElementType, T->getNumElements(), /*FIXME*/ SourceLocation()); if (Result.isNull()) return QualType(); } ExtVectorTypeLoc NewTL = TLB.push(Result); NewTL.setNameLoc(TL.getNameLoc()); return Result; } template ParmVarDecl *TreeTransform::TransformFunctionTypeParam( ParmVarDecl *OldParm, int indexAdjustment, Optional NumExpansions, bool ExpectParameterPack) { TypeSourceInfo *OldDI = OldParm->getTypeSourceInfo(); TypeSourceInfo *NewDI = nullptr; if (NumExpansions && isa(OldDI->getType())) { // If we're substituting into a pack expansion type and we know the // length we want to expand to, just substitute for the pattern. TypeLoc OldTL = OldDI->getTypeLoc(); PackExpansionTypeLoc OldExpansionTL = OldTL.castAs(); TypeLocBuilder TLB; TypeLoc NewTL = OldDI->getTypeLoc(); TLB.reserve(NewTL.getFullDataSize()); QualType Result = getDerived().TransformType(TLB, OldExpansionTL.getPatternLoc()); if (Result.isNull()) return nullptr; Result = RebuildPackExpansionType(Result, OldExpansionTL.getPatternLoc().getSourceRange(), OldExpansionTL.getEllipsisLoc(), NumExpansions); if (Result.isNull()) return nullptr; PackExpansionTypeLoc NewExpansionTL = TLB.push(Result); NewExpansionTL.setEllipsisLoc(OldExpansionTL.getEllipsisLoc()); NewDI = TLB.getTypeSourceInfo(SemaRef.Context, Result); } else NewDI = getDerived().TransformType(OldDI); if (!NewDI) return nullptr; if (NewDI == OldDI && indexAdjustment == 0) return OldParm; ParmVarDecl *newParm = ParmVarDecl::Create(SemaRef.Context, OldParm->getDeclContext(), OldParm->getInnerLocStart(), OldParm->getLocation(), OldParm->getIdentifier(), NewDI->getType(), NewDI, OldParm->getStorageClass(), /* DefArg */ nullptr); newParm->setScopeInfo(OldParm->getFunctionScopeDepth(), OldParm->getFunctionScopeIndex() + indexAdjustment); return newParm; } template bool TreeTransform:: TransformFunctionTypeParams(SourceLocation Loc, ParmVarDecl **Params, unsigned NumParams, const QualType *ParamTypes, SmallVectorImpl &OutParamTypes, SmallVectorImpl *PVars) { int indexAdjustment = 0; for (unsigned i = 0; i != NumParams; ++i) { if (ParmVarDecl *OldParm = Params[i]) { assert(OldParm->getFunctionScopeIndex() == i); Optional NumExpansions; ParmVarDecl *NewParm = nullptr; if (OldParm->isParameterPack()) { // We have a function parameter pack that may need to be expanded. SmallVector Unexpanded; // Find the parameter packs that could be expanded. TypeLoc TL = OldParm->getTypeSourceInfo()->getTypeLoc(); PackExpansionTypeLoc ExpansionTL = TL.castAs(); TypeLoc Pattern = ExpansionTL.getPatternLoc(); SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded); assert(Unexpanded.size() > 0 && "Could not find parameter packs!"); // Determine whether we should expand the parameter packs. bool ShouldExpand = false; bool RetainExpansion = false; Optional OrigNumExpansions = ExpansionTL.getTypePtr()->getNumExpansions(); NumExpansions = OrigNumExpansions; if (getDerived().TryExpandParameterPacks(ExpansionTL.getEllipsisLoc(), Pattern.getSourceRange(), Unexpanded, ShouldExpand, RetainExpansion, NumExpansions)) { return true; } if (ShouldExpand) { // Expand the function parameter pack into multiple, separate // parameters. getDerived().ExpandingFunctionParameterPack(OldParm); for (unsigned I = 0; I != *NumExpansions; ++I) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); ParmVarDecl *NewParm = getDerived().TransformFunctionTypeParam(OldParm, indexAdjustment++, OrigNumExpansions, /*ExpectParameterPack=*/false); if (!NewParm) return true; OutParamTypes.push_back(NewParm->getType()); if (PVars) PVars->push_back(NewParm); } // If we're supposed to retain a pack expansion, do so by temporarily // forgetting the partially-substituted parameter pack. if (RetainExpansion) { ForgetPartiallySubstitutedPackRAII Forget(getDerived()); ParmVarDecl *NewParm = getDerived().TransformFunctionTypeParam(OldParm, indexAdjustment++, OrigNumExpansions, /*ExpectParameterPack=*/false); if (!NewParm) return true; OutParamTypes.push_back(NewParm->getType()); if (PVars) PVars->push_back(NewParm); } // The next parameter should have the same adjustment as the // last thing we pushed, but we post-incremented indexAdjustment // on every push. Also, if we push nothing, the adjustment should // go down by one. indexAdjustment--; // We're done with the pack expansion. continue; } // We'll substitute the parameter now without expanding the pack // expansion. Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); NewParm = getDerived().TransformFunctionTypeParam(OldParm, indexAdjustment, NumExpansions, /*ExpectParameterPack=*/true); } else { NewParm = getDerived().TransformFunctionTypeParam( OldParm, indexAdjustment, None, /*ExpectParameterPack=*/ false); } if (!NewParm) return true; OutParamTypes.push_back(NewParm->getType()); if (PVars) PVars->push_back(NewParm); continue; } // Deal with the possibility that we don't have a parameter // declaration for this parameter. QualType OldType = ParamTypes[i]; bool IsPackExpansion = false; Optional NumExpansions; QualType NewType; if (const PackExpansionType *Expansion = dyn_cast(OldType)) { // We have a function parameter pack that may need to be expanded. QualType Pattern = Expansion->getPattern(); SmallVector Unexpanded; getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded); // Determine whether we should expand the parameter packs. bool ShouldExpand = false; bool RetainExpansion = false; if (getDerived().TryExpandParameterPacks(Loc, SourceRange(), Unexpanded, ShouldExpand, RetainExpansion, NumExpansions)) { return true; } if (ShouldExpand) { // Expand the function parameter pack into multiple, separate // parameters. for (unsigned I = 0; I != *NumExpansions; ++I) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); QualType NewType = getDerived().TransformType(Pattern); if (NewType.isNull()) return true; OutParamTypes.push_back(NewType); if (PVars) PVars->push_back(nullptr); } // We're done with the pack expansion. continue; } // If we're supposed to retain a pack expansion, do so by temporarily // forgetting the partially-substituted parameter pack. if (RetainExpansion) { ForgetPartiallySubstitutedPackRAII Forget(getDerived()); QualType NewType = getDerived().TransformType(Pattern); if (NewType.isNull()) return true; OutParamTypes.push_back(NewType); if (PVars) PVars->push_back(nullptr); } // We'll substitute the parameter now without expanding the pack // expansion. OldType = Expansion->getPattern(); IsPackExpansion = true; Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); NewType = getDerived().TransformType(OldType); } else { NewType = getDerived().TransformType(OldType); } if (NewType.isNull()) return true; if (IsPackExpansion) NewType = getSema().Context.getPackExpansionType(NewType, NumExpansions); OutParamTypes.push_back(NewType); if (PVars) PVars->push_back(nullptr); } #ifndef NDEBUG if (PVars) { for (unsigned i = 0, e = PVars->size(); i != e; ++i) if (ParmVarDecl *parm = (*PVars)[i]) assert(parm->getFunctionScopeIndex() == i); } #endif return false; } template QualType TreeTransform::TransformFunctionProtoType(TypeLocBuilder &TLB, FunctionProtoTypeLoc TL) { return getDerived().TransformFunctionProtoType(TLB, TL, nullptr, 0); } template QualType TreeTransform::TransformFunctionProtoType(TypeLocBuilder &TLB, FunctionProtoTypeLoc TL, CXXRecordDecl *ThisContext, unsigned ThisTypeQuals) { // Transform the parameters and return type. // // We are required to instantiate the params and return type in source order. // When the function has a trailing return type, we instantiate the // parameters before the return type, since the return type can then refer // to the parameters themselves (via decltype, sizeof, etc.). // SmallVector ParamTypes; SmallVector ParamDecls; const FunctionProtoType *T = TL.getTypePtr(); QualType ResultType; if (T->hasTrailingReturn()) { if (getDerived().TransformFunctionTypeParams( TL.getBeginLoc(), TL.getParmArray(), TL.getNumParams(), TL.getTypePtr()->param_type_begin(), ParamTypes, &ParamDecls)) return QualType(); { // C++11 [expr.prim.general]p3: // If a declaration declares a member function or member function // template of a class X, the expression this is a prvalue of type // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq // and the end of the function-definition, member-declarator, or // declarator. Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, ThisTypeQuals); ResultType = getDerived().TransformType(TLB, TL.getReturnLoc()); if (ResultType.isNull()) return QualType(); } } else { ResultType = getDerived().TransformType(TLB, TL.getReturnLoc()); if (ResultType.isNull()) return QualType(); if (getDerived().TransformFunctionTypeParams( TL.getBeginLoc(), TL.getParmArray(), TL.getNumParams(), TL.getTypePtr()->param_type_begin(), ParamTypes, &ParamDecls)) return QualType(); } // FIXME: Need to transform the exception-specification too. QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ResultType != T->getReturnType() || T->getNumParams() != ParamTypes.size() || !std::equal(T->param_type_begin(), T->param_type_end(), ParamTypes.begin())) { Result = getDerived().RebuildFunctionProtoType(ResultType, ParamTypes, T->getExtProtoInfo()); if (Result.isNull()) return QualType(); } FunctionProtoTypeLoc NewTL = TLB.push(Result); NewTL.setLocalRangeBegin(TL.getLocalRangeBegin()); NewTL.setLParenLoc(TL.getLParenLoc()); NewTL.setRParenLoc(TL.getRParenLoc()); NewTL.setLocalRangeEnd(TL.getLocalRangeEnd()); for (unsigned i = 0, e = NewTL.getNumParams(); i != e; ++i) NewTL.setParam(i, ParamDecls[i]); return Result; } template QualType TreeTransform::TransformFunctionNoProtoType( TypeLocBuilder &TLB, FunctionNoProtoTypeLoc TL) { const FunctionNoProtoType *T = TL.getTypePtr(); QualType ResultType = getDerived().TransformType(TLB, TL.getReturnLoc()); if (ResultType.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ResultType != T->getReturnType()) Result = getDerived().RebuildFunctionNoProtoType(ResultType); FunctionNoProtoTypeLoc NewTL = TLB.push(Result); NewTL.setLocalRangeBegin(TL.getLocalRangeBegin()); NewTL.setLParenLoc(TL.getLParenLoc()); NewTL.setRParenLoc(TL.getRParenLoc()); NewTL.setLocalRangeEnd(TL.getLocalRangeEnd()); return Result; } template QualType TreeTransform::TransformUnresolvedUsingType(TypeLocBuilder &TLB, UnresolvedUsingTypeLoc TL) { const UnresolvedUsingType *T = TL.getTypePtr(); Decl *D = getDerived().TransformDecl(TL.getNameLoc(), T->getDecl()); if (!D) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || D != T->getDecl()) { Result = getDerived().RebuildUnresolvedUsingType(D); if (Result.isNull()) return QualType(); } // We might get an arbitrary type spec type back. We should at // least always get a type spec type, though. TypeSpecTypeLoc NewTL = TLB.pushTypeSpec(Result); NewTL.setNameLoc(TL.getNameLoc()); return Result; } template QualType TreeTransform::TransformTypedefType(TypeLocBuilder &TLB, TypedefTypeLoc TL) { const TypedefType *T = TL.getTypePtr(); TypedefNameDecl *Typedef = cast_or_null(getDerived().TransformDecl(TL.getNameLoc(), T->getDecl())); if (!Typedef) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || Typedef != T->getDecl()) { Result = getDerived().RebuildTypedefType(Typedef); if (Result.isNull()) return QualType(); } TypedefTypeLoc NewTL = TLB.push(Result); NewTL.setNameLoc(TL.getNameLoc()); return Result; } template QualType TreeTransform::TransformTypeOfExprType(TypeLocBuilder &TLB, TypeOfExprTypeLoc TL) { // typeof expressions are not potentially evaluated contexts EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated, Sema::ReuseLambdaContextDecl); ExprResult E = getDerived().TransformExpr(TL.getUnderlyingExpr()); if (E.isInvalid()) return QualType(); E = SemaRef.HandleExprEvaluationContextForTypeof(E.get()); if (E.isInvalid()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || E.get() != TL.getUnderlyingExpr()) { Result = getDerived().RebuildTypeOfExprType(E.get(), TL.getTypeofLoc()); if (Result.isNull()) return QualType(); } else E.get(); TypeOfExprTypeLoc NewTL = TLB.push(Result); NewTL.setTypeofLoc(TL.getTypeofLoc()); NewTL.setLParenLoc(TL.getLParenLoc()); NewTL.setRParenLoc(TL.getRParenLoc()); return Result; } template QualType TreeTransform::TransformTypeOfType(TypeLocBuilder &TLB, TypeOfTypeLoc TL) { TypeSourceInfo* Old_Under_TI = TL.getUnderlyingTInfo(); TypeSourceInfo* New_Under_TI = getDerived().TransformType(Old_Under_TI); if (!New_Under_TI) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || New_Under_TI != Old_Under_TI) { Result = getDerived().RebuildTypeOfType(New_Under_TI->getType()); if (Result.isNull()) return QualType(); } TypeOfTypeLoc NewTL = TLB.push(Result); NewTL.setTypeofLoc(TL.getTypeofLoc()); NewTL.setLParenLoc(TL.getLParenLoc()); NewTL.setRParenLoc(TL.getRParenLoc()); NewTL.setUnderlyingTInfo(New_Under_TI); return Result; } template QualType TreeTransform::TransformDecltypeType(TypeLocBuilder &TLB, DecltypeTypeLoc TL) { const DecltypeType *T = TL.getTypePtr(); // decltype expressions are not potentially evaluated contexts EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated, nullptr, /*IsDecltype=*/ true); ExprResult E = getDerived().TransformExpr(T->getUnderlyingExpr()); if (E.isInvalid()) return QualType(); E = getSema().ActOnDecltypeExpression(E.get()); if (E.isInvalid()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || E.get() != T->getUnderlyingExpr()) { Result = getDerived().RebuildDecltypeType(E.get(), TL.getNameLoc()); if (Result.isNull()) return QualType(); } else E.get(); DecltypeTypeLoc NewTL = TLB.push(Result); NewTL.setNameLoc(TL.getNameLoc()); return Result; } template QualType TreeTransform::TransformUnaryTransformType( TypeLocBuilder &TLB, UnaryTransformTypeLoc TL) { QualType Result = TL.getType(); if (Result->isDependentType()) { const UnaryTransformType *T = TL.getTypePtr(); QualType NewBase = getDerived().TransformType(TL.getUnderlyingTInfo())->getType(); Result = getDerived().RebuildUnaryTransformType(NewBase, T->getUTTKind(), TL.getKWLoc()); if (Result.isNull()) return QualType(); } UnaryTransformTypeLoc NewTL = TLB.push(Result); NewTL.setKWLoc(TL.getKWLoc()); NewTL.setParensRange(TL.getParensRange()); NewTL.setUnderlyingTInfo(TL.getUnderlyingTInfo()); return Result; } template QualType TreeTransform::TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) { const AutoType *T = TL.getTypePtr(); QualType OldDeduced = T->getDeducedType(); QualType NewDeduced; if (!OldDeduced.isNull()) { NewDeduced = getDerived().TransformType(OldDeduced); if (NewDeduced.isNull()) return QualType(); } QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || NewDeduced != OldDeduced || T->isDependentType()) { Result = getDerived().RebuildAutoType(NewDeduced, T->isDecltypeAuto()); if (Result.isNull()) return QualType(); } AutoTypeLoc NewTL = TLB.push(Result); NewTL.setNameLoc(TL.getNameLoc()); return Result; } template QualType TreeTransform::TransformRecordType(TypeLocBuilder &TLB, RecordTypeLoc TL) { const RecordType *T = TL.getTypePtr(); RecordDecl *Record = cast_or_null(getDerived().TransformDecl(TL.getNameLoc(), T->getDecl())); if (!Record) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || Record != T->getDecl()) { Result = getDerived().RebuildRecordType(Record); if (Result.isNull()) return QualType(); } RecordTypeLoc NewTL = TLB.push(Result); NewTL.setNameLoc(TL.getNameLoc()); return Result; } template QualType TreeTransform::TransformEnumType(TypeLocBuilder &TLB, EnumTypeLoc TL) { const EnumType *T = TL.getTypePtr(); EnumDecl *Enum = cast_or_null(getDerived().TransformDecl(TL.getNameLoc(), T->getDecl())); if (!Enum) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || Enum != T->getDecl()) { Result = getDerived().RebuildEnumType(Enum); if (Result.isNull()) return QualType(); } EnumTypeLoc NewTL = TLB.push(Result); NewTL.setNameLoc(TL.getNameLoc()); return Result; } template QualType TreeTransform::TransformInjectedClassNameType( TypeLocBuilder &TLB, InjectedClassNameTypeLoc TL) { Decl *D = getDerived().TransformDecl(TL.getNameLoc(), TL.getTypePtr()->getDecl()); if (!D) return QualType(); QualType T = SemaRef.Context.getTypeDeclType(cast(D)); TLB.pushTypeSpec(T).setNameLoc(TL.getNameLoc()); return T; } template QualType TreeTransform::TransformTemplateTypeParmType( TypeLocBuilder &TLB, TemplateTypeParmTypeLoc TL) { return TransformTypeSpecType(TLB, TL); } template QualType TreeTransform::TransformSubstTemplateTypeParmType( TypeLocBuilder &TLB, SubstTemplateTypeParmTypeLoc TL) { const SubstTemplateTypeParmType *T = TL.getTypePtr(); // Substitute into the replacement type, which itself might involve something // that needs to be transformed. This only tends to occur with default // template arguments of template template parameters. TemporaryBase Rebase(*this, TL.getNameLoc(), DeclarationName()); QualType Replacement = getDerived().TransformType(T->getReplacementType()); if (Replacement.isNull()) return QualType(); // Always canonicalize the replacement type. Replacement = SemaRef.Context.getCanonicalType(Replacement); QualType Result = SemaRef.Context.getSubstTemplateTypeParmType(T->getReplacedParameter(), Replacement); // Propagate type-source information. SubstTemplateTypeParmTypeLoc NewTL = TLB.push(Result); NewTL.setNameLoc(TL.getNameLoc()); return Result; } template QualType TreeTransform::TransformSubstTemplateTypeParmPackType( TypeLocBuilder &TLB, SubstTemplateTypeParmPackTypeLoc TL) { return TransformTypeSpecType(TLB, TL); } template QualType TreeTransform::TransformTemplateSpecializationType( TypeLocBuilder &TLB, TemplateSpecializationTypeLoc TL) { const TemplateSpecializationType *T = TL.getTypePtr(); // The nested-name-specifier never matters in a TemplateSpecializationType, // because we can't have a dependent nested-name-specifier anyway. CXXScopeSpec SS; TemplateName Template = getDerived().TransformTemplateName(SS, T->getTemplateName(), TL.getTemplateNameLoc()); if (Template.isNull()) return QualType(); return getDerived().TransformTemplateSpecializationType(TLB, TL, Template); } template QualType TreeTransform::TransformAtomicType(TypeLocBuilder &TLB, AtomicTypeLoc TL) { QualType ValueType = getDerived().TransformType(TLB, TL.getValueLoc()); if (ValueType.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ValueType != TL.getValueLoc().getType()) { Result = getDerived().RebuildAtomicType(ValueType, TL.getKWLoc()); if (Result.isNull()) return QualType(); } AtomicTypeLoc NewTL = TLB.push(Result); NewTL.setKWLoc(TL.getKWLoc()); NewTL.setLParenLoc(TL.getLParenLoc()); NewTL.setRParenLoc(TL.getRParenLoc()); return Result; } /// \brief Simple iterator that traverses the template arguments in a /// container that provides a \c getArgLoc() member function. /// /// This iterator is intended to be used with the iterator form of /// \c TreeTransform::TransformTemplateArguments(). template class TemplateArgumentLocContainerIterator { ArgLocContainer *Container; unsigned Index; public: typedef TemplateArgumentLoc value_type; typedef TemplateArgumentLoc reference; typedef int difference_type; typedef std::input_iterator_tag iterator_category; class pointer { TemplateArgumentLoc Arg; public: explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { } const TemplateArgumentLoc *operator->() const { return &Arg; } }; TemplateArgumentLocContainerIterator() {} TemplateArgumentLocContainerIterator(ArgLocContainer &Container, unsigned Index) : Container(&Container), Index(Index) { } TemplateArgumentLocContainerIterator &operator++() { ++Index; return *this; } TemplateArgumentLocContainerIterator operator++(int) { TemplateArgumentLocContainerIterator Old(*this); ++(*this); return Old; } TemplateArgumentLoc operator*() const { return Container->getArgLoc(Index); } pointer operator->() const { return pointer(Container->getArgLoc(Index)); } friend bool operator==(const TemplateArgumentLocContainerIterator &X, const TemplateArgumentLocContainerIterator &Y) { return X.Container == Y.Container && X.Index == Y.Index; } friend bool operator!=(const TemplateArgumentLocContainerIterator &X, const TemplateArgumentLocContainerIterator &Y) { return !(X == Y); } }; template QualType TreeTransform::TransformTemplateSpecializationType( TypeLocBuilder &TLB, TemplateSpecializationTypeLoc TL, TemplateName Template) { TemplateArgumentListInfo NewTemplateArgs; NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc()); NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc()); typedef TemplateArgumentLocContainerIterator ArgIterator; if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0), ArgIterator(TL, TL.getNumArgs()), NewTemplateArgs)) return QualType(); // FIXME: maybe don't rebuild if all the template arguments are the same. QualType Result = getDerived().RebuildTemplateSpecializationType(Template, TL.getTemplateNameLoc(), NewTemplateArgs); if (!Result.isNull()) { // Specializations of template template parameters are represented as // TemplateSpecializationTypes, and substitution of type alias templates // within a dependent context can transform them into // DependentTemplateSpecializationTypes. if (isa(Result)) { DependentTemplateSpecializationTypeLoc NewTL = TLB.push(Result); NewTL.setElaboratedKeywordLoc(SourceLocation()); NewTL.setQualifierLoc(NestedNameSpecifierLoc()); NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); NewTL.setTemplateNameLoc(TL.getTemplateNameLoc()); NewTL.setLAngleLoc(TL.getLAngleLoc()); NewTL.setRAngleLoc(TL.getRAngleLoc()); for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i) NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo()); return Result; } TemplateSpecializationTypeLoc NewTL = TLB.push(Result); NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); NewTL.setTemplateNameLoc(TL.getTemplateNameLoc()); NewTL.setLAngleLoc(TL.getLAngleLoc()); NewTL.setRAngleLoc(TL.getRAngleLoc()); for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i) NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo()); } return Result; } template QualType TreeTransform::TransformDependentTemplateSpecializationType( TypeLocBuilder &TLB, DependentTemplateSpecializationTypeLoc TL, TemplateName Template, CXXScopeSpec &SS) { TemplateArgumentListInfo NewTemplateArgs; NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc()); NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc()); typedef TemplateArgumentLocContainerIterator< DependentTemplateSpecializationTypeLoc> ArgIterator; if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0), ArgIterator(TL, TL.getNumArgs()), NewTemplateArgs)) return QualType(); // FIXME: maybe don't rebuild if all the template arguments are the same. if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { QualType Result = getSema().Context.getDependentTemplateSpecializationType( TL.getTypePtr()->getKeyword(), DTN->getQualifier(), DTN->getIdentifier(), NewTemplateArgs); DependentTemplateSpecializationTypeLoc NewTL = TLB.push(Result); NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc()); NewTL.setQualifierLoc(SS.getWithLocInContext(SemaRef.Context)); NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); NewTL.setTemplateNameLoc(TL.getTemplateNameLoc()); NewTL.setLAngleLoc(TL.getLAngleLoc()); NewTL.setRAngleLoc(TL.getRAngleLoc()); for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i) NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo()); return Result; } QualType Result = getDerived().RebuildTemplateSpecializationType(Template, TL.getTemplateNameLoc(), NewTemplateArgs); if (!Result.isNull()) { /// FIXME: Wrap this in an elaborated-type-specifier? TemplateSpecializationTypeLoc NewTL = TLB.push(Result); NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); NewTL.setTemplateNameLoc(TL.getTemplateNameLoc()); NewTL.setLAngleLoc(TL.getLAngleLoc()); NewTL.setRAngleLoc(TL.getRAngleLoc()); for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i) NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo()); } return Result; } template QualType TreeTransform::TransformElaboratedType(TypeLocBuilder &TLB, ElaboratedTypeLoc TL) { const ElaboratedType *T = TL.getTypePtr(); NestedNameSpecifierLoc QualifierLoc; // NOTE: the qualifier in an ElaboratedType is optional. if (TL.getQualifierLoc()) { QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc()); if (!QualifierLoc) return QualType(); } QualType NamedT = getDerived().TransformType(TLB, TL.getNamedTypeLoc()); if (NamedT.isNull()) return QualType(); // C++0x [dcl.type.elab]p2: // If the identifier resolves to a typedef-name or the simple-template-id // resolves to an alias template specialization, the // elaborated-type-specifier is ill-formed. if (T->getKeyword() != ETK_None && T->getKeyword() != ETK_Typename) { if (const TemplateSpecializationType *TST = NamedT->getAs()) { TemplateName Template = TST->getTemplateName(); if (TypeAliasTemplateDecl *TAT = dyn_cast_or_null(Template.getAsTemplateDecl())) { SemaRef.Diag(TL.getNamedTypeLoc().getBeginLoc(), diag::err_tag_reference_non_tag) << 4; SemaRef.Diag(TAT->getLocation(), diag::note_declared_at); } } } QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || QualifierLoc != TL.getQualifierLoc() || NamedT != T->getNamedType()) { Result = getDerived().RebuildElaboratedType(TL.getElaboratedKeywordLoc(), T->getKeyword(), QualifierLoc, NamedT); if (Result.isNull()) return QualType(); } ElaboratedTypeLoc NewTL = TLB.push(Result); NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc()); NewTL.setQualifierLoc(QualifierLoc); return Result; } template QualType TreeTransform::TransformAttributedType( TypeLocBuilder &TLB, AttributedTypeLoc TL) { const AttributedType *oldType = TL.getTypePtr(); QualType modifiedType = getDerived().TransformType(TLB, TL.getModifiedLoc()); if (modifiedType.isNull()) return QualType(); QualType result = TL.getType(); // FIXME: dependent operand expressions? if (getDerived().AlwaysRebuild() || modifiedType != oldType->getModifiedType()) { // TODO: this is really lame; we should really be rebuilding the // equivalent type from first principles. QualType equivalentType = getDerived().TransformType(oldType->getEquivalentType()); if (equivalentType.isNull()) return QualType(); result = SemaRef.Context.getAttributedType(oldType->getAttrKind(), modifiedType, equivalentType); } AttributedTypeLoc newTL = TLB.push(result); newTL.setAttrNameLoc(TL.getAttrNameLoc()); if (TL.hasAttrOperand()) newTL.setAttrOperandParensRange(TL.getAttrOperandParensRange()); if (TL.hasAttrExprOperand()) newTL.setAttrExprOperand(TL.getAttrExprOperand()); else if (TL.hasAttrEnumOperand()) newTL.setAttrEnumOperandLoc(TL.getAttrEnumOperandLoc()); return result; } template QualType TreeTransform::TransformParenType(TypeLocBuilder &TLB, ParenTypeLoc TL) { QualType Inner = getDerived().TransformType(TLB, TL.getInnerLoc()); if (Inner.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || Inner != TL.getInnerLoc().getType()) { Result = getDerived().RebuildParenType(Inner); if (Result.isNull()) return QualType(); } ParenTypeLoc NewTL = TLB.push(Result); NewTL.setLParenLoc(TL.getLParenLoc()); NewTL.setRParenLoc(TL.getRParenLoc()); return Result; } template QualType TreeTransform::TransformDependentNameType(TypeLocBuilder &TLB, DependentNameTypeLoc TL) { const DependentNameType *T = TL.getTypePtr(); NestedNameSpecifierLoc QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc()); if (!QualifierLoc) return QualType(); QualType Result = getDerived().RebuildDependentNameType(T->getKeyword(), TL.getElaboratedKeywordLoc(), QualifierLoc, T->getIdentifier(), TL.getNameLoc()); if (Result.isNull()) return QualType(); if (const ElaboratedType* ElabT = Result->getAs()) { QualType NamedT = ElabT->getNamedType(); TLB.pushTypeSpec(NamedT).setNameLoc(TL.getNameLoc()); ElaboratedTypeLoc NewTL = TLB.push(Result); NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc()); NewTL.setQualifierLoc(QualifierLoc); } else { DependentNameTypeLoc NewTL = TLB.push(Result); NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc()); NewTL.setQualifierLoc(QualifierLoc); NewTL.setNameLoc(TL.getNameLoc()); } return Result; } template QualType TreeTransform:: TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB, DependentTemplateSpecializationTypeLoc TL) { NestedNameSpecifierLoc QualifierLoc; if (TL.getQualifierLoc()) { QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc()); if (!QualifierLoc) return QualType(); } return getDerived() .TransformDependentTemplateSpecializationType(TLB, TL, QualifierLoc); } template QualType TreeTransform:: TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB, DependentTemplateSpecializationTypeLoc TL, NestedNameSpecifierLoc QualifierLoc) { const DependentTemplateSpecializationType *T = TL.getTypePtr(); TemplateArgumentListInfo NewTemplateArgs; NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc()); NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc()); typedef TemplateArgumentLocContainerIterator< DependentTemplateSpecializationTypeLoc> ArgIterator; if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0), ArgIterator(TL, TL.getNumArgs()), NewTemplateArgs)) return QualType(); QualType Result = getDerived().RebuildDependentTemplateSpecializationType(T->getKeyword(), QualifierLoc, T->getIdentifier(), TL.getTemplateNameLoc(), NewTemplateArgs); if (Result.isNull()) return QualType(); if (const ElaboratedType *ElabT = dyn_cast(Result)) { QualType NamedT = ElabT->getNamedType(); // Copy information relevant to the template specialization. TemplateSpecializationTypeLoc NamedTL = TLB.push(NamedT); NamedTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); NamedTL.setTemplateNameLoc(TL.getTemplateNameLoc()); NamedTL.setLAngleLoc(TL.getLAngleLoc()); NamedTL.setRAngleLoc(TL.getRAngleLoc()); for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I) NamedTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo()); // Copy information relevant to the elaborated type. ElaboratedTypeLoc NewTL = TLB.push(Result); NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc()); NewTL.setQualifierLoc(QualifierLoc); } else if (isa(Result)) { DependentTemplateSpecializationTypeLoc SpecTL = TLB.push(Result); SpecTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc()); SpecTL.setQualifierLoc(QualifierLoc); SpecTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); SpecTL.setTemplateNameLoc(TL.getTemplateNameLoc()); SpecTL.setLAngleLoc(TL.getLAngleLoc()); SpecTL.setRAngleLoc(TL.getRAngleLoc()); for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I) SpecTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo()); } else { TemplateSpecializationTypeLoc SpecTL = TLB.push(Result); SpecTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); SpecTL.setTemplateNameLoc(TL.getTemplateNameLoc()); SpecTL.setLAngleLoc(TL.getLAngleLoc()); SpecTL.setRAngleLoc(TL.getRAngleLoc()); for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I) SpecTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo()); } return Result; } template QualType TreeTransform::TransformPackExpansionType(TypeLocBuilder &TLB, PackExpansionTypeLoc TL) { QualType Pattern = getDerived().TransformType(TLB, TL.getPatternLoc()); if (Pattern.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || Pattern != TL.getPatternLoc().getType()) { Result = getDerived().RebuildPackExpansionType(Pattern, TL.getPatternLoc().getSourceRange(), TL.getEllipsisLoc(), TL.getTypePtr()->getNumExpansions()); if (Result.isNull()) return QualType(); } PackExpansionTypeLoc NewT = TLB.push(Result); NewT.setEllipsisLoc(TL.getEllipsisLoc()); return Result; } template QualType TreeTransform::TransformObjCInterfaceType(TypeLocBuilder &TLB, ObjCInterfaceTypeLoc TL) { // ObjCInterfaceType is never dependent. TLB.pushFullCopy(TL); return TL.getType(); } template QualType TreeTransform::TransformObjCObjectType(TypeLocBuilder &TLB, ObjCObjectTypeLoc TL) { // ObjCObjectType is never dependent. TLB.pushFullCopy(TL); return TL.getType(); } template QualType TreeTransform::TransformObjCObjectPointerType(TypeLocBuilder &TLB, ObjCObjectPointerTypeLoc TL) { // ObjCObjectPointerType is never dependent. TLB.pushFullCopy(TL); return TL.getType(); } //===----------------------------------------------------------------------===// // Statement transformation //===----------------------------------------------------------------------===// template StmtResult TreeTransform::TransformNullStmt(NullStmt *S) { return S; } template StmtResult TreeTransform::TransformCompoundStmt(CompoundStmt *S) { return getDerived().TransformCompoundStmt(S, false); } template StmtResult TreeTransform::TransformCompoundStmt(CompoundStmt *S, bool IsStmtExpr) { Sema::CompoundScopeRAII CompoundScope(getSema()); bool SubStmtInvalid = false; bool SubStmtChanged = false; SmallVector Statements; for (auto *B : S->body()) { StmtResult Result = getDerived().TransformStmt(B); if (Result.isInvalid()) { // Immediately fail if this was a DeclStmt, since it's very // likely that this will cause problems for future statements. if (isa(B)) return StmtError(); // Otherwise, just keep processing substatements and fail later. SubStmtInvalid = true; continue; } SubStmtChanged = SubStmtChanged || Result.get() != B; Statements.push_back(Result.getAs()); } if (SubStmtInvalid) return StmtError(); if (!getDerived().AlwaysRebuild() && !SubStmtChanged) return S; return getDerived().RebuildCompoundStmt(S->getLBracLoc(), Statements, S->getRBracLoc(), IsStmtExpr); } template StmtResult TreeTransform::TransformCaseStmt(CaseStmt *S) { ExprResult LHS, RHS; { EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::ConstantEvaluated); // Transform the left-hand case value. LHS = getDerived().TransformExpr(S->getLHS()); LHS = SemaRef.ActOnConstantExpression(LHS); if (LHS.isInvalid()) return StmtError(); // Transform the right-hand case value (for the GNU case-range extension). RHS = getDerived().TransformExpr(S->getRHS()); RHS = SemaRef.ActOnConstantExpression(RHS); if (RHS.isInvalid()) return StmtError(); } // Build the case statement. // Case statements are always rebuilt so that they will attached to their // transformed switch statement. StmtResult Case = getDerived().RebuildCaseStmt(S->getCaseLoc(), LHS.get(), S->getEllipsisLoc(), RHS.get(), S->getColonLoc()); if (Case.isInvalid()) return StmtError(); // Transform the statement following the case StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt()); if (SubStmt.isInvalid()) return StmtError(); // Attach the body to the case statement return getDerived().RebuildCaseStmtBody(Case.get(), SubStmt.get()); } template StmtResult TreeTransform::TransformDefaultStmt(DefaultStmt *S) { // Transform the statement following the default case StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt()); if (SubStmt.isInvalid()) return StmtError(); // Default statements are always rebuilt return getDerived().RebuildDefaultStmt(S->getDefaultLoc(), S->getColonLoc(), SubStmt.get()); } template StmtResult TreeTransform::TransformLabelStmt(LabelStmt *S) { StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt()); if (SubStmt.isInvalid()) return StmtError(); Decl *LD = getDerived().TransformDecl(S->getDecl()->getLocation(), S->getDecl()); if (!LD) return StmtError(); // FIXME: Pass the real colon location in. return getDerived().RebuildLabelStmt(S->getIdentLoc(), cast(LD), SourceLocation(), SubStmt.get()); } template StmtResult TreeTransform::TransformAttributedStmt(AttributedStmt *S) { StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt()); if (SubStmt.isInvalid()) return StmtError(); // TODO: transform attributes if (SubStmt.get() == S->getSubStmt() /* && attrs are the same */) return S; return getDerived().RebuildAttributedStmt(S->getAttrLoc(), S->getAttrs(), SubStmt.get()); } template StmtResult TreeTransform::TransformIfStmt(IfStmt *S) { // Transform the condition ExprResult Cond; VarDecl *ConditionVar = nullptr; if (S->getConditionVariable()) { ConditionVar = cast_or_null( getDerived().TransformDefinition( S->getConditionVariable()->getLocation(), S->getConditionVariable())); if (!ConditionVar) return StmtError(); } else { Cond = getDerived().TransformExpr(S->getCond()); if (Cond.isInvalid()) return StmtError(); // Convert the condition to a boolean value. if (S->getCond()) { ExprResult CondE = getSema().ActOnBooleanCondition(nullptr, S->getIfLoc(), Cond.get()); if (CondE.isInvalid()) return StmtError(); Cond = CondE.get(); } } Sema::FullExprArg FullCond(getSema().MakeFullExpr(Cond.get())); if (!S->getConditionVariable() && S->getCond() && !FullCond.get()) return StmtError(); // Transform the "then" branch. StmtResult Then = getDerived().TransformStmt(S->getThen()); if (Then.isInvalid()) return StmtError(); // Transform the "else" branch. StmtResult Else = getDerived().TransformStmt(S->getElse()); if (Else.isInvalid()) return StmtError(); if (!getDerived().AlwaysRebuild() && FullCond.get() == S->getCond() && ConditionVar == S->getConditionVariable() && Then.get() == S->getThen() && Else.get() == S->getElse()) return S; return getDerived().RebuildIfStmt(S->getIfLoc(), FullCond, ConditionVar, Then.get(), S->getElseLoc(), Else.get()); } template StmtResult TreeTransform::TransformSwitchStmt(SwitchStmt *S) { // Transform the condition. ExprResult Cond; VarDecl *ConditionVar = nullptr; if (S->getConditionVariable()) { ConditionVar = cast_or_null( getDerived().TransformDefinition( S->getConditionVariable()->getLocation(), S->getConditionVariable())); if (!ConditionVar) return StmtError(); } else { Cond = getDerived().TransformExpr(S->getCond()); if (Cond.isInvalid()) return StmtError(); } // Rebuild the switch statement. StmtResult Switch = getDerived().RebuildSwitchStmtStart(S->getSwitchLoc(), Cond.get(), ConditionVar); if (Switch.isInvalid()) return StmtError(); // Transform the body of the switch statement. StmtResult Body = getDerived().TransformStmt(S->getBody()); if (Body.isInvalid()) return StmtError(); // Complete the switch statement. return getDerived().RebuildSwitchStmtBody(S->getSwitchLoc(), Switch.get(), Body.get()); } template StmtResult TreeTransform::TransformWhileStmt(WhileStmt *S) { // Transform the condition ExprResult Cond; VarDecl *ConditionVar = nullptr; if (S->getConditionVariable()) { ConditionVar = cast_or_null( getDerived().TransformDefinition( S->getConditionVariable()->getLocation(), S->getConditionVariable())); if (!ConditionVar) return StmtError(); } else { Cond = getDerived().TransformExpr(S->getCond()); if (Cond.isInvalid()) return StmtError(); if (S->getCond()) { // Convert the condition to a boolean value. ExprResult CondE = getSema().ActOnBooleanCondition(nullptr, S->getWhileLoc(), Cond.get()); if (CondE.isInvalid()) return StmtError(); Cond = CondE; } } Sema::FullExprArg FullCond(getSema().MakeFullExpr(Cond.get())); if (!S->getConditionVariable() && S->getCond() && !FullCond.get()) return StmtError(); // Transform the body StmtResult Body = getDerived().TransformStmt(S->getBody()); if (Body.isInvalid()) return StmtError(); if (!getDerived().AlwaysRebuild() && FullCond.get() == S->getCond() && ConditionVar == S->getConditionVariable() && Body.get() == S->getBody()) return Owned(S); return getDerived().RebuildWhileStmt(S->getWhileLoc(), FullCond, ConditionVar, Body.get()); } template StmtResult TreeTransform::TransformDoStmt(DoStmt *S) { // Transform the body StmtResult Body = getDerived().TransformStmt(S->getBody()); if (Body.isInvalid()) return StmtError(); // Transform the condition ExprResult Cond = getDerived().TransformExpr(S->getCond()); if (Cond.isInvalid()) return StmtError(); if (!getDerived().AlwaysRebuild() && Cond.get() == S->getCond() && Body.get() == S->getBody()) return S; return getDerived().RebuildDoStmt(S->getDoLoc(), Body.get(), S->getWhileLoc(), /*FIXME:*/S->getWhileLoc(), Cond.get(), S->getRParenLoc()); } template StmtResult TreeTransform::TransformForStmt(ForStmt *S) { // Transform the initialization statement StmtResult Init = getDerived().TransformStmt(S->getInit()); if (Init.isInvalid()) return StmtError(); // Transform the condition ExprResult Cond; VarDecl *ConditionVar = nullptr; if (S->getConditionVariable()) { ConditionVar = cast_or_null( getDerived().TransformDefinition( S->getConditionVariable()->getLocation(), S->getConditionVariable())); if (!ConditionVar) return StmtError(); } else { Cond = getDerived().TransformExpr(S->getCond()); if (Cond.isInvalid()) return StmtError(); if (S->getCond()) { // Convert the condition to a boolean value. ExprResult CondE = getSema().ActOnBooleanCondition(nullptr, S->getForLoc(), Cond.get()); if (CondE.isInvalid()) return StmtError(); Cond = CondE.get(); } } Sema::FullExprArg FullCond(getSema().MakeFullExpr(Cond.get())); if (!S->getConditionVariable() && S->getCond() && !FullCond.get()) return StmtError(); // Transform the increment ExprResult Inc = getDerived().TransformExpr(S->getInc()); if (Inc.isInvalid()) return StmtError(); Sema::FullExprArg FullInc(getSema().MakeFullDiscardedValueExpr(Inc.get())); if (S->getInc() && !FullInc.get()) return StmtError(); // Transform the body StmtResult Body = getDerived().TransformStmt(S->getBody()); if (Body.isInvalid()) return StmtError(); if (!getDerived().AlwaysRebuild() && Init.get() == S->getInit() && FullCond.get() == S->getCond() && Inc.get() == S->getInc() && Body.get() == S->getBody()) return S; return getDerived().RebuildForStmt(S->getForLoc(), S->getLParenLoc(), Init.get(), FullCond, ConditionVar, FullInc, S->getRParenLoc(), Body.get()); } template StmtResult TreeTransform::TransformGotoStmt(GotoStmt *S) { Decl *LD = getDerived().TransformDecl(S->getLabel()->getLocation(), S->getLabel()); if (!LD) return StmtError(); // Goto statements must always be rebuilt, to resolve the label. return getDerived().RebuildGotoStmt(S->getGotoLoc(), S->getLabelLoc(), cast(LD)); } template StmtResult TreeTransform::TransformIndirectGotoStmt(IndirectGotoStmt *S) { ExprResult Target = getDerived().TransformExpr(S->getTarget()); if (Target.isInvalid()) return StmtError(); Target = SemaRef.MaybeCreateExprWithCleanups(Target.get()); if (!getDerived().AlwaysRebuild() && Target.get() == S->getTarget()) return S; return getDerived().RebuildIndirectGotoStmt(S->getGotoLoc(), S->getStarLoc(), Target.get()); } template StmtResult TreeTransform::TransformContinueStmt(ContinueStmt *S) { return S; } template StmtResult TreeTransform::TransformBreakStmt(BreakStmt *S) { return S; } template StmtResult TreeTransform::TransformReturnStmt(ReturnStmt *S) { ExprResult Result = getDerived().TransformExpr(S->getRetValue()); if (Result.isInvalid()) return StmtError(); // FIXME: We always rebuild the return statement because there is no way // to tell whether the return type of the function has changed. return getDerived().RebuildReturnStmt(S->getReturnLoc(), Result.get()); } template StmtResult TreeTransform::TransformDeclStmt(DeclStmt *S) { bool DeclChanged = false; SmallVector Decls; for (auto *D : S->decls()) { Decl *Transformed = getDerived().TransformDefinition(D->getLocation(), D); if (!Transformed) return StmtError(); if (Transformed != D) DeclChanged = true; Decls.push_back(Transformed); } if (!getDerived().AlwaysRebuild() && !DeclChanged) return S; return getDerived().RebuildDeclStmt(Decls, S->getStartLoc(), S->getEndLoc()); } template StmtResult TreeTransform::TransformGCCAsmStmt(GCCAsmStmt *S) { SmallVector Constraints; SmallVector Exprs; SmallVector Names; ExprResult AsmString; SmallVector Clobbers; bool ExprsChanged = false; // Go through the outputs. for (unsigned I = 0, E = S->getNumOutputs(); I != E; ++I) { Names.push_back(S->getOutputIdentifier(I)); // No need to transform the constraint literal. Constraints.push_back(S->getOutputConstraintLiteral(I)); // Transform the output expr. Expr *OutputExpr = S->getOutputExpr(I); ExprResult Result = getDerived().TransformExpr(OutputExpr); if (Result.isInvalid()) return StmtError(); ExprsChanged |= Result.get() != OutputExpr; Exprs.push_back(Result.get()); } // Go through the inputs. for (unsigned I = 0, E = S->getNumInputs(); I != E; ++I) { Names.push_back(S->getInputIdentifier(I)); // No need to transform the constraint literal. Constraints.push_back(S->getInputConstraintLiteral(I)); // Transform the input expr. Expr *InputExpr = S->getInputExpr(I); ExprResult Result = getDerived().TransformExpr(InputExpr); if (Result.isInvalid()) return StmtError(); ExprsChanged |= Result.get() != InputExpr; Exprs.push_back(Result.get()); } if (!getDerived().AlwaysRebuild() && !ExprsChanged) return S; // Go through the clobbers. for (unsigned I = 0, E = S->getNumClobbers(); I != E; ++I) Clobbers.push_back(S->getClobberStringLiteral(I)); // No need to transform the asm string literal. AsmString = S->getAsmString(); return getDerived().RebuildGCCAsmStmt(S->getAsmLoc(), S->isSimple(), S->isVolatile(), S->getNumOutputs(), S->getNumInputs(), Names.data(), Constraints, Exprs, AsmString.get(), Clobbers, S->getRParenLoc()); } template StmtResult TreeTransform::TransformMSAsmStmt(MSAsmStmt *S) { ArrayRef AsmToks = llvm::makeArrayRef(S->getAsmToks(), S->getNumAsmToks()); bool HadError = false, HadChange = false; ArrayRef SrcExprs = S->getAllExprs(); SmallVector TransformedExprs; TransformedExprs.reserve(SrcExprs.size()); for (unsigned i = 0, e = SrcExprs.size(); i != e; ++i) { ExprResult Result = getDerived().TransformExpr(SrcExprs[i]); if (!Result.isUsable()) { HadError = true; } else { HadChange |= (Result.get() != SrcExprs[i]); TransformedExprs.push_back(Result.get()); } } if (HadError) return StmtError(); if (!HadChange && !getDerived().AlwaysRebuild()) return Owned(S); return getDerived().RebuildMSAsmStmt(S->getAsmLoc(), S->getLBraceLoc(), AsmToks, S->getAsmString(), S->getNumOutputs(), S->getNumInputs(), S->getAllConstraints(), S->getClobbers(), TransformedExprs, S->getEndLoc()); } template StmtResult TreeTransform::TransformObjCAtTryStmt(ObjCAtTryStmt *S) { // Transform the body of the @try. StmtResult TryBody = getDerived().TransformStmt(S->getTryBody()); if (TryBody.isInvalid()) return StmtError(); // Transform the @catch statements (if present). bool AnyCatchChanged = false; SmallVector CatchStmts; for (unsigned I = 0, N = S->getNumCatchStmts(); I != N; ++I) { StmtResult Catch = getDerived().TransformStmt(S->getCatchStmt(I)); if (Catch.isInvalid()) return StmtError(); if (Catch.get() != S->getCatchStmt(I)) AnyCatchChanged = true; CatchStmts.push_back(Catch.get()); } // Transform the @finally statement (if present). StmtResult Finally; if (S->getFinallyStmt()) { Finally = getDerived().TransformStmt(S->getFinallyStmt()); if (Finally.isInvalid()) return StmtError(); } // If nothing changed, just retain this statement. if (!getDerived().AlwaysRebuild() && TryBody.get() == S->getTryBody() && !AnyCatchChanged && Finally.get() == S->getFinallyStmt()) return S; // Build a new statement. return getDerived().RebuildObjCAtTryStmt(S->getAtTryLoc(), TryBody.get(), CatchStmts, Finally.get()); } template StmtResult TreeTransform::TransformObjCAtCatchStmt(ObjCAtCatchStmt *S) { // Transform the @catch parameter, if there is one. VarDecl *Var = nullptr; if (VarDecl *FromVar = S->getCatchParamDecl()) { TypeSourceInfo *TSInfo = nullptr; if (FromVar->getTypeSourceInfo()) { TSInfo = getDerived().TransformType(FromVar->getTypeSourceInfo()); if (!TSInfo) return StmtError(); } QualType T; if (TSInfo) T = TSInfo->getType(); else { T = getDerived().TransformType(FromVar->getType()); if (T.isNull()) return StmtError(); } Var = getDerived().RebuildObjCExceptionDecl(FromVar, TSInfo, T); if (!Var) return StmtError(); } StmtResult Body = getDerived().TransformStmt(S->getCatchBody()); if (Body.isInvalid()) return StmtError(); return getDerived().RebuildObjCAtCatchStmt(S->getAtCatchLoc(), S->getRParenLoc(), Var, Body.get()); } template StmtResult TreeTransform::TransformObjCAtFinallyStmt(ObjCAtFinallyStmt *S) { // Transform the body. StmtResult Body = getDerived().TransformStmt(S->getFinallyBody()); if (Body.isInvalid()) return StmtError(); // If nothing changed, just retain this statement. if (!getDerived().AlwaysRebuild() && Body.get() == S->getFinallyBody()) return S; // Build a new statement. return getDerived().RebuildObjCAtFinallyStmt(S->getAtFinallyLoc(), Body.get()); } template StmtResult TreeTransform::TransformObjCAtThrowStmt(ObjCAtThrowStmt *S) { ExprResult Operand; if (S->getThrowExpr()) { Operand = getDerived().TransformExpr(S->getThrowExpr()); if (Operand.isInvalid()) return StmtError(); } if (!getDerived().AlwaysRebuild() && Operand.get() == S->getThrowExpr()) return S; return getDerived().RebuildObjCAtThrowStmt(S->getThrowLoc(), Operand.get()); } template StmtResult TreeTransform::TransformObjCAtSynchronizedStmt( ObjCAtSynchronizedStmt *S) { // Transform the object we are locking. ExprResult Object = getDerived().TransformExpr(S->getSynchExpr()); if (Object.isInvalid()) return StmtError(); Object = getDerived().RebuildObjCAtSynchronizedOperand(S->getAtSynchronizedLoc(), Object.get()); if (Object.isInvalid()) return StmtError(); // Transform the body. StmtResult Body = getDerived().TransformStmt(S->getSynchBody()); if (Body.isInvalid()) return StmtError(); // If nothing change, just retain the current statement. if (!getDerived().AlwaysRebuild() && Object.get() == S->getSynchExpr() && Body.get() == S->getSynchBody()) return S; // Build a new statement. return getDerived().RebuildObjCAtSynchronizedStmt(S->getAtSynchronizedLoc(), Object.get(), Body.get()); } template StmtResult TreeTransform::TransformObjCAutoreleasePoolStmt( ObjCAutoreleasePoolStmt *S) { // Transform the body. StmtResult Body = getDerived().TransformStmt(S->getSubStmt()); if (Body.isInvalid()) return StmtError(); // If nothing changed, just retain this statement. if (!getDerived().AlwaysRebuild() && Body.get() == S->getSubStmt()) return S; // Build a new statement. return getDerived().RebuildObjCAutoreleasePoolStmt( S->getAtLoc(), Body.get()); } template StmtResult TreeTransform::TransformObjCForCollectionStmt( ObjCForCollectionStmt *S) { // Transform the element statement. StmtResult Element = getDerived().TransformStmt(S->getElement()); if (Element.isInvalid()) return StmtError(); // Transform the collection expression. ExprResult Collection = getDerived().TransformExpr(S->getCollection()); if (Collection.isInvalid()) return StmtError(); // Transform the body. StmtResult Body = getDerived().TransformStmt(S->getBody()); if (Body.isInvalid()) return StmtError(); // If nothing changed, just retain this statement. if (!getDerived().AlwaysRebuild() && Element.get() == S->getElement() && Collection.get() == S->getCollection() && Body.get() == S->getBody()) return S; // Build a new statement. return getDerived().RebuildObjCForCollectionStmt(S->getForLoc(), Element.get(), Collection.get(), S->getRParenLoc(), Body.get()); } template StmtResult TreeTransform::TransformCXXCatchStmt(CXXCatchStmt *S) { // Transform the exception declaration, if any. VarDecl *Var = nullptr; if (VarDecl *ExceptionDecl = S->getExceptionDecl()) { TypeSourceInfo *T = getDerived().TransformType(ExceptionDecl->getTypeSourceInfo()); if (!T) return StmtError(); Var = getDerived().RebuildExceptionDecl( ExceptionDecl, T, ExceptionDecl->getInnerLocStart(), ExceptionDecl->getLocation(), ExceptionDecl->getIdentifier()); if (!Var || Var->isInvalidDecl()) return StmtError(); } // Transform the actual exception handler. StmtResult Handler = getDerived().TransformStmt(S->getHandlerBlock()); if (Handler.isInvalid()) return StmtError(); if (!getDerived().AlwaysRebuild() && !Var && Handler.get() == S->getHandlerBlock()) return S; return getDerived().RebuildCXXCatchStmt(S->getCatchLoc(), Var, Handler.get()); } template StmtResult TreeTransform::TransformCXXTryStmt(CXXTryStmt *S) { // Transform the try block itself. StmtResult TryBlock = getDerived().TransformCompoundStmt(S->getTryBlock()); if (TryBlock.isInvalid()) return StmtError(); // Transform the handlers. bool HandlerChanged = false; SmallVector Handlers; for (unsigned I = 0, N = S->getNumHandlers(); I != N; ++I) { StmtResult Handler = getDerived().TransformCXXCatchStmt(S->getHandler(I)); if (Handler.isInvalid()) return StmtError(); HandlerChanged = HandlerChanged || Handler.get() != S->getHandler(I); Handlers.push_back(Handler.getAs()); } if (!getDerived().AlwaysRebuild() && TryBlock.get() == S->getTryBlock() && !HandlerChanged) return S; return getDerived().RebuildCXXTryStmt(S->getTryLoc(), TryBlock.get(), Handlers); } template StmtResult TreeTransform::TransformCXXForRangeStmt(CXXForRangeStmt *S) { StmtResult Range = getDerived().TransformStmt(S->getRangeStmt()); if (Range.isInvalid()) return StmtError(); StmtResult BeginEnd = getDerived().TransformStmt(S->getBeginEndStmt()); if (BeginEnd.isInvalid()) return StmtError(); ExprResult Cond = getDerived().TransformExpr(S->getCond()); if (Cond.isInvalid()) return StmtError(); if (Cond.get()) Cond = SemaRef.CheckBooleanCondition(Cond.get(), S->getColonLoc()); if (Cond.isInvalid()) return StmtError(); if (Cond.get()) Cond = SemaRef.MaybeCreateExprWithCleanups(Cond.get()); ExprResult Inc = getDerived().TransformExpr(S->getInc()); if (Inc.isInvalid()) return StmtError(); if (Inc.get()) Inc = SemaRef.MaybeCreateExprWithCleanups(Inc.get()); StmtResult LoopVar = getDerived().TransformStmt(S->getLoopVarStmt()); if (LoopVar.isInvalid()) return StmtError(); StmtResult NewStmt = S; if (getDerived().AlwaysRebuild() || Range.get() != S->getRangeStmt() || BeginEnd.get() != S->getBeginEndStmt() || Cond.get() != S->getCond() || Inc.get() != S->getInc() || LoopVar.get() != S->getLoopVarStmt()) { NewStmt = getDerived().RebuildCXXForRangeStmt(S->getForLoc(), S->getColonLoc(), Range.get(), BeginEnd.get(), Cond.get(), Inc.get(), LoopVar.get(), S->getRParenLoc()); if (NewStmt.isInvalid()) return StmtError(); } StmtResult Body = getDerived().TransformStmt(S->getBody()); if (Body.isInvalid()) return StmtError(); // Body has changed but we didn't rebuild the for-range statement. Rebuild // it now so we have a new statement to attach the body to. if (Body.get() != S->getBody() && NewStmt.get() == S) { NewStmt = getDerived().RebuildCXXForRangeStmt(S->getForLoc(), S->getColonLoc(), Range.get(), BeginEnd.get(), Cond.get(), Inc.get(), LoopVar.get(), S->getRParenLoc()); if (NewStmt.isInvalid()) return StmtError(); } if (NewStmt.get() == S) return S; return FinishCXXForRangeStmt(NewStmt.get(), Body.get()); } template StmtResult TreeTransform::TransformMSDependentExistsStmt( MSDependentExistsStmt *S) { // Transform the nested-name-specifier, if any. NestedNameSpecifierLoc QualifierLoc; if (S->getQualifierLoc()) { QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(S->getQualifierLoc()); if (!QualifierLoc) return StmtError(); } // Transform the declaration name. DeclarationNameInfo NameInfo = S->getNameInfo(); if (NameInfo.getName()) { NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo); if (!NameInfo.getName()) return StmtError(); } // Check whether anything changed. if (!getDerived().AlwaysRebuild() && QualifierLoc == S->getQualifierLoc() && NameInfo.getName() == S->getNameInfo().getName()) return S; // Determine whether this name exists, if we can. CXXScopeSpec SS; SS.Adopt(QualifierLoc); bool Dependent = false; switch (getSema().CheckMicrosoftIfExistsSymbol(/*S=*/nullptr, SS, NameInfo)) { case Sema::IER_Exists: if (S->isIfExists()) break; return new (getSema().Context) NullStmt(S->getKeywordLoc()); case Sema::IER_DoesNotExist: if (S->isIfNotExists()) break; return new (getSema().Context) NullStmt(S->getKeywordLoc()); case Sema::IER_Dependent: Dependent = true; break; case Sema::IER_Error: return StmtError(); } // We need to continue with the instantiation, so do so now. StmtResult SubStmt = getDerived().TransformCompoundStmt(S->getSubStmt()); if (SubStmt.isInvalid()) return StmtError(); // If we have resolved the name, just transform to the substatement. if (!Dependent) return SubStmt; // The name is still dependent, so build a dependent expression again. return getDerived().RebuildMSDependentExistsStmt(S->getKeywordLoc(), S->isIfExists(), QualifierLoc, NameInfo, SubStmt.get()); } template ExprResult TreeTransform::TransformMSPropertyRefExpr(MSPropertyRefExpr *E) { NestedNameSpecifierLoc QualifierLoc; if (E->getQualifierLoc()) { QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc()); if (!QualifierLoc) return ExprError(); } MSPropertyDecl *PD = cast_or_null( getDerived().TransformDecl(E->getMemberLoc(), E->getPropertyDecl())); if (!PD) return ExprError(); ExprResult Base = getDerived().TransformExpr(E->getBaseExpr()); if (Base.isInvalid()) return ExprError(); return new (SemaRef.getASTContext()) MSPropertyRefExpr(Base.get(), PD, E->isArrow(), SemaRef.getASTContext().PseudoObjectTy, VK_LValue, QualifierLoc, E->getMemberLoc()); } template StmtResult TreeTransform::TransformSEHTryStmt(SEHTryStmt *S) { StmtResult TryBlock = getDerived().TransformCompoundStmt(S->getTryBlock()); if (TryBlock.isInvalid()) return StmtError(); StmtResult Handler = getDerived().TransformSEHHandler(S->getHandler()); if (Handler.isInvalid()) return StmtError(); if (!getDerived().AlwaysRebuild() && TryBlock.get() == S->getTryBlock() && Handler.get() == S->getHandler()) return S; return getDerived().RebuildSEHTryStmt(S->getIsCXXTry(), S->getTryLoc(), TryBlock.get(), Handler.get()); } template StmtResult TreeTransform::TransformSEHFinallyStmt(SEHFinallyStmt *S) { StmtResult Block = getDerived().TransformCompoundStmt(S->getBlock()); if (Block.isInvalid()) return StmtError(); return getDerived().RebuildSEHFinallyStmt(S->getFinallyLoc(), Block.get()); } template StmtResult TreeTransform::TransformSEHExceptStmt(SEHExceptStmt *S) { ExprResult FilterExpr = getDerived().TransformExpr(S->getFilterExpr()); if (FilterExpr.isInvalid()) return StmtError(); StmtResult Block = getDerived().TransformCompoundStmt(S->getBlock()); if (Block.isInvalid()) return StmtError(); return getDerived().RebuildSEHExceptStmt(S->getExceptLoc(), FilterExpr.get(), Block.get()); } template StmtResult TreeTransform::TransformSEHHandler(Stmt *Handler) { if (isa(Handler)) return getDerived().TransformSEHFinallyStmt(cast(Handler)); else return getDerived().TransformSEHExceptStmt(cast(Handler)); } template StmtResult TreeTransform::TransformSEHLeaveStmt(SEHLeaveStmt *S) { return S; } //===----------------------------------------------------------------------===// // OpenMP directive transformation //===----------------------------------------------------------------------===// template StmtResult TreeTransform::TransformOMPExecutableDirective( OMPExecutableDirective *D) { // Transform the clauses llvm::SmallVector TClauses; ArrayRef Clauses = D->clauses(); TClauses.reserve(Clauses.size()); for (ArrayRef::iterator I = Clauses.begin(), E = Clauses.end(); I != E; ++I) { if (*I) { OMPClause *Clause = getDerived().TransformOMPClause(*I); if (Clause) TClauses.push_back(Clause); } else { TClauses.push_back(nullptr); } } if (!D->getAssociatedStmt()) { return StmtError(); } StmtResult AssociatedStmt = getDerived().TransformStmt(D->getAssociatedStmt()); if (AssociatedStmt.isInvalid() || TClauses.size() != Clauses.size()) { return StmtError(); } return getDerived().RebuildOMPExecutableDirective( D->getDirectiveKind(), TClauses, AssociatedStmt.get(), D->getLocStart(), D->getLocEnd()); } template StmtResult TreeTransform::TransformOMPParallelDirective(OMPParallelDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel, DirName, nullptr, D->getLocStart()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPSimdDirective(OMPSimdDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().StartOpenMPDSABlock(OMPD_simd, DirName, nullptr, D->getLocStart()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPForDirective(OMPForDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().StartOpenMPDSABlock(OMPD_for, DirName, nullptr, D->getLocStart()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPSectionsDirective(OMPSectionsDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().StartOpenMPDSABlock(OMPD_sections, DirName, nullptr, D->getLocStart()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPSectionDirective(OMPSectionDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().StartOpenMPDSABlock(OMPD_section, DirName, nullptr, D->getLocStart()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPSingleDirective(OMPSingleDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().StartOpenMPDSABlock(OMPD_single, DirName, nullptr, D->getLocStart()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPParallelForDirective( OMPParallelForDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel_for, DirName, nullptr, D->getLocStart()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().EndOpenMPDSABlock(Res.get()); return Res; } template StmtResult TreeTransform::TransformOMPParallelSectionsDirective( OMPParallelSectionsDirective *D) { DeclarationNameInfo DirName; getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel_sections, DirName, nullptr, D->getLocStart()); StmtResult Res = getDerived().TransformOMPExecutableDirective(D); getDerived().getSema().EndOpenMPDSABlock(Res.get()); return Res; } //===----------------------------------------------------------------------===// // OpenMP clause transformation //===----------------------------------------------------------------------===// template OMPClause *TreeTransform::TransformOMPIfClause(OMPIfClause *C) { ExprResult Cond = getDerived().TransformExpr(C->getCondition()); if (Cond.isInvalid()) return nullptr; return getDerived().RebuildOMPIfClause(Cond.get(), C->getLocStart(), C->getLParenLoc(), C->getLocEnd()); } template OMPClause * TreeTransform::TransformOMPNumThreadsClause(OMPNumThreadsClause *C) { ExprResult NumThreads = getDerived().TransformExpr(C->getNumThreads()); if (NumThreads.isInvalid()) return nullptr; return getDerived().RebuildOMPNumThreadsClause( NumThreads.get(), C->getLocStart(), C->getLParenLoc(), C->getLocEnd()); } template OMPClause * TreeTransform::TransformOMPSafelenClause(OMPSafelenClause *C) { ExprResult E = getDerived().TransformExpr(C->getSafelen()); if (E.isInvalid()) return nullptr; return getDerived().RebuildOMPSafelenClause( E.get(), C->getLocStart(), C->getLParenLoc(), C->getLocEnd()); } template OMPClause * TreeTransform::TransformOMPCollapseClause(OMPCollapseClause *C) { ExprResult E = getDerived().TransformExpr(C->getNumForLoops()); if (E.isInvalid()) return 0; return getDerived().RebuildOMPCollapseClause( E.get(), C->getLocStart(), C->getLParenLoc(), C->getLocEnd()); } template OMPClause * TreeTransform::TransformOMPDefaultClause(OMPDefaultClause *C) { return getDerived().RebuildOMPDefaultClause( C->getDefaultKind(), C->getDefaultKindKwLoc(), C->getLocStart(), C->getLParenLoc(), C->getLocEnd()); } template OMPClause * TreeTransform::TransformOMPProcBindClause(OMPProcBindClause *C) { return getDerived().RebuildOMPProcBindClause( C->getProcBindKind(), C->getProcBindKindKwLoc(), C->getLocStart(), C->getLParenLoc(), C->getLocEnd()); } template OMPClause * TreeTransform::TransformOMPScheduleClause(OMPScheduleClause *C) { ExprResult E = getDerived().TransformExpr(C->getChunkSize()); if (E.isInvalid()) return nullptr; return getDerived().RebuildOMPScheduleClause( C->getScheduleKind(), E.get(), C->getLocStart(), C->getLParenLoc(), C->getScheduleKindLoc(), C->getCommaLoc(), C->getLocEnd()); } template OMPClause * TreeTransform::TransformOMPOrderedClause(OMPOrderedClause *C) { // No need to rebuild this clause, no template-dependent parameters. return C; } template OMPClause * TreeTransform::TransformOMPNowaitClause(OMPNowaitClause *C) { // No need to rebuild this clause, no template-dependent parameters. return C; } template OMPClause * TreeTransform::TransformOMPPrivateClause(OMPPrivateClause *C) { llvm::SmallVector Vars; Vars.reserve(C->varlist_size()); for (auto *VE : C->varlists()) { ExprResult EVar = getDerived().TransformExpr(cast(VE)); if (EVar.isInvalid()) return nullptr; Vars.push_back(EVar.get()); } return getDerived().RebuildOMPPrivateClause( Vars, C->getLocStart(), C->getLParenLoc(), C->getLocEnd()); } template OMPClause *TreeTransform::TransformOMPFirstprivateClause( OMPFirstprivateClause *C) { llvm::SmallVector Vars; Vars.reserve(C->varlist_size()); for (auto *VE : C->varlists()) { ExprResult EVar = getDerived().TransformExpr(cast(VE)); if (EVar.isInvalid()) return nullptr; Vars.push_back(EVar.get()); } return getDerived().RebuildOMPFirstprivateClause( Vars, C->getLocStart(), C->getLParenLoc(), C->getLocEnd()); } template OMPClause * TreeTransform::TransformOMPLastprivateClause(OMPLastprivateClause *C) { llvm::SmallVector Vars; Vars.reserve(C->varlist_size()); for (auto *VE : C->varlists()) { ExprResult EVar = getDerived().TransformExpr(cast(VE)); if (EVar.isInvalid()) return nullptr; Vars.push_back(EVar.get()); } return getDerived().RebuildOMPLastprivateClause( Vars, C->getLocStart(), C->getLParenLoc(), C->getLocEnd()); } template OMPClause * TreeTransform::TransformOMPSharedClause(OMPSharedClause *C) { llvm::SmallVector Vars; Vars.reserve(C->varlist_size()); for (auto *VE : C->varlists()) { ExprResult EVar = getDerived().TransformExpr(cast(VE)); if (EVar.isInvalid()) return nullptr; Vars.push_back(EVar.get()); } return getDerived().RebuildOMPSharedClause(Vars, C->getLocStart(), C->getLParenLoc(), C->getLocEnd()); } template OMPClause * TreeTransform::TransformOMPReductionClause(OMPReductionClause *C) { llvm::SmallVector Vars; Vars.reserve(C->varlist_size()); for (auto *VE : C->varlists()) { ExprResult EVar = getDerived().TransformExpr(cast(VE)); if (EVar.isInvalid()) return nullptr; Vars.push_back(EVar.get()); } CXXScopeSpec ReductionIdScopeSpec; ReductionIdScopeSpec.Adopt(C->getQualifierLoc()); DeclarationNameInfo NameInfo = C->getNameInfo(); if (NameInfo.getName()) { NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo); if (!NameInfo.getName()) return nullptr; } return getDerived().RebuildOMPReductionClause( Vars, C->getLocStart(), C->getLParenLoc(), C->getColonLoc(), C->getLocEnd(), ReductionIdScopeSpec, NameInfo); } template OMPClause * TreeTransform::TransformOMPLinearClause(OMPLinearClause *C) { llvm::SmallVector Vars; Vars.reserve(C->varlist_size()); for (auto *VE : C->varlists()) { ExprResult EVar = getDerived().TransformExpr(cast(VE)); if (EVar.isInvalid()) return nullptr; Vars.push_back(EVar.get()); } ExprResult Step = getDerived().TransformExpr(C->getStep()); if (Step.isInvalid()) return nullptr; return getDerived().RebuildOMPLinearClause(Vars, Step.get(), C->getLocStart(), C->getLParenLoc(), C->getColonLoc(), C->getLocEnd()); } template OMPClause * TreeTransform::TransformOMPAlignedClause(OMPAlignedClause *C) { llvm::SmallVector Vars; Vars.reserve(C->varlist_size()); for (auto *VE : C->varlists()) { ExprResult EVar = getDerived().TransformExpr(cast(VE)); if (EVar.isInvalid()) return nullptr; Vars.push_back(EVar.get()); } ExprResult Alignment = getDerived().TransformExpr(C->getAlignment()); if (Alignment.isInvalid()) return nullptr; return getDerived().RebuildOMPAlignedClause( Vars, Alignment.get(), C->getLocStart(), C->getLParenLoc(), C->getColonLoc(), C->getLocEnd()); } template OMPClause * TreeTransform::TransformOMPCopyinClause(OMPCopyinClause *C) { llvm::SmallVector Vars; Vars.reserve(C->varlist_size()); for (auto *VE : C->varlists()) { ExprResult EVar = getDerived().TransformExpr(cast(VE)); if (EVar.isInvalid()) return nullptr; Vars.push_back(EVar.get()); } return getDerived().RebuildOMPCopyinClause(Vars, C->getLocStart(), C->getLParenLoc(), C->getLocEnd()); } template OMPClause * TreeTransform::TransformOMPCopyprivateClause(OMPCopyprivateClause *C) { llvm::SmallVector Vars; Vars.reserve(C->varlist_size()); for (auto *VE : C->varlists()) { ExprResult EVar = getDerived().TransformExpr(cast(VE)); if (EVar.isInvalid()) return nullptr; Vars.push_back(EVar.get()); } return getDerived().RebuildOMPCopyprivateClause( Vars, C->getLocStart(), C->getLParenLoc(), C->getLocEnd()); } //===----------------------------------------------------------------------===// // Expression transformation //===----------------------------------------------------------------------===// template ExprResult TreeTransform::TransformPredefinedExpr(PredefinedExpr *E) { return E; } template ExprResult TreeTransform::TransformDeclRefExpr(DeclRefExpr *E) { NestedNameSpecifierLoc QualifierLoc; if (E->getQualifierLoc()) { QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc()); if (!QualifierLoc) return ExprError(); } ValueDecl *ND = cast_or_null(getDerived().TransformDecl(E->getLocation(), E->getDecl())); if (!ND) return ExprError(); DeclarationNameInfo NameInfo = E->getNameInfo(); if (NameInfo.getName()) { NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo); if (!NameInfo.getName()) return ExprError(); } if (!getDerived().AlwaysRebuild() && QualifierLoc == E->getQualifierLoc() && ND == E->getDecl() && NameInfo.getName() == E->getDecl()->getDeclName() && !E->hasExplicitTemplateArgs()) { // Mark it referenced in the new context regardless. // FIXME: this is a bit instantiation-specific. SemaRef.MarkDeclRefReferenced(E); return E; } TemplateArgumentListInfo TransArgs, *TemplateArgs = nullptr; if (E->hasExplicitTemplateArgs()) { TemplateArgs = &TransArgs; TransArgs.setLAngleLoc(E->getLAngleLoc()); TransArgs.setRAngleLoc(E->getRAngleLoc()); if (getDerived().TransformTemplateArguments(E->getTemplateArgs(), E->getNumTemplateArgs(), TransArgs)) return ExprError(); } return getDerived().RebuildDeclRefExpr(QualifierLoc, ND, NameInfo, TemplateArgs); } template ExprResult TreeTransform::TransformIntegerLiteral(IntegerLiteral *E) { return E; } template ExprResult TreeTransform::TransformFloatingLiteral(FloatingLiteral *E) { return E; } template ExprResult TreeTransform::TransformImaginaryLiteral(ImaginaryLiteral *E) { return E; } template ExprResult TreeTransform::TransformStringLiteral(StringLiteral *E) { return E; } template ExprResult TreeTransform::TransformCharacterLiteral(CharacterLiteral *E) { return E; } template ExprResult TreeTransform::TransformUserDefinedLiteral(UserDefinedLiteral *E) { if (FunctionDecl *FD = E->getDirectCallee()) SemaRef.MarkFunctionReferenced(E->getLocStart(), FD); return SemaRef.MaybeBindToTemporary(E); } template ExprResult TreeTransform::TransformGenericSelectionExpr(GenericSelectionExpr *E) { ExprResult ControllingExpr = getDerived().TransformExpr(E->getControllingExpr()); if (ControllingExpr.isInvalid()) return ExprError(); SmallVector AssocExprs; SmallVector AssocTypes; for (unsigned i = 0; i != E->getNumAssocs(); ++i) { TypeSourceInfo *TS = E->getAssocTypeSourceInfo(i); if (TS) { TypeSourceInfo *AssocType = getDerived().TransformType(TS); if (!AssocType) return ExprError(); AssocTypes.push_back(AssocType); } else { AssocTypes.push_back(nullptr); } ExprResult AssocExpr = getDerived().TransformExpr(E->getAssocExpr(i)); if (AssocExpr.isInvalid()) return ExprError(); AssocExprs.push_back(AssocExpr.get()); } return getDerived().RebuildGenericSelectionExpr(E->getGenericLoc(), E->getDefaultLoc(), E->getRParenLoc(), ControllingExpr.get(), AssocTypes, AssocExprs); } template ExprResult TreeTransform::TransformParenExpr(ParenExpr *E) { ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr()); if (SubExpr.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr()) return E; return getDerived().RebuildParenExpr(SubExpr.get(), E->getLParen(), E->getRParen()); } /// \brief The operand of a unary address-of operator has special rules: it's /// allowed to refer to a non-static member of a class even if there's no 'this' /// object available. template ExprResult TreeTransform::TransformAddressOfOperand(Expr *E) { if (DependentScopeDeclRefExpr *DRE = dyn_cast(E)) return getDerived().TransformDependentScopeDeclRefExpr(DRE, true, nullptr); else return getDerived().TransformExpr(E); } template ExprResult TreeTransform::TransformUnaryOperator(UnaryOperator *E) { ExprResult SubExpr; if (E->getOpcode() == UO_AddrOf) SubExpr = TransformAddressOfOperand(E->getSubExpr()); else SubExpr = TransformExpr(E->getSubExpr()); if (SubExpr.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr()) return E; return getDerived().RebuildUnaryOperator(E->getOperatorLoc(), E->getOpcode(), SubExpr.get()); } template ExprResult TreeTransform::TransformOffsetOfExpr(OffsetOfExpr *E) { // Transform the type. TypeSourceInfo *Type = getDerived().TransformType(E->getTypeSourceInfo()); if (!Type) return ExprError(); // Transform all of the components into components similar to what the // parser uses. // FIXME: It would be slightly more efficient in the non-dependent case to // just map FieldDecls, rather than requiring the rebuilder to look for // the fields again. However, __builtin_offsetof is rare enough in // template code that we don't care. bool ExprChanged = false; typedef Sema::OffsetOfComponent Component; typedef OffsetOfExpr::OffsetOfNode Node; SmallVector Components; for (unsigned I = 0, N = E->getNumComponents(); I != N; ++I) { const Node &ON = E->getComponent(I); Component Comp; Comp.isBrackets = true; Comp.LocStart = ON.getSourceRange().getBegin(); Comp.LocEnd = ON.getSourceRange().getEnd(); switch (ON.getKind()) { case Node::Array: { Expr *FromIndex = E->getIndexExpr(ON.getArrayExprIndex()); ExprResult Index = getDerived().TransformExpr(FromIndex); if (Index.isInvalid()) return ExprError(); ExprChanged = ExprChanged || Index.get() != FromIndex; Comp.isBrackets = true; Comp.U.E = Index.get(); break; } case Node::Field: case Node::Identifier: Comp.isBrackets = false; Comp.U.IdentInfo = ON.getFieldName(); if (!Comp.U.IdentInfo) continue; break; case Node::Base: // Will be recomputed during the rebuild. continue; } Components.push_back(Comp); } // If nothing changed, retain the existing expression. if (!getDerived().AlwaysRebuild() && Type == E->getTypeSourceInfo() && !ExprChanged) return E; // Build a new offsetof expression. return getDerived().RebuildOffsetOfExpr(E->getOperatorLoc(), Type, Components.data(), Components.size(), E->getRParenLoc()); } template ExprResult TreeTransform::TransformOpaqueValueExpr(OpaqueValueExpr *E) { assert(getDerived().AlreadyTransformed(E->getType()) && "opaque value expression requires transformation"); return E; } template ExprResult TreeTransform::TransformPseudoObjectExpr(PseudoObjectExpr *E) { // Rebuild the syntactic form. The original syntactic form has // opaque-value expressions in it, so strip those away and rebuild // the result. This is a really awful way of doing this, but the // better solution (rebuilding the semantic expressions and // rebinding OVEs as necessary) doesn't work; we'd need // TreeTransform to not strip away implicit conversions. Expr *newSyntacticForm = SemaRef.recreateSyntacticForm(E); ExprResult result = getDerived().TransformExpr(newSyntacticForm); if (result.isInvalid()) return ExprError(); // If that gives us a pseudo-object result back, the pseudo-object // expression must have been an lvalue-to-rvalue conversion which we // should reapply. if (result.get()->hasPlaceholderType(BuiltinType::PseudoObject)) result = SemaRef.checkPseudoObjectRValue(result.get()); return result; } template ExprResult TreeTransform::TransformUnaryExprOrTypeTraitExpr( UnaryExprOrTypeTraitExpr *E) { if (E->isArgumentType()) { TypeSourceInfo *OldT = E->getArgumentTypeInfo(); TypeSourceInfo *NewT = getDerived().TransformType(OldT); if (!NewT) return ExprError(); if (!getDerived().AlwaysRebuild() && OldT == NewT) return E; return getDerived().RebuildUnaryExprOrTypeTrait(NewT, E->getOperatorLoc(), E->getKind(), E->getSourceRange()); } // C++0x [expr.sizeof]p1: // The operand is either an expression, which is an unevaluated operand // [...] EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated, Sema::ReuseLambdaContextDecl); // Try to recover if we have something like sizeof(T::X) where X is a type. // Notably, there must be *exactly* one set of parens if X is a type. TypeSourceInfo *RecoveryTSI = nullptr; ExprResult SubExpr; auto *PE = dyn_cast(E->getArgumentExpr()); if (auto *DRE = PE ? dyn_cast(PE->getSubExpr()) : nullptr) SubExpr = getDerived().TransformParenDependentScopeDeclRefExpr( PE, DRE, false, &RecoveryTSI); else SubExpr = getDerived().TransformExpr(E->getArgumentExpr()); if (RecoveryTSI) { return getDerived().RebuildUnaryExprOrTypeTrait( RecoveryTSI, E->getOperatorLoc(), E->getKind(), E->getSourceRange()); } else if (SubExpr.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getArgumentExpr()) return E; return getDerived().RebuildUnaryExprOrTypeTrait(SubExpr.get(), E->getOperatorLoc(), E->getKind(), E->getSourceRange()); } template ExprResult TreeTransform::TransformArraySubscriptExpr(ArraySubscriptExpr *E) { ExprResult LHS = getDerived().TransformExpr(E->getLHS()); if (LHS.isInvalid()) return ExprError(); ExprResult RHS = getDerived().TransformExpr(E->getRHS()); if (RHS.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && LHS.get() == E->getLHS() && RHS.get() == E->getRHS()) return E; return getDerived().RebuildArraySubscriptExpr(LHS.get(), /*FIXME:*/E->getLHS()->getLocStart(), RHS.get(), E->getRBracketLoc()); } template ExprResult TreeTransform::TransformCallExpr(CallExpr *E) { // Transform the callee. ExprResult Callee = getDerived().TransformExpr(E->getCallee()); if (Callee.isInvalid()) return ExprError(); // Transform arguments. bool ArgChanged = false; SmallVector Args; if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args, &ArgChanged)) return ExprError(); if (!getDerived().AlwaysRebuild() && Callee.get() == E->getCallee() && !ArgChanged) return SemaRef.MaybeBindToTemporary(E); // FIXME: Wrong source location information for the '('. SourceLocation FakeLParenLoc = ((Expr *)Callee.get())->getSourceRange().getBegin(); return getDerived().RebuildCallExpr(Callee.get(), FakeLParenLoc, Args, E->getRParenLoc()); } template ExprResult TreeTransform::TransformMemberExpr(MemberExpr *E) { ExprResult Base = getDerived().TransformExpr(E->getBase()); if (Base.isInvalid()) return ExprError(); NestedNameSpecifierLoc QualifierLoc; if (E->hasQualifier()) { QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc()); if (!QualifierLoc) return ExprError(); } SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc(); ValueDecl *Member = cast_or_null(getDerived().TransformDecl(E->getMemberLoc(), E->getMemberDecl())); if (!Member) return ExprError(); NamedDecl *FoundDecl = E->getFoundDecl(); if (FoundDecl == E->getMemberDecl()) { FoundDecl = Member; } else { FoundDecl = cast_or_null( getDerived().TransformDecl(E->getMemberLoc(), FoundDecl)); if (!FoundDecl) return ExprError(); } if (!getDerived().AlwaysRebuild() && Base.get() == E->getBase() && QualifierLoc == E->getQualifierLoc() && Member == E->getMemberDecl() && FoundDecl == E->getFoundDecl() && !E->hasExplicitTemplateArgs()) { // Mark it referenced in the new context regardless. // FIXME: this is a bit instantiation-specific. SemaRef.MarkMemberReferenced(E); return E; } TemplateArgumentListInfo TransArgs; if (E->hasExplicitTemplateArgs()) { TransArgs.setLAngleLoc(E->getLAngleLoc()); TransArgs.setRAngleLoc(E->getRAngleLoc()); if (getDerived().TransformTemplateArguments(E->getTemplateArgs(), E->getNumTemplateArgs(), TransArgs)) return ExprError(); } // FIXME: Bogus source location for the operator SourceLocation FakeOperatorLoc = SemaRef.getLocForEndOfToken(E->getBase()->getSourceRange().getEnd()); // FIXME: to do this check properly, we will need to preserve the // first-qualifier-in-scope here, just in case we had a dependent // base (and therefore couldn't do the check) and a // nested-name-qualifier (and therefore could do the lookup). NamedDecl *FirstQualifierInScope = nullptr; return getDerived().RebuildMemberExpr(Base.get(), FakeOperatorLoc, E->isArrow(), QualifierLoc, TemplateKWLoc, E->getMemberNameInfo(), Member, FoundDecl, (E->hasExplicitTemplateArgs() ? &TransArgs : nullptr), FirstQualifierInScope); } template ExprResult TreeTransform::TransformBinaryOperator(BinaryOperator *E) { ExprResult LHS = getDerived().TransformExpr(E->getLHS()); if (LHS.isInvalid()) return ExprError(); ExprResult RHS = getDerived().TransformExpr(E->getRHS()); if (RHS.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && LHS.get() == E->getLHS() && RHS.get() == E->getRHS()) return E; Sema::FPContractStateRAII FPContractState(getSema()); getSema().FPFeatures.fp_contract = E->isFPContractable(); return getDerived().RebuildBinaryOperator(E->getOperatorLoc(), E->getOpcode(), LHS.get(), RHS.get()); } template ExprResult TreeTransform::TransformCompoundAssignOperator( CompoundAssignOperator *E) { return getDerived().TransformBinaryOperator(E); } template ExprResult TreeTransform:: TransformBinaryConditionalOperator(BinaryConditionalOperator *e) { // Just rebuild the common and RHS expressions and see whether we // get any changes. ExprResult commonExpr = getDerived().TransformExpr(e->getCommon()); if (commonExpr.isInvalid()) return ExprError(); ExprResult rhs = getDerived().TransformExpr(e->getFalseExpr()); if (rhs.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && commonExpr.get() == e->getCommon() && rhs.get() == e->getFalseExpr()) return e; return getDerived().RebuildConditionalOperator(commonExpr.get(), e->getQuestionLoc(), nullptr, e->getColonLoc(), rhs.get()); } template ExprResult TreeTransform::TransformConditionalOperator(ConditionalOperator *E) { ExprResult Cond = getDerived().TransformExpr(E->getCond()); if (Cond.isInvalid()) return ExprError(); ExprResult LHS = getDerived().TransformExpr(E->getLHS()); if (LHS.isInvalid()) return ExprError(); ExprResult RHS = getDerived().TransformExpr(E->getRHS()); if (RHS.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && Cond.get() == E->getCond() && LHS.get() == E->getLHS() && RHS.get() == E->getRHS()) return E; return getDerived().RebuildConditionalOperator(Cond.get(), E->getQuestionLoc(), LHS.get(), E->getColonLoc(), RHS.get()); } template ExprResult TreeTransform::TransformImplicitCastExpr(ImplicitCastExpr *E) { // Implicit casts are eliminated during transformation, since they // will be recomputed by semantic analysis after transformation. return getDerived().TransformExpr(E->getSubExprAsWritten()); } template ExprResult TreeTransform::TransformCStyleCastExpr(CStyleCastExpr *E) { TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten()); if (!Type) return ExprError(); ExprResult SubExpr = getDerived().TransformExpr(E->getSubExprAsWritten()); if (SubExpr.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && Type == E->getTypeInfoAsWritten() && SubExpr.get() == E->getSubExpr()) return E; return getDerived().RebuildCStyleCastExpr(E->getLParenLoc(), Type, E->getRParenLoc(), SubExpr.get()); } template ExprResult TreeTransform::TransformCompoundLiteralExpr(CompoundLiteralExpr *E) { TypeSourceInfo *OldT = E->getTypeSourceInfo(); TypeSourceInfo *NewT = getDerived().TransformType(OldT); if (!NewT) return ExprError(); ExprResult Init = getDerived().TransformExpr(E->getInitializer()); if (Init.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && OldT == NewT && Init.get() == E->getInitializer()) return SemaRef.MaybeBindToTemporary(E); // Note: the expression type doesn't necessarily match the // type-as-written, but that's okay, because it should always be // derivable from the initializer. return getDerived().RebuildCompoundLiteralExpr(E->getLParenLoc(), NewT, /*FIXME:*/E->getInitializer()->getLocEnd(), Init.get()); } template ExprResult TreeTransform::TransformExtVectorElementExpr(ExtVectorElementExpr *E) { ExprResult Base = getDerived().TransformExpr(E->getBase()); if (Base.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && Base.get() == E->getBase()) return E; // FIXME: Bad source location SourceLocation FakeOperatorLoc = SemaRef.getLocForEndOfToken(E->getBase()->getLocEnd()); return getDerived().RebuildExtVectorElementExpr(Base.get(), FakeOperatorLoc, E->getAccessorLoc(), E->getAccessor()); } template ExprResult TreeTransform::TransformInitListExpr(InitListExpr *E) { bool InitChanged = false; SmallVector Inits; if (getDerived().TransformExprs(E->getInits(), E->getNumInits(), false, Inits, &InitChanged)) return ExprError(); if (!getDerived().AlwaysRebuild() && !InitChanged) return E; return getDerived().RebuildInitList(E->getLBraceLoc(), Inits, E->getRBraceLoc(), E->getType()); } template ExprResult TreeTransform::TransformDesignatedInitExpr(DesignatedInitExpr *E) { Designation Desig; // transform the initializer value ExprResult Init = getDerived().TransformExpr(E->getInit()); if (Init.isInvalid()) return ExprError(); // transform the designators. SmallVector ArrayExprs; bool ExprChanged = false; for (DesignatedInitExpr::designators_iterator D = E->designators_begin(), DEnd = E->designators_end(); D != DEnd; ++D) { if (D->isFieldDesignator()) { Desig.AddDesignator(Designator::getField(D->getFieldName(), D->getDotLoc(), D->getFieldLoc())); continue; } if (D->isArrayDesignator()) { ExprResult Index = getDerived().TransformExpr(E->getArrayIndex(*D)); if (Index.isInvalid()) return ExprError(); Desig.AddDesignator(Designator::getArray(Index.get(), D->getLBracketLoc())); ExprChanged = ExprChanged || Init.get() != E->getArrayIndex(*D); ArrayExprs.push_back(Index.get()); continue; } assert(D->isArrayRangeDesignator() && "New kind of designator?"); ExprResult Start = getDerived().TransformExpr(E->getArrayRangeStart(*D)); if (Start.isInvalid()) return ExprError(); ExprResult End = getDerived().TransformExpr(E->getArrayRangeEnd(*D)); if (End.isInvalid()) return ExprError(); Desig.AddDesignator(Designator::getArrayRange(Start.get(), End.get(), D->getLBracketLoc(), D->getEllipsisLoc())); ExprChanged = ExprChanged || Start.get() != E->getArrayRangeStart(*D) || End.get() != E->getArrayRangeEnd(*D); ArrayExprs.push_back(Start.get()); ArrayExprs.push_back(End.get()); } if (!getDerived().AlwaysRebuild() && Init.get() == E->getInit() && !ExprChanged) return E; return getDerived().RebuildDesignatedInitExpr(Desig, ArrayExprs, E->getEqualOrColonLoc(), E->usesGNUSyntax(), Init.get()); } template ExprResult TreeTransform::TransformImplicitValueInitExpr( ImplicitValueInitExpr *E) { TemporaryBase Rebase(*this, E->getLocStart(), DeclarationName()); // FIXME: Will we ever have proper type location here? Will we actually // need to transform the type? QualType T = getDerived().TransformType(E->getType()); if (T.isNull()) return ExprError(); if (!getDerived().AlwaysRebuild() && T == E->getType()) return E; return getDerived().RebuildImplicitValueInitExpr(T); } template ExprResult TreeTransform::TransformVAArgExpr(VAArgExpr *E) { TypeSourceInfo *TInfo = getDerived().TransformType(E->getWrittenTypeInfo()); if (!TInfo) return ExprError(); ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr()); if (SubExpr.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && TInfo == E->getWrittenTypeInfo() && SubExpr.get() == E->getSubExpr()) return E; return getDerived().RebuildVAArgExpr(E->getBuiltinLoc(), SubExpr.get(), TInfo, E->getRParenLoc()); } template ExprResult TreeTransform::TransformParenListExpr(ParenListExpr *E) { bool ArgumentChanged = false; SmallVector Inits; if (TransformExprs(E->getExprs(), E->getNumExprs(), true, Inits, &ArgumentChanged)) return ExprError(); return getDerived().RebuildParenListExpr(E->getLParenLoc(), Inits, E->getRParenLoc()); } /// \brief Transform an address-of-label expression. /// /// By default, the transformation of an address-of-label expression always /// rebuilds the expression, so that the label identifier can be resolved to /// the corresponding label statement by semantic analysis. template ExprResult TreeTransform::TransformAddrLabelExpr(AddrLabelExpr *E) { Decl *LD = getDerived().TransformDecl(E->getLabel()->getLocation(), E->getLabel()); if (!LD) return ExprError(); return getDerived().RebuildAddrLabelExpr(E->getAmpAmpLoc(), E->getLabelLoc(), cast(LD)); } template ExprResult TreeTransform::TransformStmtExpr(StmtExpr *E) { SemaRef.ActOnStartStmtExpr(); StmtResult SubStmt = getDerived().TransformCompoundStmt(E->getSubStmt(), true); if (SubStmt.isInvalid()) { SemaRef.ActOnStmtExprError(); return ExprError(); } if (!getDerived().AlwaysRebuild() && SubStmt.get() == E->getSubStmt()) { // Calling this an 'error' is unintuitive, but it does the right thing. SemaRef.ActOnStmtExprError(); return SemaRef.MaybeBindToTemporary(E); } return getDerived().RebuildStmtExpr(E->getLParenLoc(), SubStmt.get(), E->getRParenLoc()); } template ExprResult TreeTransform::TransformChooseExpr(ChooseExpr *E) { ExprResult Cond = getDerived().TransformExpr(E->getCond()); if (Cond.isInvalid()) return ExprError(); ExprResult LHS = getDerived().TransformExpr(E->getLHS()); if (LHS.isInvalid()) return ExprError(); ExprResult RHS = getDerived().TransformExpr(E->getRHS()); if (RHS.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && Cond.get() == E->getCond() && LHS.get() == E->getLHS() && RHS.get() == E->getRHS()) return E; return getDerived().RebuildChooseExpr(E->getBuiltinLoc(), Cond.get(), LHS.get(), RHS.get(), E->getRParenLoc()); } template ExprResult TreeTransform::TransformGNUNullExpr(GNUNullExpr *E) { return E; } template ExprResult TreeTransform::TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) { switch (E->getOperator()) { case OO_New: case OO_Delete: case OO_Array_New: case OO_Array_Delete: llvm_unreachable("new and delete operators cannot use CXXOperatorCallExpr"); case OO_Call: { // This is a call to an object's operator(). assert(E->getNumArgs() >= 1 && "Object call is missing arguments"); // Transform the object itself. ExprResult Object = getDerived().TransformExpr(E->getArg(0)); if (Object.isInvalid()) return ExprError(); // FIXME: Poor location information SourceLocation FakeLParenLoc = SemaRef.getLocForEndOfToken( static_cast(Object.get())->getLocEnd()); // Transform the call arguments. SmallVector Args; if (getDerived().TransformExprs(E->getArgs() + 1, E->getNumArgs() - 1, true, Args)) return ExprError(); return getDerived().RebuildCallExpr(Object.get(), FakeLParenLoc, Args, E->getLocEnd()); } #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ case OO_##Name: #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly) #include "clang/Basic/OperatorKinds.def" case OO_Subscript: // Handled below. break; case OO_Conditional: llvm_unreachable("conditional operator is not actually overloadable"); case OO_None: case NUM_OVERLOADED_OPERATORS: llvm_unreachable("not an overloaded operator?"); } ExprResult Callee = getDerived().TransformExpr(E->getCallee()); if (Callee.isInvalid()) return ExprError(); ExprResult First; if (E->getOperator() == OO_Amp) First = getDerived().TransformAddressOfOperand(E->getArg(0)); else First = getDerived().TransformExpr(E->getArg(0)); if (First.isInvalid()) return ExprError(); ExprResult Second; if (E->getNumArgs() == 2) { Second = getDerived().TransformExpr(E->getArg(1)); if (Second.isInvalid()) return ExprError(); } if (!getDerived().AlwaysRebuild() && Callee.get() == E->getCallee() && First.get() == E->getArg(0) && (E->getNumArgs() != 2 || Second.get() == E->getArg(1))) return SemaRef.MaybeBindToTemporary(E); Sema::FPContractStateRAII FPContractState(getSema()); getSema().FPFeatures.fp_contract = E->isFPContractable(); return getDerived().RebuildCXXOperatorCallExpr(E->getOperator(), E->getOperatorLoc(), Callee.get(), First.get(), Second.get()); } template ExprResult TreeTransform::TransformCXXMemberCallExpr(CXXMemberCallExpr *E) { return getDerived().TransformCallExpr(E); } template ExprResult TreeTransform::TransformCUDAKernelCallExpr(CUDAKernelCallExpr *E) { // Transform the callee. ExprResult Callee = getDerived().TransformExpr(E->getCallee()); if (Callee.isInvalid()) return ExprError(); // Transform exec config. ExprResult EC = getDerived().TransformCallExpr(E->getConfig()); if (EC.isInvalid()) return ExprError(); // Transform arguments. bool ArgChanged = false; SmallVector Args; if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args, &ArgChanged)) return ExprError(); if (!getDerived().AlwaysRebuild() && Callee.get() == E->getCallee() && !ArgChanged) return SemaRef.MaybeBindToTemporary(E); // FIXME: Wrong source location information for the '('. SourceLocation FakeLParenLoc = ((Expr *)Callee.get())->getSourceRange().getBegin(); return getDerived().RebuildCallExpr(Callee.get(), FakeLParenLoc, Args, E->getRParenLoc(), EC.get()); } template ExprResult TreeTransform::TransformCXXNamedCastExpr(CXXNamedCastExpr *E) { TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten()); if (!Type) return ExprError(); ExprResult SubExpr = getDerived().TransformExpr(E->getSubExprAsWritten()); if (SubExpr.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && Type == E->getTypeInfoAsWritten() && SubExpr.get() == E->getSubExpr()) return E; return getDerived().RebuildCXXNamedCastExpr(E->getOperatorLoc(), E->getStmtClass(), E->getAngleBrackets().getBegin(), Type, E->getAngleBrackets().getEnd(), // FIXME. this should be '(' location E->getAngleBrackets().getEnd(), SubExpr.get(), E->getRParenLoc()); } template ExprResult TreeTransform::TransformCXXStaticCastExpr(CXXStaticCastExpr *E) { return getDerived().TransformCXXNamedCastExpr(E); } template ExprResult TreeTransform::TransformCXXDynamicCastExpr(CXXDynamicCastExpr *E) { return getDerived().TransformCXXNamedCastExpr(E); } template ExprResult TreeTransform::TransformCXXReinterpretCastExpr( CXXReinterpretCastExpr *E) { return getDerived().TransformCXXNamedCastExpr(E); } template ExprResult TreeTransform::TransformCXXConstCastExpr(CXXConstCastExpr *E) { return getDerived().TransformCXXNamedCastExpr(E); } template ExprResult TreeTransform::TransformCXXFunctionalCastExpr( CXXFunctionalCastExpr *E) { TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten()); if (!Type) return ExprError(); ExprResult SubExpr = getDerived().TransformExpr(E->getSubExprAsWritten()); if (SubExpr.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && Type == E->getTypeInfoAsWritten() && SubExpr.get() == E->getSubExpr()) return E; return getDerived().RebuildCXXFunctionalCastExpr(Type, E->getLParenLoc(), SubExpr.get(), E->getRParenLoc()); } template ExprResult TreeTransform::TransformCXXTypeidExpr(CXXTypeidExpr *E) { if (E->isTypeOperand()) { TypeSourceInfo *TInfo = getDerived().TransformType(E->getTypeOperandSourceInfo()); if (!TInfo) return ExprError(); if (!getDerived().AlwaysRebuild() && TInfo == E->getTypeOperandSourceInfo()) return E; return getDerived().RebuildCXXTypeidExpr(E->getType(), E->getLocStart(), TInfo, E->getLocEnd()); } // We don't know whether the subexpression is potentially evaluated until // after we perform semantic analysis. We speculatively assume it is // unevaluated; it will get fixed later if the subexpression is in fact // potentially evaluated. EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated, Sema::ReuseLambdaContextDecl); ExprResult SubExpr = getDerived().TransformExpr(E->getExprOperand()); if (SubExpr.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getExprOperand()) return E; return getDerived().RebuildCXXTypeidExpr(E->getType(), E->getLocStart(), SubExpr.get(), E->getLocEnd()); } template ExprResult TreeTransform::TransformCXXUuidofExpr(CXXUuidofExpr *E) { if (E->isTypeOperand()) { TypeSourceInfo *TInfo = getDerived().TransformType(E->getTypeOperandSourceInfo()); if (!TInfo) return ExprError(); if (!getDerived().AlwaysRebuild() && TInfo == E->getTypeOperandSourceInfo()) return E; return getDerived().RebuildCXXUuidofExpr(E->getType(), E->getLocStart(), TInfo, E->getLocEnd()); } EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated); ExprResult SubExpr = getDerived().TransformExpr(E->getExprOperand()); if (SubExpr.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getExprOperand()) return E; return getDerived().RebuildCXXUuidofExpr(E->getType(), E->getLocStart(), SubExpr.get(), E->getLocEnd()); } template ExprResult TreeTransform::TransformCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { return E; } template ExprResult TreeTransform::TransformCXXNullPtrLiteralExpr( CXXNullPtrLiteralExpr *E) { return E; } template ExprResult TreeTransform::TransformCXXThisExpr(CXXThisExpr *E) { QualType T = getSema().getCurrentThisType(); if (!getDerived().AlwaysRebuild() && T == E->getType()) { // Make sure that we capture 'this'. getSema().CheckCXXThisCapture(E->getLocStart()); return E; } return getDerived().RebuildCXXThisExpr(E->getLocStart(), T, E->isImplicit()); } template ExprResult TreeTransform::TransformCXXThrowExpr(CXXThrowExpr *E) { ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr()); if (SubExpr.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr()) return E; return getDerived().RebuildCXXThrowExpr(E->getThrowLoc(), SubExpr.get(), E->isThrownVariableInScope()); } template ExprResult TreeTransform::TransformCXXDefaultArgExpr(CXXDefaultArgExpr *E) { ParmVarDecl *Param = cast_or_null(getDerived().TransformDecl(E->getLocStart(), E->getParam())); if (!Param) return ExprError(); if (!getDerived().AlwaysRebuild() && Param == E->getParam()) return E; return getDerived().RebuildCXXDefaultArgExpr(E->getUsedLocation(), Param); } template ExprResult TreeTransform::TransformCXXDefaultInitExpr(CXXDefaultInitExpr *E) { FieldDecl *Field = cast_or_null(getDerived().TransformDecl(E->getLocStart(), E->getField())); if (!Field) return ExprError(); if (!getDerived().AlwaysRebuild() && Field == E->getField()) return E; return getDerived().RebuildCXXDefaultInitExpr(E->getExprLoc(), Field); } template ExprResult TreeTransform::TransformCXXScalarValueInitExpr( CXXScalarValueInitExpr *E) { TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo()); if (!T) return ExprError(); if (!getDerived().AlwaysRebuild() && T == E->getTypeSourceInfo()) return E; return getDerived().RebuildCXXScalarValueInitExpr(T, /*FIXME:*/T->getTypeLoc().getEndLoc(), E->getRParenLoc()); } template ExprResult TreeTransform::TransformCXXNewExpr(CXXNewExpr *E) { // Transform the type that we're allocating TypeSourceInfo *AllocTypeInfo = getDerived().TransformType(E->getAllocatedTypeSourceInfo()); if (!AllocTypeInfo) return ExprError(); // Transform the size of the array we're allocating (if any). ExprResult ArraySize = getDerived().TransformExpr(E->getArraySize()); if (ArraySize.isInvalid()) return ExprError(); // Transform the placement arguments (if any). bool ArgumentChanged = false; SmallVector PlacementArgs; if (getDerived().TransformExprs(E->getPlacementArgs(), E->getNumPlacementArgs(), true, PlacementArgs, &ArgumentChanged)) return ExprError(); // Transform the initializer (if any). Expr *OldInit = E->getInitializer(); ExprResult NewInit; if (OldInit) NewInit = getDerived().TransformExpr(OldInit); if (NewInit.isInvalid()) return ExprError(); // Transform new operator and delete operator. FunctionDecl *OperatorNew = nullptr; if (E->getOperatorNew()) { OperatorNew = cast_or_null( getDerived().TransformDecl(E->getLocStart(), E->getOperatorNew())); if (!OperatorNew) return ExprError(); } FunctionDecl *OperatorDelete = nullptr; if (E->getOperatorDelete()) { OperatorDelete = cast_or_null( getDerived().TransformDecl(E->getLocStart(), E->getOperatorDelete())); if (!OperatorDelete) return ExprError(); } if (!getDerived().AlwaysRebuild() && AllocTypeInfo == E->getAllocatedTypeSourceInfo() && ArraySize.get() == E->getArraySize() && NewInit.get() == OldInit && OperatorNew == E->getOperatorNew() && OperatorDelete == E->getOperatorDelete() && !ArgumentChanged) { // Mark any declarations we need as referenced. // FIXME: instantiation-specific. if (OperatorNew) SemaRef.MarkFunctionReferenced(E->getLocStart(), OperatorNew); if (OperatorDelete) SemaRef.MarkFunctionReferenced(E->getLocStart(), OperatorDelete); if (E->isArray() && !E->getAllocatedType()->isDependentType()) { QualType ElementType = SemaRef.Context.getBaseElementType(E->getAllocatedType()); if (const RecordType *RecordT = ElementType->getAs()) { CXXRecordDecl *Record = cast(RecordT->getDecl()); if (CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(Record)) { SemaRef.MarkFunctionReferenced(E->getLocStart(), Destructor); } } } return E; } QualType AllocType = AllocTypeInfo->getType(); if (!ArraySize.get()) { // If no array size was specified, but the new expression was // instantiated with an array type (e.g., "new T" where T is // instantiated with "int[4]"), extract the outer bound from the // array type as our array size. We do this with constant and // dependently-sized array types. const ArrayType *ArrayT = SemaRef.Context.getAsArrayType(AllocType); if (!ArrayT) { // Do nothing } else if (const ConstantArrayType *ConsArrayT = dyn_cast(ArrayT)) { ArraySize = IntegerLiteral::Create(SemaRef.Context, ConsArrayT->getSize(), SemaRef.Context.getSizeType(), /*FIXME:*/ E->getLocStart()); AllocType = ConsArrayT->getElementType(); } else if (const DependentSizedArrayType *DepArrayT = dyn_cast(ArrayT)) { if (DepArrayT->getSizeExpr()) { ArraySize = DepArrayT->getSizeExpr(); AllocType = DepArrayT->getElementType(); } } } return getDerived().RebuildCXXNewExpr(E->getLocStart(), E->isGlobalNew(), /*FIXME:*/E->getLocStart(), PlacementArgs, /*FIXME:*/E->getLocStart(), E->getTypeIdParens(), AllocType, AllocTypeInfo, ArraySize.get(), E->getDirectInitRange(), NewInit.get()); } template ExprResult TreeTransform::TransformCXXDeleteExpr(CXXDeleteExpr *E) { ExprResult Operand = getDerived().TransformExpr(E->getArgument()); if (Operand.isInvalid()) return ExprError(); // Transform the delete operator, if known. FunctionDecl *OperatorDelete = nullptr; if (E->getOperatorDelete()) { OperatorDelete = cast_or_null( getDerived().TransformDecl(E->getLocStart(), E->getOperatorDelete())); if (!OperatorDelete) return ExprError(); } if (!getDerived().AlwaysRebuild() && Operand.get() == E->getArgument() && OperatorDelete == E->getOperatorDelete()) { // Mark any declarations we need as referenced. // FIXME: instantiation-specific. if (OperatorDelete) SemaRef.MarkFunctionReferenced(E->getLocStart(), OperatorDelete); if (!E->getArgument()->isTypeDependent()) { QualType Destroyed = SemaRef.Context.getBaseElementType( E->getDestroyedType()); if (const RecordType *DestroyedRec = Destroyed->getAs()) { CXXRecordDecl *Record = cast(DestroyedRec->getDecl()); SemaRef.MarkFunctionReferenced(E->getLocStart(), SemaRef.LookupDestructor(Record)); } } return E; } return getDerived().RebuildCXXDeleteExpr(E->getLocStart(), E->isGlobalDelete(), E->isArrayForm(), Operand.get()); } template ExprResult TreeTransform::TransformCXXPseudoDestructorExpr( CXXPseudoDestructorExpr *E) { ExprResult Base = getDerived().TransformExpr(E->getBase()); if (Base.isInvalid()) return ExprError(); ParsedType ObjectTypePtr; bool MayBePseudoDestructor = false; Base = SemaRef.ActOnStartCXXMemberReference(nullptr, Base.get(), E->getOperatorLoc(), E->isArrow()? tok::arrow : tok::period, ObjectTypePtr, MayBePseudoDestructor); if (Base.isInvalid()) return ExprError(); QualType ObjectType = ObjectTypePtr.get(); NestedNameSpecifierLoc QualifierLoc = E->getQualifierLoc(); if (QualifierLoc) { QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(QualifierLoc, ObjectType); if (!QualifierLoc) return ExprError(); } CXXScopeSpec SS; SS.Adopt(QualifierLoc); PseudoDestructorTypeStorage Destroyed; if (E->getDestroyedTypeInfo()) { TypeSourceInfo *DestroyedTypeInfo = getDerived().TransformTypeInObjectScope(E->getDestroyedTypeInfo(), ObjectType, nullptr, SS); if (!DestroyedTypeInfo) return ExprError(); Destroyed = DestroyedTypeInfo; } else if (!ObjectType.isNull() && ObjectType->isDependentType()) { // We aren't likely to be able to resolve the identifier down to a type // now anyway, so just retain the identifier. Destroyed = PseudoDestructorTypeStorage(E->getDestroyedTypeIdentifier(), E->getDestroyedTypeLoc()); } else { // Look for a destructor known with the given name. ParsedType T = SemaRef.getDestructorName(E->getTildeLoc(), *E->getDestroyedTypeIdentifier(), E->getDestroyedTypeLoc(), /*Scope=*/nullptr, SS, ObjectTypePtr, false); if (!T) return ExprError(); Destroyed = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.GetTypeFromParser(T), E->getDestroyedTypeLoc()); } TypeSourceInfo *ScopeTypeInfo = nullptr; if (E->getScopeTypeInfo()) { CXXScopeSpec EmptySS; ScopeTypeInfo = getDerived().TransformTypeInObjectScope( E->getScopeTypeInfo(), ObjectType, nullptr, EmptySS); if (!ScopeTypeInfo) return ExprError(); } return getDerived().RebuildCXXPseudoDestructorExpr(Base.get(), E->getOperatorLoc(), E->isArrow(), SS, ScopeTypeInfo, E->getColonColonLoc(), E->getTildeLoc(), Destroyed); } template ExprResult TreeTransform::TransformUnresolvedLookupExpr( UnresolvedLookupExpr *Old) { LookupResult R(SemaRef, Old->getName(), Old->getNameLoc(), Sema::LookupOrdinaryName); // Transform all the decls. for (UnresolvedLookupExpr::decls_iterator I = Old->decls_begin(), E = Old->decls_end(); I != E; ++I) { NamedDecl *InstD = static_cast( getDerived().TransformDecl(Old->getNameLoc(), *I)); if (!InstD) { // Silently ignore these if a UsingShadowDecl instantiated to nothing. // This can happen because of dependent hiding. if (isa(*I)) continue; else { R.clear(); return ExprError(); } } // Expand using declarations. if (isa(InstD)) { UsingDecl *UD = cast(InstD); for (auto *I : UD->shadows()) R.addDecl(I); continue; } R.addDecl(InstD); } // Resolve a kind, but don't do any further analysis. If it's // ambiguous, the callee needs to deal with it. R.resolveKind(); // Rebuild the nested-name qualifier, if present. CXXScopeSpec SS; if (Old->getQualifierLoc()) { NestedNameSpecifierLoc QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(Old->getQualifierLoc()); if (!QualifierLoc) return ExprError(); SS.Adopt(QualifierLoc); } if (Old->getNamingClass()) { CXXRecordDecl *NamingClass = cast_or_null(getDerived().TransformDecl( Old->getNameLoc(), Old->getNamingClass())); if (!NamingClass) { R.clear(); return ExprError(); } R.setNamingClass(NamingClass); } SourceLocation TemplateKWLoc = Old->getTemplateKeywordLoc(); // If we have neither explicit template arguments, nor the template keyword, // it's a normal declaration name. if (!Old->hasExplicitTemplateArgs() && !TemplateKWLoc.isValid()) return getDerived().RebuildDeclarationNameExpr(SS, R, Old->requiresADL()); // If we have template arguments, rebuild them, then rebuild the // templateid expression. TemplateArgumentListInfo TransArgs(Old->getLAngleLoc(), Old->getRAngleLoc()); if (Old->hasExplicitTemplateArgs() && getDerived().TransformTemplateArguments(Old->getTemplateArgs(), Old->getNumTemplateArgs(), TransArgs)) { R.clear(); return ExprError(); } return getDerived().RebuildTemplateIdExpr(SS, TemplateKWLoc, R, Old->requiresADL(), &TransArgs); } template ExprResult TreeTransform::TransformTypeTraitExpr(TypeTraitExpr *E) { bool ArgChanged = false; SmallVector Args; for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) { TypeSourceInfo *From = E->getArg(I); TypeLoc FromTL = From->getTypeLoc(); if (!FromTL.getAs()) { TypeLocBuilder TLB; TLB.reserve(FromTL.getFullDataSize()); QualType To = getDerived().TransformType(TLB, FromTL); if (To.isNull()) return ExprError(); if (To == From->getType()) Args.push_back(From); else { Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To)); ArgChanged = true; } continue; } ArgChanged = true; // We have a pack expansion. Instantiate it. PackExpansionTypeLoc ExpansionTL = FromTL.castAs(); TypeLoc PatternTL = ExpansionTL.getPatternLoc(); SmallVector Unexpanded; SemaRef.collectUnexpandedParameterPacks(PatternTL, Unexpanded); // Determine whether the set of unexpanded parameter packs can and should // be expanded. bool Expand = true; bool RetainExpansion = false; Optional OrigNumExpansions = ExpansionTL.getTypePtr()->getNumExpansions(); Optional NumExpansions = OrigNumExpansions; if (getDerived().TryExpandParameterPacks(ExpansionTL.getEllipsisLoc(), PatternTL.getSourceRange(), Unexpanded, Expand, RetainExpansion, NumExpansions)) return ExprError(); if (!Expand) { // The transform has determined that we should perform a simple // transformation on the pack expansion, producing another pack // expansion. Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); TypeLocBuilder TLB; TLB.reserve(From->getTypeLoc().getFullDataSize()); QualType To = getDerived().TransformType(TLB, PatternTL); if (To.isNull()) return ExprError(); To = getDerived().RebuildPackExpansionType(To, PatternTL.getSourceRange(), ExpansionTL.getEllipsisLoc(), NumExpansions); if (To.isNull()) return ExprError(); PackExpansionTypeLoc ToExpansionTL = TLB.push(To); ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc()); Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To)); continue; } // Expand the pack expansion by substituting for each argument in the // pack(s). for (unsigned I = 0; I != *NumExpansions; ++I) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); TypeLocBuilder TLB; TLB.reserve(PatternTL.getFullDataSize()); QualType To = getDerived().TransformType(TLB, PatternTL); if (To.isNull()) return ExprError(); if (To->containsUnexpandedParameterPack()) { To = getDerived().RebuildPackExpansionType(To, PatternTL.getSourceRange(), ExpansionTL.getEllipsisLoc(), NumExpansions); if (To.isNull()) return ExprError(); PackExpansionTypeLoc ToExpansionTL = TLB.push(To); ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc()); } Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To)); } if (!RetainExpansion) continue; // If we're supposed to retain a pack expansion, do so by temporarily // forgetting the partially-substituted parameter pack. ForgetPartiallySubstitutedPackRAII Forget(getDerived()); TypeLocBuilder TLB; TLB.reserve(From->getTypeLoc().getFullDataSize()); QualType To = getDerived().TransformType(TLB, PatternTL); if (To.isNull()) return ExprError(); To = getDerived().RebuildPackExpansionType(To, PatternTL.getSourceRange(), ExpansionTL.getEllipsisLoc(), NumExpansions); if (To.isNull()) return ExprError(); PackExpansionTypeLoc ToExpansionTL = TLB.push(To); ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc()); Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To)); } if (!getDerived().AlwaysRebuild() && !ArgChanged) return E; return getDerived().RebuildTypeTrait(E->getTrait(), E->getLocStart(), Args, E->getLocEnd()); } template ExprResult TreeTransform::TransformArrayTypeTraitExpr(ArrayTypeTraitExpr *E) { TypeSourceInfo *T = getDerived().TransformType(E->getQueriedTypeSourceInfo()); if (!T) return ExprError(); if (!getDerived().AlwaysRebuild() && T == E->getQueriedTypeSourceInfo()) return E; ExprResult SubExpr; { EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated); SubExpr = getDerived().TransformExpr(E->getDimensionExpression()); if (SubExpr.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getDimensionExpression()) return E; } return getDerived().RebuildArrayTypeTrait(E->getTrait(), E->getLocStart(), T, SubExpr.get(), E->getLocEnd()); } template ExprResult TreeTransform::TransformExpressionTraitExpr(ExpressionTraitExpr *E) { ExprResult SubExpr; { EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated); SubExpr = getDerived().TransformExpr(E->getQueriedExpression()); if (SubExpr.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getQueriedExpression()) return E; } return getDerived().RebuildExpressionTrait( E->getTrait(), E->getLocStart(), SubExpr.get(), E->getLocEnd()); } template ExprResult TreeTransform::TransformParenDependentScopeDeclRefExpr( ParenExpr *PE, DependentScopeDeclRefExpr *DRE, bool AddrTaken, TypeSourceInfo **RecoveryTSI) { ExprResult NewDRE = getDerived().TransformDependentScopeDeclRefExpr( DRE, AddrTaken, RecoveryTSI); // Propagate both errors and recovered types, which return ExprEmpty. if (!NewDRE.isUsable()) return NewDRE; // We got an expr, wrap it up in parens. if (!getDerived().AlwaysRebuild() && NewDRE.get() == DRE) return PE; return getDerived().RebuildParenExpr(NewDRE.get(), PE->getLParen(), PE->getRParen()); } template ExprResult TreeTransform::TransformDependentScopeDeclRefExpr( DependentScopeDeclRefExpr *E) { return TransformDependentScopeDeclRefExpr(E, /*IsAddressOfOperand=*/false, nullptr); } template ExprResult TreeTransform::TransformDependentScopeDeclRefExpr( DependentScopeDeclRefExpr *E, bool IsAddressOfOperand, TypeSourceInfo **RecoveryTSI) { assert(E->getQualifierLoc()); NestedNameSpecifierLoc QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc()); if (!QualifierLoc) return ExprError(); SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc(); // TODO: If this is a conversion-function-id, verify that the // destination type name (if present) resolves the same way after // instantiation as it did in the local scope. DeclarationNameInfo NameInfo = getDerived().TransformDeclarationNameInfo(E->getNameInfo()); if (!NameInfo.getName()) return ExprError(); if (!E->hasExplicitTemplateArgs()) { if (!getDerived().AlwaysRebuild() && QualifierLoc == E->getQualifierLoc() && // Note: it is sufficient to compare the Name component of NameInfo: // if name has not changed, DNLoc has not changed either. NameInfo.getName() == E->getDeclName()) return E; return getDerived().RebuildDependentScopeDeclRefExpr( QualifierLoc, TemplateKWLoc, NameInfo, /*TemplateArgs=*/nullptr, IsAddressOfOperand, RecoveryTSI); } TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc()); if (getDerived().TransformTemplateArguments(E->getTemplateArgs(), E->getNumTemplateArgs(), TransArgs)) return ExprError(); return getDerived().RebuildDependentScopeDeclRefExpr( QualifierLoc, TemplateKWLoc, NameInfo, &TransArgs, IsAddressOfOperand, RecoveryTSI); } template ExprResult TreeTransform::TransformCXXConstructExpr(CXXConstructExpr *E) { // CXXConstructExprs other than for list-initialization and // CXXTemporaryObjectExpr are always implicit, so when we have // a 1-argument construction we just transform that argument. if ((E->getNumArgs() == 1 || (E->getNumArgs() > 1 && getDerived().DropCallArgument(E->getArg(1)))) && (!getDerived().DropCallArgument(E->getArg(0))) && !E->isListInitialization()) return getDerived().TransformExpr(E->getArg(0)); TemporaryBase Rebase(*this, /*FIXME*/E->getLocStart(), DeclarationName()); QualType T = getDerived().TransformType(E->getType()); if (T.isNull()) return ExprError(); CXXConstructorDecl *Constructor = cast_or_null( getDerived().TransformDecl(E->getLocStart(), E->getConstructor())); if (!Constructor) return ExprError(); bool ArgumentChanged = false; SmallVector Args; if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args, &ArgumentChanged)) return ExprError(); if (!getDerived().AlwaysRebuild() && T == E->getType() && Constructor == E->getConstructor() && !ArgumentChanged) { // Mark the constructor as referenced. // FIXME: Instantiation-specific SemaRef.MarkFunctionReferenced(E->getLocStart(), Constructor); return E; } return getDerived().RebuildCXXConstructExpr(T, /*FIXME:*/E->getLocStart(), Constructor, E->isElidable(), Args, E->hadMultipleCandidates(), E->isListInitialization(), E->requiresZeroInitialization(), E->getConstructionKind(), E->getParenOrBraceRange()); } /// \brief Transform a C++ temporary-binding expression. /// /// Since CXXBindTemporaryExpr nodes are implicitly generated, we just /// transform the subexpression and return that. template ExprResult TreeTransform::TransformCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { return getDerived().TransformExpr(E->getSubExpr()); } /// \brief Transform a C++ expression that contains cleanups that should /// be run after the expression is evaluated. /// /// Since ExprWithCleanups nodes are implicitly generated, we /// just transform the subexpression and return that. template ExprResult TreeTransform::TransformExprWithCleanups(ExprWithCleanups *E) { return getDerived().TransformExpr(E->getSubExpr()); } template ExprResult TreeTransform::TransformCXXTemporaryObjectExpr( CXXTemporaryObjectExpr *E) { TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo()); if (!T) return ExprError(); CXXConstructorDecl *Constructor = cast_or_null( getDerived().TransformDecl(E->getLocStart(), E->getConstructor())); if (!Constructor) return ExprError(); bool ArgumentChanged = false; SmallVector Args; Args.reserve(E->getNumArgs()); if (TransformExprs(E->getArgs(), E->getNumArgs(), true, Args, &ArgumentChanged)) return ExprError(); if (!getDerived().AlwaysRebuild() && T == E->getTypeSourceInfo() && Constructor == E->getConstructor() && !ArgumentChanged) { // FIXME: Instantiation-specific SemaRef.MarkFunctionReferenced(E->getLocStart(), Constructor); return SemaRef.MaybeBindToTemporary(E); } // FIXME: Pass in E->isListInitialization(). return getDerived().RebuildCXXTemporaryObjectExpr(T, /*FIXME:*/T->getTypeLoc().getEndLoc(), Args, E->getLocEnd()); } template ExprResult TreeTransform::TransformLambdaExpr(LambdaExpr *E) { // Transform any init-capture expressions before entering the scope of the // lambda body, because they are not semantically within that scope. SmallVector InitCaptureExprsAndTypes; InitCaptureExprsAndTypes.resize(E->explicit_capture_end() - E->explicit_capture_begin()); for (LambdaExpr::capture_iterator C = E->capture_begin(), CEnd = E->capture_end(); C != CEnd; ++C) { if (!C->isInitCapture()) continue; EnterExpressionEvaluationContext EEEC(getSema(), Sema::PotentiallyEvaluated); ExprResult NewExprInitResult = getDerived().TransformInitializer( C->getCapturedVar()->getInit(), C->getCapturedVar()->getInitStyle() == VarDecl::CallInit); if (NewExprInitResult.isInvalid()) return ExprError(); Expr *NewExprInit = NewExprInitResult.get(); VarDecl *OldVD = C->getCapturedVar(); QualType NewInitCaptureType = getSema().performLambdaInitCaptureInitialization(C->getLocation(), OldVD->getType()->isReferenceType(), OldVD->getIdentifier(), NewExprInit); NewExprInitResult = NewExprInit; InitCaptureExprsAndTypes[C - E->capture_begin()] = std::make_pair(NewExprInitResult, NewInitCaptureType); } LambdaScopeInfo *LSI = getSema().PushLambdaScope(); // Transform the template parameters, and add them to the current // instantiation scope. The null case is handled correctly. LSI->GLTemplateParameterList = getDerived().TransformTemplateParameterList( E->getTemplateParameterList()); // Check to see if the TypeSourceInfo of the call operator needs to // be transformed, and if so do the transformation in the // CurrentInstantiationScope. TypeSourceInfo *OldCallOpTSI = E->getCallOperator()->getTypeSourceInfo(); FunctionProtoTypeLoc OldCallOpFPTL = OldCallOpTSI->getTypeLoc().getAs(); TypeSourceInfo *NewCallOpTSI = nullptr; const bool CallOpWasAlreadyTransformed = getDerived().AlreadyTransformed(OldCallOpTSI->getType()); // Use the Old Call Operator's TypeSourceInfo if it is already transformed. if (CallOpWasAlreadyTransformed) NewCallOpTSI = OldCallOpTSI; else { // Transform the TypeSourceInfo of the Original Lambda's Call Operator. // The transformation MUST be done in the CurrentInstantiationScope since // it introduces a mapping of the original to the newly created // transformed parameters. TypeLocBuilder NewCallOpTLBuilder; QualType NewCallOpType = TransformFunctionProtoType(NewCallOpTLBuilder, OldCallOpFPTL, nullptr, 0); NewCallOpTSI = NewCallOpTLBuilder.getTypeSourceInfo(getSema().Context, NewCallOpType); } // Extract the ParmVarDecls from the NewCallOpTSI and add them to // the vector below - this will be used to synthesize the // NewCallOperator. Additionally, add the parameters of the untransformed // lambda call operator to the CurrentInstantiationScope. SmallVector Params; { FunctionProtoTypeLoc NewCallOpFPTL = NewCallOpTSI->getTypeLoc().castAs(); ParmVarDecl **NewParamDeclArray = NewCallOpFPTL.getParmArray(); const unsigned NewNumArgs = NewCallOpFPTL.getNumParams(); for (unsigned I = 0; I < NewNumArgs; ++I) { // If this call operator's type does not require transformation, // the parameters do not get added to the current instantiation scope, // - so ADD them! This allows the following to compile when the enclosing // template is specialized and the entire lambda expression has to be // transformed. // template void foo(T t) { // auto L = [](auto a) { // auto M = [](char b) { <-- note: non-generic lambda // auto N = [](auto c) { // int x = sizeof(a); // x = sizeof(b); <-- specifically this line // x = sizeof(c); // }; // }; // }; // } // foo('a') if (CallOpWasAlreadyTransformed) getDerived().transformedLocalDecl(NewParamDeclArray[I], NewParamDeclArray[I]); // Add to Params array, so these parameters can be used to create // the newly transformed call operator. Params.push_back(NewParamDeclArray[I]); } } if (!NewCallOpTSI) return ExprError(); // Create the local class that will describe the lambda. CXXRecordDecl *Class = getSema().createLambdaClosureType(E->getIntroducerRange(), NewCallOpTSI, /*KnownDependent=*/false, E->getCaptureDefault()); getDerived().transformedLocalDecl(E->getLambdaClass(), Class); // Build the call operator. CXXMethodDecl *NewCallOperator = getSema().startLambdaDefinition(Class, E->getIntroducerRange(), NewCallOpTSI, E->getCallOperator()->getLocEnd(), Params); LSI->CallOperator = NewCallOperator; getDerived().transformAttrs(E->getCallOperator(), NewCallOperator); return getDerived().TransformLambdaScope(E, NewCallOperator, InitCaptureExprsAndTypes); } template ExprResult TreeTransform::TransformLambdaScope(LambdaExpr *E, CXXMethodDecl *CallOperator, ArrayRef InitCaptureExprsAndTypes) { bool Invalid = false; // Introduce the context of the call operator. Sema::ContextRAII SavedContext(getSema(), CallOperator, /*NewThisContext*/false); LambdaScopeInfo *const LSI = getSema().getCurLambda(); // Enter the scope of the lambda. getSema().buildLambdaScope(LSI, CallOperator, E->getIntroducerRange(), E->getCaptureDefault(), E->getCaptureDefaultLoc(), E->hasExplicitParameters(), E->hasExplicitResultType(), E->isMutable()); // Transform captures. bool FinishedExplicitCaptures = false; for (LambdaExpr::capture_iterator C = E->capture_begin(), CEnd = E->capture_end(); C != CEnd; ++C) { // When we hit the first implicit capture, tell Sema that we've finished // the list of explicit captures. if (!FinishedExplicitCaptures && C->isImplicit()) { getSema().finishLambdaExplicitCaptures(LSI); FinishedExplicitCaptures = true; } // Capturing 'this' is trivial. if (C->capturesThis()) { getSema().CheckCXXThisCapture(C->getLocation(), C->isExplicit()); continue; } // Rebuild init-captures, including the implied field declaration. if (C->isInitCapture()) { InitCaptureInfoTy InitExprTypePair = InitCaptureExprsAndTypes[C - E->capture_begin()]; ExprResult Init = InitExprTypePair.first; QualType InitQualType = InitExprTypePair.second; if (Init.isInvalid() || InitQualType.isNull()) { Invalid = true; continue; } VarDecl *OldVD = C->getCapturedVar(); VarDecl *NewVD = getSema().createLambdaInitCaptureVarDecl( OldVD->getLocation(), InitExprTypePair.second, OldVD->getIdentifier(), Init.get()); if (!NewVD) Invalid = true; else { getDerived().transformedLocalDecl(OldVD, NewVD); } getSema().buildInitCaptureField(LSI, NewVD); continue; } assert(C->capturesVariable() && "unexpected kind of lambda capture"); // Determine the capture kind for Sema. Sema::TryCaptureKind Kind = C->isImplicit()? Sema::TryCapture_Implicit : C->getCaptureKind() == LCK_ByCopy ? Sema::TryCapture_ExplicitByVal : Sema::TryCapture_ExplicitByRef; SourceLocation EllipsisLoc; if (C->isPackExpansion()) { UnexpandedParameterPack Unexpanded(C->getCapturedVar(), C->getLocation()); bool ShouldExpand = false; bool RetainExpansion = false; Optional NumExpansions; if (getDerived().TryExpandParameterPacks(C->getEllipsisLoc(), C->getLocation(), Unexpanded, ShouldExpand, RetainExpansion, NumExpansions)) { Invalid = true; continue; } if (ShouldExpand) { // The transform has determined that we should perform an expansion; // transform and capture each of the arguments. // expansion of the pattern. Do so. VarDecl *Pack = C->getCapturedVar(); for (unsigned I = 0; I != *NumExpansions; ++I) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); VarDecl *CapturedVar = cast_or_null(getDerived().TransformDecl(C->getLocation(), Pack)); if (!CapturedVar) { Invalid = true; continue; } // Capture the transformed variable. getSema().tryCaptureVariable(CapturedVar, C->getLocation(), Kind); } // FIXME: Retain a pack expansion if RetainExpansion is true. continue; } EllipsisLoc = C->getEllipsisLoc(); } // Transform the captured variable. VarDecl *CapturedVar = cast_or_null(getDerived().TransformDecl(C->getLocation(), C->getCapturedVar())); if (!CapturedVar) { Invalid = true; continue; } // Capture the transformed variable. getSema().tryCaptureVariable(CapturedVar, C->getLocation(), Kind); } if (!FinishedExplicitCaptures) getSema().finishLambdaExplicitCaptures(LSI); // Enter a new evaluation context to insulate the lambda from any // cleanups from the enclosing full-expression. getSema().PushExpressionEvaluationContext(Sema::PotentiallyEvaluated); if (Invalid) { getSema().ActOnLambdaError(E->getLocStart(), /*CurScope=*/nullptr, /*IsInstantiation=*/true); return ExprError(); } // Instantiate the body of the lambda expression. StmtResult Body = getDerived().TransformStmt(E->getBody()); if (Body.isInvalid()) { getSema().ActOnLambdaError(E->getLocStart(), /*CurScope=*/nullptr, /*IsInstantiation=*/true); return ExprError(); } return getSema().ActOnLambdaExpr(E->getLocStart(), Body.get(), /*CurScope=*/nullptr, /*IsInstantiation=*/true); } template ExprResult TreeTransform::TransformCXXUnresolvedConstructExpr( CXXUnresolvedConstructExpr *E) { TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo()); if (!T) return ExprError(); bool ArgumentChanged = false; SmallVector Args; Args.reserve(E->arg_size()); if (getDerived().TransformExprs(E->arg_begin(), E->arg_size(), true, Args, &ArgumentChanged)) return ExprError(); if (!getDerived().AlwaysRebuild() && T == E->getTypeSourceInfo() && !ArgumentChanged) return E; // FIXME: we're faking the locations of the commas return getDerived().RebuildCXXUnresolvedConstructExpr(T, E->getLParenLoc(), Args, E->getRParenLoc()); } template ExprResult TreeTransform::TransformCXXDependentScopeMemberExpr( CXXDependentScopeMemberExpr *E) { // Transform the base of the expression. ExprResult Base((Expr*) nullptr); Expr *OldBase; QualType BaseType; QualType ObjectType; if (!E->isImplicitAccess()) { OldBase = E->getBase(); Base = getDerived().TransformExpr(OldBase); if (Base.isInvalid()) return ExprError(); // Start the member reference and compute the object's type. ParsedType ObjectTy; bool MayBePseudoDestructor = false; Base = SemaRef.ActOnStartCXXMemberReference(nullptr, Base.get(), E->getOperatorLoc(), E->isArrow()? tok::arrow : tok::period, ObjectTy, MayBePseudoDestructor); if (Base.isInvalid()) return ExprError(); ObjectType = ObjectTy.get(); BaseType = ((Expr*) Base.get())->getType(); } else { OldBase = nullptr; BaseType = getDerived().TransformType(E->getBaseType()); ObjectType = BaseType->getAs()->getPointeeType(); } // Transform the first part of the nested-name-specifier that qualifies // the member name. NamedDecl *FirstQualifierInScope = getDerived().TransformFirstQualifierInScope( E->getFirstQualifierFoundInScope(), E->getQualifierLoc().getBeginLoc()); NestedNameSpecifierLoc QualifierLoc; if (E->getQualifier()) { QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc(), ObjectType, FirstQualifierInScope); if (!QualifierLoc) return ExprError(); } SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc(); // TODO: If this is a conversion-function-id, verify that the // destination type name (if present) resolves the same way after // instantiation as it did in the local scope. DeclarationNameInfo NameInfo = getDerived().TransformDeclarationNameInfo(E->getMemberNameInfo()); if (!NameInfo.getName()) return ExprError(); if (!E->hasExplicitTemplateArgs()) { // This is a reference to a member without an explicitly-specified // template argument list. Optimize for this common case. if (!getDerived().AlwaysRebuild() && Base.get() == OldBase && BaseType == E->getBaseType() && QualifierLoc == E->getQualifierLoc() && NameInfo.getName() == E->getMember() && FirstQualifierInScope == E->getFirstQualifierFoundInScope()) return E; return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(), BaseType, E->isArrow(), E->getOperatorLoc(), QualifierLoc, TemplateKWLoc, FirstQualifierInScope, NameInfo, /*TemplateArgs*/nullptr); } TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc()); if (getDerived().TransformTemplateArguments(E->getTemplateArgs(), E->getNumTemplateArgs(), TransArgs)) return ExprError(); return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(), BaseType, E->isArrow(), E->getOperatorLoc(), QualifierLoc, TemplateKWLoc, FirstQualifierInScope, NameInfo, &TransArgs); } template ExprResult TreeTransform::TransformUnresolvedMemberExpr(UnresolvedMemberExpr *Old) { // Transform the base of the expression. ExprResult Base((Expr*) nullptr); QualType BaseType; if (!Old->isImplicitAccess()) { Base = getDerived().TransformExpr(Old->getBase()); if (Base.isInvalid()) return ExprError(); Base = getSema().PerformMemberExprBaseConversion(Base.get(), Old->isArrow()); if (Base.isInvalid()) return ExprError(); BaseType = Base.get()->getType(); } else { BaseType = getDerived().TransformType(Old->getBaseType()); } NestedNameSpecifierLoc QualifierLoc; if (Old->getQualifierLoc()) { QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(Old->getQualifierLoc()); if (!QualifierLoc) return ExprError(); } SourceLocation TemplateKWLoc = Old->getTemplateKeywordLoc(); LookupResult R(SemaRef, Old->getMemberNameInfo(), Sema::LookupOrdinaryName); // Transform all the decls. for (UnresolvedMemberExpr::decls_iterator I = Old->decls_begin(), E = Old->decls_end(); I != E; ++I) { NamedDecl *InstD = static_cast( getDerived().TransformDecl(Old->getMemberLoc(), *I)); if (!InstD) { // Silently ignore these if a UsingShadowDecl instantiated to nothing. // This can happen because of dependent hiding. if (isa(*I)) continue; else { R.clear(); return ExprError(); } } // Expand using declarations. if (isa(InstD)) { UsingDecl *UD = cast(InstD); for (auto *I : UD->shadows()) R.addDecl(I); continue; } R.addDecl(InstD); } R.resolveKind(); // Determine the naming class. if (Old->getNamingClass()) { CXXRecordDecl *NamingClass = cast_or_null(getDerived().TransformDecl( Old->getMemberLoc(), Old->getNamingClass())); if (!NamingClass) return ExprError(); R.setNamingClass(NamingClass); } TemplateArgumentListInfo TransArgs; if (Old->hasExplicitTemplateArgs()) { TransArgs.setLAngleLoc(Old->getLAngleLoc()); TransArgs.setRAngleLoc(Old->getRAngleLoc()); if (getDerived().TransformTemplateArguments(Old->getTemplateArgs(), Old->getNumTemplateArgs(), TransArgs)) return ExprError(); } // FIXME: to do this check properly, we will need to preserve the // first-qualifier-in-scope here, just in case we had a dependent // base (and therefore couldn't do the check) and a // nested-name-qualifier (and therefore could do the lookup). NamedDecl *FirstQualifierInScope = nullptr; return getDerived().RebuildUnresolvedMemberExpr(Base.get(), BaseType, Old->getOperatorLoc(), Old->isArrow(), QualifierLoc, TemplateKWLoc, FirstQualifierInScope, R, (Old->hasExplicitTemplateArgs() ? &TransArgs : nullptr)); } template ExprResult TreeTransform::TransformCXXNoexceptExpr(CXXNoexceptExpr *E) { EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated); ExprResult SubExpr = getDerived().TransformExpr(E->getOperand()); if (SubExpr.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getOperand()) return E; return getDerived().RebuildCXXNoexceptExpr(E->getSourceRange(),SubExpr.get()); } template ExprResult TreeTransform::TransformPackExpansionExpr(PackExpansionExpr *E) { ExprResult Pattern = getDerived().TransformExpr(E->getPattern()); if (Pattern.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && Pattern.get() == E->getPattern()) return E; return getDerived().RebuildPackExpansion(Pattern.get(), E->getEllipsisLoc(), E->getNumExpansions()); } template ExprResult TreeTransform::TransformSizeOfPackExpr(SizeOfPackExpr *E) { // If E is not value-dependent, then nothing will change when we transform it. // Note: This is an instantiation-centric view. if (!E->isValueDependent()) return E; // Note: None of the implementations of TryExpandParameterPacks can ever // produce a diagnostic when given only a single unexpanded parameter pack, // so UnexpandedParameterPack Unexpanded(E->getPack(), E->getPackLoc()); bool ShouldExpand = false; bool RetainExpansion = false; Optional NumExpansions; if (getDerived().TryExpandParameterPacks(E->getOperatorLoc(), E->getPackLoc(), Unexpanded, ShouldExpand, RetainExpansion, NumExpansions)) return ExprError(); if (RetainExpansion) return E; NamedDecl *Pack = E->getPack(); if (!ShouldExpand) { Pack = cast_or_null(getDerived().TransformDecl(E->getPackLoc(), Pack)); if (!Pack) return ExprError(); } // We now know the length of the parameter pack, so build a new expression // that stores that length. return getDerived().RebuildSizeOfPackExpr(E->getOperatorLoc(), Pack, E->getPackLoc(), E->getRParenLoc(), NumExpansions); } template ExprResult TreeTransform::TransformSubstNonTypeTemplateParmPackExpr( SubstNonTypeTemplateParmPackExpr *E) { // Default behavior is to do nothing with this transformation. return E; } template ExprResult TreeTransform::TransformSubstNonTypeTemplateParmExpr( SubstNonTypeTemplateParmExpr *E) { // Default behavior is to do nothing with this transformation. return E; } template ExprResult TreeTransform::TransformFunctionParmPackExpr(FunctionParmPackExpr *E) { // Default behavior is to do nothing with this transformation. return E; } template ExprResult TreeTransform::TransformMaterializeTemporaryExpr( MaterializeTemporaryExpr *E) { return getDerived().TransformExpr(E->GetTemporaryExpr()); } template ExprResult TreeTransform::TransformCXXStdInitializerListExpr( CXXStdInitializerListExpr *E) { return getDerived().TransformExpr(E->getSubExpr()); } template ExprResult TreeTransform::TransformObjCStringLiteral(ObjCStringLiteral *E) { return SemaRef.MaybeBindToTemporary(E); } template ExprResult TreeTransform::TransformObjCBoolLiteralExpr(ObjCBoolLiteralExpr *E) { return E; } template ExprResult TreeTransform::TransformObjCBoxedExpr(ObjCBoxedExpr *E) { ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr()); if (SubExpr.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr()) return E; return getDerived().RebuildObjCBoxedExpr(E->getSourceRange(), SubExpr.get()); } template ExprResult TreeTransform::TransformObjCArrayLiteral(ObjCArrayLiteral *E) { // Transform each of the elements. SmallVector Elements; bool ArgChanged = false; if (getDerived().TransformExprs(E->getElements(), E->getNumElements(), /*IsCall=*/false, Elements, &ArgChanged)) return ExprError(); if (!getDerived().AlwaysRebuild() && !ArgChanged) return SemaRef.MaybeBindToTemporary(E); return getDerived().RebuildObjCArrayLiteral(E->getSourceRange(), Elements.data(), Elements.size()); } template ExprResult TreeTransform::TransformObjCDictionaryLiteral( ObjCDictionaryLiteral *E) { // Transform each of the elements. SmallVector Elements; bool ArgChanged = false; for (unsigned I = 0, N = E->getNumElements(); I != N; ++I) { ObjCDictionaryElement OrigElement = E->getKeyValueElement(I); if (OrigElement.isPackExpansion()) { // This key/value element is a pack expansion. SmallVector Unexpanded; getSema().collectUnexpandedParameterPacks(OrigElement.Key, Unexpanded); getSema().collectUnexpandedParameterPacks(OrigElement.Value, Unexpanded); assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); // Determine whether the set of unexpanded parameter packs can // and should be expanded. bool Expand = true; bool RetainExpansion = false; Optional OrigNumExpansions = OrigElement.NumExpansions; Optional NumExpansions = OrigNumExpansions; SourceRange PatternRange(OrigElement.Key->getLocStart(), OrigElement.Value->getLocEnd()); if (getDerived().TryExpandParameterPacks(OrigElement.EllipsisLoc, PatternRange, Unexpanded, Expand, RetainExpansion, NumExpansions)) return ExprError(); if (!Expand) { // The transform has determined that we should perform a simple // transformation on the pack expansion, producing another pack // expansion. Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); ExprResult Key = getDerived().TransformExpr(OrigElement.Key); if (Key.isInvalid()) return ExprError(); if (Key.get() != OrigElement.Key) ArgChanged = true; ExprResult Value = getDerived().TransformExpr(OrigElement.Value); if (Value.isInvalid()) return ExprError(); if (Value.get() != OrigElement.Value) ArgChanged = true; ObjCDictionaryElement Expansion = { Key.get(), Value.get(), OrigElement.EllipsisLoc, NumExpansions }; Elements.push_back(Expansion); continue; } // Record right away that the argument was changed. This needs // to happen even if the array expands to nothing. ArgChanged = true; // The transform has determined that we should perform an elementwise // expansion of the pattern. Do so. for (unsigned I = 0; I != *NumExpansions; ++I) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); ExprResult Key = getDerived().TransformExpr(OrigElement.Key); if (Key.isInvalid()) return ExprError(); ExprResult Value = getDerived().TransformExpr(OrigElement.Value); if (Value.isInvalid()) return ExprError(); ObjCDictionaryElement Element = { Key.get(), Value.get(), SourceLocation(), NumExpansions }; // If any unexpanded parameter packs remain, we still have a // pack expansion. // FIXME: Can this really happen? if (Key.get()->containsUnexpandedParameterPack() || Value.get()->containsUnexpandedParameterPack()) Element.EllipsisLoc = OrigElement.EllipsisLoc; Elements.push_back(Element); } // FIXME: Retain a pack expansion if RetainExpansion is true. // We've finished with this pack expansion. continue; } // Transform and check key. ExprResult Key = getDerived().TransformExpr(OrigElement.Key); if (Key.isInvalid()) return ExprError(); if (Key.get() != OrigElement.Key) ArgChanged = true; // Transform and check value. ExprResult Value = getDerived().TransformExpr(OrigElement.Value); if (Value.isInvalid()) return ExprError(); if (Value.get() != OrigElement.Value) ArgChanged = true; ObjCDictionaryElement Element = { Key.get(), Value.get(), SourceLocation(), None }; Elements.push_back(Element); } if (!getDerived().AlwaysRebuild() && !ArgChanged) return SemaRef.MaybeBindToTemporary(E); return getDerived().RebuildObjCDictionaryLiteral(E->getSourceRange(), Elements.data(), Elements.size()); } template ExprResult TreeTransform::TransformObjCEncodeExpr(ObjCEncodeExpr *E) { TypeSourceInfo *EncodedTypeInfo = getDerived().TransformType(E->getEncodedTypeSourceInfo()); if (!EncodedTypeInfo) return ExprError(); if (!getDerived().AlwaysRebuild() && EncodedTypeInfo == E->getEncodedTypeSourceInfo()) return E; return getDerived().RebuildObjCEncodeExpr(E->getAtLoc(), EncodedTypeInfo, E->getRParenLoc()); } template ExprResult TreeTransform:: TransformObjCIndirectCopyRestoreExpr(ObjCIndirectCopyRestoreExpr *E) { // This is a kind of implicit conversion, and it needs to get dropped // and recomputed for the same general reasons that ImplicitCastExprs // do, as well a more specific one: this expression is only valid when // it appears *immediately* as an argument expression. return getDerived().TransformExpr(E->getSubExpr()); } template ExprResult TreeTransform:: TransformObjCBridgedCastExpr(ObjCBridgedCastExpr *E) { TypeSourceInfo *TSInfo = getDerived().TransformType(E->getTypeInfoAsWritten()); if (!TSInfo) return ExprError(); ExprResult Result = getDerived().TransformExpr(E->getSubExpr()); if (Result.isInvalid()) return ExprError(); if (!getDerived().AlwaysRebuild() && TSInfo == E->getTypeInfoAsWritten() && Result.get() == E->getSubExpr()) return E; return SemaRef.BuildObjCBridgedCast(E->getLParenLoc(), E->getBridgeKind(), E->getBridgeKeywordLoc(), TSInfo, Result.get()); } template ExprResult TreeTransform::TransformObjCMessageExpr(ObjCMessageExpr *E) { // Transform arguments. bool ArgChanged = false; SmallVector Args; Args.reserve(E->getNumArgs()); if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), false, Args, &ArgChanged)) return ExprError(); if (E->getReceiverKind() == ObjCMessageExpr::Class) { // Class message: transform the receiver type. TypeSourceInfo *ReceiverTypeInfo = getDerived().TransformType(E->getClassReceiverTypeInfo()); if (!ReceiverTypeInfo) return ExprError(); // If nothing changed, just retain the existing message send. if (!getDerived().AlwaysRebuild() && ReceiverTypeInfo == E->getClassReceiverTypeInfo() && !ArgChanged) return SemaRef.MaybeBindToTemporary(E); // Build a new class message send. SmallVector SelLocs; E->getSelectorLocs(SelLocs); return getDerived().RebuildObjCMessageExpr(ReceiverTypeInfo, E->getSelector(), SelLocs, E->getMethodDecl(), E->getLeftLoc(), Args, E->getRightLoc()); } // Instance message: transform the receiver assert(E->getReceiverKind() == ObjCMessageExpr::Instance && "Only class and instance messages may be instantiated"); ExprResult Receiver = getDerived().TransformExpr(E->getInstanceReceiver()); if (Receiver.isInvalid()) return ExprError(); // If nothing changed, just retain the existing message send. if (!getDerived().AlwaysRebuild() && Receiver.get() == E->getInstanceReceiver() && !ArgChanged) return SemaRef.MaybeBindToTemporary(E); // Build a new instance message send. SmallVector SelLocs; E->getSelectorLocs(SelLocs); return getDerived().RebuildObjCMessageExpr(Receiver.get(), E->getSelector(), SelLocs, E->getMethodDecl(), E->getLeftLoc(), Args, E->getRightLoc()); } template ExprResult TreeTransform::TransformObjCSelectorExpr(ObjCSelectorExpr *E) { return E; } template ExprResult TreeTransform::TransformObjCProtocolExpr(ObjCProtocolExpr *E) { return E; } template ExprResult TreeTransform::TransformObjCIvarRefExpr(ObjCIvarRefExpr *E) { // Transform the base expression. ExprResult Base = getDerived().TransformExpr(E->getBase()); if (Base.isInvalid()) return ExprError(); // We don't need to transform the ivar; it will never change. // If nothing changed, just retain the existing expression. if (!getDerived().AlwaysRebuild() && Base.get() == E->getBase()) return E; return getDerived().RebuildObjCIvarRefExpr(Base.get(), E->getDecl(), E->getLocation(), E->isArrow(), E->isFreeIvar()); } template ExprResult TreeTransform::TransformObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { // 'super' and types never change. Property never changes. Just // retain the existing expression. if (!E->isObjectReceiver()) return E; // Transform the base expression. ExprResult Base = getDerived().TransformExpr(E->getBase()); if (Base.isInvalid()) return ExprError(); // We don't need to transform the property; it will never change. // If nothing changed, just retain the existing expression. if (!getDerived().AlwaysRebuild() && Base.get() == E->getBase()) return E; if (E->isExplicitProperty()) return getDerived().RebuildObjCPropertyRefExpr(Base.get(), E->getExplicitProperty(), E->getLocation()); return getDerived().RebuildObjCPropertyRefExpr(Base.get(), SemaRef.Context.PseudoObjectTy, E->getImplicitPropertyGetter(), E->getImplicitPropertySetter(), E->getLocation()); } template ExprResult TreeTransform::TransformObjCSubscriptRefExpr(ObjCSubscriptRefExpr *E) { // Transform the base expression. ExprResult Base = getDerived().TransformExpr(E->getBaseExpr()); if (Base.isInvalid()) return ExprError(); // Transform the key expression. ExprResult Key = getDerived().TransformExpr(E->getKeyExpr()); if (Key.isInvalid()) return ExprError(); // If nothing changed, just retain the existing expression. if (!getDerived().AlwaysRebuild() && Key.get() == E->getKeyExpr() && Base.get() == E->getBaseExpr()) return E; return getDerived().RebuildObjCSubscriptRefExpr(E->getRBracket(), Base.get(), Key.get(), E->getAtIndexMethodDecl(), E->setAtIndexMethodDecl()); } template ExprResult TreeTransform::TransformObjCIsaExpr(ObjCIsaExpr *E) { // Transform the base expression. ExprResult Base = getDerived().TransformExpr(E->getBase()); if (Base.isInvalid()) return ExprError(); // If nothing changed, just retain the existing expression. if (!getDerived().AlwaysRebuild() && Base.get() == E->getBase()) return E; return getDerived().RebuildObjCIsaExpr(Base.get(), E->getIsaMemberLoc(), E->getOpLoc(), E->isArrow()); } template ExprResult TreeTransform::TransformShuffleVectorExpr(ShuffleVectorExpr *E) { bool ArgumentChanged = false; SmallVector SubExprs; SubExprs.reserve(E->getNumSubExprs()); if (getDerived().TransformExprs(E->getSubExprs(), E->getNumSubExprs(), false, SubExprs, &ArgumentChanged)) return ExprError(); if (!getDerived().AlwaysRebuild() && !ArgumentChanged) return E; return getDerived().RebuildShuffleVectorExpr(E->getBuiltinLoc(), SubExprs, E->getRParenLoc()); } template ExprResult TreeTransform::TransformConvertVectorExpr(ConvertVectorExpr *E) { ExprResult SrcExpr = getDerived().TransformExpr(E->getSrcExpr()); if (SrcExpr.isInvalid()) return ExprError(); TypeSourceInfo *Type = getDerived().TransformType(E->getTypeSourceInfo()); if (!Type) return ExprError(); if (!getDerived().AlwaysRebuild() && Type == E->getTypeSourceInfo() && SrcExpr.get() == E->getSrcExpr()) return E; return getDerived().RebuildConvertVectorExpr(E->getBuiltinLoc(), SrcExpr.get(), Type, E->getRParenLoc()); } template ExprResult TreeTransform::TransformBlockExpr(BlockExpr *E) { BlockDecl *oldBlock = E->getBlockDecl(); SemaRef.ActOnBlockStart(E->getCaretLocation(), /*Scope=*/nullptr); BlockScopeInfo *blockScope = SemaRef.getCurBlock(); blockScope->TheDecl->setIsVariadic(oldBlock->isVariadic()); blockScope->TheDecl->setBlockMissingReturnType( oldBlock->blockMissingReturnType()); SmallVector params; SmallVector paramTypes; // Parameter substitution. if (getDerived().TransformFunctionTypeParams(E->getCaretLocation(), oldBlock->param_begin(), oldBlock->param_size(), nullptr, paramTypes, ¶ms)) { getSema().ActOnBlockError(E->getCaretLocation(), /*Scope=*/nullptr); return ExprError(); } const FunctionProtoType *exprFunctionType = E->getFunctionType(); QualType exprResultType = getDerived().TransformType(exprFunctionType->getReturnType()); QualType functionType = getDerived().RebuildFunctionProtoType(exprResultType, paramTypes, exprFunctionType->getExtProtoInfo()); blockScope->FunctionType = functionType; // Set the parameters on the block decl. if (!params.empty()) blockScope->TheDecl->setParams(params); if (!oldBlock->blockMissingReturnType()) { blockScope->HasImplicitReturnType = false; blockScope->ReturnType = exprResultType; } // Transform the body StmtResult body = getDerived().TransformStmt(E->getBody()); if (body.isInvalid()) { getSema().ActOnBlockError(E->getCaretLocation(), /*Scope=*/nullptr); return ExprError(); } #ifndef NDEBUG // In builds with assertions, make sure that we captured everything we // captured before. if (!SemaRef.getDiagnostics().hasErrorOccurred()) { for (const auto &I : oldBlock->captures()) { VarDecl *oldCapture = I.getVariable(); // Ignore parameter packs. if (isa(oldCapture) && cast(oldCapture)->isParameterPack()) continue; VarDecl *newCapture = cast(getDerived().TransformDecl(E->getCaretLocation(), oldCapture)); assert(blockScope->CaptureMap.count(newCapture)); } assert(oldBlock->capturesCXXThis() == blockScope->isCXXThisCaptured()); } #endif return SemaRef.ActOnBlockStmtExpr(E->getCaretLocation(), body.get(), /*Scope=*/nullptr); } template ExprResult TreeTransform::TransformAsTypeExpr(AsTypeExpr *E) { llvm_unreachable("Cannot transform asType expressions yet"); } template ExprResult TreeTransform::TransformAtomicExpr(AtomicExpr *E) { QualType RetTy = getDerived().TransformType(E->getType()); bool ArgumentChanged = false; SmallVector SubExprs; SubExprs.reserve(E->getNumSubExprs()); if (getDerived().TransformExprs(E->getSubExprs(), E->getNumSubExprs(), false, SubExprs, &ArgumentChanged)) return ExprError(); if (!getDerived().AlwaysRebuild() && !ArgumentChanged) return E; return getDerived().RebuildAtomicExpr(E->getBuiltinLoc(), SubExprs, RetTy, E->getOp(), E->getRParenLoc()); } //===----------------------------------------------------------------------===// // Type reconstruction //===----------------------------------------------------------------------===// template QualType TreeTransform::RebuildPointerType(QualType PointeeType, SourceLocation Star) { return SemaRef.BuildPointerType(PointeeType, Star, getDerived().getBaseEntity()); } template QualType TreeTransform::RebuildBlockPointerType(QualType PointeeType, SourceLocation Star) { return SemaRef.BuildBlockPointerType(PointeeType, Star, getDerived().getBaseEntity()); } template QualType TreeTransform::RebuildReferenceType(QualType ReferentType, bool WrittenAsLValue, SourceLocation Sigil) { return SemaRef.BuildReferenceType(ReferentType, WrittenAsLValue, Sigil, getDerived().getBaseEntity()); } template QualType TreeTransform::RebuildMemberPointerType(QualType PointeeType, QualType ClassType, SourceLocation Sigil) { return SemaRef.BuildMemberPointerType(PointeeType, ClassType, Sigil, getDerived().getBaseEntity()); } template QualType TreeTransform::RebuildArrayType(QualType ElementType, ArrayType::ArraySizeModifier SizeMod, const llvm::APInt *Size, Expr *SizeExpr, unsigned IndexTypeQuals, SourceRange BracketsRange) { if (SizeExpr || !Size) return SemaRef.BuildArrayType(ElementType, SizeMod, SizeExpr, IndexTypeQuals, BracketsRange, getDerived().getBaseEntity()); QualType Types[] = { SemaRef.Context.UnsignedCharTy, SemaRef.Context.UnsignedShortTy, SemaRef.Context.UnsignedIntTy, SemaRef.Context.UnsignedLongTy, SemaRef.Context.UnsignedLongLongTy, SemaRef.Context.UnsignedInt128Ty }; const unsigned NumTypes = llvm::array_lengthof(Types); QualType SizeType; for (unsigned I = 0; I != NumTypes; ++I) if (Size->getBitWidth() == SemaRef.Context.getIntWidth(Types[I])) { SizeType = Types[I]; break; } // Note that we can return a VariableArrayType here in the case where // the element type was a dependent VariableArrayType. IntegerLiteral *ArraySize = IntegerLiteral::Create(SemaRef.Context, *Size, SizeType, /*FIXME*/BracketsRange.getBegin()); return SemaRef.BuildArrayType(ElementType, SizeMod, ArraySize, IndexTypeQuals, BracketsRange, getDerived().getBaseEntity()); } template QualType TreeTransform::RebuildConstantArrayType(QualType ElementType, ArrayType::ArraySizeModifier SizeMod, const llvm::APInt &Size, unsigned IndexTypeQuals, SourceRange BracketsRange) { return getDerived().RebuildArrayType(ElementType, SizeMod, &Size, nullptr, IndexTypeQuals, BracketsRange); } template QualType TreeTransform::RebuildIncompleteArrayType(QualType ElementType, ArrayType::ArraySizeModifier SizeMod, unsigned IndexTypeQuals, SourceRange BracketsRange) { return getDerived().RebuildArrayType(ElementType, SizeMod, nullptr, nullptr, IndexTypeQuals, BracketsRange); } template QualType TreeTransform::RebuildVariableArrayType(QualType ElementType, ArrayType::ArraySizeModifier SizeMod, Expr *SizeExpr, unsigned IndexTypeQuals, SourceRange BracketsRange) { return getDerived().RebuildArrayType(ElementType, SizeMod, nullptr, SizeExpr, IndexTypeQuals, BracketsRange); } template QualType TreeTransform::RebuildDependentSizedArrayType(QualType ElementType, ArrayType::ArraySizeModifier SizeMod, Expr *SizeExpr, unsigned IndexTypeQuals, SourceRange BracketsRange) { return getDerived().RebuildArrayType(ElementType, SizeMod, nullptr, SizeExpr, IndexTypeQuals, BracketsRange); } template QualType TreeTransform::RebuildVectorType(QualType ElementType, unsigned NumElements, VectorType::VectorKind VecKind) { // FIXME: semantic checking! return SemaRef.Context.getVectorType(ElementType, NumElements, VecKind); } template QualType TreeTransform::RebuildExtVectorType(QualType ElementType, unsigned NumElements, SourceLocation AttributeLoc) { llvm::APInt numElements(SemaRef.Context.getIntWidth(SemaRef.Context.IntTy), NumElements, true); IntegerLiteral *VectorSize = IntegerLiteral::Create(SemaRef.Context, numElements, SemaRef.Context.IntTy, AttributeLoc); return SemaRef.BuildExtVectorType(ElementType, VectorSize, AttributeLoc); } template QualType TreeTransform::RebuildDependentSizedExtVectorType(QualType ElementType, Expr *SizeExpr, SourceLocation AttributeLoc) { return SemaRef.BuildExtVectorType(ElementType, SizeExpr, AttributeLoc); } template QualType TreeTransform::RebuildFunctionProtoType( QualType T, MutableArrayRef ParamTypes, const FunctionProtoType::ExtProtoInfo &EPI) { return SemaRef.BuildFunctionType(T, ParamTypes, getDerived().getBaseLocation(), getDerived().getBaseEntity(), EPI); } template QualType TreeTransform::RebuildFunctionNoProtoType(QualType T) { return SemaRef.Context.getFunctionNoProtoType(T); } template QualType TreeTransform::RebuildUnresolvedUsingType(Decl *D) { assert(D && "no decl found"); if (D->isInvalidDecl()) return QualType(); // FIXME: Doesn't account for ObjCInterfaceDecl! TypeDecl *Ty; if (isa(D)) { UsingDecl *Using = cast(D); assert(Using->hasTypename() && "UnresolvedUsingTypenameDecl transformed to non-typename using"); // A valid resolved using typename decl points to exactly one type decl. assert(++Using->shadow_begin() == Using->shadow_end()); Ty = cast((*Using->shadow_begin())->getTargetDecl()); } else { assert(isa(D) && "UnresolvedUsingTypenameDecl transformed to non-using decl"); Ty = cast(D); } return SemaRef.Context.getTypeDeclType(Ty); } template QualType TreeTransform::RebuildTypeOfExprType(Expr *E, SourceLocation Loc) { return SemaRef.BuildTypeofExprType(E, Loc); } template QualType TreeTransform::RebuildTypeOfType(QualType Underlying) { return SemaRef.Context.getTypeOfType(Underlying); } template QualType TreeTransform::RebuildDecltypeType(Expr *E, SourceLocation Loc) { return SemaRef.BuildDecltypeType(E, Loc); } template QualType TreeTransform::RebuildUnaryTransformType(QualType BaseType, UnaryTransformType::UTTKind UKind, SourceLocation Loc) { return SemaRef.BuildUnaryTransformType(BaseType, UKind, Loc); } template QualType TreeTransform::RebuildTemplateSpecializationType( TemplateName Template, SourceLocation TemplateNameLoc, TemplateArgumentListInfo &TemplateArgs) { return SemaRef.CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs); } template QualType TreeTransform::RebuildAtomicType(QualType ValueType, SourceLocation KWLoc) { return SemaRef.BuildAtomicType(ValueType, KWLoc); } template TemplateName TreeTransform::RebuildTemplateName(CXXScopeSpec &SS, bool TemplateKW, TemplateDecl *Template) { return SemaRef.Context.getQualifiedTemplateName(SS.getScopeRep(), TemplateKW, Template); } template TemplateName TreeTransform::RebuildTemplateName(CXXScopeSpec &SS, const IdentifierInfo &Name, SourceLocation NameLoc, QualType ObjectType, NamedDecl *FirstQualifierInScope) { UnqualifiedId TemplateName; TemplateName.setIdentifier(&Name, NameLoc); Sema::TemplateTy Template; SourceLocation TemplateKWLoc; // FIXME: retrieve it from caller. getSema().ActOnDependentTemplateName(/*Scope=*/nullptr, SS, TemplateKWLoc, TemplateName, ParsedType::make(ObjectType), /*EnteringContext=*/false, Template); return Template.get(); } template TemplateName TreeTransform::RebuildTemplateName(CXXScopeSpec &SS, OverloadedOperatorKind Operator, SourceLocation NameLoc, QualType ObjectType) { UnqualifiedId Name; // FIXME: Bogus location information. SourceLocation SymbolLocations[3] = { NameLoc, NameLoc, NameLoc }; Name.setOperatorFunctionId(NameLoc, Operator, SymbolLocations); SourceLocation TemplateKWLoc; // FIXME: retrieve it from caller. Sema::TemplateTy Template; getSema().ActOnDependentTemplateName(/*Scope=*/nullptr, SS, TemplateKWLoc, Name, ParsedType::make(ObjectType), /*EnteringContext=*/false, Template); return Template.get(); } template ExprResult TreeTransform::RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op, SourceLocation OpLoc, Expr *OrigCallee, Expr *First, Expr *Second) { Expr *Callee = OrigCallee->IgnoreParenCasts(); bool isPostIncDec = Second && (Op == OO_PlusPlus || Op == OO_MinusMinus); if (First->getObjectKind() == OK_ObjCProperty) { BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op); if (BinaryOperator::isAssignmentOp(Opc)) return SemaRef.checkPseudoObjectAssignment(/*Scope=*/nullptr, OpLoc, Opc, First, Second); ExprResult Result = SemaRef.CheckPlaceholderExpr(First); if (Result.isInvalid()) return ExprError(); First = Result.get(); } if (Second && Second->getObjectKind() == OK_ObjCProperty) { ExprResult Result = SemaRef.CheckPlaceholderExpr(Second); if (Result.isInvalid()) return ExprError(); Second = Result.get(); } // Determine whether this should be a builtin operation. if (Op == OO_Subscript) { if (!First->getType()->isOverloadableType() && !Second->getType()->isOverloadableType()) return getSema().CreateBuiltinArraySubscriptExpr(First, Callee->getLocStart(), Second, OpLoc); } else if (Op == OO_Arrow) { // -> is never a builtin operation. return SemaRef.BuildOverloadedArrowExpr(nullptr, First, OpLoc); } else if (Second == nullptr || isPostIncDec) { if (!First->getType()->isOverloadableType()) { // The argument is not of overloadable type, so try to create a // built-in unary operation. UnaryOperatorKind Opc = UnaryOperator::getOverloadedOpcode(Op, isPostIncDec); return getSema().CreateBuiltinUnaryOp(OpLoc, Opc, First); } } else { if (!First->getType()->isOverloadableType() && !Second->getType()->isOverloadableType()) { // Neither of the arguments is an overloadable type, so try to // create a built-in binary operation. BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op); ExprResult Result = SemaRef.CreateBuiltinBinOp(OpLoc, Opc, First, Second); if (Result.isInvalid()) return ExprError(); return Result; } } // Compute the transformed set of functions (and function templates) to be // used during overload resolution. UnresolvedSet<16> Functions; if (UnresolvedLookupExpr *ULE = dyn_cast(Callee)) { assert(ULE->requiresADL()); Functions.append(ULE->decls_begin(), ULE->decls_end()); } else { // If we've resolved this to a particular non-member function, just call // that function. If we resolved it to a member function, // CreateOverloaded* will find that function for us. NamedDecl *ND = cast(Callee)->getDecl(); if (!isa(ND)) Functions.addDecl(ND); } // Add any functions found via argument-dependent lookup. Expr *Args[2] = { First, Second }; unsigned NumArgs = 1 + (Second != nullptr); // Create the overloaded operator invocation for unary operators. if (NumArgs == 1 || isPostIncDec) { UnaryOperatorKind Opc = UnaryOperator::getOverloadedOpcode(Op, isPostIncDec); return SemaRef.CreateOverloadedUnaryOp(OpLoc, Opc, Functions, First); } if (Op == OO_Subscript) { SourceLocation LBrace; SourceLocation RBrace; if (DeclRefExpr *DRE = dyn_cast(Callee)) { DeclarationNameLoc &NameLoc = DRE->getNameInfo().getInfo(); LBrace = SourceLocation::getFromRawEncoding( NameLoc.CXXOperatorName.BeginOpNameLoc); RBrace = SourceLocation::getFromRawEncoding( NameLoc.CXXOperatorName.EndOpNameLoc); } else { LBrace = Callee->getLocStart(); RBrace = OpLoc; } return SemaRef.CreateOverloadedArraySubscriptExpr(LBrace, RBrace, First, Second); } // Create the overloaded operator invocation for binary operators. BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op); ExprResult Result = SemaRef.CreateOverloadedBinOp(OpLoc, Opc, Functions, Args[0], Args[1]); if (Result.isInvalid()) return ExprError(); return Result; } template ExprResult TreeTransform::RebuildCXXPseudoDestructorExpr(Expr *Base, SourceLocation OperatorLoc, bool isArrow, CXXScopeSpec &SS, TypeSourceInfo *ScopeType, SourceLocation CCLoc, SourceLocation TildeLoc, PseudoDestructorTypeStorage Destroyed) { QualType BaseType = Base->getType(); if (Base->isTypeDependent() || Destroyed.getIdentifier() || (!isArrow && !BaseType->getAs()) || (isArrow && BaseType->getAs() && !BaseType->getAs()->getPointeeType() ->template getAs())){ // This pseudo-destructor expression is still a pseudo-destructor. return SemaRef.BuildPseudoDestructorExpr(Base, OperatorLoc, isArrow? tok::arrow : tok::period, SS, ScopeType, CCLoc, TildeLoc, Destroyed, /*FIXME?*/true); } TypeSourceInfo *DestroyedType = Destroyed.getTypeSourceInfo(); DeclarationName Name(SemaRef.Context.DeclarationNames.getCXXDestructorName( SemaRef.Context.getCanonicalType(DestroyedType->getType()))); DeclarationNameInfo NameInfo(Name, Destroyed.getLocation()); NameInfo.setNamedTypeInfo(DestroyedType); // The scope type is now known to be a valid nested name specifier // component. Tack it on to the end of the nested name specifier. if (ScopeType) SS.Extend(SemaRef.Context, SourceLocation(), ScopeType->getTypeLoc(), CCLoc); SourceLocation TemplateKWLoc; // FIXME: retrieve it from caller. return getSema().BuildMemberReferenceExpr(Base, BaseType, OperatorLoc, isArrow, SS, TemplateKWLoc, /*FIXME: FirstQualifier*/ nullptr, NameInfo, /*TemplateArgs*/ nullptr); } template StmtResult TreeTransform::TransformCapturedStmt(CapturedStmt *S) { SourceLocation Loc = S->getLocStart(); CapturedDecl *CD = S->getCapturedDecl(); unsigned NumParams = CD->getNumParams(); unsigned ContextParamPos = CD->getContextParamPosition(); SmallVector Params; for (unsigned I = 0; I < NumParams; ++I) { if (I != ContextParamPos) { Params.push_back( std::make_pair( CD->getParam(I)->getName(), getDerived().TransformType(CD->getParam(I)->getType()))); } else { Params.push_back(std::make_pair(StringRef(), QualType())); } } getSema().ActOnCapturedRegionStart(Loc, /*CurScope*/nullptr, S->getCapturedRegionKind(), Params); StmtResult Body; { Sema::CompoundScopeRAII CompoundScope(getSema()); Body = getDerived().TransformStmt(S->getCapturedStmt()); } if (Body.isInvalid()) { getSema().ActOnCapturedRegionError(); return StmtError(); } return getSema().ActOnCapturedRegionEnd(Body.get()); } } // end namespace clang #endif // LLVM_CLANG_SEMA_TREETRANSFORM_H