/*------------------------------------------------------------------------- * drawElements Quality Program Tester Core * ---------------------------------------- * * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Compressed Texture Utilities. *//*--------------------------------------------------------------------*/ #include "tcuCompressedTexture.hpp" #include "tcuTextureUtil.hpp" #include "deStringUtil.hpp" #include "deFloat16.h" #include namespace tcu { enum { ASTC_BLOCK_SIZE_BYTES = 128/8 }; template struct isSameType { enum { V = 0 }; }; template struct isSameType { enum { V = 1 }; }; CompressedTexture::CompressedTexture (void) : m_format (FORMAT_LAST) , m_width (0) , m_height (0) , m_depth (0) { } CompressedTexture::CompressedTexture (Format format, int width, int height, int depth) : m_format (FORMAT_LAST) , m_width (0) , m_height (0) , m_depth (0) { setStorage(format, width, height, depth); } CompressedTexture::~CompressedTexture (void) { } static inline int divRoundUp (int a, int b) { return a/b + ((a%b) ? 1 : 0); } bool isEtcFormat (CompressedTexture::Format fmt) { switch (fmt) { case CompressedTexture::ETC1_RGB8: case CompressedTexture::EAC_R11: case CompressedTexture::EAC_SIGNED_R11: case CompressedTexture::EAC_RG11: case CompressedTexture::EAC_SIGNED_RG11: case CompressedTexture::ETC2_RGB8: case CompressedTexture::ETC2_SRGB8: case CompressedTexture::ETC2_RGB8_PUNCHTHROUGH_ALPHA1: case CompressedTexture::ETC2_SRGB8_PUNCHTHROUGH_ALPHA1: case CompressedTexture::ETC2_EAC_RGBA8: case CompressedTexture::ETC2_EAC_SRGB8_ALPHA8: return true; default: return false; } } bool isASTCFormat (CompressedTexture::Format fmt) { switch (fmt) { case CompressedTexture::ASTC_4x4_RGBA: case CompressedTexture::ASTC_5x4_RGBA: case CompressedTexture::ASTC_5x5_RGBA: case CompressedTexture::ASTC_6x5_RGBA: case CompressedTexture::ASTC_6x6_RGBA: case CompressedTexture::ASTC_8x5_RGBA: case CompressedTexture::ASTC_8x6_RGBA: case CompressedTexture::ASTC_8x8_RGBA: case CompressedTexture::ASTC_10x5_RGBA: case CompressedTexture::ASTC_10x6_RGBA: case CompressedTexture::ASTC_10x8_RGBA: case CompressedTexture::ASTC_10x10_RGBA: case CompressedTexture::ASTC_12x10_RGBA: case CompressedTexture::ASTC_12x12_RGBA: case CompressedTexture::ASTC_4x4_SRGB8_ALPHA8: case CompressedTexture::ASTC_5x4_SRGB8_ALPHA8: case CompressedTexture::ASTC_5x5_SRGB8_ALPHA8: case CompressedTexture::ASTC_6x5_SRGB8_ALPHA8: case CompressedTexture::ASTC_6x6_SRGB8_ALPHA8: case CompressedTexture::ASTC_8x5_SRGB8_ALPHA8: case CompressedTexture::ASTC_8x6_SRGB8_ALPHA8: case CompressedTexture::ASTC_8x8_SRGB8_ALPHA8: case CompressedTexture::ASTC_10x5_SRGB8_ALPHA8: case CompressedTexture::ASTC_10x6_SRGB8_ALPHA8: case CompressedTexture::ASTC_10x8_SRGB8_ALPHA8: case CompressedTexture::ASTC_10x10_SRGB8_ALPHA8: case CompressedTexture::ASTC_12x10_SRGB8_ALPHA8: case CompressedTexture::ASTC_12x12_SRGB8_ALPHA8: return true; default: return false; } } bool isASTCSRGBFormat (CompressedTexture::Format fmt) { switch (fmt) { case CompressedTexture::ASTC_4x4_SRGB8_ALPHA8: case CompressedTexture::ASTC_5x4_SRGB8_ALPHA8: case CompressedTexture::ASTC_5x5_SRGB8_ALPHA8: case CompressedTexture::ASTC_6x5_SRGB8_ALPHA8: case CompressedTexture::ASTC_6x6_SRGB8_ALPHA8: case CompressedTexture::ASTC_8x5_SRGB8_ALPHA8: case CompressedTexture::ASTC_8x6_SRGB8_ALPHA8: case CompressedTexture::ASTC_8x8_SRGB8_ALPHA8: case CompressedTexture::ASTC_10x5_SRGB8_ALPHA8: case CompressedTexture::ASTC_10x6_SRGB8_ALPHA8: case CompressedTexture::ASTC_10x8_SRGB8_ALPHA8: case CompressedTexture::ASTC_10x10_SRGB8_ALPHA8: case CompressedTexture::ASTC_12x10_SRGB8_ALPHA8: case CompressedTexture::ASTC_12x12_SRGB8_ALPHA8: return true; default: return false; } } IVec3 getASTCBlockSize (CompressedTexture::Format fmt) { switch (fmt) { case CompressedTexture::ASTC_4x4_RGBA: return IVec3(4, 4, 1); case CompressedTexture::ASTC_5x4_RGBA: return IVec3(5, 4, 1); case CompressedTexture::ASTC_5x5_RGBA: return IVec3(5, 5, 1); case CompressedTexture::ASTC_6x5_RGBA: return IVec3(6, 5, 1); case CompressedTexture::ASTC_6x6_RGBA: return IVec3(6, 6, 1); case CompressedTexture::ASTC_8x5_RGBA: return IVec3(8, 5, 1); case CompressedTexture::ASTC_8x6_RGBA: return IVec3(8, 6, 1); case CompressedTexture::ASTC_8x8_RGBA: return IVec3(8, 8, 1); case CompressedTexture::ASTC_10x5_RGBA: return IVec3(10, 5, 1); case CompressedTexture::ASTC_10x6_RGBA: return IVec3(10, 6, 1); case CompressedTexture::ASTC_10x8_RGBA: return IVec3(10, 8, 1); case CompressedTexture::ASTC_10x10_RGBA: return IVec3(10, 10, 1); case CompressedTexture::ASTC_12x10_RGBA: return IVec3(12, 10, 1); case CompressedTexture::ASTC_12x12_RGBA: return IVec3(12, 12, 1); case CompressedTexture::ASTC_4x4_SRGB8_ALPHA8: return IVec3(4, 4, 1); case CompressedTexture::ASTC_5x4_SRGB8_ALPHA8: return IVec3(5, 4, 1); case CompressedTexture::ASTC_5x5_SRGB8_ALPHA8: return IVec3(5, 5, 1); case CompressedTexture::ASTC_6x5_SRGB8_ALPHA8: return IVec3(6, 5, 1); case CompressedTexture::ASTC_6x6_SRGB8_ALPHA8: return IVec3(6, 6, 1); case CompressedTexture::ASTC_8x5_SRGB8_ALPHA8: return IVec3(8, 5, 1); case CompressedTexture::ASTC_8x6_SRGB8_ALPHA8: return IVec3(8, 6, 1); case CompressedTexture::ASTC_8x8_SRGB8_ALPHA8: return IVec3(8, 8, 1); case CompressedTexture::ASTC_10x5_SRGB8_ALPHA8: return IVec3(10, 5, 1); case CompressedTexture::ASTC_10x6_SRGB8_ALPHA8: return IVec3(10, 6, 1); case CompressedTexture::ASTC_10x8_SRGB8_ALPHA8: return IVec3(10, 8, 1); case CompressedTexture::ASTC_10x10_SRGB8_ALPHA8: return IVec3(10, 10, 1); case CompressedTexture::ASTC_12x10_SRGB8_ALPHA8: return IVec3(12, 10, 1); case CompressedTexture::ASTC_12x12_SRGB8_ALPHA8: return IVec3(12, 12, 1); default: DE_ASSERT(false); return IVec3(); } } CompressedTexture::Format getASTCFormatByBlockSize (int width, int height, int depth, bool isSRGB) { if (depth > 1) throw tcu::InternalError("3D ASTC textures not currently supported"); const tcu::IVec3 size(width, height, depth); for (int fmtI = 0; fmtI < CompressedTexture::FORMAT_LAST; fmtI++) { const CompressedTexture::Format fmt = (CompressedTexture::Format)fmtI; if (isASTCFormat(fmt) && getASTCBlockSize(fmt) == size && isASTCSRGBFormat(fmt) == isSRGB) return fmt; } throw tcu::InternalError("Invalid ASTC block size " + de::toString(width) + "x" + de::toString(height) + "x" + de::toString(depth)); } void CompressedTexture::setStorage (Format format, int width, int height, int depth) { m_format = format; m_width = width; m_height = height; m_depth = depth; if (isEtcFormat(m_format)) { DE_ASSERT(m_depth == 1); int blockSizeMultiplier = 0; // How many 64-bit parts each compressed block contains. switch (m_format) { case ETC1_RGB8: blockSizeMultiplier = 1; break; case EAC_R11: blockSizeMultiplier = 1; break; case EAC_SIGNED_R11: blockSizeMultiplier = 1; break; case EAC_RG11: blockSizeMultiplier = 2; break; case EAC_SIGNED_RG11: blockSizeMultiplier = 2; break; case ETC2_RGB8: blockSizeMultiplier = 1; break; case ETC2_SRGB8: blockSizeMultiplier = 1; break; case ETC2_RGB8_PUNCHTHROUGH_ALPHA1: blockSizeMultiplier = 1; break; case ETC2_SRGB8_PUNCHTHROUGH_ALPHA1: blockSizeMultiplier = 1; break; case ETC2_EAC_RGBA8: blockSizeMultiplier = 2; break; case ETC2_EAC_SRGB8_ALPHA8: blockSizeMultiplier = 2; break; default: DE_ASSERT(false); break; } m_data.resize(blockSizeMultiplier * sizeof(deUint64) * divRoundUp(m_width, 4) * divRoundUp(m_height, 4)); } else if (isASTCFormat(m_format)) { if (m_depth > 1) throw tcu::InternalError("3D ASTC textures not currently supported"); const IVec3 blockSize = getASTCBlockSize(m_format); m_data.resize(ASTC_BLOCK_SIZE_BYTES * divRoundUp(m_width, blockSize.x()) * divRoundUp(m_height, blockSize.y()) * divRoundUp(m_depth, blockSize.z())); } else { DE_ASSERT(m_format == FORMAT_LAST); DE_ASSERT(m_width == 0 && m_height == 0 && m_depth == 0); m_data.resize(0); } } /*--------------------------------------------------------------------*//*! * \brief Get uncompressed texture format *//*--------------------------------------------------------------------*/ TextureFormat CompressedTexture::getUncompressedFormat (void) const { if (isEtcFormat(m_format)) { switch (m_format) { case ETC1_RGB8: return TextureFormat(TextureFormat::RGB, TextureFormat::UNORM_INT8); case EAC_R11: return TextureFormat(TextureFormat::R, TextureFormat::UNORM_INT16); case EAC_SIGNED_R11: return TextureFormat(TextureFormat::R, TextureFormat::SNORM_INT16); case EAC_RG11: return TextureFormat(TextureFormat::RG, TextureFormat::UNORM_INT16); case EAC_SIGNED_RG11: return TextureFormat(TextureFormat::RG, TextureFormat::SNORM_INT16); case ETC2_RGB8: return TextureFormat(TextureFormat::RGB, TextureFormat::UNORM_INT8); case ETC2_SRGB8: return TextureFormat(TextureFormat::sRGB, TextureFormat::UNORM_INT8); case ETC2_RGB8_PUNCHTHROUGH_ALPHA1: return TextureFormat(TextureFormat::RGBA, TextureFormat::UNORM_INT8); case ETC2_SRGB8_PUNCHTHROUGH_ALPHA1: return TextureFormat(TextureFormat::sRGBA, TextureFormat::UNORM_INT8); case ETC2_EAC_RGBA8: return TextureFormat(TextureFormat::RGBA, TextureFormat::UNORM_INT8); case ETC2_EAC_SRGB8_ALPHA8: return TextureFormat(TextureFormat::sRGBA, TextureFormat::UNORM_INT8); default: DE_ASSERT(false); return TextureFormat(); } } else if (isASTCFormat(m_format)) { if (isASTCSRGBFormat(m_format)) return TextureFormat(TextureFormat::sRGBA, TextureFormat::UNORM_INT8); else return TextureFormat(TextureFormat::RGBA, TextureFormat::HALF_FLOAT); } else { DE_ASSERT(false); return TextureFormat(); } } // \todo [2013-08-06 nuutti] ETC and ASTC decompression codes are rather unrelated, and are already in their own "private" namespaces - should this be split to multiple files? namespace EtcDecompressInternal { enum { ETC2_BLOCK_WIDTH = 4, ETC2_BLOCK_HEIGHT = 4, ETC2_UNCOMPRESSED_PIXEL_SIZE_A8 = 1, ETC2_UNCOMPRESSED_PIXEL_SIZE_R11 = 2, ETC2_UNCOMPRESSED_PIXEL_SIZE_RG11 = 4, ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8 = 3, ETC2_UNCOMPRESSED_PIXEL_SIZE_RGBA8 = 4, ETC2_UNCOMPRESSED_BLOCK_SIZE_A8 = ETC2_BLOCK_WIDTH*ETC2_BLOCK_HEIGHT*ETC2_UNCOMPRESSED_PIXEL_SIZE_A8, ETC2_UNCOMPRESSED_BLOCK_SIZE_R11 = ETC2_BLOCK_WIDTH*ETC2_BLOCK_HEIGHT*ETC2_UNCOMPRESSED_PIXEL_SIZE_R11, ETC2_UNCOMPRESSED_BLOCK_SIZE_RG11 = ETC2_BLOCK_WIDTH*ETC2_BLOCK_HEIGHT*ETC2_UNCOMPRESSED_PIXEL_SIZE_RG11, ETC2_UNCOMPRESSED_BLOCK_SIZE_RGB8 = ETC2_BLOCK_WIDTH*ETC2_BLOCK_HEIGHT*ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8, ETC2_UNCOMPRESSED_BLOCK_SIZE_RGBA8 = ETC2_BLOCK_WIDTH*ETC2_BLOCK_HEIGHT*ETC2_UNCOMPRESSED_PIXEL_SIZE_RGBA8 }; static inline deUint64 get64BitBlock (const deUint8* src, int blockNdx) { // Stored in big-endian form. deUint64 block = 0; for (int i = 0; i < 8; i++) block = (block << 8ull) | (deUint64)(src[blockNdx*8+i]); return block; } // Return the first 64 bits of a 128 bit block. static inline deUint64 get128BitBlockStart (const deUint8* src, int blockNdx) { return get64BitBlock(src, 2*blockNdx); } // Return the last 64 bits of a 128 bit block. static inline deUint64 get128BitBlockEnd (const deUint8* src, int blockNdx) { return get64BitBlock(src, 2*blockNdx + 1); } static inline deUint32 getBit (deUint64 src, int bit) { return (src >> bit) & 1; } static inline deUint32 getBits (deUint64 src, int low, int high) { const int numBits = (high-low) + 1; DE_ASSERT(de::inRange(numBits, 1, 32)); return (src >> low) & ((1<> 2); } static inline deUint8 extend6To8 (deUint8 src) { DE_ASSERT((src & ~((1<<6)-1)) == 0); return (src << 2) | (src >> 4); } static inline deUint8 extend7To8 (deUint8 src) { DE_ASSERT((src & ~((1<<7)-1)) == 0); return (src << 1) | (src >> 6); } static inline deInt8 extendSigned3To8 (deUint8 src) { const bool isNeg = (src & (1<<2)) != 0; return (deInt8)((isNeg ? ~((1<<3)-1) : 0) | src); } static inline deUint8 extend5Delta3To8 (deUint8 base5, deUint8 delta3) { const deUint8 t = (deUint8)((deInt8)base5 + extendSigned3To8(delta3)); return extend5To8(t); } static inline deUint16 extend11To16 (deUint16 src) { DE_ASSERT((src & ~((1<<11)-1)) == 0); return (src << 5) | (src >> 6); } static inline deInt16 extend11To16WithSign (deInt16 src) { if (src < 0) return -(deInt16)extend11To16(-src); else return (deInt16)extend11To16(src); } static void decompressETC1Block (deUint8 dst[ETC2_UNCOMPRESSED_BLOCK_SIZE_RGB8], deUint64 src) { const int diffBit = (int)getBit(src, 33); const int flipBit = (int)getBit(src, 32); const deUint32 table[2] = { getBits(src, 37, 39), getBits(src, 34, 36) }; deUint8 baseR[2]; deUint8 baseG[2]; deUint8 baseB[2]; if (diffBit == 0) { // Individual mode. baseR[0] = extend4To8((deUint8)getBits(src, 60, 63)); baseR[1] = extend4To8((deUint8)getBits(src, 56, 59)); baseG[0] = extend4To8((deUint8)getBits(src, 52, 55)); baseG[1] = extend4To8((deUint8)getBits(src, 48, 51)); baseB[0] = extend4To8((deUint8)getBits(src, 44, 47)); baseB[1] = extend4To8((deUint8)getBits(src, 40, 43)); } else { // Differential mode (diffBit == 1). deUint8 bR = (deUint8)getBits(src, 59, 63); // 5b deUint8 dR = (deUint8)getBits(src, 56, 58); // 3b deUint8 bG = (deUint8)getBits(src, 51, 55); deUint8 dG = (deUint8)getBits(src, 48, 50); deUint8 bB = (deUint8)getBits(src, 43, 47); deUint8 dB = (deUint8)getBits(src, 40, 42); baseR[0] = extend5To8(bR); baseG[0] = extend5To8(bG); baseB[0] = extend5To8(bB); baseR[1] = extend5Delta3To8(bR, dR); baseG[1] = extend5Delta3To8(bG, dG); baseB[1] = extend5Delta3To8(bB, dB); } static const int modifierTable[8][4] = { // 00 01 10 11 { 2, 8, -2, -8 }, { 5, 17, -5, -17 }, { 9, 29, -9, -29 }, { 13, 42, -13, -42 }, { 18, 60, -18, -60 }, { 24, 80, -24, -80 }, { 33, 106, -33, -106 }, { 47, 183, -47, -183 } }; // Write final pixels. for (int pixelNdx = 0; pixelNdx < ETC2_BLOCK_HEIGHT*ETC2_BLOCK_WIDTH; pixelNdx++) { const int x = pixelNdx / ETC2_BLOCK_HEIGHT; const int y = pixelNdx % ETC2_BLOCK_HEIGHT; const int dstOffset = (y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8; const int subBlock = ((flipBit ? y : x) >= 2) ? 1 : 0; const deUint32 tableNdx = table[subBlock]; const deUint32 modifierNdx = (getBit(src, 16+pixelNdx) << 1) | getBit(src, pixelNdx); const int modifier = modifierTable[tableNdx][modifierNdx]; dst[dstOffset+0] = (deUint8)deClamp32((int)baseR[subBlock] + modifier, 0, 255); dst[dstOffset+1] = (deUint8)deClamp32((int)baseG[subBlock] + modifier, 0, 255); dst[dstOffset+2] = (deUint8)deClamp32((int)baseB[subBlock] + modifier, 0, 255); } } // if alphaMode is true, do PUNCHTHROUGH and store alpha to alphaDst; otherwise do ordinary ETC2 RGB8. static void decompressETC2Block (deUint8 dst[ETC2_UNCOMPRESSED_BLOCK_SIZE_RGB8], deUint64 src, deUint8 alphaDst[ETC2_UNCOMPRESSED_BLOCK_SIZE_A8], bool alphaMode) { enum Etc2Mode { MODE_INDIVIDUAL = 0, MODE_DIFFERENTIAL, MODE_T, MODE_H, MODE_PLANAR, MODE_LAST }; const int diffOpaqueBit = (int)getBit(src, 33); const deInt8 selBR = (deInt8)getBits(src, 59, 63); // 5 bits. const deInt8 selBG = (deInt8)getBits(src, 51, 55); const deInt8 selBB = (deInt8)getBits(src, 43, 47); const deInt8 selDR = extendSigned3To8((deUint8)getBits(src, 56, 58)); // 3 bits. const deInt8 selDG = extendSigned3To8((deUint8)getBits(src, 48, 50)); const deInt8 selDB = extendSigned3To8((deUint8)getBits(src, 40, 42)); Etc2Mode mode; if (!alphaMode && diffOpaqueBit == 0) mode = MODE_INDIVIDUAL; else if (!de::inRange(selBR + selDR, 0, 31)) mode = MODE_T; else if (!de::inRange(selBG + selDG, 0, 31)) mode = MODE_H; else if (!de::inRange(selBB + selDB, 0, 31)) mode = MODE_PLANAR; else mode = MODE_DIFFERENTIAL; if (mode == MODE_INDIVIDUAL || mode == MODE_DIFFERENTIAL) { // Individual and differential modes have some steps in common, handle them here. static const int modifierTable[8][4] = { // 00 01 10 11 { 2, 8, -2, -8 }, { 5, 17, -5, -17 }, { 9, 29, -9, -29 }, { 13, 42, -13, -42 }, { 18, 60, -18, -60 }, { 24, 80, -24, -80 }, { 33, 106, -33, -106 }, { 47, 183, -47, -183 } }; const int flipBit = (int)getBit(src, 32); const deUint32 table[2] = { getBits(src, 37, 39), getBits(src, 34, 36) }; deUint8 baseR[2]; deUint8 baseG[2]; deUint8 baseB[2]; if (mode == MODE_INDIVIDUAL) { // Individual mode, initial values. baseR[0] = extend4To8((deUint8)getBits(src, 60, 63)); baseR[1] = extend4To8((deUint8)getBits(src, 56, 59)); baseG[0] = extend4To8((deUint8)getBits(src, 52, 55)); baseG[1] = extend4To8((deUint8)getBits(src, 48, 51)); baseB[0] = extend4To8((deUint8)getBits(src, 44, 47)); baseB[1] = extend4To8((deUint8)getBits(src, 40, 43)); } else { // Differential mode, initial values. baseR[0] = extend5To8(selBR); baseG[0] = extend5To8(selBG); baseB[0] = extend5To8(selBB); baseR[1] = extend5To8((deUint8)(selBR + selDR)); baseG[1] = extend5To8((deUint8)(selBG + selDG)); baseB[1] = extend5To8((deUint8)(selBB + selDB)); } // Write final pixels for individual or differential mode. for (int pixelNdx = 0; pixelNdx < ETC2_BLOCK_HEIGHT*ETC2_BLOCK_WIDTH; pixelNdx++) { const int x = pixelNdx / ETC2_BLOCK_HEIGHT; const int y = pixelNdx % ETC2_BLOCK_HEIGHT; const int dstOffset = (y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8; const int subBlock = ((flipBit ? y : x) >= 2) ? 1 : 0; const deUint32 tableNdx = table[subBlock]; const deUint32 modifierNdx = (getBit(src, 16+pixelNdx) << 1) | getBit(src, pixelNdx); const int alphaDstOffset = (y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_A8; // Only needed for PUNCHTHROUGH version. // If doing PUNCHTHROUGH version (alphaMode), opaque bit may affect colors. if (alphaMode && diffOpaqueBit == 0 && modifierNdx == 2) { dst[dstOffset+0] = 0; dst[dstOffset+1] = 0; dst[dstOffset+2] = 0; alphaDst[alphaDstOffset] = 0; } else { int modifier; // PUNCHTHROUGH version and opaque bit may also affect modifiers. if (alphaMode && diffOpaqueBit == 0 && (modifierNdx == 0 || modifierNdx == 2)) modifier = 0; else modifier = modifierTable[tableNdx][modifierNdx]; dst[dstOffset+0] = (deUint8)deClamp32((int)baseR[subBlock] + modifier, 0, 255); dst[dstOffset+1] = (deUint8)deClamp32((int)baseG[subBlock] + modifier, 0, 255); dst[dstOffset+2] = (deUint8)deClamp32((int)baseB[subBlock] + modifier, 0, 255); if (alphaMode) alphaDst[alphaDstOffset] = 255; } } } else if (mode == MODE_T || mode == MODE_H) { // T and H modes have some steps in common, handle them here. static const int distTable[8] = { 3, 6, 11, 16, 23, 32, 41, 64 }; deUint8 paintR[4]; deUint8 paintG[4]; deUint8 paintB[4]; if (mode == MODE_T) { // T mode, calculate paint values. const deUint8 R1a = (deUint8)getBits(src, 59, 60); const deUint8 R1b = (deUint8)getBits(src, 56, 57); const deUint8 G1 = (deUint8)getBits(src, 52, 55); const deUint8 B1 = (deUint8)getBits(src, 48, 51); const deUint8 R2 = (deUint8)getBits(src, 44, 47); const deUint8 G2 = (deUint8)getBits(src, 40, 43); const deUint8 B2 = (deUint8)getBits(src, 36, 39); const deUint32 distNdx = (getBits(src, 34, 35) << 1) | getBit(src, 32); const int dist = distTable[distNdx]; paintR[0] = extend4To8((R1a << 2) | R1b); paintG[0] = extend4To8(G1); paintB[0] = extend4To8(B1); paintR[2] = extend4To8(R2); paintG[2] = extend4To8(G2); paintB[2] = extend4To8(B2); paintR[1] = (deUint8)deClamp32((int)paintR[2] + dist, 0, 255); paintG[1] = (deUint8)deClamp32((int)paintG[2] + dist, 0, 255); paintB[1] = (deUint8)deClamp32((int)paintB[2] + dist, 0, 255); paintR[3] = (deUint8)deClamp32((int)paintR[2] - dist, 0, 255); paintG[3] = (deUint8)deClamp32((int)paintG[2] - dist, 0, 255); paintB[3] = (deUint8)deClamp32((int)paintB[2] - dist, 0, 255); } else { // H mode, calculate paint values. const deUint8 R1 = (deUint8)getBits(src, 59, 62); const deUint8 G1a = (deUint8)getBits(src, 56, 58); const deUint8 G1b = (deUint8)getBit(src, 52); const deUint8 B1a = (deUint8)getBit(src, 51); const deUint8 B1b = (deUint8)getBits(src, 47, 49); const deUint8 R2 = (deUint8)getBits(src, 43, 46); const deUint8 G2 = (deUint8)getBits(src, 39, 42); const deUint8 B2 = (deUint8)getBits(src, 35, 38); deUint8 baseR[2]; deUint8 baseG[2]; deUint8 baseB[2]; deUint32 baseValue[2]; deUint32 distNdx; int dist; baseR[0] = extend4To8(R1); baseG[0] = extend4To8((G1a << 1) | G1b); baseB[0] = extend4To8((B1a << 3) | B1b); baseR[1] = extend4To8(R2); baseG[1] = extend4To8(G2); baseB[1] = extend4To8(B2); baseValue[0] = (((deUint32)baseR[0]) << 16) | (((deUint32)baseG[0]) << 8) | baseB[0]; baseValue[1] = (((deUint32)baseR[1]) << 16) | (((deUint32)baseG[1]) << 8) | baseB[1]; distNdx = (getBit(src, 34) << 2) | (getBit(src, 32) << 1) | (deUint32)(baseValue[0] >= baseValue[1]); dist = distTable[distNdx]; paintR[0] = (deUint8)deClamp32((int)baseR[0] + dist, 0, 255); paintG[0] = (deUint8)deClamp32((int)baseG[0] + dist, 0, 255); paintB[0] = (deUint8)deClamp32((int)baseB[0] + dist, 0, 255); paintR[1] = (deUint8)deClamp32((int)baseR[0] - dist, 0, 255); paintG[1] = (deUint8)deClamp32((int)baseG[0] - dist, 0, 255); paintB[1] = (deUint8)deClamp32((int)baseB[0] - dist, 0, 255); paintR[2] = (deUint8)deClamp32((int)baseR[1] + dist, 0, 255); paintG[2] = (deUint8)deClamp32((int)baseG[1] + dist, 0, 255); paintB[2] = (deUint8)deClamp32((int)baseB[1] + dist, 0, 255); paintR[3] = (deUint8)deClamp32((int)baseR[1] - dist, 0, 255); paintG[3] = (deUint8)deClamp32((int)baseG[1] - dist, 0, 255); paintB[3] = (deUint8)deClamp32((int)baseB[1] - dist, 0, 255); } // Write final pixels for T or H mode. for (int pixelNdx = 0; pixelNdx < ETC2_BLOCK_HEIGHT*ETC2_BLOCK_WIDTH; pixelNdx++) { const int x = pixelNdx / ETC2_BLOCK_HEIGHT; const int y = pixelNdx % ETC2_BLOCK_HEIGHT; const int dstOffset = (y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8; const deUint32 paintNdx = (getBit(src, 16+pixelNdx) << 1) | getBit(src, pixelNdx); const int alphaDstOffset = (y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_A8; // Only needed for PUNCHTHROUGH version. if (alphaMode && diffOpaqueBit == 0 && paintNdx == 2) { dst[dstOffset+0] = 0; dst[dstOffset+1] = 0; dst[dstOffset+2] = 0; alphaDst[alphaDstOffset] = 0; } else { dst[dstOffset+0] = (deUint8)deClamp32((int)paintR[paintNdx], 0, 255); dst[dstOffset+1] = (deUint8)deClamp32((int)paintG[paintNdx], 0, 255); dst[dstOffset+2] = (deUint8)deClamp32((int)paintB[paintNdx], 0, 255); if (alphaMode) alphaDst[alphaDstOffset] = 255; } } } else { // Planar mode. const deUint8 GO1 = (deUint8)getBit(src, 56); const deUint8 GO2 = (deUint8)getBits(src, 49, 54); const deUint8 BO1 = (deUint8)getBit(src, 48); const deUint8 BO2 = (deUint8)getBits(src, 43, 44); const deUint8 BO3 = (deUint8)getBits(src, 39, 41); const deUint8 RH1 = (deUint8)getBits(src, 34, 38); const deUint8 RH2 = (deUint8)getBit(src, 32); const deUint8 RO = extend6To8((deUint8)getBits(src, 57, 62)); const deUint8 GO = extend7To8((GO1 << 6) | GO2); const deUint8 BO = extend6To8((BO1 << 5) | (BO2 << 3) | BO3); const deUint8 RH = extend6To8((RH1 << 1) | RH2); const deUint8 GH = extend7To8((deUint8)getBits(src, 25, 31)); const deUint8 BH = extend6To8((deUint8)getBits(src, 19, 24)); const deUint8 RV = extend6To8((deUint8)getBits(src, 13, 18)); const deUint8 GV = extend7To8((deUint8)getBits(src, 6, 12)); const deUint8 BV = extend6To8((deUint8)getBits(src, 0, 5)); // Write final pixels for planar mode. for (int y = 0; y < 4; y++) { for (int x = 0; x < 4; x++) { const int dstOffset = (y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8; const int unclampedR = (x * ((int)RH-(int)RO) + y * ((int)RV-(int)RO) + 4*(int)RO + 2) >> 2; const int unclampedG = (x * ((int)GH-(int)GO) + y * ((int)GV-(int)GO) + 4*(int)GO + 2) >> 2; const int unclampedB = (x * ((int)BH-(int)BO) + y * ((int)BV-(int)BO) + 4*(int)BO + 2) >> 2; const int alphaDstOffset = (y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_A8; // Only needed for PUNCHTHROUGH version. dst[dstOffset+0] = (deUint8)deClamp32(unclampedR, 0, 255); dst[dstOffset+1] = (deUint8)deClamp32(unclampedG, 0, 255); dst[dstOffset+2] = (deUint8)deClamp32(unclampedB, 0, 255); if (alphaMode) alphaDst[alphaDstOffset] = 255; } } } } static void decompressEAC8Block (deUint8 dst[ETC2_UNCOMPRESSED_BLOCK_SIZE_A8], deUint64 src) { static const int modifierTable[16][8] = { {-3, -6, -9, -15, 2, 5, 8, 14}, {-3, -7, -10, -13, 2, 6, 9, 12}, {-2, -5, -8, -13, 1, 4, 7, 12}, {-2, -4, -6, -13, 1, 3, 5, 12}, {-3, -6, -8, -12, 2, 5, 7, 11}, {-3, -7, -9, -11, 2, 6, 8, 10}, {-4, -7, -8, -11, 3, 6, 7, 10}, {-3, -5, -8, -11, 2, 4, 7, 10}, {-2, -6, -8, -10, 1, 5, 7, 9}, {-2, -5, -8, -10, 1, 4, 7, 9}, {-2, -4, -8, -10, 1, 3, 7, 9}, {-2, -5, -7, -10, 1, 4, 6, 9}, {-3, -4, -7, -10, 2, 3, 6, 9}, {-1, -2, -3, -10, 0, 1, 2, 9}, {-4, -6, -8, -9, 3, 5, 7, 8}, {-3, -5, -7, -9, 2, 4, 6, 8} }; const deUint8 baseCodeword = (deUint8)getBits(src, 56, 63); const deUint8 multiplier = (deUint8)getBits(src, 52, 55); const deUint32 tableNdx = getBits(src, 48, 51); for (int pixelNdx = 0; pixelNdx < ETC2_BLOCK_HEIGHT*ETC2_BLOCK_WIDTH; pixelNdx++) { const int x = pixelNdx / ETC2_BLOCK_HEIGHT; const int y = pixelNdx % ETC2_BLOCK_HEIGHT; const int dstOffset = (y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_A8; const int pixelBitNdx = 45 - 3*pixelNdx; const deUint32 modifierNdx = (getBit(src, pixelBitNdx + 2) << 2) | (getBit(src, pixelBitNdx + 1) << 1) | getBit(src, pixelBitNdx); const int modifier = modifierTable[tableNdx][modifierNdx]; dst[dstOffset] = (deUint8)deClamp32((int)baseCodeword + (int)multiplier*modifier, 0, 255); } } static void decompressEAC11Block (deUint8 dst[ETC2_UNCOMPRESSED_BLOCK_SIZE_R11], deUint64 src, bool signedMode) { static const int modifierTable[16][8] = { {-3, -6, -9, -15, 2, 5, 8, 14}, {-3, -7, -10, -13, 2, 6, 9, 12}, {-2, -5, -8, -13, 1, 4, 7, 12}, {-2, -4, -6, -13, 1, 3, 5, 12}, {-3, -6, -8, -12, 2, 5, 7, 11}, {-3, -7, -9, -11, 2, 6, 8, 10}, {-4, -7, -8, -11, 3, 6, 7, 10}, {-3, -5, -8, -11, 2, 4, 7, 10}, {-2, -6, -8, -10, 1, 5, 7, 9}, {-2, -5, -8, -10, 1, 4, 7, 9}, {-2, -4, -8, -10, 1, 3, 7, 9}, {-2, -5, -7, -10, 1, 4, 6, 9}, {-3, -4, -7, -10, 2, 3, 6, 9}, {-1, -2, -3, -10, 0, 1, 2, 9}, {-4, -6, -8, -9, 3, 5, 7, 8}, {-3, -5, -7, -9, 2, 4, 6, 8} }; const deInt32 multiplier = (deInt32)getBits(src, 52, 55); const deInt32 tableNdx = (deInt32)getBits(src, 48, 51); deInt32 baseCodeword = (deInt32)getBits(src, 56, 63); if (signedMode) { if (baseCodeword > 127) baseCodeword -= 256; if (baseCodeword == -128) baseCodeword = -127; } for (int pixelNdx = 0; pixelNdx < ETC2_BLOCK_HEIGHT*ETC2_BLOCK_WIDTH; pixelNdx++) { const int x = pixelNdx / ETC2_BLOCK_HEIGHT; const int y = pixelNdx % ETC2_BLOCK_HEIGHT; const int dstOffset = (y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_R11; const int pixelBitNdx = 45 - 3*pixelNdx; const deUint32 modifierNdx = (getBit(src, pixelBitNdx + 2) << 2) | (getBit(src, pixelBitNdx + 1) << 1) | getBit(src, pixelBitNdx); const int modifier = modifierTable[tableNdx][modifierNdx]; if (signedMode) { if (multiplier != 0) *(deInt16*)&dst[dstOffset] = (deInt16)deClamp32(baseCodeword*8 + multiplier*modifier*8, -1023, 1023); else *(deInt16*)&dst[dstOffset] = (deInt16)deClamp32(baseCodeword*8 + modifier, -1023, 1023); } else { if (multiplier != 0) *(deUint16*)&dst[dstOffset] = (deUint16)deClamp32(baseCodeword*8 + 4 + multiplier*modifier*8, 0, 2047); else *(deUint16*)&dst[dstOffset] = (deUint16)deClamp32(baseCodeword*8 + 4 + modifier, 0, 2047); } } } } // EtcDecompressInternal static void decompressETC1 (const tcu::PixelBufferAccess& dst, int width, int height, const deUint8* src) { using namespace EtcDecompressInternal; DE_ASSERT(dst.getWidth() == width && dst.getHeight() == height && dst.getDepth() == 1); DE_ASSERT(dst.getFormat() == TextureFormat(TextureFormat::RGB, TextureFormat::UNORM_INT8)); const int numBlocksX = divRoundUp(width, 4); const int numBlocksY = divRoundUp(height, 4); deUint8* const dstPtr = (deUint8*)dst.getDataPtr(); const int dstRowPitch = dst.getRowPitch(); const int dstPixelSize = ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8; for (int blockY = 0; blockY < numBlocksY; blockY++) { for (int blockX = 0; blockX < numBlocksX; blockX++) { const deUint64 compressedBlock = get64BitBlock(src, blockY*numBlocksX + blockX); deUint8 uncompressedBlock[ETC2_UNCOMPRESSED_BLOCK_SIZE_RGB8]; // Decompress. decompressETC1Block(uncompressedBlock, compressedBlock); // Write to dst. const int baseX = blockX*ETC2_BLOCK_WIDTH; const int baseY = blockY*ETC2_BLOCK_HEIGHT; for (int y = 0; y < de::min((int)ETC2_BLOCK_HEIGHT, height-baseY); y++) { for (int x = 0; x < de::min((int)ETC2_BLOCK_WIDTH, width-baseX); x++) { const deUint8* const srcPixel = &uncompressedBlock[(y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8]; deUint8* const dstPixel = dstPtr + (baseY+y)*dstRowPitch + (baseX+x)*dstPixelSize; DE_STATIC_ASSERT(ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8 == 3); dstPixel[0] = srcPixel[0]; dstPixel[1] = srcPixel[1]; dstPixel[2] = srcPixel[2]; } } } } } static void decompressETC2 (const tcu::PixelBufferAccess& dst, int width, int height, const deUint8* src) { using namespace EtcDecompressInternal; const int numBlocksX = divRoundUp(width, 4); const int numBlocksY = divRoundUp(height, 4); deUint8* const dstPtr = (deUint8*)dst.getDataPtr(); const int dstRowPitch = dst.getRowPitch(); const int dstPixelSize = ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8; for (int blockY = 0; blockY < numBlocksY; blockY++) { for (int blockX = 0; blockX < numBlocksX; blockX++) { const deUint64 compressedBlock = get64BitBlock(src, blockY*numBlocksX + blockX); deUint8 uncompressedBlock[ETC2_UNCOMPRESSED_BLOCK_SIZE_RGB8]; // Decompress. decompressETC2Block(uncompressedBlock, compressedBlock, NULL, false); // Write to dst. const int baseX = blockX*ETC2_BLOCK_WIDTH; const int baseY = blockY*ETC2_BLOCK_HEIGHT; for (int y = 0; y < de::min((int)ETC2_BLOCK_HEIGHT, height-baseY); y++) { for (int x = 0; x < de::min((int)ETC2_BLOCK_WIDTH, width-baseX); x++) { const deUint8* const srcPixel = &uncompressedBlock[(y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8]; deUint8* const dstPixel = dstPtr + (baseY+y)*dstRowPitch + (baseX+x)*dstPixelSize; DE_STATIC_ASSERT(ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8 == 3); dstPixel[0] = srcPixel[0]; dstPixel[1] = srcPixel[1]; dstPixel[2] = srcPixel[2]; } } } } } static void decompressETC2_EAC_RGBA8 (const tcu::PixelBufferAccess& dst, int width, int height, const deUint8* src) { using namespace EtcDecompressInternal; const int numBlocksX = divRoundUp(width, 4); const int numBlocksY = divRoundUp(height, 4); deUint8* const dstPtr = (deUint8*)dst.getDataPtr(); const int dstRowPitch = dst.getRowPitch(); const int dstPixelSize = ETC2_UNCOMPRESSED_PIXEL_SIZE_RGBA8; for (int blockY = 0; blockY < numBlocksY; blockY++) { for (int blockX = 0; blockX < numBlocksX; blockX++) { const deUint64 compressedBlockAlpha = get128BitBlockStart(src, blockY*numBlocksX + blockX); const deUint64 compressedBlockRGB = get128BitBlockEnd(src, blockY*numBlocksX + blockX); deUint8 uncompressedBlockAlpha[ETC2_UNCOMPRESSED_BLOCK_SIZE_A8]; deUint8 uncompressedBlockRGB[ETC2_UNCOMPRESSED_BLOCK_SIZE_RGB8]; // Decompress. decompressETC2Block(uncompressedBlockRGB, compressedBlockRGB, NULL, false); decompressEAC8Block(uncompressedBlockAlpha, compressedBlockAlpha); // Write to dst. const int baseX = blockX*ETC2_BLOCK_WIDTH; const int baseY = blockY*ETC2_BLOCK_HEIGHT; for (int y = 0; y < de::min((int)ETC2_BLOCK_HEIGHT, height-baseY); y++) { for (int x = 0; x < de::min((int)ETC2_BLOCK_WIDTH, width-baseX); x++) { const deUint8* const srcPixelRGB = &uncompressedBlockRGB[(y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8]; const deUint8* const srcPixelAlpha = &uncompressedBlockAlpha[(y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_A8]; deUint8* const dstPixel = dstPtr + (baseY+y)*dstRowPitch + (baseX+x)*dstPixelSize; DE_STATIC_ASSERT(ETC2_UNCOMPRESSED_PIXEL_SIZE_RGBA8 == 4); dstPixel[0] = srcPixelRGB[0]; dstPixel[1] = srcPixelRGB[1]; dstPixel[2] = srcPixelRGB[2]; dstPixel[3] = srcPixelAlpha[0]; } } } } } static void decompressETC2_RGB8_PUNCHTHROUGH_ALPHA1 (const tcu::PixelBufferAccess& dst, int width, int height, const deUint8* src) { using namespace EtcDecompressInternal; const int numBlocksX = divRoundUp(width, 4); const int numBlocksY = divRoundUp(height, 4); deUint8* const dstPtr = (deUint8*)dst.getDataPtr(); const int dstRowPitch = dst.getRowPitch(); const int dstPixelSize = ETC2_UNCOMPRESSED_PIXEL_SIZE_RGBA8; for (int blockY = 0; blockY < numBlocksY; blockY++) { for (int blockX = 0; blockX < numBlocksX; blockX++) { const deUint64 compressedBlockRGBA = get64BitBlock(src, blockY*numBlocksX + blockX); deUint8 uncompressedBlockRGB[ETC2_UNCOMPRESSED_BLOCK_SIZE_RGB8]; deUint8 uncompressedBlockAlpha[ETC2_UNCOMPRESSED_BLOCK_SIZE_A8]; // Decompress. decompressETC2Block(uncompressedBlockRGB, compressedBlockRGBA, uncompressedBlockAlpha, DE_TRUE); // Write to dst. const int baseX = blockX*ETC2_BLOCK_WIDTH; const int baseY = blockY*ETC2_BLOCK_HEIGHT; for (int y = 0; y < de::min((int)ETC2_BLOCK_HEIGHT, height-baseY); y++) { for (int x = 0; x < de::min((int)ETC2_BLOCK_WIDTH, width-baseX); x++) { const deUint8* const srcPixel = &uncompressedBlockRGB[(y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8]; const deUint8* const srcPixelAlpha = &uncompressedBlockAlpha[(y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_A8]; deUint8* const dstPixel = dstPtr + (baseY+y)*dstRowPitch + (baseX+x)*dstPixelSize; DE_STATIC_ASSERT(ETC2_UNCOMPRESSED_PIXEL_SIZE_RGBA8 == 4); dstPixel[0] = srcPixel[0]; dstPixel[1] = srcPixel[1]; dstPixel[2] = srcPixel[2]; dstPixel[3] = srcPixelAlpha[0]; } } } } } static void decompressEAC_R11 (const tcu::PixelBufferAccess& dst, int width, int height, const deUint8* src, bool signedMode) { using namespace EtcDecompressInternal; const int numBlocksX = divRoundUp(width, 4); const int numBlocksY = divRoundUp(height, 4); deUint8* const dstPtr = (deUint8*)dst.getDataPtr(); const int dstRowPitch = dst.getRowPitch(); const int dstPixelSize = ETC2_UNCOMPRESSED_PIXEL_SIZE_R11; for (int blockY = 0; blockY < numBlocksY; blockY++) { for (int blockX = 0; blockX < numBlocksX; blockX++) { const deUint64 compressedBlock = get64BitBlock(src, blockY*numBlocksX + blockX); deUint8 uncompressedBlock[ETC2_UNCOMPRESSED_BLOCK_SIZE_R11]; // Decompress. decompressEAC11Block(uncompressedBlock, compressedBlock, signedMode); // Write to dst. const int baseX = blockX*ETC2_BLOCK_WIDTH; const int baseY = blockY*ETC2_BLOCK_HEIGHT; for (int y = 0; y < de::min((int)ETC2_BLOCK_HEIGHT, height-baseY); y++) { for (int x = 0; x < de::min((int)ETC2_BLOCK_WIDTH, width-baseX); x++) { DE_STATIC_ASSERT(ETC2_UNCOMPRESSED_PIXEL_SIZE_R11 == 2); if (signedMode) { const deInt16* const srcPixel = (deInt16*)&uncompressedBlock[(y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_R11]; deInt16* const dstPixel = (deInt16*)(dstPtr + (baseY+y)*dstRowPitch + (baseX+x)*dstPixelSize); dstPixel[0] = extend11To16WithSign(srcPixel[0]); } else { const deUint16* const srcPixel = (deUint16*)&uncompressedBlock[(y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_R11]; deUint16* const dstPixel = (deUint16*)(dstPtr + (baseY+y)*dstRowPitch + (baseX+x)*dstPixelSize); dstPixel[0] = extend11To16(srcPixel[0]); } } } } } } static void decompressEAC_RG11 (const tcu::PixelBufferAccess& dst, int width, int height, const deUint8* src, bool signedMode) { using namespace EtcDecompressInternal; const int numBlocksX = divRoundUp(width, 4); const int numBlocksY = divRoundUp(height, 4); deUint8* const dstPtr = (deUint8*)dst.getDataPtr(); const int dstRowPitch = dst.getRowPitch(); const int dstPixelSize = ETC2_UNCOMPRESSED_PIXEL_SIZE_RG11; for (int blockY = 0; blockY < numBlocksY; blockY++) { for (int blockX = 0; blockX < numBlocksX; blockX++) { const deUint64 compressedBlockR = get128BitBlockStart(src, blockY*numBlocksX + blockX); const deUint64 compressedBlockG = get128BitBlockEnd(src, blockY*numBlocksX + blockX); deUint8 uncompressedBlockR[ETC2_UNCOMPRESSED_BLOCK_SIZE_R11]; deUint8 uncompressedBlockG[ETC2_UNCOMPRESSED_BLOCK_SIZE_R11]; // Decompress. decompressEAC11Block(uncompressedBlockR, compressedBlockR, signedMode); decompressEAC11Block(uncompressedBlockG, compressedBlockG, signedMode); // Write to dst. const int baseX = blockX*ETC2_BLOCK_WIDTH; const int baseY = blockY*ETC2_BLOCK_HEIGHT; for (int y = 0; y < de::min((int)ETC2_BLOCK_HEIGHT, height-baseY); y++) { for (int x = 0; x < de::min((int)ETC2_BLOCK_WIDTH, width-baseX); x++) { DE_STATIC_ASSERT(ETC2_UNCOMPRESSED_PIXEL_SIZE_RG11 == 4); if (signedMode) { const deInt16* const srcPixelR = (deInt16*)&uncompressedBlockR[(y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_R11]; const deInt16* const srcPixelG = (deInt16*)&uncompressedBlockG[(y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_R11]; deInt16* const dstPixel = (deInt16*)(dstPtr + (baseY+y)*dstRowPitch + (baseX+x)*dstPixelSize); dstPixel[0] = extend11To16WithSign(srcPixelR[0]); dstPixel[1] = extend11To16WithSign(srcPixelG[0]); } else { const deUint16* const srcPixelR = (deUint16*)&uncompressedBlockR[(y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_R11]; const deUint16* const srcPixelG = (deUint16*)&uncompressedBlockG[(y*ETC2_BLOCK_WIDTH + x)*ETC2_UNCOMPRESSED_PIXEL_SIZE_R11]; deUint16* const dstPixel = (deUint16*)(dstPtr + (baseY+y)*dstRowPitch + (baseX+x)*dstPixelSize); dstPixel[0] = extend11To16(srcPixelR[0]); dstPixel[1] = extend11To16(srcPixelG[0]); } } } } } } namespace ASTCDecompressInternal { enum { ASTC_MAX_BLOCK_WIDTH = 12, ASTC_MAX_BLOCK_HEIGHT = 12 }; static inline deUint32 getBit (deUint32 src, int ndx) { DE_ASSERT(de::inBounds(ndx, 0, 32)); return (src >> ndx) & 1; } static inline deUint32 getBits (deUint32 src, int low, int high) { const int numBits = (high-low) + 1; DE_ASSERT(de::inRange(numBits, 1, 32)); return (src >> low) & ((1u<> i) & 1) << (numBits-1-i); return result; } static inline deUint32 bitReplicationScale (deUint32 src, int numSrcBits, int numDstBits) { DE_ASSERT(numSrcBits <= numDstBits); DE_ASSERT((src & ((1< -numSrcBits; shift -= numSrcBits) dst |= shift >= 0 ? src << shift : src >> -shift; return dst; } static inline deInt32 signExtend (deInt32 src, int numSrcBits) { DE_ASSERT(de::inRange(numSrcBits, 2, 31)); const bool negative = (src & (1 << (numSrcBits-1))) != 0; return src | (negative ? ~((1 << numSrcBits) - 1) : 0); } static inline bool isFloat16InfOrNan (deFloat16 v) { return getBits(v, 10, 14) == 31; } // A helper for getting bits from a 128-bit block. class Block128 { private: typedef deUint64 Word; enum { WORD_BYTES = sizeof(Word), WORD_BITS = 8*WORD_BYTES, NUM_WORDS = 128 / WORD_BITS }; DE_STATIC_ASSERT(128 % WORD_BITS == 0); public: Block128 (const deUint8* src) { for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++) { m_words[wordNdx] = 0; for (int byteNdx = 0; byteNdx < WORD_BYTES; byteNdx++) m_words[wordNdx] |= (Word)src[wordNdx*WORD_BYTES + byteNdx] << (8*byteNdx); } } deUint32 getBit (int ndx) const { DE_ASSERT(de::inBounds(ndx, 0, 128)); return (m_words[ndx / WORD_BITS] >> (ndx % WORD_BITS)) & 1; } deUint32 getBits (int low, int high) const { DE_ASSERT(de::inBounds(low, 0, 128)); DE_ASSERT(de::inBounds(high, 0, 128)); DE_ASSERT(de::inRange(high-low+1, 0, 32)); if (high-low+1 == 0) return 0; const int word0Ndx = low / WORD_BITS; const int word1Ndx = high / WORD_BITS; // \note "foo << bar << 1" done instead of "foo << (bar+1)" to avoid overflow, i.e. shift amount being too big. if (word0Ndx == word1Ndx) return (m_words[word0Ndx] & ((((Word)1 << high%WORD_BITS << 1) - 1))) >> ((Word)low % WORD_BITS); else { DE_ASSERT(word1Ndx == word0Ndx + 1); return (deUint32)(m_words[word0Ndx] >> (low%WORD_BITS)) | (deUint32)((m_words[word1Ndx] & (((Word)1 << high%WORD_BITS << 1) - 1)) << (high-low - high%WORD_BITS)); } } bool isBitSet (int ndx) const { DE_ASSERT(de::inBounds(ndx, 0, 128)); return getBit(ndx) != 0; } private: Word m_words[NUM_WORDS]; }; // A helper for sequential access into a Block128. class BitAccessStream { public: BitAccessStream (const Block128& src, int startNdxInSrc, int length, bool forward) : m_src (src) , m_startNdxInSrc (startNdxInSrc) , m_length (length) , m_forward (forward) , m_ndx (0) { } // Get the next num bits. Bits at positions greater than or equal to m_length are zeros. deUint32 getNext (int num) { if (num == 0 || m_ndx >= m_length) return 0; const int end = m_ndx + num; const int numBitsFromSrc = de::max(0, de::min(m_length, end) - m_ndx); const int low = m_ndx; const int high = m_ndx + numBitsFromSrc - 1; m_ndx += num; return m_forward ? m_src.getBits(m_startNdxInSrc + low, m_startNdxInSrc + high) : reverseBits(m_src.getBits(m_startNdxInSrc - high, m_startNdxInSrc - low), numBitsFromSrc); } private: const Block128& m_src; const int m_startNdxInSrc; const int m_length; const bool m_forward; int m_ndx; }; enum ISEMode { ISEMODE_TRIT = 0, ISEMODE_QUINT, ISEMODE_PLAIN_BIT, ISEMODE_LAST }; struct ISEParams { ISEMode mode; int numBits; ISEParams (ISEMode mode_, int numBits_) : mode(mode_), numBits(numBits_) {} }; static inline int computeNumRequiredBits (const ISEParams& iseParams, int numValues) { switch (iseParams.mode) { case ISEMODE_TRIT: return divRoundUp(numValues*8, 5) + numValues*iseParams.numBits; case ISEMODE_QUINT: return divRoundUp(numValues*7, 3) + numValues*iseParams.numBits; case ISEMODE_PLAIN_BIT: return numValues*iseParams.numBits; default: DE_ASSERT(false); return -1; } } struct ISEDecodedResult { deUint32 m; deUint32 tq; //!< Trit or quint value, depending on ISE mode. deUint32 v; }; // Data from an ASTC block's "block mode" part (i.e. bits [0,10]). struct ASTCBlockMode { bool isError; // \note Following fields only relevant if !isError. bool isVoidExtent; // \note Following fields only relevant if !isVoidExtent. bool isDualPlane; int weightGridWidth; int weightGridHeight; ISEParams weightISEParams; ASTCBlockMode (void) : isError (true) , isVoidExtent (true) , isDualPlane (true) , weightGridWidth (-1) , weightGridHeight (-1) , weightISEParams (ISEMODE_LAST, -1) { } }; static inline int computeNumWeights (const ASTCBlockMode& mode) { return mode.weightGridWidth * mode.weightGridHeight * (mode.isDualPlane ? 2 : 1); } struct ColorEndpointPair { UVec4 e0; UVec4 e1; }; struct TexelWeightPair { deUint32 w[2]; }; static ASTCBlockMode getASTCBlockMode (deUint32 blockModeData) { ASTCBlockMode blockMode; blockMode.isError = true; // \note Set to false later, if not error. blockMode.isVoidExtent = getBits(blockModeData, 0, 8) == 0x1fc; if (!blockMode.isVoidExtent) { if ((getBits(blockModeData, 0, 1) == 0 && getBits(blockModeData, 6, 8) == 7) || getBits(blockModeData, 0, 3) == 0) return blockMode; // Invalid ("reserved"). deUint32 r = (deUint32)-1; // \note Set in the following branches. if (getBits(blockModeData, 0, 1) == 0) { const deUint32 r0 = getBit(blockModeData, 4); const deUint32 r1 = getBit(blockModeData, 2); const deUint32 r2 = getBit(blockModeData, 3); const deUint32 i78 = getBits(blockModeData, 7, 8); r = (r2 << 2) | (r1 << 1) | (r0 << 0); if (i78 == 3) { const bool i5 = isBitSet(blockModeData, 5); blockMode.weightGridWidth = i5 ? 10 : 6; blockMode.weightGridHeight = i5 ? 6 : 10; } else { const deUint32 a = getBits(blockModeData, 5, 6); switch (i78) { case 0: blockMode.weightGridWidth = 12; blockMode.weightGridHeight = a + 2; break; case 1: blockMode.weightGridWidth = a + 2; blockMode.weightGridHeight = 12; break; case 2: blockMode.weightGridWidth = a + 6; blockMode.weightGridHeight = getBits(blockModeData, 9, 10) + 6; break; default: DE_ASSERT(false); } } } else { const deUint32 r0 = getBit(blockModeData, 4); const deUint32 r1 = getBit(blockModeData, 0); const deUint32 r2 = getBit(blockModeData, 1); const deUint32 i23 = getBits(blockModeData, 2, 3); const deUint32 a = getBits(blockModeData, 5, 6); r = (r2 << 2) | (r1 << 1) | (r0 << 0); if (i23 == 3) { const deUint32 b = getBit(blockModeData, 7); const bool i8 = isBitSet(blockModeData, 8); blockMode.weightGridWidth = i8 ? b+2 : a+2; blockMode.weightGridHeight = i8 ? a+2 : b+6; } else { const deUint32 b = getBits(blockModeData, 7, 8); switch (i23) { case 0: blockMode.weightGridWidth = b + 4; blockMode.weightGridHeight = a + 2; break; case 1: blockMode.weightGridWidth = b + 8; blockMode.weightGridHeight = a + 2; break; case 2: blockMode.weightGridWidth = a + 2; blockMode.weightGridHeight = b + 8; break; default: DE_ASSERT(false); } } } const bool zeroDH = getBits(blockModeData, 0, 1) == 0 && getBits(blockModeData, 7, 8) == 2; const bool h = zeroDH ? 0 : isBitSet(blockModeData, 9); blockMode.isDualPlane = zeroDH ? 0 : isBitSet(blockModeData, 10); { ISEMode& m = blockMode.weightISEParams.mode; int& b = blockMode.weightISEParams.numBits; m = ISEMODE_PLAIN_BIT; b = 0; if (h) { switch (r) { case 2: m = ISEMODE_QUINT; b = 1; break; case 3: m = ISEMODE_TRIT; b = 2; break; case 4: b = 4; break; case 5: m = ISEMODE_QUINT; b = 2; break; case 6: m = ISEMODE_TRIT; b = 3; break; case 7: b = 5; break; default: DE_ASSERT(false); } } else { switch (r) { case 2: b = 1; break; case 3: m = ISEMODE_TRIT; break; case 4: b = 2; break; case 5: m = ISEMODE_QUINT; break; case 6: m = ISEMODE_TRIT; b = 1; break; case 7: b = 3; break; default: DE_ASSERT(false); } } } } blockMode.isError = false; return blockMode; } static inline void setASTCErrorColorBlock (void* dst, int blockWidth, int blockHeight, bool isSRGB) { if (isSRGB) { deUint8* const dstU = (deUint8*)dst; for (int i = 0; i < blockWidth*blockHeight; i++) { dstU[4*i + 0] = 0xff; dstU[4*i + 1] = 0; dstU[4*i + 2] = 0xff; dstU[4*i + 3] = 0xff; } } else { float* const dstF = (float*)dst; for (int i = 0; i < blockWidth*blockHeight; i++) { dstF[4*i + 0] = 1.0f; dstF[4*i + 1] = 0.0f; dstF[4*i + 2] = 1.0f; dstF[4*i + 3] = 1.0f; } } } static void decodeVoidExtentBlock (void* dst, const Block128& blockData, int blockWidth, int blockHeight, bool isSRGB, bool isLDRMode) { const deUint32 minSExtent = blockData.getBits(12, 24); const deUint32 maxSExtent = blockData.getBits(25, 37); const deUint32 minTExtent = blockData.getBits(38, 50); const deUint32 maxTExtent = blockData.getBits(51, 63); const bool allExtentsAllOnes = minSExtent == 0x1fff && maxSExtent == 0x1fff && minTExtent == 0x1fff && maxTExtent == 0x1fff; const bool isHDRBlock = blockData.isBitSet(9); if ((isLDRMode && isHDRBlock) || (!allExtentsAllOnes && (minSExtent >= maxSExtent || minTExtent >= maxTExtent))) { setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB); return; } const deUint32 rgba[4] = { blockData.getBits(64, 79), blockData.getBits(80, 95), blockData.getBits(96, 111), blockData.getBits(112, 127) }; if (isSRGB) { deUint8* const dstU = (deUint8*)dst; for (int i = 0; i < blockWidth*blockHeight; i++) for (int c = 0; c < 4; c++) dstU[i*4 + c] = (rgba[c] & 0xff00) >> 8; } else { float* const dstF = (float*)dst; if (isHDRBlock) { for (int c = 0; c < 4; c++) { if (isFloat16InfOrNan(rgba[c])) throw tcu::InternalError("Infinity or NaN color component in HDR void extent block in ASTC texture (behavior undefined by ASTC specification)"); } for (int i = 0; i < blockWidth*blockHeight; i++) for (int c = 0; c < 4; c++) dstF[i*4 + c] = deFloat16To32((deFloat16)rgba[c]); } else { for (int i = 0; i < blockWidth*blockHeight; i++) for (int c = 0; c < 4; c++) dstF[i*4 + c] = rgba[c] == 65535 ? 1.0f : (float)rgba[c] / 65536.0f; } } return; } static void decodeColorEndpointModes (deUint32* endpointModesDst, const Block128& blockData, int numPartitions, int extraCemBitsStart) { if (numPartitions == 1) endpointModesDst[0] = blockData.getBits(13, 16); else { const deUint32 highLevelSelector = blockData.getBits(23, 24); if (highLevelSelector == 0) { const deUint32 mode = blockData.getBits(25, 28); for (int i = 0; i < numPartitions; i++) endpointModesDst[i] = mode; } else { for (int partNdx = 0; partNdx < numPartitions; partNdx++) { const deUint32 cemClass = highLevelSelector - (blockData.isBitSet(25 + partNdx) ? 0 : 1); const deUint32 lowBit0Ndx = numPartitions + 2*partNdx; const deUint32 lowBit1Ndx = numPartitions + 2*partNdx + 1; const deUint32 lowBit0 = blockData.getBit(lowBit0Ndx < 4 ? 25+lowBit0Ndx : extraCemBitsStart+lowBit0Ndx-4); const deUint32 lowBit1 = blockData.getBit(lowBit1Ndx < 4 ? 25+lowBit1Ndx : extraCemBitsStart+lowBit1Ndx-4); endpointModesDst[partNdx] = (cemClass << 2) | (lowBit1 << 1) | lowBit0; } } } } static inline int computeNumColorEndpointValues (deUint32 endpointMode) { DE_ASSERT(endpointMode < 16); return (endpointMode/4 + 1) * 2; } static int computeNumColorEndpointValues (const deUint32* endpointModes, int numPartitions) { int result = 0; for (int i = 0; i < numPartitions; i++) result += computeNumColorEndpointValues(endpointModes[i]); return result; } static void decodeISETritBlock (ISEDecodedResult* dst, int numValues, BitAccessStream& data, int numBits) { DE_ASSERT(de::inRange(numValues, 1, 5)); deUint32 m[5]; m[0] = data.getNext(numBits); deUint32 T01 = data.getNext(2); m[1] = data.getNext(numBits); deUint32 T23 = data.getNext(2); m[2] = data.getNext(numBits); deUint32 T4 = data.getNext(1); m[3] = data.getNext(numBits); deUint32 T56 = data.getNext(2); m[4] = data.getNext(numBits); deUint32 T7 = data.getNext(1); switch (numValues) { // \note Fall-throughs. case 1: T23 = 0; case 2: T4 = 0; case 3: T56 = 0; case 4: T7 = 0; case 5: break; default: DE_ASSERT(false); } const deUint32 T = (T7 << 7) | (T56 << 5) | (T4 << 4) | (T23 << 2) | (T01 << 0); static const deUint32 tritsFromT[256][5] = { { 0,0,0,0,0 }, { 1,0,0,0,0 }, { 2,0,0,0,0 }, { 0,0,2,0,0 }, { 0,1,0,0,0 }, { 1,1,0,0,0 }, { 2,1,0,0,0 }, { 1,0,2,0,0 }, { 0,2,0,0,0 }, { 1,2,0,0,0 }, { 2,2,0,0,0 }, { 2,0,2,0,0 }, { 0,2,2,0,0 }, { 1,2,2,0,0 }, { 2,2,2,0,0 }, { 2,0,2,0,0 }, { 0,0,1,0,0 }, { 1,0,1,0,0 }, { 2,0,1,0,0 }, { 0,1,2,0,0 }, { 0,1,1,0,0 }, { 1,1,1,0,0 }, { 2,1,1,0,0 }, { 1,1,2,0,0 }, { 0,2,1,0,0 }, { 1,2,1,0,0 }, { 2,2,1,0,0 }, { 2,1,2,0,0 }, { 0,0,0,2,2 }, { 1,0,0,2,2 }, { 2,0,0,2,2 }, { 0,0,2,2,2 }, { 0,0,0,1,0 }, { 1,0,0,1,0 }, { 2,0,0,1,0 }, { 0,0,2,1,0 }, { 0,1,0,1,0 }, { 1,1,0,1,0 }, { 2,1,0,1,0 }, { 1,0,2,1,0 }, { 0,2,0,1,0 }, { 1,2,0,1,0 }, { 2,2,0,1,0 }, { 2,0,2,1,0 }, { 0,2,2,1,0 }, { 1,2,2,1,0 }, { 2,2,2,1,0 }, { 2,0,2,1,0 }, { 0,0,1,1,0 }, { 1,0,1,1,0 }, { 2,0,1,1,0 }, { 0,1,2,1,0 }, { 0,1,1,1,0 }, { 1,1,1,1,0 }, { 2,1,1,1,0 }, { 1,1,2,1,0 }, { 0,2,1,1,0 }, { 1,2,1,1,0 }, { 2,2,1,1,0 }, { 2,1,2,1,0 }, { 0,1,0,2,2 }, { 1,1,0,2,2 }, { 2,1,0,2,2 }, { 1,0,2,2,2 }, { 0,0,0,2,0 }, { 1,0,0,2,0 }, { 2,0,0,2,0 }, { 0,0,2,2,0 }, { 0,1,0,2,0 }, { 1,1,0,2,0 }, { 2,1,0,2,0 }, { 1,0,2,2,0 }, { 0,2,0,2,0 }, { 1,2,0,2,0 }, { 2,2,0,2,0 }, { 2,0,2,2,0 }, { 0,2,2,2,0 }, { 1,2,2,2,0 }, { 2,2,2,2,0 }, { 2,0,2,2,0 }, { 0,0,1,2,0 }, { 1,0,1,2,0 }, { 2,0,1,2,0 }, { 0,1,2,2,0 }, { 0,1,1,2,0 }, { 1,1,1,2,0 }, { 2,1,1,2,0 }, { 1,1,2,2,0 }, { 0,2,1,2,0 }, { 1,2,1,2,0 }, { 2,2,1,2,0 }, { 2,1,2,2,0 }, { 0,2,0,2,2 }, { 1,2,0,2,2 }, { 2,2,0,2,2 }, { 2,0,2,2,2 }, { 0,0,0,0,2 }, { 1,0,0,0,2 }, { 2,0,0,0,2 }, { 0,0,2,0,2 }, { 0,1,0,0,2 }, { 1,1,0,0,2 }, { 2,1,0,0,2 }, { 1,0,2,0,2 }, { 0,2,0,0,2 }, { 1,2,0,0,2 }, { 2,2,0,0,2 }, { 2,0,2,0,2 }, { 0,2,2,0,2 }, { 1,2,2,0,2 }, { 2,2,2,0,2 }, { 2,0,2,0,2 }, { 0,0,1,0,2 }, { 1,0,1,0,2 }, { 2,0,1,0,2 }, { 0,1,2,0,2 }, { 0,1,1,0,2 }, { 1,1,1,0,2 }, { 2,1,1,0,2 }, { 1,1,2,0,2 }, { 0,2,1,0,2 }, { 1,2,1,0,2 }, { 2,2,1,0,2 }, { 2,1,2,0,2 }, { 0,2,2,2,2 }, { 1,2,2,2,2 }, { 2,2,2,2,2 }, { 2,0,2,2,2 }, { 0,0,0,0,1 }, { 1,0,0,0,1 }, { 2,0,0,0,1 }, { 0,0,2,0,1 }, { 0,1,0,0,1 }, { 1,1,0,0,1 }, { 2,1,0,0,1 }, { 1,0,2,0,1 }, { 0,2,0,0,1 }, { 1,2,0,0,1 }, { 2,2,0,0,1 }, { 2,0,2,0,1 }, { 0,2,2,0,1 }, { 1,2,2,0,1 }, { 2,2,2,0,1 }, { 2,0,2,0,1 }, { 0,0,1,0,1 }, { 1,0,1,0,1 }, { 2,0,1,0,1 }, { 0,1,2,0,1 }, { 0,1,1,0,1 }, { 1,1,1,0,1 }, { 2,1,1,0,1 }, { 1,1,2,0,1 }, { 0,2,1,0,1 }, { 1,2,1,0,1 }, { 2,2,1,0,1 }, { 2,1,2,0,1 }, { 0,0,1,2,2 }, { 1,0,1,2,2 }, { 2,0,1,2,2 }, { 0,1,2,2,2 }, { 0,0,0,1,1 }, { 1,0,0,1,1 }, { 2,0,0,1,1 }, { 0,0,2,1,1 }, { 0,1,0,1,1 }, { 1,1,0,1,1 }, { 2,1,0,1,1 }, { 1,0,2,1,1 }, { 0,2,0,1,1 }, { 1,2,0,1,1 }, { 2,2,0,1,1 }, { 2,0,2,1,1 }, { 0,2,2,1,1 }, { 1,2,2,1,1 }, { 2,2,2,1,1 }, { 2,0,2,1,1 }, { 0,0,1,1,1 }, { 1,0,1,1,1 }, { 2,0,1,1,1 }, { 0,1,2,1,1 }, { 0,1,1,1,1 }, { 1,1,1,1,1 }, { 2,1,1,1,1 }, { 1,1,2,1,1 }, { 0,2,1,1,1 }, { 1,2,1,1,1 }, { 2,2,1,1,1 }, { 2,1,2,1,1 }, { 0,1,1,2,2 }, { 1,1,1,2,2 }, { 2,1,1,2,2 }, { 1,1,2,2,2 }, { 0,0,0,2,1 }, { 1,0,0,2,1 }, { 2,0,0,2,1 }, { 0,0,2,2,1 }, { 0,1,0,2,1 }, { 1,1,0,2,1 }, { 2,1,0,2,1 }, { 1,0,2,2,1 }, { 0,2,0,2,1 }, { 1,2,0,2,1 }, { 2,2,0,2,1 }, { 2,0,2,2,1 }, { 0,2,2,2,1 }, { 1,2,2,2,1 }, { 2,2,2,2,1 }, { 2,0,2,2,1 }, { 0,0,1,2,1 }, { 1,0,1,2,1 }, { 2,0,1,2,1 }, { 0,1,2,2,1 }, { 0,1,1,2,1 }, { 1,1,1,2,1 }, { 2,1,1,2,1 }, { 1,1,2,2,1 }, { 0,2,1,2,1 }, { 1,2,1,2,1 }, { 2,2,1,2,1 }, { 2,1,2,2,1 }, { 0,2,1,2,2 }, { 1,2,1,2,2 }, { 2,2,1,2,2 }, { 2,1,2,2,2 }, { 0,0,0,1,2 }, { 1,0,0,1,2 }, { 2,0,0,1,2 }, { 0,0,2,1,2 }, { 0,1,0,1,2 }, { 1,1,0,1,2 }, { 2,1,0,1,2 }, { 1,0,2,1,2 }, { 0,2,0,1,2 }, { 1,2,0,1,2 }, { 2,2,0,1,2 }, { 2,0,2,1,2 }, { 0,2,2,1,2 }, { 1,2,2,1,2 }, { 2,2,2,1,2 }, { 2,0,2,1,2 }, { 0,0,1,1,2 }, { 1,0,1,1,2 }, { 2,0,1,1,2 }, { 0,1,2,1,2 }, { 0,1,1,1,2 }, { 1,1,1,1,2 }, { 2,1,1,1,2 }, { 1,1,2,1,2 }, { 0,2,1,1,2 }, { 1,2,1,1,2 }, { 2,2,1,1,2 }, { 2,1,2,1,2 }, { 0,2,2,2,2 }, { 1,2,2,2,2 }, { 2,2,2,2,2 }, { 2,1,2,2,2 } }; const deUint32 (& trits)[5] = tritsFromT[T]; for (int i = 0; i < numValues; i++) { dst[i].m = m[i]; dst[i].tq = trits[i]; dst[i].v = (trits[i] << numBits) + m[i]; } } static void decodeISEQuintBlock (ISEDecodedResult* dst, int numValues, BitAccessStream& data, int numBits) { DE_ASSERT(de::inRange(numValues, 1, 3)); deUint32 m[3]; m[0] = data.getNext(numBits); deUint32 Q012 = data.getNext(3); m[1] = data.getNext(numBits); deUint32 Q34 = data.getNext(2); m[2] = data.getNext(numBits); deUint32 Q56 = data.getNext(2); switch (numValues) { // \note Fall-throughs. case 1: Q34 = 0; case 2: Q56 = 0; case 3: break; default: DE_ASSERT(false); } const deUint32 Q = (Q56 << 5) | (Q34 << 3) | (Q012 << 0); static const deUint32 quintsFromQ[256][3] = { { 0,0,0 }, { 1,0,0 }, { 2,0,0 }, { 3,0,0 }, { 4,0,0 }, { 0,4,0 }, { 4,4,0 }, { 4,4,4 }, { 0,1,0 }, { 1,1,0 }, { 2,1,0 }, { 3,1,0 }, { 4,1,0 }, { 1,4,0 }, { 4,4,1 }, { 4,4,4 }, { 0,2,0 }, { 1,2,0 }, { 2,2,0 }, { 3,2,0 }, { 4,2,0 }, { 2,4,0 }, { 4,4,2 }, { 4,4,4 }, { 0,3,0 }, { 1,3,0 }, { 2,3,0 }, { 3,3,0 }, { 4,3,0 }, { 3,4,0 }, { 4,4,3 }, { 4,4,4 }, { 0,0,1 }, { 1,0,1 }, { 2,0,1 }, { 3,0,1 }, { 4,0,1 }, { 0,4,1 }, { 4,0,4 }, { 0,4,4 }, { 0,1,1 }, { 1,1,1 }, { 2,1,1 }, { 3,1,1 }, { 4,1,1 }, { 1,4,1 }, { 4,1,4 }, { 1,4,4 }, { 0,2,1 }, { 1,2,1 }, { 2,2,1 }, { 3,2,1 }, { 4,2,1 }, { 2,4,1 }, { 4,2,4 }, { 2,4,4 }, { 0,3,1 }, { 1,3,1 }, { 2,3,1 }, { 3,3,1 }, { 4,3,1 }, { 3,4,1 }, { 4,3,4 }, { 3,4,4 }, { 0,0,2 }, { 1,0,2 }, { 2,0,2 }, { 3,0,2 }, { 4,0,2 }, { 0,4,2 }, { 2,0,4 }, { 3,0,4 }, { 0,1,2 }, { 1,1,2 }, { 2,1,2 }, { 3,1,2 }, { 4,1,2 }, { 1,4,2 }, { 2,1,4 }, { 3,1,4 }, { 0,2,2 }, { 1,2,2 }, { 2,2,2 }, { 3,2,2 }, { 4,2,2 }, { 2,4,2 }, { 2,2,4 }, { 3,2,4 }, { 0,3,2 }, { 1,3,2 }, { 2,3,2 }, { 3,3,2 }, { 4,3,2 }, { 3,4,2 }, { 2,3,4 }, { 3,3,4 }, { 0,0,3 }, { 1,0,3 }, { 2,0,3 }, { 3,0,3 }, { 4,0,3 }, { 0,4,3 }, { 0,0,4 }, { 1,0,4 }, { 0,1,3 }, { 1,1,3 }, { 2,1,3 }, { 3,1,3 }, { 4,1,3 }, { 1,4,3 }, { 0,1,4 }, { 1,1,4 }, { 0,2,3 }, { 1,2,3 }, { 2,2,3 }, { 3,2,3 }, { 4,2,3 }, { 2,4,3 }, { 0,2,4 }, { 1,2,4 }, { 0,3,3 }, { 1,3,3 }, { 2,3,3 }, { 3,3,3 }, { 4,3,3 }, { 3,4,3 }, { 0,3,4 }, { 1,3,4 } }; const deUint32 (& quints)[3] = quintsFromQ[Q]; for (int i = 0; i < numValues; i++) { dst[i].m = m[i]; dst[i].tq = quints[i]; dst[i].v = (quints[i] << numBits) + m[i]; } } static inline void decodeISEBitBlock (ISEDecodedResult* dst, BitAccessStream& data, int numBits) { dst[0].m = data.getNext(numBits); dst[0].v = dst[0].m; } static void decodeISE (ISEDecodedResult* dst, int numValues, BitAccessStream& data, const ISEParams& params) { if (params.mode == ISEMODE_TRIT) { const int numBlocks = divRoundUp(numValues, 5); for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) { const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 5*(numBlocks-1) : 5; decodeISETritBlock(&dst[5*blockNdx], numValuesInBlock, data, params.numBits); } } else if (params.mode == ISEMODE_QUINT) { const int numBlocks = divRoundUp(numValues, 3); for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) { const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 3*(numBlocks-1) : 3; decodeISEQuintBlock(&dst[3*blockNdx], numValuesInBlock, data, params.numBits); } } else { DE_ASSERT(params.mode == ISEMODE_PLAIN_BIT); for (int i = 0; i < numValues; i++) decodeISEBitBlock(&dst[i], data, params.numBits); } } static ISEParams computeMaximumRangeISEParams (int numAvailableBits, int numValuesInSequence) { int curBitsForTritMode = 6; int curBitsForQuintMode = 5; int curBitsForPlainBitMode = 8; while (true) { DE_ASSERT(curBitsForTritMode > 0 || curBitsForQuintMode > 0 || curBitsForPlainBitMode > 0); const int tritRange = curBitsForTritMode > 0 ? (3 << curBitsForTritMode) - 1 : -1; const int quintRange = curBitsForQuintMode > 0 ? (5 << curBitsForQuintMode) - 1 : -1; const int plainBitRange = curBitsForPlainBitMode > 0 ? (1 << curBitsForPlainBitMode) - 1 : -1; const int maxRange = de::max(de::max(tritRange, quintRange), plainBitRange); if (maxRange == tritRange) { const ISEParams params(ISEMODE_TRIT, curBitsForTritMode); if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits) return ISEParams(ISEMODE_TRIT, curBitsForTritMode); curBitsForTritMode--; } else if (maxRange == quintRange) { const ISEParams params(ISEMODE_QUINT, curBitsForQuintMode); if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits) return ISEParams(ISEMODE_QUINT, curBitsForQuintMode); curBitsForQuintMode--; } else { const ISEParams params(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode); DE_ASSERT(maxRange == plainBitRange); if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits) return ISEParams(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode); curBitsForPlainBitMode--; } } } static void unquantizeColorEndpoints (deUint32* dst, const ISEDecodedResult* iseResults, int numEndpoints, const ISEParams& iseParams) { if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT) { const int rangeCase = iseParams.numBits*2 - (iseParams.mode == ISEMODE_TRIT ? 2 : 1); DE_ASSERT(de::inRange(rangeCase, 0, 10)); static const deUint32 Ca[11] = { 204, 113, 93, 54, 44, 26, 22, 13, 11, 6, 5 }; const deUint32 C = Ca[rangeCase]; for (int endpointNdx = 0; endpointNdx < numEndpoints; endpointNdx++) { const deUint32 a = getBit(iseResults[endpointNdx].m, 0); const deUint32 b = getBit(iseResults[endpointNdx].m, 1); const deUint32 c = getBit(iseResults[endpointNdx].m, 2); const deUint32 d = getBit(iseResults[endpointNdx].m, 3); const deUint32 e = getBit(iseResults[endpointNdx].m, 4); const deUint32 f = getBit(iseResults[endpointNdx].m, 5); const deUint32 A = a == 0 ? 0 : (1<<9)-1; const deUint32 B = rangeCase == 0 ? 0 : rangeCase == 1 ? 0 : rangeCase == 2 ? (b << 8) | (b << 4) | (b << 2) | (b << 1) : rangeCase == 3 ? (b << 8) | (b << 3) | (b << 2) : rangeCase == 4 ? (c << 8) | (b << 7) | (c << 3) | (b << 2) | (c << 1) | (b << 0) : rangeCase == 5 ? (c << 8) | (b << 7) | (c << 2) | (b << 1) | (c << 0) : rangeCase == 6 ? (d << 8) | (c << 7) | (b << 6) | (d << 2) | (c << 1) | (b << 0) : rangeCase == 7 ? (d << 8) | (c << 7) | (b << 6) | (d << 1) | (c << 0) : rangeCase == 8 ? (e << 8) | (d << 7) | (c << 6) | (b << 5) | (e << 1) | (d << 0) : rangeCase == 9 ? (e << 8) | (d << 7) | (c << 6) | (b << 5) | (e << 0) : rangeCase == 10 ? (f << 8) | (e << 7) | (d << 6) | (c << 5) | (b << 4) | (f << 0) : (deUint32)-1; DE_ASSERT(B != (deUint32)-1); dst[endpointNdx] = (((iseResults[endpointNdx].tq*C + B) ^ A) >> 2) | (A & 0x80); } } else { DE_ASSERT(iseParams.mode == ISEMODE_PLAIN_BIT); for (int endpointNdx = 0; endpointNdx < numEndpoints; endpointNdx++) dst[endpointNdx] = bitReplicationScale(iseResults[endpointNdx].v, iseParams.numBits, 8); } } static inline void bitTransferSigned (deInt32& a, deInt32& b) { b >>= 1; b |= a & 0x80; a >>= 1; a &= 0x3f; if (isBitSet(a, 5)) a -= 0x40; } static inline UVec4 clampedRGBA (const tcu::IVec4& rgba) { return UVec4(de::clamp(rgba.x(), 0, 0xff), de::clamp(rgba.y(), 0, 0xff), de::clamp(rgba.z(), 0, 0xff), de::clamp(rgba.w(), 0, 0xff)); } static inline tcu::IVec4 blueContract (int r, int g, int b, int a) { return tcu::IVec4((r+b)>>1, (g+b)>>1, b, a); } static inline bool isColorEndpointModeHDR (deUint32 mode) { return mode == 2 || mode == 3 || mode == 7 || mode == 11 || mode == 14 || mode == 15; } static void decodeHDREndpointMode7 (UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3) { const deUint32 m10 = getBit(v1, 7) | (getBit(v2, 7) << 1); const deUint32 m23 = getBits(v0, 6, 7); const deUint32 majComp = m10 != 3 ? m10 : m23 != 3 ? m23 : 0; const deUint32 mode = m10 != 3 ? m23 : m23 != 3 ? 4 : 5; deInt32 red = (deInt32)getBits(v0, 0, 5); deInt32 green = (deInt32)getBits(v1, 0, 4); deInt32 blue = (deInt32)getBits(v2, 0, 4); deInt32 scale = (deInt32)getBits(v3, 0, 4); { #define SHOR(DST_VAR, SHIFT, BIT_VAR) (DST_VAR) |= (BIT_VAR) << (SHIFT) #define ASSIGN_X_BITS(V0,S0, V1,S1, V2,S2, V3,S3, V4,S4, V5,S5, V6,S6) do { SHOR(V0,S0,x0); SHOR(V1,S1,x1); SHOR(V2,S2,x2); SHOR(V3,S3,x3); SHOR(V4,S4,x4); SHOR(V5,S5,x5); SHOR(V6,S6,x6); } while (false) const deUint32 x0 = getBit(v1, 6); const deUint32 x1 = getBit(v1, 5); const deUint32 x2 = getBit(v2, 6); const deUint32 x3 = getBit(v2, 5); const deUint32 x4 = getBit(v3, 7); const deUint32 x5 = getBit(v3, 6); const deUint32 x6 = getBit(v3, 5); deInt32& R = red; deInt32& G = green; deInt32& B = blue; deInt32& S = scale; switch (mode) { case 0: ASSIGN_X_BITS(R,9, R,8, R,7, R,10, R,6, S,6, S,5); break; case 1: ASSIGN_X_BITS(R,8, G,5, R,7, B,5, R,6, R,10, R,9); break; case 2: ASSIGN_X_BITS(R,9, R,8, R,7, R,6, S,7, S,6, S,5); break; case 3: ASSIGN_X_BITS(R,8, G,5, R,7, B,5, R,6, S,6, S,5); break; case 4: ASSIGN_X_BITS(G,6, G,5, B,6, B,5, R,6, R,7, S,5); break; case 5: ASSIGN_X_BITS(G,6, G,5, B,6, B,5, R,6, S,6, S,5); break; default: DE_ASSERT(false); } #undef ASSIGN_X_BITS #undef SHOR } static const int shiftAmounts[] = { 1, 1, 2, 3, 4, 5 }; DE_ASSERT(mode < DE_LENGTH_OF_ARRAY(shiftAmounts)); red <<= shiftAmounts[mode]; green <<= shiftAmounts[mode]; blue <<= shiftAmounts[mode]; scale <<= shiftAmounts[mode]; if (mode != 5) { green = red - green; blue = red - blue; } if (majComp == 1) std::swap(red, green); else if (majComp == 2) std::swap(red, blue); e0 = UVec4(de::clamp(red - scale, 0, 0xfff), de::clamp(green - scale, 0, 0xfff), de::clamp(blue - scale, 0, 0xfff), 0x780); e1 = UVec4(de::clamp(red, 0, 0xfff), de::clamp(green, 0, 0xfff), de::clamp(blue, 0, 0xfff), 0x780); } static void decodeHDREndpointMode11 (UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3, deUint32 v4, deUint32 v5) { const deUint32 major = (getBit(v5, 7) << 1) | getBit(v4, 7); if (major == 3) { e0 = UVec4(v0<<4, v2<<4, getBits(v4,0,6)<<5, 0x780); e1 = UVec4(v1<<4, v3<<4, getBits(v5,0,6)<<5, 0x780); } else { const deUint32 mode = (getBit(v3, 7) << 2) | (getBit(v2, 7) << 1) | getBit(v1, 7); deInt32 a = (deInt32)((getBit(v1, 6) << 8) | v0); deInt32 c = (deInt32)(getBits(v1, 0, 5)); deInt32 b0 = (deInt32)(getBits(v2, 0, 5)); deInt32 b1 = (deInt32)(getBits(v3, 0, 5)); deInt32 d0 = (deInt32)(getBits(v4, 0, 4)); deInt32 d1 = (deInt32)(getBits(v5, 0, 4)); { #define SHOR(DST_VAR, SHIFT, BIT_VAR) (DST_VAR) |= (BIT_VAR) << (SHIFT) #define ASSIGN_X_BITS(V0,S0, V1,S1, V2,S2, V3,S3, V4,S4, V5,S5) do { SHOR(V0,S0,x0); SHOR(V1,S1,x1); SHOR(V2,S2,x2); SHOR(V3,S3,x3); SHOR(V4,S4,x4); SHOR(V5,S5,x5); } while (false) const deUint32 x0 = getBit(v2, 6); const deUint32 x1 = getBit(v3, 6); const deUint32 x2 = getBit(v4, 6); const deUint32 x3 = getBit(v5, 6); const deUint32 x4 = getBit(v4, 5); const deUint32 x5 = getBit(v5, 5); switch (mode) { case 0: ASSIGN_X_BITS(b0,6, b1,6, d0,6, d1,6, d0,5, d1,5); break; case 1: ASSIGN_X_BITS(b0,6, b1,6, b0,7, b1,7, d0,5, d1,5); break; case 2: ASSIGN_X_BITS(a,9, c,6, d0,6, d1,6, d0,5, d1,5); break; case 3: ASSIGN_X_BITS(b0,6, b1,6, a,9, c,6, d0,5, d1,5); break; case 4: ASSIGN_X_BITS(b0,6, b1,6, b0,7, b1,7, a,9, a,10); break; case 5: ASSIGN_X_BITS(a,9, a,10, c,7, c,6, d0,5, d1,5); break; case 6: ASSIGN_X_BITS(b0,6, b1,6, a,11, c,6, a,9, a,10); break; case 7: ASSIGN_X_BITS(a,9, a,10, a,11, c,6, d0,5, d1,5); break; default: DE_ASSERT(false); } #undef ASSIGN_X_BITS #undef SHOR } static const int numDBits[] = { 7, 6, 7, 6, 5, 6, 5, 6 }; DE_ASSERT(mode < DE_LENGTH_OF_ARRAY(numDBits)); d0 = signExtend(d0, numDBits[mode]); d1 = signExtend(d1, numDBits[mode]); const int shiftAmount = (mode >> 1) ^ 3; a <<= shiftAmount; c <<= shiftAmount; b0 <<= shiftAmount; b1 <<= shiftAmount; d0 <<= shiftAmount; d1 <<= shiftAmount; e0 = UVec4(de::clamp(a-c, 0, 0xfff), de::clamp(a-b0-c-d0, 0, 0xfff), de::clamp(a-b1-c-d1, 0, 0xfff), 0x780); e1 = UVec4(de::clamp(a, 0, 0xfff), de::clamp(a-b0, 0, 0xfff), de::clamp(a-b1, 0, 0xfff), 0x780); if (major == 1) { std::swap(e0.x(), e0.y()); std::swap(e1.x(), e1.y()); } else if (major == 2) { std::swap(e0.x(), e0.z()); std::swap(e1.x(), e1.z()); } } } static void decodeHDREndpointMode15(UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3, deUint32 v4, deUint32 v5, deUint32 v6In, deUint32 v7In) { decodeHDREndpointMode11(e0, e1, v0, v1, v2, v3, v4, v5); const deUint32 mode = (getBit(v7In, 7) << 1) | getBit(v6In, 7); deInt32 v6 = (deInt32)getBits(v6In, 0, 6); deInt32 v7 = (deInt32)getBits(v7In, 0, 6); if (mode == 3) { e0.w() = v6 << 5; e1.w() = v7 << 5; } else { v6 |= (v7 << (mode+1)) & 0x780; v7 &= (0x3f >> mode); v7 ^= 0x20 >> mode; v7 -= 0x20 >> mode; v6 <<= 4-mode; v7 <<= 4-mode; v7 += v6; v7 = de::clamp(v7, 0, 0xfff); e0.w() = v6; e1.w() = v7; } } static void decodeColorEndpoints (ColorEndpointPair* dst, const deUint32* unquantizedEndpoints, const deUint32* endpointModes, int numPartitions) { int unquantizedNdx = 0; for (int partitionNdx = 0; partitionNdx < numPartitions; partitionNdx++) { const deUint32 endpointMode = endpointModes[partitionNdx]; const deUint32* v = &unquantizedEndpoints[unquantizedNdx]; UVec4& e0 = dst[partitionNdx].e0; UVec4& e1 = dst[partitionNdx].e1; unquantizedNdx += computeNumColorEndpointValues(endpointMode); switch (endpointMode) { case 0: e0 = UVec4(v[0], v[0], v[0], 0xff); e1 = UVec4(v[1], v[1], v[1], 0xff); break; case 1: { const deUint32 L0 = (v[0] >> 2) | (getBits(v[1], 6, 7) << 6); const deUint32 L1 = de::min(0xffu, L0 + getBits(v[1], 0, 5)); e0 = UVec4(L0, L0, L0, 0xff); e1 = UVec4(L1, L1, L1, 0xff); break; } case 2: { const deUint32 v1Gr = v[1] >= v[0]; const deUint32 y0 = v1Gr ? v[0]<<4 : (v[1]<<4) + 8; const deUint32 y1 = v1Gr ? v[1]<<4 : (v[0]<<4) - 8; e0 = UVec4(y0, y0, y0, 0x780); e1 = UVec4(y1, y1, y1, 0x780); break; } case 3: { const bool m = isBitSet(v[0], 7); const deUint32 y0 = m ? (getBits(v[1], 5, 7) << 9) | (getBits(v[0], 0, 6) << 2) : (getBits(v[1], 4, 7) << 8) | (getBits(v[0], 0, 6) << 1); const deUint32 d = m ? getBits(v[1], 0, 4) << 2 : getBits(v[1], 0, 3) << 1; const deUint32 y1 = de::min(0xfffu, y0+d); e0 = UVec4(y0, y0, y0, 0x780); e1 = UVec4(y1, y1, y1, 0x780); break; } case 4: e0 = UVec4(v[0], v[0], v[0], v[2]); e1 = UVec4(v[1], v[1], v[1], v[3]); break; case 5: { deInt32 v0 = (deInt32)v[0]; deInt32 v1 = (deInt32)v[1]; deInt32 v2 = (deInt32)v[2]; deInt32 v3 = (deInt32)v[3]; bitTransferSigned(v1, v0); bitTransferSigned(v3, v2); e0 = clampedRGBA(tcu::IVec4(v0, v0, v0, v2)); e1 = clampedRGBA(tcu::IVec4(v0+v1, v0+v1, v0+v1, v2+v3)); break; } case 6: e0 = UVec4((v[0]*v[3]) >> 8, (v[1]*v[3]) >> 8, (v[2]*v[3]) >> 8, 0xff); e1 = UVec4(v[0], v[1], v[2], 0xff); break; case 7: decodeHDREndpointMode7(e0, e1, v[0], v[1], v[2], v[3]); break; case 8: if (v[1]+v[3]+v[5] >= v[0]+v[2]+v[4]) { e0 = UVec4(v[0], v[2], v[4], 0xff); e1 = UVec4(v[1], v[3], v[5], 0xff); } else { e0 = blueContract(v[1], v[3], v[5], 0xff).asUint(); e1 = blueContract(v[0], v[2], v[4], 0xff).asUint(); } break; case 9: { deInt32 v0 = (deInt32)v[0]; deInt32 v1 = (deInt32)v[1]; deInt32 v2 = (deInt32)v[2]; deInt32 v3 = (deInt32)v[3]; deInt32 v4 = (deInt32)v[4]; deInt32 v5 = (deInt32)v[5]; bitTransferSigned(v1, v0); bitTransferSigned(v3, v2); bitTransferSigned(v5, v4); if (v1+v3+v5 >= 0) { e0 = clampedRGBA(tcu::IVec4(v0, v2, v4, 0xff)); e1 = clampedRGBA(tcu::IVec4(v0+v1, v2+v3, v4+v5, 0xff)); } else { e0 = clampedRGBA(blueContract(v0+v1, v2+v3, v4+v5, 0xff)); e1 = clampedRGBA(blueContract(v0, v2, v4, 0xff)); } break; } case 10: e0 = UVec4((v[0]*v[3]) >> 8, (v[1]*v[3]) >> 8, (v[2]*v[3]) >> 8, v[4]); e1 = UVec4(v[0], v[1], v[2], v[5]); break; case 11: decodeHDREndpointMode11(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5]); break; case 12: if (v[1]+v[3]+v[5] >= v[0]+v[2]+v[4]) { e0 = UVec4(v[0], v[2], v[4], v[6]); e1 = UVec4(v[1], v[3], v[5], v[7]); } else { e0 = clampedRGBA(blueContract(v[1], v[3], v[5], v[7])); e1 = clampedRGBA(blueContract(v[0], v[2], v[4], v[6])); } break; case 13: { deInt32 v0 = (deInt32)v[0]; deInt32 v1 = (deInt32)v[1]; deInt32 v2 = (deInt32)v[2]; deInt32 v3 = (deInt32)v[3]; deInt32 v4 = (deInt32)v[4]; deInt32 v5 = (deInt32)v[5]; deInt32 v6 = (deInt32)v[6]; deInt32 v7 = (deInt32)v[7]; bitTransferSigned(v1, v0); bitTransferSigned(v3, v2); bitTransferSigned(v5, v4); bitTransferSigned(v7, v6); if (v1+v3+v5 >= 0) { e0 = clampedRGBA(tcu::IVec4(v0, v2, v4, v6)); e1 = clampedRGBA(tcu::IVec4(v0+v1, v2+v3, v4+v5, v6+v7)); } else { e0 = clampedRGBA(blueContract(v0+v1, v2+v3, v4+v5, v6+v7)); e1 = clampedRGBA(blueContract(v0, v2, v4, v6)); } break; } case 14: decodeHDREndpointMode11(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5]); e0.w() = v[6]; e1.w() = v[7]; break; case 15: decodeHDREndpointMode15(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]); break; default: DE_ASSERT(false); } } } static void computeColorEndpoints (ColorEndpointPair* dst, const Block128& blockData, const deUint32* endpointModes, int numPartitions, int numColorEndpointValues, const ISEParams& iseParams, int numBitsAvailable) { const int colorEndpointDataStart = numPartitions == 1 ? 17 : 29; ISEDecodedResult colorEndpointData[18]; { BitAccessStream dataStream(blockData, colorEndpointDataStart, numBitsAvailable, true); decodeISE(&colorEndpointData[0], numColorEndpointValues, dataStream, iseParams); } { deUint32 unquantizedEndpoints[18]; unquantizeColorEndpoints(&unquantizedEndpoints[0], &colorEndpointData[0], numColorEndpointValues, iseParams); decodeColorEndpoints(dst, &unquantizedEndpoints[0], &endpointModes[0], numPartitions); } } static void unquantizeWeights (deUint32* dst, const ISEDecodedResult* weightGrid, const ASTCBlockMode& blockMode) { const int numWeights = computeNumWeights(blockMode); const ISEParams& iseParams = blockMode.weightISEParams; if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT) { const int rangeCase = iseParams.numBits*2 + (iseParams.mode == ISEMODE_QUINT ? 1 : 0); if (rangeCase == 0 || rangeCase == 1) { static const deUint32 map0[3] = { 0, 32, 63 }; static const deUint32 map1[5] = { 0, 16, 32, 47, 63 }; const deUint32* const map = rangeCase == 0 ? &map0[0] : &map1[0]; for (int i = 0; i < numWeights; i++) { DE_ASSERT(weightGrid[i].v < (rangeCase == 0 ? 3u : 5u)); dst[i] = map[weightGrid[i].v]; } } else { DE_ASSERT(rangeCase <= 6); static const deUint32 Ca[5] = { 50, 28, 23, 13, 11 }; const deUint32 C = Ca[rangeCase-2]; for (int weightNdx = 0; weightNdx < numWeights; weightNdx++) { const deUint32 a = getBit(weightGrid[weightNdx].m, 0); const deUint32 b = getBit(weightGrid[weightNdx].m, 1); const deUint32 c = getBit(weightGrid[weightNdx].m, 2); const deUint32 A = a == 0 ? 0 : (1<<7)-1; const deUint32 B = rangeCase == 2 ? 0 : rangeCase == 3 ? 0 : rangeCase == 4 ? (b << 6) | (b << 2) | (b << 0) : rangeCase == 5 ? (b << 6) | (b << 1) : rangeCase == 6 ? (c << 6) | (b << 5) | (c << 1) | (b << 0) : (deUint32)-1; dst[weightNdx] = (((weightGrid[weightNdx].tq*C + B) ^ A) >> 2) | (A & 0x20); } } } else { DE_ASSERT(iseParams.mode == ISEMODE_PLAIN_BIT); for (int weightNdx = 0; weightNdx < numWeights; weightNdx++) dst[weightNdx] = bitReplicationScale(weightGrid[weightNdx].v, iseParams.numBits, 6); } for (int weightNdx = 0; weightNdx < numWeights; weightNdx++) dst[weightNdx] += dst[weightNdx] > 32 ? 1 : 0; } static void interpolateWeights (TexelWeightPair* dst, const deUint32* unquantizedWeights, int blockWidth, int blockHeight, const ASTCBlockMode& blockMode) { const int numWeightsPerTexel = blockMode.isDualPlane ? 2 : 1; const deUint32 scaleX = (1024 + blockWidth/2) / (blockWidth-1); const deUint32 scaleY = (1024 + blockHeight/2) / (blockHeight-1); for (int texelY = 0; texelY < blockHeight; texelY++) { for (int texelX = 0; texelX < blockWidth; texelX++) { const deUint32 gX = (scaleX*texelX*(blockMode.weightGridWidth-1) + 32) >> 6; const deUint32 gY = (scaleY*texelY*(blockMode.weightGridHeight-1) + 32) >> 6; const deUint32 jX = gX >> 4; const deUint32 jY = gY >> 4; const deUint32 fX = gX & 0xf; const deUint32 fY = gY & 0xf; const deUint32 w11 = (fX*fY + 8) >> 4; const deUint32 w10 = fY - w11; const deUint32 w01 = fX - w11; const deUint32 w00 = 16 - fX - fY + w11; const deUint32 v0 = jY*blockMode.weightGridWidth + jX; for (int texelWeightNdx = 0; texelWeightNdx < numWeightsPerTexel; texelWeightNdx++) { const deUint32 p00 = unquantizedWeights[(v0) * numWeightsPerTexel + texelWeightNdx]; const deUint32 p01 = unquantizedWeights[(v0 + 1) * numWeightsPerTexel + texelWeightNdx]; const deUint32 p10 = unquantizedWeights[(v0 + blockMode.weightGridWidth) * numWeightsPerTexel + texelWeightNdx]; const deUint32 p11 = unquantizedWeights[(v0 + blockMode.weightGridWidth + 1) * numWeightsPerTexel + texelWeightNdx]; dst[texelY*blockWidth + texelX].w[texelWeightNdx] = (p00*w00 + p01*w01 + p10*w10 + p11*w11 + 8) >> 4; } } } } static void computeTexelWeights (TexelWeightPair* dst, const Block128& blockData, int blockWidth, int blockHeight, const ASTCBlockMode& blockMode) { ISEDecodedResult weightGrid[64]; { BitAccessStream dataStream(blockData, 127, computeNumRequiredBits(blockMode.weightISEParams, computeNumWeights(blockMode)), false); decodeISE(&weightGrid[0], computeNumWeights(blockMode), dataStream, blockMode.weightISEParams); } { deUint32 unquantizedWeights[64]; unquantizeWeights(&unquantizedWeights[0], &weightGrid[0], blockMode); interpolateWeights(dst, &unquantizedWeights[0], blockWidth, blockHeight, blockMode); } } static inline deUint32 hash52 (deUint32 v) { deUint32 p = v; p ^= p >> 15; p -= p << 17; p += p << 7; p += p << 4; p ^= p >> 5; p += p << 16; p ^= p >> 7; p ^= p >> 3; p ^= p << 6; p ^= p >> 17; return p; } static int computeTexelPartition (deUint32 seedIn, deUint32 xIn, deUint32 yIn, deUint32 zIn, int numPartitions, bool smallBlock) { DE_ASSERT(zIn == 0); const deUint32 x = smallBlock ? xIn << 1 : xIn; const deUint32 y = smallBlock ? yIn << 1 : yIn; const deUint32 z = smallBlock ? zIn << 1 : zIn; const deUint32 seed = seedIn + 1024*(numPartitions-1); const deUint32 rnum = hash52(seed); deUint8 seed1 = rnum & 0xf; deUint8 seed2 = (rnum >> 4) & 0xf; deUint8 seed3 = (rnum >> 8) & 0xf; deUint8 seed4 = (rnum >> 12) & 0xf; deUint8 seed5 = (rnum >> 16) & 0xf; deUint8 seed6 = (rnum >> 20) & 0xf; deUint8 seed7 = (rnum >> 24) & 0xf; deUint8 seed8 = (rnum >> 28) & 0xf; deUint8 seed9 = (rnum >> 18) & 0xf; deUint8 seed10 = (rnum >> 22) & 0xf; deUint8 seed11 = (rnum >> 26) & 0xf; deUint8 seed12 = ((rnum >> 30) | (rnum << 2)) & 0xf; seed1 *= seed1; seed5 *= seed5; seed9 *= seed9; seed2 *= seed2; seed6 *= seed6; seed10 *= seed10; seed3 *= seed3; seed7 *= seed7; seed11 *= seed11; seed4 *= seed4; seed8 *= seed8; seed12 *= seed12; const int shA = (seed & 2) != 0 ? 4 : 5; const int shB = numPartitions == 3 ? 6 : 5; const int sh1 = (seed & 1) != 0 ? shA : shB; const int sh2 = (seed & 1) != 0 ? shB : shA; const int sh3 = (seed & 0x10) != 0 ? sh1 : sh2; seed1 >>= sh1; seed2 >>= sh2; seed3 >>= sh1; seed4 >>= sh2; seed5 >>= sh1; seed6 >>= sh2; seed7 >>= sh1; seed8 >>= sh2; seed9 >>= sh3; seed10 >>= sh3; seed11 >>= sh3; seed12 >>= sh3; const int a = 0x3f & (seed1*x + seed2*y + seed11*z + (rnum >> 14)); const int b = 0x3f & (seed3*x + seed4*y + seed12*z + (rnum >> 10)); const int c = numPartitions >= 3 ? 0x3f & (seed5*x + seed6*y + seed9*z + (rnum >> 6)) : 0; const int d = numPartitions >= 4 ? 0x3f & (seed7*x + seed8*y + seed10*z + (rnum >> 2)) : 0; return a >= b && a >= c && a >= d ? 0 : b >= c && b >= d ? 1 : c >= d ? 2 : 3; } static void setTexelColors (void* dst, ColorEndpointPair* colorEndpoints, TexelWeightPair* texelWeights, int ccs, deUint32 partitionIndexSeed, int numPartitions, int blockWidth, int blockHeight, bool isSRGB, bool isLDRMode, const deUint32* colorEndpointModes) { const bool smallBlock = blockWidth*blockHeight < 31; bool isHDREndpoint[4]; for (int i = 0; i < numPartitions; i++) isHDREndpoint[i] = isColorEndpointModeHDR(colorEndpointModes[i]); for (int texelY = 0; texelY < blockHeight; texelY++) for (int texelX = 0; texelX < blockWidth; texelX++) { const int texelNdx = texelY*blockWidth + texelX; const int colorEndpointNdx = numPartitions == 1 ? 0 : computeTexelPartition(partitionIndexSeed, texelX, texelY, 0, numPartitions, smallBlock); DE_ASSERT(colorEndpointNdx < numPartitions); const UVec4& e0 = colorEndpoints[colorEndpointNdx].e0; const UVec4& e1 = colorEndpoints[colorEndpointNdx].e1; const TexelWeightPair& weight = texelWeights[texelNdx]; if (isLDRMode && isHDREndpoint[colorEndpointNdx]) { if (isSRGB) { ((deUint8*)dst)[texelNdx*4 + 0] = 0xff; ((deUint8*)dst)[texelNdx*4 + 1] = 0; ((deUint8*)dst)[texelNdx*4 + 2] = 0xff; ((deUint8*)dst)[texelNdx*4 + 3] = 0xff; } else { ((float*)dst)[texelNdx*4 + 0] = 1.0f; ((float*)dst)[texelNdx*4 + 1] = 0; ((float*)dst)[texelNdx*4 + 2] = 1.0f; ((float*)dst)[texelNdx*4 + 3] = 1.0f; } } else { for (int channelNdx = 0; channelNdx < 4; channelNdx++) { if (!isHDREndpoint[colorEndpointNdx] || (channelNdx == 3 && colorEndpointModes[colorEndpointNdx] == 14)) // \note Alpha for mode 14 is treated the same as LDR. { const deUint32 c0 = (e0[channelNdx] << 8) | (isSRGB ? 0x80 : e0[channelNdx]); const deUint32 c1 = (e1[channelNdx] << 8) | (isSRGB ? 0x80 : e1[channelNdx]); const deUint32 w = weight.w[ccs == channelNdx ? 1 : 0]; const deUint32 c = (c0*(64-w) + c1*w + 32) / 64; if (isSRGB) ((deUint8*)dst)[texelNdx*4 + channelNdx] = (c & 0xff00) >> 8; else ((float*)dst)[texelNdx*4 + channelNdx] = c == 65535 ? 1.0f : (float)c / 65536.0f; } else { DE_STATIC_ASSERT((isSameType::V)); const deUint32 c0 = e0[channelNdx] << 4; const deUint32 c1 = e1[channelNdx] << 4; const deUint32 w = weight.w[ccs == channelNdx ? 1 : 0]; const deUint32 c = (c0*(64-w) + c1*w + 32) / 64; const deUint32 e = getBits(c, 11, 15); const deUint32 m = getBits(c, 0, 10); const deUint32 mt = m < 512 ? 3*m : m >= 1536 ? 5*m - 2048 : 4*m - 512; const deFloat16 cf = (e << 10) + (mt >> 3); ((float*)dst)[texelNdx*4 + channelNdx] = deFloat16To32(isFloat16InfOrNan(cf) ? 0x7bff : cf); } } } } } static void decompressASTCBlock (void* dst, const Block128& blockData, int blockWidth, int blockHeight, bool isSRGB, bool isLDR) { DE_ASSERT(isLDR || !isSRGB); // Decode block mode. const ASTCBlockMode blockMode = getASTCBlockMode(blockData.getBits(0, 10)); // Check for block mode errors. if (blockMode.isError) { setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB); return; } // Separate path for void-extent. if (blockMode.isVoidExtent) { decodeVoidExtentBlock(dst, blockData, blockWidth, blockHeight, isSRGB, isLDR); return; } // Compute weight grid values. const int numWeights = computeNumWeights(blockMode); const int numWeightDataBits = computeNumRequiredBits(blockMode.weightISEParams, numWeights); const int numPartitions = (int)blockData.getBits(11, 12) + 1; // Check for errors in weight grid, partition and dual-plane parameters. if (numWeights > 64 || numWeightDataBits > 96 || numWeightDataBits < 24 || blockMode.weightGridWidth > blockWidth || blockMode.weightGridHeight > blockHeight || (numPartitions == 4 && blockMode.isDualPlane)) { setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB); return; } // Compute number of bits available for color endpoint data. const bool isSingleUniqueCem = numPartitions == 1 || blockData.getBits(23, 24) == 0; const int numConfigDataBits = (numPartitions == 1 ? 17 : isSingleUniqueCem ? 29 : 25 + 3*numPartitions) + (blockMode.isDualPlane ? 2 : 0); const int numBitsForColorEndpoints = 128 - numWeightDataBits - numConfigDataBits; const int extraCemBitsStart = 127 - numWeightDataBits - (isSingleUniqueCem ? -1 : numPartitions == 4 ? 7 : numPartitions == 3 ? 4 : numPartitions == 2 ? 1 : 0); // Decode color endpoint modes. deUint32 colorEndpointModes[4]; decodeColorEndpointModes(&colorEndpointModes[0], blockData, numPartitions, extraCemBitsStart); const int numColorEndpointValues = computeNumColorEndpointValues(colorEndpointModes, numPartitions); // Check for errors in color endpoint value count. if (numColorEndpointValues > 18 || numBitsForColorEndpoints < divRoundUp(13*numColorEndpointValues, 5)) { setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB); return; } // Compute color endpoints. ColorEndpointPair colorEndpoints[4]; computeColorEndpoints(&colorEndpoints[0], blockData, &colorEndpointModes[0], numPartitions, numColorEndpointValues, computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues), numBitsForColorEndpoints); // Compute texel weights. TexelWeightPair texelWeights[ASTC_MAX_BLOCK_WIDTH*ASTC_MAX_BLOCK_HEIGHT]; computeTexelWeights(&texelWeights[0], blockData, blockWidth, blockHeight, blockMode); // Set texel colors. const int ccs = blockMode.isDualPlane ? (int)blockData.getBits(extraCemBitsStart-2, extraCemBitsStart-1) : -1; const deUint32 partitionIndexSeed = numPartitions > 1 ? blockData.getBits(13, 22) : (deUint32)-1; setTexelColors(dst, &colorEndpoints[0], &texelWeights[0], ccs, partitionIndexSeed, numPartitions, blockWidth, blockHeight, isSRGB, isLDR, &colorEndpointModes[0]); } } // ASTCDecompressInternal static void decompressASTC (const tcu::PixelBufferAccess& dst, int width, int height, const deUint8* data, int blockWidth, int blockHeight, bool isSRGB, bool isLDR) { using namespace ASTCDecompressInternal; DE_ASSERT(isLDR || !isSRGB); const int numBlocksX = divRoundUp(width, blockWidth); const int numBlocksY = divRoundUp(height, blockHeight); union { deUint8 sRGB[ASTC_MAX_BLOCK_WIDTH*ASTC_MAX_BLOCK_HEIGHT*4]; float linear[ASTC_MAX_BLOCK_WIDTH*ASTC_MAX_BLOCK_HEIGHT*4]; } decompressedBuffer; for (int blockY = 0; blockY < numBlocksY; blockY++) for (int blockX = 0; blockX < numBlocksX; blockX++) { const int baseX = blockX * blockWidth; const int baseY = blockY * blockHeight; const Block128 blockData(&data[(blockY*numBlocksX + blockX) * ASTC_BLOCK_SIZE_BYTES]); decompressASTCBlock(isSRGB ? (void*)&decompressedBuffer.sRGB[0] : (void*)&decompressedBuffer.linear[0], blockData, blockWidth, blockHeight, isSRGB, isLDR); if (isSRGB) { for (int i = 0; i < blockHeight; i++) for (int j = 0; j < blockWidth; j++) { if (baseX + j < dst.getWidth() && baseY + i < dst.getHeight()) dst.setPixel(tcu::IVec4(decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 0], decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 1], decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 2], decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 3]), baseX + j, baseY + i); } } else { for (int i = 0; i < blockHeight; i++) for (int j = 0; j < blockWidth; j++) { if (baseX + j < dst.getWidth() && baseY + i < dst.getHeight()) { dst.setPixel(tcu::Vec4(decompressedBuffer.linear[(i*blockWidth + j) * 4 + 0], decompressedBuffer.linear[(i*blockWidth + j) * 4 + 1], decompressedBuffer.linear[(i*blockWidth + j) * 4 + 2], decompressedBuffer.linear[(i*blockWidth + j) * 4 + 3]), baseX + j, baseY + i); } } } } } /*--------------------------------------------------------------------*//*! * \brief Decode to uncompressed pixel data * \param dst Destination buffer *//*--------------------------------------------------------------------*/ void CompressedTexture::decompress (const tcu::PixelBufferAccess& dst, const DecompressionParams& params) const { DE_ASSERT(dst.getWidth() == m_width && dst.getHeight() == m_height && dst.getDepth() == 1); DE_ASSERT(dst.getFormat() == getUncompressedFormat()); if (isEtcFormat(m_format)) { switch (m_format) { case ETC1_RGB8: decompressETC1 (dst, m_width, m_height, &m_data[0]); break; case EAC_R11: decompressEAC_R11 (dst, m_width, m_height, &m_data[0], false); break; case EAC_SIGNED_R11: decompressEAC_R11 (dst, m_width, m_height, &m_data[0], true); break; case EAC_RG11: decompressEAC_RG11 (dst, m_width, m_height, &m_data[0], false); break; case EAC_SIGNED_RG11: decompressEAC_RG11 (dst, m_width, m_height, &m_data[0], true); break; case ETC2_RGB8: decompressETC2 (dst, m_width, m_height, &m_data[0]); break; case ETC2_SRGB8: decompressETC2 (dst, m_width, m_height, &m_data[0]); break; case ETC2_RGB8_PUNCHTHROUGH_ALPHA1: decompressETC2_RGB8_PUNCHTHROUGH_ALPHA1 (dst, m_width, m_height, &m_data[0]); break; case ETC2_SRGB8_PUNCHTHROUGH_ALPHA1: decompressETC2_RGB8_PUNCHTHROUGH_ALPHA1 (dst, m_width, m_height, &m_data[0]); break; case ETC2_EAC_RGBA8: decompressETC2_EAC_RGBA8 (dst, m_width, m_height, &m_data[0]); break; case ETC2_EAC_SRGB8_ALPHA8: decompressETC2_EAC_RGBA8 (dst, m_width, m_height, &m_data[0]); break; default: DE_ASSERT(false); break; } } else if (isASTCFormat(m_format)) { const tcu::IVec3 blockSize = getASTCBlockSize(m_format); const bool isSRGBFormat = isASTCSRGBFormat(m_format); if (blockSize.z() > 1) throw tcu::InternalError("3D ASTC textures not currently supported"); decompressASTC(dst, m_width, m_height, &m_data[0], blockSize.x(), blockSize.y(), isSRGBFormat, isSRGBFormat || params.isASTCModeLDR); } else DE_ASSERT(false); } } // tcu