/*------------------------------------------------------------------------- * drawElements Quality Program Tester Core * ---------------------------------------- * * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Texture utilities. *//*--------------------------------------------------------------------*/ #include "tcuTextureUtil.hpp" #include "tcuVectorUtil.hpp" #include "deRandom.hpp" #include "deMath.h" #include "deMemory.h" #include namespace tcu { static inline float sRGBChannelToLinear (float cs) { if (cs <= 0.04045) return cs / 12.92f; else return deFloatPow((cs + 0.055f) / 1.055f, 2.4f); } static inline float linearChannelToSRGB (float cl) { if (cl <= 0.0f) return 0.0f; else if (cl < 0.0031308f) return 12.92f*cl; else if (cl < 1.0f) return 1.055f*deFloatPow(cl, 0.41666f) - 0.055f; else return 1.0f; } //! Convert sRGB to linear colorspace Vec4 sRGBToLinear (const Vec4& cs) { return Vec4(sRGBChannelToLinear(cs[0]), sRGBChannelToLinear(cs[1]), sRGBChannelToLinear(cs[2]), cs[3]); } //! Convert from linear to sRGB colorspace Vec4 linearToSRGB (const Vec4& cl) { return Vec4(linearChannelToSRGB(cl[0]), linearChannelToSRGB(cl[1]), linearChannelToSRGB(cl[2]), cl[3]); } //! Get texture channel class for format TextureChannelClass getTextureChannelClass (TextureFormat::ChannelType channelType) { switch (channelType) { case TextureFormat::SNORM_INT8: return TEXTURECHANNELCLASS_SIGNED_FIXED_POINT; case TextureFormat::SNORM_INT16: return TEXTURECHANNELCLASS_SIGNED_FIXED_POINT; case TextureFormat::UNORM_INT8: return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT; case TextureFormat::UNORM_INT16: return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT; case TextureFormat::UNORM_SHORT_565: return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT; case TextureFormat::UNORM_SHORT_555: return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT; case TextureFormat::UNORM_SHORT_4444: return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT; case TextureFormat::UNORM_SHORT_5551: return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT; case TextureFormat::UNORM_INT_101010: return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT; case TextureFormat::UNORM_INT_1010102_REV: return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT; case TextureFormat::UNSIGNED_INT_1010102_REV: return TEXTURECHANNELCLASS_UNSIGNED_INTEGER; case TextureFormat::UNSIGNED_INT_11F_11F_10F_REV: return TEXTURECHANNELCLASS_FLOATING_POINT; case TextureFormat::UNSIGNED_INT_999_E5_REV: return TEXTURECHANNELCLASS_FLOATING_POINT; case TextureFormat::SIGNED_INT8: return TEXTURECHANNELCLASS_SIGNED_INTEGER; case TextureFormat::SIGNED_INT16: return TEXTURECHANNELCLASS_SIGNED_INTEGER; case TextureFormat::SIGNED_INT32: return TEXTURECHANNELCLASS_SIGNED_INTEGER; case TextureFormat::UNSIGNED_INT8: return TEXTURECHANNELCLASS_UNSIGNED_INTEGER; case TextureFormat::UNSIGNED_INT16: return TEXTURECHANNELCLASS_UNSIGNED_INTEGER; case TextureFormat::UNSIGNED_INT32: return TEXTURECHANNELCLASS_UNSIGNED_INTEGER; case TextureFormat::HALF_FLOAT: return TEXTURECHANNELCLASS_FLOATING_POINT; case TextureFormat::FLOAT: return TEXTURECHANNELCLASS_FLOATING_POINT; default: return TEXTURECHANNELCLASS_LAST; } } /*--------------------------------------------------------------------*//*! * \brief Get access to subregion of pixel buffer * \param access Parent access object * \param x X offset * \param y Y offset * \param z Z offset * \param width Width * \param height Height * \param depth Depth * \return Access object that targets given subregion of parent access object *//*--------------------------------------------------------------------*/ ConstPixelBufferAccess getSubregion (const ConstPixelBufferAccess& access, int x, int y, int z, int width, int height, int depth) { DE_ASSERT(de::inBounds(x, 0, access.getWidth()) && de::inRange(x+width, x, access.getWidth())); DE_ASSERT(de::inBounds(y, 0, access.getHeight()) && de::inRange(y+height, y, access.getHeight())); DE_ASSERT(de::inBounds(z, 0, access.getDepth()) && de::inRange(z+depth, z, access.getDepth())); return ConstPixelBufferAccess(access.getFormat(), width, height, depth, access.getRowPitch(), access.getSlicePitch(), (const deUint8*)access.getDataPtr() + access.getFormat().getPixelSize()*x + access.getRowPitch()*y + access.getSlicePitch()*z); } /*--------------------------------------------------------------------*//*! * \brief Get access to subregion of pixel buffer * \param access Parent access object * \param x X offset * \param y Y offset * \param z Z offset * \param width Width * \param height Height * \param depth Depth * \return Access object that targets given subregion of parent access object *//*--------------------------------------------------------------------*/ PixelBufferAccess getSubregion (const PixelBufferAccess& access, int x, int y, int z, int width, int height, int depth) { DE_ASSERT(de::inBounds(x, 0, access.getWidth()) && de::inRange(x+width, x, access.getWidth())); DE_ASSERT(de::inBounds(y, 0, access.getHeight()) && de::inRange(y+height, y, access.getHeight())); DE_ASSERT(de::inBounds(z, 0, access.getDepth()) && de::inRange(z+depth, z, access.getDepth())); return PixelBufferAccess(access.getFormat(), width, height, depth, access.getRowPitch(), access.getSlicePitch(), (deUint8*)access.getDataPtr() + access.getFormat().getPixelSize()*x + access.getRowPitch()*y + access.getSlicePitch()*z); } /*--------------------------------------------------------------------*//*! * \brief Get access to subregion of pixel buffer * \param access Parent access object * \param x X offset * \param y Y offset * \param width Width * \param height Height * \return Access object that targets given subregion of parent access object *//*--------------------------------------------------------------------*/ PixelBufferAccess getSubregion (const PixelBufferAccess& access, int x, int y, int width, int height) { return getSubregion(access, x, y, 0, width, height, 1); } /*--------------------------------------------------------------------*//*! * \brief Get access to subregion of pixel buffer * \param access Parent access object * \param x X offset * \param y Y offset * \param width Width * \param height Height * \return Access object that targets given subregion of parent access object *//*--------------------------------------------------------------------*/ ConstPixelBufferAccess getSubregion (const ConstPixelBufferAccess& access, int x, int y, int width, int height) { return getSubregion(access, x, y, 0, width, height, 1); } /*--------------------------------------------------------------------*//*! * \brief Flip rows in Y direction * \param access Access object * \return Modified access object where Y coordinates are reversed *//*--------------------------------------------------------------------*/ PixelBufferAccess flipYAccess (const PixelBufferAccess& access) { const int rowPitch = access.getRowPitch(); const int offsetToLast = rowPitch*(access.getHeight()-1); return PixelBufferAccess(access.getFormat(), access.getWidth(), access.getHeight(), access.getDepth(), -rowPitch, access.getSlicePitch(), (deUint8*)access.getDataPtr() + offsetToLast); } /*--------------------------------------------------------------------*//*! * \brief Flip rows in Y direction * \param access Access object * \return Modified access object where Y coordinates are reversed *//*--------------------------------------------------------------------*/ ConstPixelBufferAccess flipYAccess (const ConstPixelBufferAccess& access) { const int rowPitch = access.getRowPitch(); const int offsetToLast = rowPitch*(access.getHeight()-1); return ConstPixelBufferAccess(access.getFormat(), access.getWidth(), access.getHeight(), access.getDepth(), -rowPitch, access.getSlicePitch(), (const deUint8*)access.getDataPtr() + offsetToLast); } static Vec2 getChannelValueRange (TextureFormat::ChannelType channelType) { float cMin = 0.0f; float cMax = 0.0f; switch (channelType) { // Signed normalized formats. case TextureFormat::SNORM_INT8: case TextureFormat::SNORM_INT16: cMin = -1.0f; cMax = 1.0f; break; // Unsigned normalized formats. case TextureFormat::UNORM_INT8: case TextureFormat::UNORM_INT16: case TextureFormat::UNORM_SHORT_565: case TextureFormat::UNORM_SHORT_4444: case TextureFormat::UNORM_INT_101010: case TextureFormat::UNORM_INT_1010102_REV: cMin = 0.0f; cMax = 1.0f; break; // Misc formats. case TextureFormat::SIGNED_INT8: cMin = -128.0f; cMax = 127.0f; break; case TextureFormat::SIGNED_INT16: cMin = -32768.0f; cMax = 32767.0f; break; case TextureFormat::SIGNED_INT32: cMin = -2147483648.0f; cMax = 2147483647.0f; break; case TextureFormat::UNSIGNED_INT8: cMin = 0.0f; cMax = 255.0f; break; case TextureFormat::UNSIGNED_INT16: cMin = 0.0f; cMax = 65535.0f; break; case TextureFormat::UNSIGNED_INT32: cMin = 0.0f; cMax = 4294967295.f; break; case TextureFormat::HALF_FLOAT: cMin = -1e3f; cMax = 1e3f; break; case TextureFormat::FLOAT: cMin = -1e5f; cMax = 1e5f; break; case TextureFormat::UNSIGNED_INT_11F_11F_10F_REV: cMin = 0.0f; cMax = 1e4f; break; case TextureFormat::UNSIGNED_INT_999_E5_REV: cMin = 0.0f; cMax = 1e5f; break; default: DE_ASSERT(false); } return Vec2(cMin, cMax); } /*--------------------------------------------------------------------*//*! * \brief Get standard parameters for testing texture format * * Returns TextureFormatInfo that describes good parameters for exercising * given TextureFormat. Parameters include value ranges per channel and * suitable lookup scaling and bias in order to reduce result back to * 0..1 range. *//*--------------------------------------------------------------------*/ TextureFormatInfo getTextureFormatInfo (const TextureFormat& format) { // Special cases. if (format == TextureFormat(TextureFormat::RGBA, TextureFormat::UNSIGNED_INT_1010102_REV)) return TextureFormatInfo(Vec4( 0.0f, 0.0f, 0.0f, 0.0f), Vec4( 1023.0f, 1023.0f, 1023.0f, 3.0f), Vec4(1.0f/1023.f, 1.0f/1023.0f, 1.0f/1023.0f, 1.0f/3.0f), Vec4( 0.0f, 0.0f, 0.0f, 0.0f)); else if (format.order == TextureFormat::D || format.order == TextureFormat::DS) return TextureFormatInfo(Vec4(0.0f, 0.0f, 0.0f, 0.0f), Vec4(1.0f, 1.0f, 1.0f, 0.0f), Vec4(1.0f, 1.0f, 1.0f, 1.0f), Vec4(0.0f, 0.0f, 0.0f, 0.0f)); // Depth / stencil formats. else if (format == TextureFormat(TextureFormat::RGBA, TextureFormat::UNORM_SHORT_5551)) return TextureFormatInfo(Vec4(0.0f, 0.0f, 0.0f, 0.5f), Vec4(1.0f, 1.0f, 1.0f, 1.5f), Vec4(1.0f, 1.0f, 1.0f, 1.0f), Vec4(0.0f, 0.0f, 0.0f, 0.0f)); Vec2 cRange = getChannelValueRange(format.type); BVec4 chnMask = BVec4(false); switch (format.order) { case TextureFormat::R: chnMask = BVec4(true, false, false, false); break; case TextureFormat::A: chnMask = BVec4(false, false, false, true); break; case TextureFormat::L: chnMask = BVec4(true, true, true, false); break; case TextureFormat::LA: chnMask = BVec4(true, true, true, true); break; case TextureFormat::RG: chnMask = BVec4(true, true, false, false); break; case TextureFormat::RGB: chnMask = BVec4(true, true, true, false); break; case TextureFormat::RGBA: chnMask = BVec4(true, true, true, true); break; case TextureFormat::sRGB: chnMask = BVec4(true, true, true, false); break; case TextureFormat::sRGBA: chnMask = BVec4(true, true, true, true); break; case TextureFormat::D: chnMask = BVec4(true, true, true, false); break; case TextureFormat::DS: chnMask = BVec4(true, true, true, true); break; default: DE_ASSERT(false); } float scale = 1.0f / (cRange[1] - cRange[0]); float bias = -cRange[0] * scale; return TextureFormatInfo(select(cRange[0], 0.0f, chnMask), select(cRange[1], 0.0f, chnMask), select(scale, 1.0f, chnMask), select(bias, 0.0f, chnMask)); } static IVec4 getChannelBitDepth (TextureFormat::ChannelType channelType) { switch (channelType) { case TextureFormat::SNORM_INT8: return IVec4(8); case TextureFormat::SNORM_INT16: return IVec4(16); case TextureFormat::SNORM_INT32: return IVec4(32); case TextureFormat::UNORM_INT8: return IVec4(8); case TextureFormat::UNORM_INT16: return IVec4(16); case TextureFormat::UNORM_INT32: return IVec4(32); case TextureFormat::UNORM_SHORT_565: return IVec4(5,6,5,0); case TextureFormat::UNORM_SHORT_4444: return IVec4(4); case TextureFormat::UNORM_SHORT_555: return IVec4(5,5,5,0); case TextureFormat::UNORM_SHORT_5551: return IVec4(5,5,5,1); case TextureFormat::UNORM_INT_101010: return IVec4(10,10,10,0); case TextureFormat::UNORM_INT_1010102_REV: return IVec4(10,10,10,2); case TextureFormat::SIGNED_INT8: return IVec4(8); case TextureFormat::SIGNED_INT16: return IVec4(16); case TextureFormat::SIGNED_INT32: return IVec4(32); case TextureFormat::UNSIGNED_INT8: return IVec4(8); case TextureFormat::UNSIGNED_INT16: return IVec4(16); case TextureFormat::UNSIGNED_INT32: return IVec4(32); case TextureFormat::UNSIGNED_INT_1010102_REV: return IVec4(10,10,10,2); case TextureFormat::UNSIGNED_INT_24_8: return IVec4(24,0,0,8); case TextureFormat::HALF_FLOAT: return IVec4(16); case TextureFormat::FLOAT: return IVec4(32); case TextureFormat::UNSIGNED_INT_11F_11F_10F_REV: return IVec4(11,11,10,0); case TextureFormat::UNSIGNED_INT_999_E5_REV: return IVec4(9,9,9,0); case TextureFormat::FLOAT_UNSIGNED_INT_24_8_REV: return IVec4(32,0,0,8); default: DE_ASSERT(false); return IVec4(0); } } IVec4 getTextureFormatBitDepth (const TextureFormat& format) { IVec4 chnBits = getChannelBitDepth(format.type); BVec4 chnMask = BVec4(false); IVec4 chnSwz (0,1,2,3); switch (format.order) { case TextureFormat::R: chnMask = BVec4(true, false, false, false); break; case TextureFormat::A: chnMask = BVec4(false, false, false, true); break; case TextureFormat::RA: chnMask = BVec4(true, false, false, true); break; case TextureFormat::L: chnMask = BVec4(true, true, true, false); break; case TextureFormat::I: chnMask = BVec4(true, true, true, true); break; case TextureFormat::LA: chnMask = BVec4(true, true, true, true); break; case TextureFormat::RG: chnMask = BVec4(true, true, false, false); break; case TextureFormat::RGB: chnMask = BVec4(true, true, true, false); break; case TextureFormat::RGBA: chnMask = BVec4(true, true, true, true); break; case TextureFormat::BGRA: chnMask = BVec4(true, true, true, true); chnSwz = IVec4(2, 1, 0, 3); break; case TextureFormat::ARGB: chnMask = BVec4(true, true, true, true); chnSwz = IVec4(1, 2, 3, 0); break; case TextureFormat::sRGB: chnMask = BVec4(true, true, true, false); break; case TextureFormat::sRGBA: chnMask = BVec4(true, true, true, true); break; case TextureFormat::D: chnMask = BVec4(true, false, false, false); break; case TextureFormat::DS: chnMask = BVec4(true, false, false, true); break; case TextureFormat::S: chnMask = BVec4(false, false, false, true); break; default: DE_ASSERT(false); } return select(chnBits.swizzle(chnSwz.x(), chnSwz.y(), chnSwz.z(), chnSwz.w()), IVec4(0), chnMask); } static IVec4 getChannelMantissaBitDepth (TextureFormat::ChannelType channelType) { switch (channelType) { case TextureFormat::SNORM_INT8: case TextureFormat::SNORM_INT16: case TextureFormat::SNORM_INT32: case TextureFormat::UNORM_INT8: case TextureFormat::UNORM_INT16: case TextureFormat::UNORM_INT32: case TextureFormat::UNORM_SHORT_565: case TextureFormat::UNORM_SHORT_4444: case TextureFormat::UNORM_SHORT_555: case TextureFormat::UNORM_SHORT_5551: case TextureFormat::UNORM_INT_101010: case TextureFormat::UNORM_INT_1010102_REV: case TextureFormat::SIGNED_INT8: case TextureFormat::SIGNED_INT16: case TextureFormat::SIGNED_INT32: case TextureFormat::UNSIGNED_INT8: case TextureFormat::UNSIGNED_INT16: case TextureFormat::UNSIGNED_INT32: case TextureFormat::UNSIGNED_INT_1010102_REV: case TextureFormat::UNSIGNED_INT_24_8: case TextureFormat::UNSIGNED_INT_999_E5_REV: return getChannelBitDepth(channelType); case TextureFormat::HALF_FLOAT: return IVec4(10); case TextureFormat::FLOAT: return IVec4(23); case TextureFormat::UNSIGNED_INT_11F_11F_10F_REV: return IVec4(6,6,5,0); case TextureFormat::FLOAT_UNSIGNED_INT_24_8_REV: return IVec4(23,0,0,8); default: DE_ASSERT(false); return IVec4(0); } } IVec4 getTextureFormatMantissaBitDepth (const TextureFormat& format) { IVec4 chnBits = getChannelMantissaBitDepth(format.type); BVec4 chnMask = BVec4(false); IVec4 chnSwz (0,1,2,3); switch (format.order) { case TextureFormat::R: chnMask = BVec4(true, false, false, false); break; case TextureFormat::A: chnMask = BVec4(false, false, false, true); break; case TextureFormat::RA: chnMask = BVec4(true, false, false, true); break; case TextureFormat::L: chnMask = BVec4(true, true, true, false); break; case TextureFormat::I: chnMask = BVec4(true, true, true, true); break; case TextureFormat::LA: chnMask = BVec4(true, true, true, true); break; case TextureFormat::RG: chnMask = BVec4(true, true, false, false); break; case TextureFormat::RGB: chnMask = BVec4(true, true, true, false); break; case TextureFormat::RGBA: chnMask = BVec4(true, true, true, true); break; case TextureFormat::BGRA: chnMask = BVec4(true, true, true, true); chnSwz = IVec4(2, 1, 0, 3); break; case TextureFormat::ARGB: chnMask = BVec4(true, true, true, true); chnSwz = IVec4(1, 2, 3, 0); break; case TextureFormat::sRGB: chnMask = BVec4(true, true, true, false); break; case TextureFormat::sRGBA: chnMask = BVec4(true, true, true, true); break; case TextureFormat::D: chnMask = BVec4(true, false, false, false); break; case TextureFormat::DS: chnMask = BVec4(true, false, false, true); break; case TextureFormat::S: chnMask = BVec4(false, false, false, true); break; default: DE_ASSERT(false); } return select(chnBits.swizzle(chnSwz.x(), chnSwz.y(), chnSwz.z(), chnSwz.w()), IVec4(0), chnMask); } static inline float linearInterpolate (float t, float minVal, float maxVal) { return minVal + (maxVal - minVal) * t; } static inline Vec4 linearInterpolate (float t, const Vec4& a, const Vec4& b) { return a + (b - a) * t; } enum { CLEAR_OPTIMIZE_THRESHOLD = 128, CLEAR_OPTIMIZE_MAX_PIXEL_SIZE = 8 }; inline void fillRow (const PixelBufferAccess& dst, int y, int z, int pixelSize, const deUint8* pixel) { deUint8* dstPtr = (deUint8*)dst.getDataPtr() + z*dst.getSlicePitch() + y*dst.getRowPitch(); int width = dst.getWidth(); if (pixelSize == 8 && deIsAlignedPtr(dstPtr, pixelSize) && deIsAlignedPtr(dstPtr, pixelSize)) { deUint64 val; memcpy(&val, pixel, sizeof(val)); for (int i = 0; i < width; i++) ((deUint64*)dstPtr)[i] = val; } else if (pixelSize == 4 && deIsAlignedPtr(dstPtr, pixelSize) && deIsAlignedPtr(dstPtr, pixelSize)) { deUint32 val; memcpy(&val, pixel, sizeof(val)); for (int i = 0; i < width; i++) ((deUint32*)dstPtr)[i] = val; } else { for (int i = 0; i < width; i++) for (int j = 0; j < pixelSize; j++) dstPtr[i*pixelSize+j] = pixel[j]; } } void clear (const PixelBufferAccess& access, const Vec4& color) { int pixelSize = access.getFormat().getPixelSize(); if (access.getWidth()*access.getHeight()*access.getDepth() >= CLEAR_OPTIMIZE_THRESHOLD && pixelSize < CLEAR_OPTIMIZE_MAX_PIXEL_SIZE) { // Convert to destination format. union { deUint8 u8[CLEAR_OPTIMIZE_MAX_PIXEL_SIZE]; deUint64 u64; // Forces 64-bit alignment. } pixel; DE_STATIC_ASSERT(sizeof(pixel) == CLEAR_OPTIMIZE_MAX_PIXEL_SIZE); PixelBufferAccess(access.getFormat(), 1, 1, 1, 0, 0, &pixel.u8[0]).setPixel(color, 0, 0); for (int z = 0; z < access.getDepth(); z++) for (int y = 0; y < access.getHeight(); y++) fillRow(access, y, z, pixelSize, &pixel.u8[0]); } else { for (int z = 0; z < access.getDepth(); z++) for (int y = 0; y < access.getHeight(); y++) for (int x = 0; x < access.getWidth(); x++) access.setPixel(color, x, y, z); } } void clear (const PixelBufferAccess& access, const IVec4& color) { int pixelSize = access.getFormat().getPixelSize(); if (access.getWidth()*access.getHeight()*access.getDepth() >= CLEAR_OPTIMIZE_THRESHOLD && pixelSize < CLEAR_OPTIMIZE_MAX_PIXEL_SIZE) { // Convert to destination format. union { deUint8 u8[CLEAR_OPTIMIZE_MAX_PIXEL_SIZE]; deUint64 u64; // Forces 64-bit alignment. } pixel; DE_STATIC_ASSERT(sizeof(pixel) == CLEAR_OPTIMIZE_MAX_PIXEL_SIZE); PixelBufferAccess(access.getFormat(), 1, 1, 1, 0, 0, &pixel.u8[0]).setPixel(color, 0, 0); for (int z = 0; z < access.getDepth(); z++) for (int y = 0; y < access.getHeight(); y++) fillRow(access, y, z, pixelSize, &pixel.u8[0]); } else { for (int z = 0; z < access.getDepth(); z++) for (int y = 0; y < access.getHeight(); y++) for (int x = 0; x < access.getWidth(); x++) access.setPixel(color, x, y, z); } } void clearDepth (const PixelBufferAccess& access, float depth) { int pixelSize = access.getFormat().getPixelSize(); if (access.getWidth()*access.getHeight()*access.getDepth() >= CLEAR_OPTIMIZE_THRESHOLD && pixelSize < CLEAR_OPTIMIZE_MAX_PIXEL_SIZE) { // Convert to destination format. union { deUint8 u8[CLEAR_OPTIMIZE_MAX_PIXEL_SIZE]; deUint64 u64; // Forces 64-bit alignment. } pixel; DE_STATIC_ASSERT(sizeof(pixel) == CLEAR_OPTIMIZE_MAX_PIXEL_SIZE); PixelBufferAccess(access.getFormat(), 1, 1, 1, 0, 0, &pixel.u8[0]).setPixDepth(depth, 0, 0); for (int z = 0; z < access.getDepth(); z++) for (int y = 0; y < access.getHeight(); y++) fillRow(access, y, z, pixelSize, &pixel.u8[0]); } else { for (int z = 0; z < access.getDepth(); z++) for (int y = 0; y < access.getHeight(); y++) for (int x = 0; x < access.getWidth(); x++) access.setPixDepth(depth, x, y, z); } } void clearStencil (const PixelBufferAccess& access, int stencil) { int pixelSize = access.getFormat().getPixelSize(); if (access.getWidth()*access.getHeight()*access.getDepth() >= CLEAR_OPTIMIZE_THRESHOLD && pixelSize < CLEAR_OPTIMIZE_MAX_PIXEL_SIZE) { // Convert to destination format. union { deUint8 u8[CLEAR_OPTIMIZE_MAX_PIXEL_SIZE]; deUint64 u64; // Forces 64-bit alignment. } pixel; DE_STATIC_ASSERT(sizeof(pixel) == CLEAR_OPTIMIZE_MAX_PIXEL_SIZE); PixelBufferAccess(access.getFormat(), 1, 1, 1, 0, 0, &pixel.u8[0]).setPixStencil(stencil, 0, 0); for (int z = 0; z < access.getDepth(); z++) for (int y = 0; y < access.getHeight(); y++) fillRow(access, y, z, pixelSize, &pixel.u8[0]); } else { for (int z = 0; z < access.getDepth(); z++) for (int y = 0; y < access.getHeight(); y++) for (int x = 0; x < access.getWidth(); x++) access.setPixStencil(stencil, x, y, z); } } static void fillWithComponentGradients1D (const PixelBufferAccess& access, const Vec4& minVal, const Vec4& maxVal) { DE_ASSERT(access.getHeight() == 1); for (int x = 0; x < access.getWidth(); x++) { float s = ((float)x + 0.5f) / (float)access.getWidth(); float r = linearInterpolate(s, minVal.x(), maxVal.x()); float g = linearInterpolate(s, minVal.y(), maxVal.y()); float b = linearInterpolate(s, minVal.z(), maxVal.z()); float a = linearInterpolate(s, minVal.w(), maxVal.w()); access.setPixel(tcu::Vec4(r, g, b, a), x, 0); } } static void fillWithComponentGradients2D (const PixelBufferAccess& access, const Vec4& minVal, const Vec4& maxVal) { for (int y = 0; y < access.getHeight(); y++) { for (int x = 0; x < access.getWidth(); x++) { float s = ((float)x + 0.5f) / (float)access.getWidth(); float t = ((float)y + 0.5f) / (float)access.getHeight(); float r = linearInterpolate(( s + t) *0.5f, minVal.x(), maxVal.x()); float g = linearInterpolate(( s + (1.0f-t))*0.5f, minVal.y(), maxVal.y()); float b = linearInterpolate(((1.0f-s) + t) *0.5f, minVal.z(), maxVal.z()); float a = linearInterpolate(((1.0f-s) + (1.0f-t))*0.5f, minVal.w(), maxVal.w()); access.setPixel(tcu::Vec4(r, g, b, a), x, y); } } } static void fillWithComponentGradients3D (const PixelBufferAccess& dst, const Vec4& minVal, const Vec4& maxVal) { for (int z = 0; z < dst.getDepth(); z++) { for (int y = 0; y < dst.getHeight(); y++) { for (int x = 0; x < dst.getWidth(); x++) { float s = ((float)x + 0.5f) / (float)dst.getWidth(); float t = ((float)y + 0.5f) / (float)dst.getHeight(); float p = ((float)z + 0.5f) / (float)dst.getDepth(); float r = linearInterpolate(s, minVal.x(), maxVal.x()); float g = linearInterpolate(t, minVal.y(), maxVal.y()); float b = linearInterpolate(p, minVal.z(), maxVal.z()); float a = linearInterpolate(1.0f - (s+t+p)/3.0f, minVal.w(), maxVal.w()); dst.setPixel(tcu::Vec4(r, g, b, a), x, y, z); } } } } void fillWithComponentGradients (const PixelBufferAccess& access, const Vec4& minVal, const Vec4& maxVal) { if (access.getHeight() == 1 && access.getDepth() == 1) fillWithComponentGradients1D(access, minVal, maxVal); else if (access.getDepth() == 1) fillWithComponentGradients2D(access, minVal, maxVal); else fillWithComponentGradients3D(access, minVal, maxVal); } void fillWithGrid1D (const PixelBufferAccess& access, int cellSize, const Vec4& colorA, const Vec4& colorB) { for (int x = 0; x < access.getWidth(); x++) { int mx = (x / cellSize) % 2; if (mx) access.setPixel(colorB, x, 0); else access.setPixel(colorA, x, 0); } } void fillWithGrid2D (const PixelBufferAccess& access, int cellSize, const Vec4& colorA, const Vec4& colorB) { for (int y = 0; y < access.getHeight(); y++) { for (int x = 0; x < access.getWidth(); x++) { int mx = (x / cellSize) % 2; int my = (y / cellSize) % 2; if (mx ^ my) access.setPixel(colorB, x, y); else access.setPixel(colorA, x, y); } } } void fillWithGrid3D (const PixelBufferAccess& access, int cellSize, const Vec4& colorA, const Vec4& colorB) { for (int z = 0; z < access.getDepth(); z++) { for (int y = 0; y < access.getHeight(); y++) { for (int x = 0; x < access.getWidth(); x++) { int mx = (x / cellSize) % 2; int my = (y / cellSize) % 2; int mz = (z / cellSize) % 2; if (mx ^ my ^ mz) access.setPixel(colorB, x, y, z); else access.setPixel(colorA, x, y, z); } } } } void fillWithGrid (const PixelBufferAccess& access, int cellSize, const Vec4& colorA, const Vec4& colorB) { if (access.getHeight() == 1 && access.getDepth() == 1) fillWithGrid1D(access, cellSize, colorA, colorB); else if (access.getDepth() == 1) fillWithGrid2D(access, cellSize, colorA, colorB); else fillWithGrid3D(access, cellSize, colorA, colorB); } void fillWithRepeatableGradient (const PixelBufferAccess& access, const Vec4& colorA, const Vec4& colorB) { for (int y = 0; y < access.getHeight(); y++) { for (int x = 0; x < access.getWidth(); x++) { float s = ((float)x + 0.5f) / (float)access.getWidth(); float t = ((float)y + 0.5f) / (float)access.getHeight(); float a = s > 0.5f ? (2.0f - 2.0f*s) : 2.0f*s; float b = t > 0.5f ? (2.0f - 2.0f*t) : 2.0f*t; float p = deFloatClamp(deFloatSqrt(a*a + b*b), 0.0f, 1.0f); access.setPixel(linearInterpolate(p, colorA, colorB), x, y); } } } void fillWithRGBAQuads (const PixelBufferAccess& dst) { TCU_CHECK_INTERNAL(dst.getDepth() == 1); int width = dst.getWidth(); int height = dst.getHeight(); int left = width/2; int top = height/2; clear(getSubregion(dst, 0, 0, 0, left, top, 1), Vec4(1.0f, 0.0f, 0.0f, 1.0f)); clear(getSubregion(dst, left, 0, 0, width-left, top, 1), Vec4(0.0f, 1.0f, 0.0f, 1.0f)); clear(getSubregion(dst, 0, top, 0, left, height-top, 1), Vec4(0.0f, 0.0f, 1.0f, 0.0f)); clear(getSubregion(dst, left, top, 0, width-left, height-top, 1), Vec4(0.5f, 0.5f, 0.5f, 1.0f)); } // \todo [2012-11-13 pyry] There is much better metaballs code in CL SIR value generators. void fillWithMetaballs (const PixelBufferAccess& dst, int numBalls, deUint32 seed) { TCU_CHECK_INTERNAL(dst.getDepth() == 1); std::vector points(numBalls); de::Random rnd(seed); for (int i = 0; i < numBalls; i++) { float x = rnd.getFloat(); float y = rnd.getFloat(); points[i] = (Vec2(x, y)); } for (int y = 0; y < dst.getHeight(); y++) for (int x = 0; x < dst.getWidth(); x++) { Vec2 p((float)x/(float)dst.getWidth(), (float)y/(float)dst.getHeight()); float sum = 0.0f; for (std::vector::const_iterator i = points.begin(); i != points.end(); i++) { Vec2 d = p - *i; float f = 0.01f / (d.x()*d.x() + d.y()*d.y()); sum += f; } dst.setPixel(Vec4(sum), x, y); } } void copy (const PixelBufferAccess& dst, const ConstPixelBufferAccess& src) { int width = dst.getWidth(); int height = dst.getHeight(); int depth = dst.getDepth(); DE_ASSERT(src.getWidth() == width && src.getHeight() == height && src.getDepth() == depth); if (src.getFormat() == dst.getFormat()) { // Fast-path for matching formats. int pixelSize = src.getFormat().getPixelSize(); for (int z = 0; z < depth; z++) for (int y = 0; y < height; y++) deMemcpy((deUint8*)dst.getDataPtr() + z*dst.getSlicePitch() + y*dst.getRowPitch(), (const deUint8*)src.getDataPtr() + z*src.getSlicePitch() + y*src.getRowPitch(), pixelSize*width); } else { TextureChannelClass srcClass = getTextureChannelClass(src.getFormat().type); TextureChannelClass dstClass = getTextureChannelClass(dst.getFormat().type); bool srcIsInt = srcClass == TEXTURECHANNELCLASS_SIGNED_INTEGER || srcClass == TEXTURECHANNELCLASS_UNSIGNED_INTEGER; bool dstIsInt = dstClass == TEXTURECHANNELCLASS_SIGNED_INTEGER || dstClass == TEXTURECHANNELCLASS_UNSIGNED_INTEGER; if (srcIsInt && dstIsInt) { for (int z = 0; z < depth; z++) for (int y = 0; y < height; y++) for (int x = 0; x < width; x++) dst.setPixel(src.getPixelInt(x, y, z), x, y, z); } else { for (int z = 0; z < depth; z++) for (int y = 0; y < height; y++) for (int x = 0; x < width; x++) dst.setPixel(src.getPixel(x, y, z), x, y, z); } } } void scale (const PixelBufferAccess& dst, const ConstPixelBufferAccess& src, Sampler::FilterMode filter) { DE_ASSERT(filter == Sampler::NEAREST || filter == Sampler::LINEAR); Sampler sampler(Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, filter, filter, 0.0f, false); float sX = (float)src.getWidth() / (float)dst.getWidth(); float sY = (float)src.getHeight() / (float)dst.getHeight(); float sZ = (float)src.getDepth() / (float)dst.getDepth(); if (dst.getDepth() == 1 && src.getDepth() == 1) { for (int y = 0; y < dst.getHeight(); y++) for (int x = 0; x < dst.getWidth(); x++) dst.setPixel(src.sample2D(sampler, filter, (x+0.5f)*sX, (y+0.5f)*sY, 0), x, y); } else { for (int z = 0; z < dst.getDepth(); z++) for (int y = 0; y < dst.getHeight(); y++) for (int x = 0; x < dst.getWidth(); x++) dst.setPixel(src.sample3D(sampler, filter, (x+0.5f)*sX, (y+0.5f)*sY, (z+0.5f)*sZ), x, y, z); } } void estimatePixelValueRange (const ConstPixelBufferAccess& access, Vec4& minVal, Vec4& maxVal) { const TextureFormat& format = access.getFormat(); switch (format.type) { case TextureFormat::UNORM_INT8: case TextureFormat::UNORM_INT16: // Normalized unsigned formats. minVal = Vec4(0.0f); maxVal = Vec4(1.0f); break; case TextureFormat::SNORM_INT8: case TextureFormat::SNORM_INT16: // Normalized signed formats. minVal = Vec4(-1.0f); maxVal = Vec4(+1.0f); break; default: // \note Samples every 4/8th pixel. minVal = Vec4(std::numeric_limits::max()); maxVal = Vec4(std::numeric_limits::min()); for (int z = 0; z < access.getDepth(); z += 2) { for (int y = 0; y < access.getHeight(); y += 2) { for (int x = 0; x < access.getWidth(); x += 2) { Vec4 p = access.getPixel(x, y, z); minVal[0] = de::min(minVal[0], p[0]); minVal[1] = de::min(minVal[1], p[1]); minVal[2] = de::min(minVal[2], p[2]); minVal[3] = de::min(minVal[3], p[3]); maxVal[0] = de::max(maxVal[0], p[0]); maxVal[1] = de::max(maxVal[1], p[1]); maxVal[2] = de::max(maxVal[2], p[2]); maxVal[3] = de::max(maxVal[3], p[3]); } } } break; } } void computePixelScaleBias (const ConstPixelBufferAccess& access, Vec4& scale, Vec4& bias) { Vec4 minVal, maxVal; estimatePixelValueRange(access, minVal, maxVal); const float eps = 0.0001f; for (int c = 0; c < 4; c++) { if (maxVal[c] - minVal[c] < eps) { scale[c] = (maxVal[c] < eps) ? 1.0f : (1.0f / maxVal[c]); bias[c] = (c == 3) ? (1.0f - maxVal[c]*scale[c]) : (0.0f - minVal[c]*scale[c]); } else { scale[c] = 1.0f / (maxVal[c] - minVal[c]); bias[c] = 0.0f - minVal[c]*scale[c]; } } } int getCubeArrayFaceIndex (CubeFace face) { DE_ASSERT((int)face >= 0 && face < CUBEFACE_LAST); switch (face) { case CUBEFACE_POSITIVE_X: return 0; case CUBEFACE_NEGATIVE_X: return 1; case CUBEFACE_POSITIVE_Y: return 2; case CUBEFACE_NEGATIVE_Y: return 3; case CUBEFACE_POSITIVE_Z: return 4; case CUBEFACE_NEGATIVE_Z: return 5; default: return -1; } } } // tcu