/* * Status and ETA code */ #include #include #include #include "fio.h" static char run_str[REAL_MAX_JOBS + 1]; /* * Sets the status of the 'td' in the printed status map. */ static void check_str_update(struct thread_data *td) { char c = run_str[td->thread_number - 1]; switch (td->runstate) { case TD_REAPED: if (td->error) c = 'X'; else if (td->sig) c = 'K'; else c = '_'; break; case TD_EXITED: c = 'E'; break; case TD_RAMP: c = '/'; break; case TD_RUNNING: if (td_rw(td)) { if (td_random(td)) { if (td->o.rwmix[DDIR_READ] == 100) c = 'r'; else if (td->o.rwmix[DDIR_WRITE] == 100) c = 'w'; else c = 'm'; } else { if (td->o.rwmix[DDIR_READ] == 100) c = 'R'; else if (td->o.rwmix[DDIR_WRITE] == 100) c = 'W'; else c = 'M'; } } else if (td_read(td)) { if (td_random(td)) c = 'r'; else c = 'R'; } else if (td_write(td)) { if (td_random(td)) c = 'w'; else c = 'W'; } else { if (td_random(td)) c = 'd'; else c = 'D'; } break; case TD_PRE_READING: c = 'p'; break; case TD_VERIFYING: c = 'V'; break; case TD_FSYNCING: c = 'F'; break; case TD_FINISHING: c = 'f'; break; case TD_CREATED: c = 'C'; break; case TD_INITIALIZED: case TD_SETTING_UP: c = 'I'; break; case TD_NOT_CREATED: c = 'P'; break; default: log_err("state %d\n", td->runstate); } run_str[td->thread_number - 1] = c; } /* * Convert seconds to a printable string. */ void eta_to_str(char *str, unsigned long eta_sec) { unsigned int d, h, m, s; int disp_hour = 0; s = eta_sec % 60; eta_sec /= 60; m = eta_sec % 60; eta_sec /= 60; h = eta_sec % 24; eta_sec /= 24; d = eta_sec; if (d) { disp_hour = 1; str += sprintf(str, "%02ud:", d); } if (h || disp_hour) str += sprintf(str, "%02uh:", h); str += sprintf(str, "%02um:", m); str += sprintf(str, "%02us", s); } /* * Best effort calculation of the estimated pending runtime of a job. */ static int thread_eta(struct thread_data *td) { unsigned long long bytes_total, bytes_done; unsigned long eta_sec = 0; unsigned long elapsed; uint64_t timeout; elapsed = (mtime_since_now(&td->epoch) + 999) / 1000; timeout = td->o.timeout / 1000000UL; bytes_total = td->total_io_size; if (td->o.fill_device && td->o.size == -1ULL) { if (!td->fill_device_size || td->fill_device_size == -1ULL) return 0; bytes_total = td->fill_device_size; } if (td->o.zone_size && td->o.zone_skip && bytes_total) { unsigned int nr_zones; uint64_t zone_bytes; zone_bytes = bytes_total + td->o.zone_size + td->o.zone_skip; nr_zones = (zone_bytes - 1) / (td->o.zone_size + td->o.zone_skip); bytes_total -= nr_zones * td->o.zone_skip; } /* * if writing and verifying afterwards, bytes_total will be twice the * size. In a mixed workload, verify phase will be the size of the * first stage writes. */ if (td->o.do_verify && td->o.verify && td_write(td)) { if (td_rw(td)) { unsigned int perc = 50; if (td->o.rwmix[DDIR_WRITE]) perc = td->o.rwmix[DDIR_WRITE]; bytes_total += (bytes_total * perc) / 100; } else bytes_total <<= 1; } if (td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING) { double perc, perc_t; bytes_done = ddir_rw_sum(td->io_bytes); if (bytes_total) { perc = (double) bytes_done / (double) bytes_total; if (perc > 1.0) perc = 1.0; } else perc = 0.0; if (td->o.time_based) { if (timeout) { perc_t = (double) elapsed / (double) timeout; if (perc_t < perc) perc = perc_t; } else { /* * Will never hit, we can't have time_based * without a timeout set. */ perc = 0.0; } } eta_sec = (unsigned long) (elapsed * (1.0 / perc)) - elapsed; if (td->o.timeout && eta_sec > (timeout + done_secs - elapsed)) eta_sec = timeout + done_secs - elapsed; } else if (td->runstate == TD_NOT_CREATED || td->runstate == TD_CREATED || td->runstate == TD_INITIALIZED || td->runstate == TD_SETTING_UP || td->runstate == TD_RAMP || td->runstate == TD_PRE_READING) { int t_eta = 0, r_eta = 0; unsigned long long rate_bytes; /* * We can only guess - assume it'll run the full timeout * if given, otherwise assume it'll run at the specified rate. */ if (td->o.timeout) { uint64_t timeout = td->o.timeout; uint64_t start_delay = td->o.start_delay; uint64_t ramp_time = td->o.ramp_time; t_eta = timeout + start_delay + ramp_time; t_eta /= 1000000ULL; if (in_ramp_time(td)) { unsigned long ramp_left; ramp_left = mtime_since_now(&td->epoch); ramp_left = (ramp_left + 999) / 1000; if (ramp_left <= t_eta) t_eta -= ramp_left; } } rate_bytes = ddir_rw_sum(td->o.rate); if (rate_bytes) { r_eta = (bytes_total / 1024) / rate_bytes; r_eta += (td->o.start_delay / 1000000ULL); } if (r_eta && t_eta) eta_sec = min(r_eta, t_eta); else if (r_eta) eta_sec = r_eta; else if (t_eta) eta_sec = t_eta; else eta_sec = 0; } else { /* * thread is already done or waiting for fsync */ eta_sec = 0; } return eta_sec; } static void calc_rate(int unified_rw_rep, unsigned long mtime, unsigned long long *io_bytes, unsigned long long *prev_io_bytes, unsigned int *rate) { int i; for (i = 0; i < DDIR_RWDIR_CNT; i++) { unsigned long long diff; diff = io_bytes[i] - prev_io_bytes[i]; if (unified_rw_rep) { rate[i] = 0; rate[0] += ((1000 * diff) / mtime) / 1024; } else rate[i] = ((1000 * diff) / mtime) / 1024; prev_io_bytes[i] = io_bytes[i]; } } static void calc_iops(int unified_rw_rep, unsigned long mtime, unsigned long long *io_iops, unsigned long long *prev_io_iops, unsigned int *iops) { int i; for (i = 0; i < DDIR_RWDIR_CNT; i++) { unsigned long long diff; diff = io_iops[i] - prev_io_iops[i]; if (unified_rw_rep) { iops[i] = 0; iops[0] += (diff * 1000) / mtime; } else iops[i] = (diff * 1000) / mtime; prev_io_iops[i] = io_iops[i]; } } /* * Print status of the jobs we know about. This includes rate estimates, * ETA, thread state, etc. */ int calc_thread_status(struct jobs_eta *je, int force) { struct thread_data *td; int i, unified_rw_rep; unsigned long rate_time, disp_time, bw_avg_time, *eta_secs; unsigned long long io_bytes[DDIR_RWDIR_CNT]; unsigned long long io_iops[DDIR_RWDIR_CNT]; struct timeval now; static unsigned long long rate_io_bytes[DDIR_RWDIR_CNT]; static unsigned long long disp_io_bytes[DDIR_RWDIR_CNT]; static unsigned long long disp_io_iops[DDIR_RWDIR_CNT]; static struct timeval rate_prev_time, disp_prev_time; if (!force) { if (output_format != FIO_OUTPUT_NORMAL && f_out == stdout) return 0; if (temp_stall_ts || eta_print == FIO_ETA_NEVER) return 0; if (!isatty(STDOUT_FILENO) && (eta_print != FIO_ETA_ALWAYS)) return 0; } if (!ddir_rw_sum(rate_io_bytes)) fill_start_time(&rate_prev_time); if (!ddir_rw_sum(disp_io_bytes)) fill_start_time(&disp_prev_time); eta_secs = malloc(thread_number * sizeof(unsigned long)); memset(eta_secs, 0, thread_number * sizeof(unsigned long)); je->elapsed_sec = (mtime_since_genesis() + 999) / 1000; io_bytes[DDIR_READ] = io_bytes[DDIR_WRITE] = io_bytes[DDIR_TRIM] = 0; io_iops[DDIR_READ] = io_iops[DDIR_WRITE] = io_iops[DDIR_TRIM] = 0; bw_avg_time = ULONG_MAX; unified_rw_rep = 0; for_each_td(td, i) { unified_rw_rep += td->o.unified_rw_rep; if (is_power_of_2(td->o.kb_base)) je->is_pow2 = 1; je->unit_base = td->o.unit_base; if (td->o.bw_avg_time < bw_avg_time) bw_avg_time = td->o.bw_avg_time; if (td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING || td->runstate == TD_FSYNCING || td->runstate == TD_PRE_READING || td->runstate == TD_FINISHING) { je->nr_running++; if (td_read(td)) { je->t_rate[0] += td->o.rate[DDIR_READ]; je->t_iops[0] += td->o.rate_iops[DDIR_READ]; je->m_rate[0] += td->o.ratemin[DDIR_READ]; je->m_iops[0] += td->o.rate_iops_min[DDIR_READ]; } if (td_write(td)) { je->t_rate[1] += td->o.rate[DDIR_WRITE]; je->t_iops[1] += td->o.rate_iops[DDIR_WRITE]; je->m_rate[1] += td->o.ratemin[DDIR_WRITE]; je->m_iops[1] += td->o.rate_iops_min[DDIR_WRITE]; } if (td_trim(td)) { je->t_rate[2] += td->o.rate[DDIR_TRIM]; je->t_iops[2] += td->o.rate_iops[DDIR_TRIM]; je->m_rate[2] += td->o.ratemin[DDIR_TRIM]; je->m_iops[2] += td->o.rate_iops_min[DDIR_TRIM]; } je->files_open += td->nr_open_files; } else if (td->runstate == TD_RAMP) { je->nr_running++; je->nr_ramp++; } else if (td->runstate == TD_SETTING_UP) { je->nr_running++; je->nr_setting_up++; } else if (td->runstate < TD_RUNNING) je->nr_pending++; if (je->elapsed_sec >= 3) eta_secs[i] = thread_eta(td); else eta_secs[i] = INT_MAX; check_str_update(td); if (td->runstate > TD_SETTING_UP) { int ddir; for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) { if (unified_rw_rep) { io_bytes[0] += td->io_bytes[ddir]; io_iops[0] += td->io_blocks[ddir]; } else { io_bytes[ddir] += td->io_bytes[ddir]; io_iops[ddir] += td->io_blocks[ddir]; } } } } if (exitall_on_terminate) je->eta_sec = INT_MAX; else je->eta_sec = 0; for_each_td(td, i) { if (exitall_on_terminate) { if (eta_secs[i] < je->eta_sec) je->eta_sec = eta_secs[i]; } else { if (eta_secs[i] > je->eta_sec) je->eta_sec = eta_secs[i]; } } free(eta_secs); fio_gettime(&now, NULL); rate_time = mtime_since(&rate_prev_time, &now); if (write_bw_log && rate_time > bw_avg_time && !in_ramp_time(td)) { calc_rate(unified_rw_rep, rate_time, io_bytes, rate_io_bytes, je->rate); memcpy(&rate_prev_time, &now, sizeof(now)); add_agg_sample(je->rate[DDIR_READ], DDIR_READ, 0); add_agg_sample(je->rate[DDIR_WRITE], DDIR_WRITE, 0); add_agg_sample(je->rate[DDIR_TRIM], DDIR_TRIM, 0); } disp_time = mtime_since(&disp_prev_time, &now); /* * Allow a little slack, the target is to print it every 1000 msecs */ if (!force && disp_time < 900) return 0; calc_rate(unified_rw_rep, disp_time, io_bytes, disp_io_bytes, je->rate); calc_iops(unified_rw_rep, disp_time, io_iops, disp_io_iops, je->iops); memcpy(&disp_prev_time, &now, sizeof(now)); if (!force && !je->nr_running && !je->nr_pending) return 0; je->nr_threads = thread_number; memcpy(je->run_str, run_str, thread_number * sizeof(char)); return 1; } void display_thread_status(struct jobs_eta *je) { static struct timeval disp_eta_new_line; static int eta_new_line_init, eta_new_line_pending; static int linelen_last; static int eta_good; char output[REAL_MAX_JOBS + 512], *p = output; char eta_str[128]; double perc = 0.0; if (je->eta_sec != INT_MAX && je->elapsed_sec) { perc = (double) je->elapsed_sec / (double) (je->elapsed_sec + je->eta_sec); eta_to_str(eta_str, je->eta_sec); } if (eta_new_line_pending) { eta_new_line_pending = 0; p += sprintf(p, "\n"); } p += sprintf(p, "Jobs: %d (f=%d)", je->nr_running, je->files_open); if (je->m_rate[0] || je->m_rate[1] || je->t_rate[0] || je->t_rate[1]) { char *tr, *mr; mr = num2str(je->m_rate[0] + je->m_rate[1], 4, 0, je->is_pow2, 8); tr = num2str(je->t_rate[0] + je->t_rate[1], 4, 0, je->is_pow2, 8); p += sprintf(p, ", CR=%s/%s KB/s", tr, mr); free(tr); free(mr); } else if (je->m_iops[0] || je->m_iops[1] || je->t_iops[0] || je->t_iops[1]) { p += sprintf(p, ", CR=%d/%d IOPS", je->t_iops[0] + je->t_iops[1], je->m_iops[0] + je->m_iops[1]); } if (je->eta_sec != INT_MAX && je->nr_running) { char perc_str[32]; char *iops_str[DDIR_RWDIR_CNT]; char *rate_str[DDIR_RWDIR_CNT]; size_t left; int l; int ddir; if ((!je->eta_sec && !eta_good) || je->nr_ramp == je->nr_running) strcpy(perc_str, "-.-% done"); else { double mult = 100.0; if (je->nr_setting_up && je->nr_running) mult *= (1.0 - (double) je->nr_setting_up / (double) je->nr_running); eta_good = 1; perc *= mult; sprintf(perc_str, "%3.1f%% done", perc); } for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) { rate_str[ddir] = num2str(je->rate[ddir], 5, 1024, je->is_pow2, je->unit_base); iops_str[ddir] = num2str(je->iops[ddir], 4, 1, 0, 0); } left = sizeof(output) - (p - output) - 1; l = snprintf(p, left, ": [%s] [%s] [%s/%s/%s /s] [%s/%s/%s iops] [eta %s]", je->run_str, perc_str, rate_str[DDIR_READ], rate_str[DDIR_WRITE], rate_str[DDIR_TRIM], iops_str[DDIR_READ], iops_str[DDIR_WRITE], iops_str[DDIR_TRIM], eta_str); p += l; if (l >= 0 && l < linelen_last) p += sprintf(p, "%*s", linelen_last - l, ""); linelen_last = l; for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) { free(rate_str[ddir]); free(iops_str[ddir]); } } p += sprintf(p, "\r"); printf("%s", output); if (!eta_new_line_init) { fio_gettime(&disp_eta_new_line, NULL); eta_new_line_init = 1; } else if (eta_new_line && mtime_since_now(&disp_eta_new_line) > eta_new_line * 1000) { fio_gettime(&disp_eta_new_line, NULL); eta_new_line_pending = 1; } fflush(stdout); } void print_thread_status(void) { struct jobs_eta *je; size_t size; if (!thread_number) return; size = sizeof(*je) + thread_number * sizeof(char) + 1; je = malloc(size); memset(je, 0, size); if (calc_thread_status(je, 0)) display_thread_status(je); free(je); } void print_status_init(int thr_number) { run_str[thr_number] = 'P'; }