//===-- GDBRemoteCommunicationClient.cpp ------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "GDBRemoteCommunicationClient.h" // C Includes // C++ Includes #include // Other libraries and framework includes #include "llvm/ADT/Triple.h" #include "lldb/Interpreter/Args.h" #include "lldb/Core/ConnectionFileDescriptor.h" #include "lldb/Core/Log.h" #include "lldb/Core/State.h" #include "lldb/Core/StreamString.h" #include "lldb/Host/Endian.h" #include "lldb/Host/Host.h" #include "lldb/Host/TimeValue.h" // Project includes #include "Utility/StringExtractorGDBRemote.h" #include "ProcessGDBRemote.h" #include "ProcessGDBRemoteLog.h" using namespace lldb; using namespace lldb_private; //---------------------------------------------------------------------- // GDBRemoteCommunicationClient constructor //---------------------------------------------------------------------- GDBRemoteCommunicationClient::GDBRemoteCommunicationClient(bool is_platform) : GDBRemoteCommunication("gdb-remote.client", "gdb-remote.client.rx_packet", is_platform), m_supports_not_sending_acks (eLazyBoolCalculate), m_supports_thread_suffix (eLazyBoolCalculate), m_supports_threads_in_stop_reply (eLazyBoolCalculate), m_supports_vCont_all (eLazyBoolCalculate), m_supports_vCont_any (eLazyBoolCalculate), m_supports_vCont_c (eLazyBoolCalculate), m_supports_vCont_C (eLazyBoolCalculate), m_supports_vCont_s (eLazyBoolCalculate), m_supports_vCont_S (eLazyBoolCalculate), m_qHostInfo_is_valid (eLazyBoolCalculate), m_qProcessInfo_is_valid (eLazyBoolCalculate), m_supports_alloc_dealloc_memory (eLazyBoolCalculate), m_supports_memory_region_info (eLazyBoolCalculate), m_supports_watchpoint_support_info (eLazyBoolCalculate), m_supports_detach_stay_stopped (eLazyBoolCalculate), m_watchpoints_trigger_after_instruction(eLazyBoolCalculate), m_attach_or_wait_reply(eLazyBoolCalculate), m_prepare_for_reg_writing_reply (eLazyBoolCalculate), m_supports_qProcessInfoPID (true), m_supports_qfProcessInfo (true), m_supports_qUserName (true), m_supports_qGroupName (true), m_supports_qThreadStopInfo (true), m_supports_z0 (true), m_supports_z1 (true), m_supports_z2 (true), m_supports_z3 (true), m_supports_z4 (true), m_curr_tid (LLDB_INVALID_THREAD_ID), m_curr_tid_run (LLDB_INVALID_THREAD_ID), m_num_supported_hardware_watchpoints (0), m_async_mutex (Mutex::eMutexTypeRecursive), m_async_packet_predicate (false), m_async_packet (), m_async_response (), m_async_signal (-1), m_thread_id_to_used_usec_map (), m_host_arch(), m_process_arch(), m_os_version_major (UINT32_MAX), m_os_version_minor (UINT32_MAX), m_os_version_update (UINT32_MAX) { } //---------------------------------------------------------------------- // Destructor //---------------------------------------------------------------------- GDBRemoteCommunicationClient::~GDBRemoteCommunicationClient() { if (IsConnected()) Disconnect(); } bool GDBRemoteCommunicationClient::HandshakeWithServer (Error *error_ptr) { // Start the read thread after we send the handshake ack since if we // fail to send the handshake ack, there is no reason to continue... if (SendAck()) return true; if (error_ptr) error_ptr->SetErrorString("failed to send the handshake ack"); return false; } void GDBRemoteCommunicationClient::QueryNoAckModeSupported () { if (m_supports_not_sending_acks == eLazyBoolCalculate) { m_send_acks = true; m_supports_not_sending_acks = eLazyBoolNo; StringExtractorGDBRemote response; if (SendPacketAndWaitForResponse("QStartNoAckMode", response, false)) { if (response.IsOKResponse()) { m_send_acks = false; m_supports_not_sending_acks = eLazyBoolYes; } } } } void GDBRemoteCommunicationClient::GetListThreadsInStopReplySupported () { if (m_supports_threads_in_stop_reply == eLazyBoolCalculate) { m_supports_threads_in_stop_reply = eLazyBoolNo; StringExtractorGDBRemote response; if (SendPacketAndWaitForResponse("QListThreadsInStopReply", response, false)) { if (response.IsOKResponse()) m_supports_threads_in_stop_reply = eLazyBoolYes; } } } bool GDBRemoteCommunicationClient::GetVAttachOrWaitSupported () { if (m_attach_or_wait_reply == eLazyBoolCalculate) { m_attach_or_wait_reply = eLazyBoolNo; StringExtractorGDBRemote response; if (SendPacketAndWaitForResponse("qVAttachOrWaitSupported", response, false)) { if (response.IsOKResponse()) m_attach_or_wait_reply = eLazyBoolYes; } } if (m_attach_or_wait_reply == eLazyBoolYes) return true; else return false; } bool GDBRemoteCommunicationClient::GetSyncThreadStateSupported () { if (m_prepare_for_reg_writing_reply == eLazyBoolCalculate) { m_prepare_for_reg_writing_reply = eLazyBoolNo; StringExtractorGDBRemote response; if (SendPacketAndWaitForResponse("qSyncThreadStateSupported", response, false)) { if (response.IsOKResponse()) m_prepare_for_reg_writing_reply = eLazyBoolYes; } } if (m_prepare_for_reg_writing_reply == eLazyBoolYes) return true; else return false; } void GDBRemoteCommunicationClient::ResetDiscoverableSettings() { m_supports_not_sending_acks = eLazyBoolCalculate; m_supports_thread_suffix = eLazyBoolCalculate; m_supports_threads_in_stop_reply = eLazyBoolCalculate; m_supports_vCont_c = eLazyBoolCalculate; m_supports_vCont_C = eLazyBoolCalculate; m_supports_vCont_s = eLazyBoolCalculate; m_supports_vCont_S = eLazyBoolCalculate; m_qHostInfo_is_valid = eLazyBoolCalculate; m_qProcessInfo_is_valid = eLazyBoolCalculate; m_supports_alloc_dealloc_memory = eLazyBoolCalculate; m_supports_memory_region_info = eLazyBoolCalculate; m_prepare_for_reg_writing_reply = eLazyBoolCalculate; m_attach_or_wait_reply = eLazyBoolCalculate; m_supports_qProcessInfoPID = true; m_supports_qfProcessInfo = true; m_supports_qUserName = true; m_supports_qGroupName = true; m_supports_qThreadStopInfo = true; m_supports_z0 = true; m_supports_z1 = true; m_supports_z2 = true; m_supports_z3 = true; m_supports_z4 = true; m_host_arch.Clear(); m_process_arch.Clear(); } bool GDBRemoteCommunicationClient::GetThreadSuffixSupported () { if (m_supports_thread_suffix == eLazyBoolCalculate) { StringExtractorGDBRemote response; m_supports_thread_suffix = eLazyBoolNo; if (SendPacketAndWaitForResponse("QThreadSuffixSupported", response, false)) { if (response.IsOKResponse()) m_supports_thread_suffix = eLazyBoolYes; } } return m_supports_thread_suffix; } bool GDBRemoteCommunicationClient::GetVContSupported (char flavor) { if (m_supports_vCont_c == eLazyBoolCalculate) { StringExtractorGDBRemote response; m_supports_vCont_any = eLazyBoolNo; m_supports_vCont_all = eLazyBoolNo; m_supports_vCont_c = eLazyBoolNo; m_supports_vCont_C = eLazyBoolNo; m_supports_vCont_s = eLazyBoolNo; m_supports_vCont_S = eLazyBoolNo; if (SendPacketAndWaitForResponse("vCont?", response, false)) { const char *response_cstr = response.GetStringRef().c_str(); if (::strstr (response_cstr, ";c")) m_supports_vCont_c = eLazyBoolYes; if (::strstr (response_cstr, ";C")) m_supports_vCont_C = eLazyBoolYes; if (::strstr (response_cstr, ";s")) m_supports_vCont_s = eLazyBoolYes; if (::strstr (response_cstr, ";S")) m_supports_vCont_S = eLazyBoolYes; if (m_supports_vCont_c == eLazyBoolYes && m_supports_vCont_C == eLazyBoolYes && m_supports_vCont_s == eLazyBoolYes && m_supports_vCont_S == eLazyBoolYes) { m_supports_vCont_all = eLazyBoolYes; } if (m_supports_vCont_c == eLazyBoolYes || m_supports_vCont_C == eLazyBoolYes || m_supports_vCont_s == eLazyBoolYes || m_supports_vCont_S == eLazyBoolYes) { m_supports_vCont_any = eLazyBoolYes; } } } switch (flavor) { case 'a': return m_supports_vCont_any; case 'A': return m_supports_vCont_all; case 'c': return m_supports_vCont_c; case 'C': return m_supports_vCont_C; case 's': return m_supports_vCont_s; case 'S': return m_supports_vCont_S; default: break; } return false; } size_t GDBRemoteCommunicationClient::SendPacketAndWaitForResponse ( const char *payload, StringExtractorGDBRemote &response, bool send_async ) { return SendPacketAndWaitForResponse (payload, ::strlen (payload), response, send_async); } size_t GDBRemoteCommunicationClient::SendPacketAndWaitForResponse ( const char *payload, size_t payload_length, StringExtractorGDBRemote &response, bool send_async ) { Mutex::Locker locker; Log *log (ProcessGDBRemoteLog::GetLogIfAllCategoriesSet (GDBR_LOG_PROCESS)); size_t response_len = 0; if (GetSequenceMutex (locker)) { if (SendPacketNoLock (payload, payload_length)) response_len = WaitForPacketWithTimeoutMicroSecondsNoLock (response, GetPacketTimeoutInMicroSeconds ()); else { if (log) log->Printf("error: failed to send '%*s'", (int) payload_length, payload); } } else { if (send_async) { if (IsRunning()) { Mutex::Locker async_locker (m_async_mutex); m_async_packet.assign(payload, payload_length); m_async_packet_predicate.SetValue (true, eBroadcastNever); if (log) log->Printf ("async: async packet = %s", m_async_packet.c_str()); bool timed_out = false; if (SendInterrupt(locker, 2, timed_out)) { if (m_interrupt_sent) { m_interrupt_sent = false; TimeValue timeout_time; timeout_time = TimeValue::Now(); timeout_time.OffsetWithSeconds (m_packet_timeout); if (log) log->Printf ("async: sent interrupt"); if (m_async_packet_predicate.WaitForValueEqualTo (false, &timeout_time, &timed_out)) { if (log) log->Printf ("async: got response"); // Swap the response buffer to avoid malloc and string copy response.GetStringRef().swap (m_async_response.GetStringRef()); response_len = response.GetStringRef().size(); } else { if (log) log->Printf ("async: timed out waiting for response"); } // Make sure we wait until the continue packet has been sent again... if (m_private_is_running.WaitForValueEqualTo (true, &timeout_time, &timed_out)) { if (log) { if (timed_out) log->Printf ("async: timed out waiting for process to resume, but process was resumed"); else log->Printf ("async: async packet sent"); } } else { if (log) log->Printf ("async: timed out waiting for process to resume"); } } else { // We had a racy condition where we went to send the interrupt // yet we were able to get the lock, so the process must have // just stopped? if (log) log->Printf ("async: got lock without sending interrupt"); // Send the packet normally since we got the lock if (SendPacketNoLock (payload, payload_length)) response_len = WaitForPacketWithTimeoutMicroSecondsNoLock (response, GetPacketTimeoutInMicroSeconds ()); else { if (log) log->Printf("error: failed to send '%*s'", (int) payload_length, payload); } } } else { if (log) log->Printf ("async: failed to interrupt"); } } else { if (log) log->Printf ("async: not running, async is ignored"); } } else { if (log) log->Printf("error: failed to get packet sequence mutex, not sending packet '%*s'", (int) payload_length, payload); } } if (response_len == 0) { if (log) log->Printf("error: failed to get response for '%*s'", (int) payload_length, payload); } return response_len; } static const char *end_delimiter = "--end--;"; static const int end_delimiter_len = 8; std::string GDBRemoteCommunicationClient::HarmonizeThreadIdsForProfileData ( ProcessGDBRemote *process, StringExtractorGDBRemote& profileDataExtractor ) { std::map new_thread_id_to_used_usec_map; std::stringstream final_output; std::string name, value; // Going to assuming thread_used_usec comes first, else bail out. while (profileDataExtractor.GetNameColonValue(name, value)) { if (name.compare("thread_used_id") == 0) { StringExtractor threadIDHexExtractor(value.c_str()); uint64_t thread_id = threadIDHexExtractor.GetHexMaxU64(false, 0); bool has_used_usec = false; uint32_t curr_used_usec = 0; std::string usec_name, usec_value; uint32_t input_file_pos = profileDataExtractor.GetFilePos(); if (profileDataExtractor.GetNameColonValue(usec_name, usec_value)) { if (usec_name.compare("thread_used_usec") == 0) { has_used_usec = true; curr_used_usec = strtoull(usec_value.c_str(), NULL, 0); } else { // We didn't find what we want, it is probably // an older version. Bail out. profileDataExtractor.SetFilePos(input_file_pos); } } if (has_used_usec) { uint32_t prev_used_usec = 0; std::map::iterator iterator = m_thread_id_to_used_usec_map.find(thread_id); if (iterator != m_thread_id_to_used_usec_map.end()) { prev_used_usec = m_thread_id_to_used_usec_map[thread_id]; } uint32_t real_used_usec = curr_used_usec - prev_used_usec; // A good first time record is one that runs for at least 0.25 sec bool good_first_time = (prev_used_usec == 0) && (real_used_usec > 250000); bool good_subsequent_time = (prev_used_usec > 0) && ((real_used_usec > 0) || (process->HasAssignedIndexIDToThread(thread_id))); if (good_first_time || good_subsequent_time) { // We try to avoid doing too many index id reservation, // resulting in fast increase of index ids. final_output << name << ":"; int32_t index_id = process->AssignIndexIDToThread(thread_id); final_output << index_id << ";"; final_output << usec_name << ":" << usec_value << ";"; } else { // Skip past 'thread_used_name'. std::string local_name, local_value; profileDataExtractor.GetNameColonValue(local_name, local_value); } // Store current time as previous time so that they can be compared later. new_thread_id_to_used_usec_map[thread_id] = curr_used_usec; } else { // Bail out and use old string. final_output << name << ":" << value << ";"; } } else { final_output << name << ":" << value << ";"; } } final_output << end_delimiter; m_thread_id_to_used_usec_map = new_thread_id_to_used_usec_map; return final_output.str(); } StateType GDBRemoteCommunicationClient::SendContinuePacketAndWaitForResponse ( ProcessGDBRemote *process, const char *payload, size_t packet_length, StringExtractorGDBRemote &response ) { m_curr_tid = LLDB_INVALID_THREAD_ID; Log *log (ProcessGDBRemoteLog::GetLogIfAllCategoriesSet (GDBR_LOG_PROCESS)); if (log) log->Printf ("GDBRemoteCommunicationClient::%s ()", __FUNCTION__); Mutex::Locker locker(m_sequence_mutex); StateType state = eStateRunning; BroadcastEvent(eBroadcastBitRunPacketSent, NULL); m_public_is_running.SetValue (true, eBroadcastNever); // Set the starting continue packet into "continue_packet". This packet // may change if we are interrupted and we continue after an async packet... std::string continue_packet(payload, packet_length); bool got_async_packet = false; while (state == eStateRunning) { if (!got_async_packet) { if (log) log->Printf ("GDBRemoteCommunicationClient::%s () sending continue packet: %s", __FUNCTION__, continue_packet.c_str()); if (SendPacketNoLock(continue_packet.c_str(), continue_packet.size()) == 0) state = eStateInvalid; m_private_is_running.SetValue (true, eBroadcastAlways); } got_async_packet = false; if (log) log->Printf ("GDBRemoteCommunicationClient::%s () WaitForPacket(%s)", __FUNCTION__, continue_packet.c_str()); if (WaitForPacketWithTimeoutMicroSecondsNoLock(response, UINT32_MAX)) { if (response.Empty()) state = eStateInvalid; else { const char stop_type = response.GetChar(); if (log) log->Printf ("GDBRemoteCommunicationClient::%s () got packet: %s", __FUNCTION__, response.GetStringRef().c_str()); switch (stop_type) { case 'T': case 'S': { if (process->GetStopID() == 0) { if (process->GetID() == LLDB_INVALID_PROCESS_ID) { lldb::pid_t pid = GetCurrentProcessID (); if (pid != LLDB_INVALID_PROCESS_ID) process->SetID (pid); } process->BuildDynamicRegisterInfo (true); } // Privately notify any internal threads that we have stopped // in case we wanted to interrupt our process, yet we might // send a packet and continue without returning control to the // user. m_private_is_running.SetValue (false, eBroadcastAlways); const uint8_t signo = response.GetHexU8 (UINT8_MAX); bool continue_after_async = m_async_signal != -1 || m_async_packet_predicate.GetValue(); if (continue_after_async || m_interrupt_sent) { // We sent an interrupt packet to stop the inferior process // for an async signal or to send an async packet while running // but we might have been single stepping and received the // stop packet for the step instead of for the interrupt packet. // Typically when an interrupt is sent a SIGINT or SIGSTOP // is used, so if we get anything else, we need to try and // get another stop reply packet that may have been sent // due to sending the interrupt when the target is stopped // which will just re-send a copy of the last stop reply // packet. If we don't do this, then the reply for our // async packet will be the repeat stop reply packet and cause // a lot of trouble for us! if (signo != SIGINT && signo != SIGSTOP) { continue_after_async = false; // We didn't get a a SIGINT or SIGSTOP, so try for a // very brief time (1 ms) to get another stop reply // packet to make sure it doesn't get in the way StringExtractorGDBRemote extra_stop_reply_packet; uint32_t timeout_usec = 1000; if (WaitForPacketWithTimeoutMicroSecondsNoLock (extra_stop_reply_packet, timeout_usec)) { switch (extra_stop_reply_packet.GetChar()) { case 'T': case 'S': // We did get an extra stop reply, which means // our interrupt didn't stop the target so we // shouldn't continue after the async signal // or packet is sent... continue_after_async = false; break; } } } } if (m_async_signal != -1) { if (log) log->Printf ("async: send signo = %s", Host::GetSignalAsCString (m_async_signal)); // Save off the async signal we are supposed to send const int async_signal = m_async_signal; // Clear the async signal member so we don't end up // sending the signal multiple times... m_async_signal = -1; // Check which signal we stopped with if (signo == async_signal) { if (log) log->Printf ("async: stopped with signal %s, we are done running", Host::GetSignalAsCString (signo)); // We already stopped with a signal that we wanted // to stop with, so we are done } else { // We stopped with a different signal that the one // we wanted to stop with, so now we must resume // with the signal we want char signal_packet[32]; int signal_packet_len = 0; signal_packet_len = ::snprintf (signal_packet, sizeof (signal_packet), "C%2.2x", async_signal); if (log) log->Printf ("async: stopped with signal %s, resume with %s", Host::GetSignalAsCString (signo), Host::GetSignalAsCString (async_signal)); // Set the continue packet to resume even if the // interrupt didn't cause our stop (ignore continue_after_async) continue_packet.assign(signal_packet, signal_packet_len); continue; } } else if (m_async_packet_predicate.GetValue()) { Log * packet_log (ProcessGDBRemoteLog::GetLogIfAllCategoriesSet (GDBR_LOG_PACKETS)); // We are supposed to send an asynchronous packet while // we are running. m_async_response.Clear(); if (m_async_packet.empty()) { if (packet_log) packet_log->Printf ("async: error: empty async packet"); } else { if (packet_log) packet_log->Printf ("async: sending packet"); SendPacketAndWaitForResponse (&m_async_packet[0], m_async_packet.size(), m_async_response, false); } // Let the other thread that was trying to send the async // packet know that the packet has been sent and response is // ready... m_async_packet_predicate.SetValue(false, eBroadcastAlways); if (packet_log) packet_log->Printf ("async: sent packet, continue_after_async = %i", continue_after_async); // Set the continue packet to resume if our interrupt // for the async packet did cause the stop if (continue_after_async) { // Reverting this for now as it is causing deadlocks // in programs (). In the future // we should check our thread list and "do the right thing" // for new threads that show up while we stop and run async // packets. Setting the packet to 'c' to continue all threads // is the right thing to do 99.99% of the time because if a // thread was single stepping, and we sent an interrupt, we // will notice above that we didn't stop due to an interrupt // but stopped due to stepping and we would _not_ continue. continue_packet.assign (1, 'c'); continue; } } // Stop with signal and thread info state = eStateStopped; } break; case 'W': case 'X': // process exited state = eStateExited; break; case 'O': // STDOUT { got_async_packet = true; std::string inferior_stdout; inferior_stdout.reserve(response.GetBytesLeft () / 2); char ch; while ((ch = response.GetHexU8()) != '\0') inferior_stdout.append(1, ch); process->AppendSTDOUT (inferior_stdout.c_str(), inferior_stdout.size()); } break; case 'A': // Async miscellaneous reply. Right now, only profile data is coming through this channel. { got_async_packet = true; std::string input = response.GetStringRef().substr(1); // '1' to move beyond 'A' if (m_partial_profile_data.length() > 0) { m_partial_profile_data.append(input); input = m_partial_profile_data; m_partial_profile_data.clear(); } size_t found, pos = 0, len = input.length(); while ((found = input.find(end_delimiter, pos)) != std::string::npos) { StringExtractorGDBRemote profileDataExtractor(input.substr(pos, found).c_str()); std::string profile_data = HarmonizeThreadIdsForProfileData(process, profileDataExtractor); process->BroadcastAsyncProfileData (profile_data); pos = found + end_delimiter_len; } if (pos < len) { // Last incomplete chunk. m_partial_profile_data = input.substr(pos); } } break; case 'E': // ERROR state = eStateInvalid; break; default: if (log) log->Printf ("GDBRemoteCommunicationClient::%s () unrecognized async packet", __FUNCTION__); state = eStateInvalid; break; } } } else { if (log) log->Printf ("GDBRemoteCommunicationClient::%s () WaitForPacket(...) => false", __FUNCTION__); state = eStateInvalid; } } if (log) log->Printf ("GDBRemoteCommunicationClient::%s () => %s", __FUNCTION__, StateAsCString(state)); response.SetFilePos(0); m_private_is_running.SetValue (false, eBroadcastAlways); m_public_is_running.SetValue (false, eBroadcastAlways); return state; } bool GDBRemoteCommunicationClient::SendAsyncSignal (int signo) { Mutex::Locker async_locker (m_async_mutex); m_async_signal = signo; bool timed_out = false; Mutex::Locker locker; if (SendInterrupt (locker, 1, timed_out)) return true; m_async_signal = -1; return false; } // This function takes a mutex locker as a parameter in case the GetSequenceMutex // actually succeeds. If it doesn't succeed in acquiring the sequence mutex // (the expected result), then it will send the halt packet. If it does succeed // then the caller that requested the interrupt will want to keep the sequence // locked down so that no one else can send packets while the caller has control. // This function usually gets called when we are running and need to stop the // target. It can also be used when we are running and and we need to do something // else (like read/write memory), so we need to interrupt the running process // (gdb remote protocol requires this), and do what we need to do, then resume. bool GDBRemoteCommunicationClient::SendInterrupt ( Mutex::Locker& locker, uint32_t seconds_to_wait_for_stop, bool &timed_out ) { timed_out = false; Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_PROCESS | GDBR_LOG_PACKETS)); if (IsRunning()) { // Only send an interrupt if our debugserver is running... if (GetSequenceMutex (locker)) { if (log) log->Printf ("SendInterrupt () - got sequence mutex without having to interrupt"); } else { // Someone has the mutex locked waiting for a response or for the // inferior to stop, so send the interrupt on the down low... char ctrl_c = '\x03'; ConnectionStatus status = eConnectionStatusSuccess; size_t bytes_written = Write (&ctrl_c, 1, status, NULL); if (log) log->PutCString("send packet: \\x03"); if (bytes_written > 0) { m_interrupt_sent = true; if (seconds_to_wait_for_stop) { TimeValue timeout; if (seconds_to_wait_for_stop) { timeout = TimeValue::Now(); timeout.OffsetWithSeconds (seconds_to_wait_for_stop); } if (m_private_is_running.WaitForValueEqualTo (false, &timeout, &timed_out)) { if (log) log->PutCString ("SendInterrupt () - sent interrupt, private state stopped"); return true; } else { if (log) log->Printf ("SendInterrupt () - sent interrupt, timed out wating for async thread resume"); } } else { if (log) log->Printf ("SendInterrupt () - sent interrupt, not waiting for stop..."); return true; } } else { if (log) log->Printf ("SendInterrupt () - failed to write interrupt"); } return false; } } else { if (log) log->Printf ("SendInterrupt () - not running"); } return true; } lldb::pid_t GDBRemoteCommunicationClient::GetCurrentProcessID () { StringExtractorGDBRemote response; if (SendPacketAndWaitForResponse("qC", strlen("qC"), response, false)) { if (response.GetChar() == 'Q') if (response.GetChar() == 'C') return response.GetHexMaxU32 (false, LLDB_INVALID_PROCESS_ID); } return LLDB_INVALID_PROCESS_ID; } bool GDBRemoteCommunicationClient::GetLaunchSuccess (std::string &error_str) { error_str.clear(); StringExtractorGDBRemote response; if (SendPacketAndWaitForResponse("qLaunchSuccess", strlen("qLaunchSuccess"), response, false)) { if (response.IsOKResponse()) return true; if (response.GetChar() == 'E') { // A string the describes what failed when launching... error_str = response.GetStringRef().substr(1); } else { error_str.assign ("unknown error occurred launching process"); } } else { error_str.assign ("timed out waiting for app to launch"); } return false; } int GDBRemoteCommunicationClient::SendArgumentsPacket (char const *argv[]) { if (argv && argv[0]) { StreamString packet; packet.PutChar('A'); const char *arg; for (uint32_t i = 0; (arg = argv[i]) != NULL; ++i) { const int arg_len = strlen(arg); if (i > 0) packet.PutChar(','); packet.Printf("%i,%i,", arg_len * 2, i); packet.PutBytesAsRawHex8 (arg, arg_len); } StringExtractorGDBRemote response; if (SendPacketAndWaitForResponse (packet.GetData(), packet.GetSize(), response, false)) { if (response.IsOKResponse()) return 0; uint8_t error = response.GetError(); if (error) return error; } } return -1; } int GDBRemoteCommunicationClient::SendEnvironmentPacket (char const *name_equal_value) { if (name_equal_value && name_equal_value[0]) { StreamString packet; packet.Printf("QEnvironment:%s", name_equal_value); StringExtractorGDBRemote response; if (SendPacketAndWaitForResponse (packet.GetData(), packet.GetSize(), response, false)) { if (response.IsOKResponse()) return 0; uint8_t error = response.GetError(); if (error) return error; } } return -1; } int GDBRemoteCommunicationClient::SendLaunchArchPacket (char const *arch) { if (arch && arch[0]) { StreamString packet; packet.Printf("QLaunchArch:%s", arch); StringExtractorGDBRemote response; if (SendPacketAndWaitForResponse (packet.GetData(), packet.GetSize(), response, false)) { if (response.IsOKResponse()) return 0; uint8_t error = response.GetError(); if (error) return error; } } return -1; } bool GDBRemoteCommunicationClient::GetOSVersion (uint32_t &major, uint32_t &minor, uint32_t &update) { if (GetHostInfo ()) { if (m_os_version_major != UINT32_MAX) { major = m_os_version_major; minor = m_os_version_minor; update = m_os_version_update; return true; } } return false; } bool GDBRemoteCommunicationClient::GetOSBuildString (std::string &s) { if (GetHostInfo ()) { if (!m_os_build.empty()) { s = m_os_build; return true; } } s.clear(); return false; } bool GDBRemoteCommunicationClient::GetOSKernelDescription (std::string &s) { if (GetHostInfo ()) { if (!m_os_kernel.empty()) { s = m_os_kernel; return true; } } s.clear(); return false; } bool GDBRemoteCommunicationClient::GetHostname (std::string &s) { if (GetHostInfo ()) { if (!m_hostname.empty()) { s = m_hostname; return true; } } s.clear(); return false; } ArchSpec GDBRemoteCommunicationClient::GetSystemArchitecture () { if (GetHostInfo ()) return m_host_arch; return ArchSpec(); } const lldb_private::ArchSpec & GDBRemoteCommunicationClient::GetProcessArchitecture () { if (m_qProcessInfo_is_valid == eLazyBoolCalculate) GetCurrentProcessInfo (); return m_process_arch; } bool GDBRemoteCommunicationClient::GetHostInfo (bool force) { if (force || m_qHostInfo_is_valid == eLazyBoolCalculate) { m_qHostInfo_is_valid = eLazyBoolNo; StringExtractorGDBRemote response; if (SendPacketAndWaitForResponse ("qHostInfo", response, false)) { if (response.IsNormalResponse()) { std::string name; std::string value; uint32_t cpu = LLDB_INVALID_CPUTYPE; uint32_t sub = 0; std::string arch_name; std::string os_name; std::string vendor_name; std::string triple; uint32_t pointer_byte_size = 0; StringExtractor extractor; ByteOrder byte_order = eByteOrderInvalid; uint32_t num_keys_decoded = 0; while (response.GetNameColonValue(name, value)) { if (name.compare("cputype") == 0) { // exception type in big endian hex cpu = Args::StringToUInt32 (value.c_str(), LLDB_INVALID_CPUTYPE, 0); if (cpu != LLDB_INVALID_CPUTYPE) ++num_keys_decoded; } else if (name.compare("cpusubtype") == 0) { // exception count in big endian hex sub = Args::StringToUInt32 (value.c_str(), 0, 0); if (sub != 0) ++num_keys_decoded; } else if (name.compare("arch") == 0) { arch_name.swap (value); ++num_keys_decoded; } else if (name.compare("triple") == 0) { // The triple comes as ASCII hex bytes since it contains '-' chars extractor.GetStringRef().swap(value); extractor.SetFilePos(0); extractor.GetHexByteString (triple); ++num_keys_decoded; } else if (name.compare("os_build") == 0) { extractor.GetStringRef().swap(value); extractor.SetFilePos(0); extractor.GetHexByteString (m_os_build); ++num_keys_decoded; } else if (name.compare("hostname") == 0) { extractor.GetStringRef().swap(value); extractor.SetFilePos(0); extractor.GetHexByteString (m_hostname); ++num_keys_decoded; } else if (name.compare("os_kernel") == 0) { extractor.GetStringRef().swap(value); extractor.SetFilePos(0); extractor.GetHexByteString (m_os_kernel); ++num_keys_decoded; } else if (name.compare("ostype") == 0) { os_name.swap (value); ++num_keys_decoded; } else if (name.compare("vendor") == 0) { vendor_name.swap(value); ++num_keys_decoded; } else if (name.compare("endian") == 0) { ++num_keys_decoded; if (value.compare("little") == 0) byte_order = eByteOrderLittle; else if (value.compare("big") == 0) byte_order = eByteOrderBig; else if (value.compare("pdp") == 0) byte_order = eByteOrderPDP; else --num_keys_decoded; } else if (name.compare("ptrsize") == 0) { pointer_byte_size = Args::StringToUInt32 (value.c_str(), 0, 0); if (pointer_byte_size != 0) ++num_keys_decoded; } else if (name.compare("os_version") == 0) { Args::StringToVersion (value.c_str(), m_os_version_major, m_os_version_minor, m_os_version_update); if (m_os_version_major != UINT32_MAX) ++num_keys_decoded; } else if (name.compare("watchpoint_exceptions_received") == 0) { ++num_keys_decoded; if (strcmp(value.c_str(),"before") == 0) m_watchpoints_trigger_after_instruction = eLazyBoolNo; else if (strcmp(value.c_str(),"after") == 0) m_watchpoints_trigger_after_instruction = eLazyBoolYes; else --num_keys_decoded; } } if (num_keys_decoded > 0) m_qHostInfo_is_valid = eLazyBoolYes; if (triple.empty()) { if (arch_name.empty()) { if (cpu != LLDB_INVALID_CPUTYPE) { m_host_arch.SetArchitecture (eArchTypeMachO, cpu, sub); if (pointer_byte_size) { assert (pointer_byte_size == m_host_arch.GetAddressByteSize()); } if (byte_order != eByteOrderInvalid) { assert (byte_order == m_host_arch.GetByteOrder()); } if (!os_name.empty() && vendor_name.compare("apple") == 0 && os_name.find("darwin") == 0) { switch (m_host_arch.GetMachine()) { case llvm::Triple::arm: case llvm::Triple::thumb: os_name = "ios"; break; default: os_name = "macosx"; break; } } if (!vendor_name.empty()) m_host_arch.GetTriple().setVendorName (llvm::StringRef (vendor_name)); if (!os_name.empty()) m_host_arch.GetTriple().setOSName (llvm::StringRef (os_name)); } } else { std::string triple; triple += arch_name; if (!vendor_name.empty() || !os_name.empty()) { triple += '-'; if (vendor_name.empty()) triple += "unknown"; else triple += vendor_name; triple += '-'; if (os_name.empty()) triple += "unknown"; else triple += os_name; } m_host_arch.SetTriple (triple.c_str()); llvm::Triple &host_triple = m_host_arch.GetTriple(); if (host_triple.getVendor() == llvm::Triple::Apple && host_triple.getOS() == llvm::Triple::Darwin) { switch (m_host_arch.GetMachine()) { case llvm::Triple::arm: case llvm::Triple::thumb: host_triple.setOS(llvm::Triple::IOS); break; default: host_triple.setOS(llvm::Triple::MacOSX); break; } } if (pointer_byte_size) { assert (pointer_byte_size == m_host_arch.GetAddressByteSize()); } if (byte_order != eByteOrderInvalid) { assert (byte_order == m_host_arch.GetByteOrder()); } } } else { m_host_arch.SetTriple (triple.c_str()); if (pointer_byte_size) { assert (pointer_byte_size == m_host_arch.GetAddressByteSize()); } if (byte_order != eByteOrderInvalid) { assert (byte_order == m_host_arch.GetByteOrder()); } } } } } return m_qHostInfo_is_valid == eLazyBoolYes; } int GDBRemoteCommunicationClient::SendAttach ( lldb::pid_t pid, StringExtractorGDBRemote& response ) { if (pid != LLDB_INVALID_PROCESS_ID) { char packet[64]; const int packet_len = ::snprintf (packet, sizeof(packet), "vAttach;%" PRIx64, pid); assert (packet_len < (int)sizeof(packet)); if (SendPacketAndWaitForResponse (packet, packet_len, response, false)) { if (response.IsErrorResponse()) return response.GetError(); return 0; } } return -1; } const lldb_private::ArchSpec & GDBRemoteCommunicationClient::GetHostArchitecture () { if (m_qHostInfo_is_valid == eLazyBoolCalculate) GetHostInfo (); return m_host_arch; } addr_t GDBRemoteCommunicationClient::AllocateMemory (size_t size, uint32_t permissions) { if (m_supports_alloc_dealloc_memory != eLazyBoolNo) { m_supports_alloc_dealloc_memory = eLazyBoolYes; char packet[64]; const int packet_len = ::snprintf (packet, sizeof(packet), "_M%" PRIx64 ",%s%s%s", (uint64_t)size, permissions & lldb::ePermissionsReadable ? "r" : "", permissions & lldb::ePermissionsWritable ? "w" : "", permissions & lldb::ePermissionsExecutable ? "x" : ""); assert (packet_len < (int)sizeof(packet)); StringExtractorGDBRemote response; if (SendPacketAndWaitForResponse (packet, packet_len, response, false)) { if (!response.IsErrorResponse()) return response.GetHexMaxU64(false, LLDB_INVALID_ADDRESS); } else { m_supports_alloc_dealloc_memory = eLazyBoolNo; } } return LLDB_INVALID_ADDRESS; } bool GDBRemoteCommunicationClient::DeallocateMemory (addr_t addr) { if (m_supports_alloc_dealloc_memory != eLazyBoolNo) { m_supports_alloc_dealloc_memory = eLazyBoolYes; char packet[64]; const int packet_len = ::snprintf(packet, sizeof(packet), "_m%" PRIx64, (uint64_t)addr); assert (packet_len < (int)sizeof(packet)); StringExtractorGDBRemote response; if (SendPacketAndWaitForResponse (packet, packet_len, response, false)) { if (response.IsOKResponse()) return true; } else { m_supports_alloc_dealloc_memory = eLazyBoolNo; } } return false; } Error GDBRemoteCommunicationClient::Detach (bool keep_stopped) { Error error; if (keep_stopped) { if (m_supports_detach_stay_stopped == eLazyBoolCalculate) { char packet[64]; const int packet_len = ::snprintf(packet, sizeof(packet), "qSupportsDetachAndStayStopped:"); assert (packet_len < (int)sizeof(packet)); StringExtractorGDBRemote response; if (SendPacketAndWaitForResponse (packet, packet_len, response, false)) { m_supports_detach_stay_stopped = eLazyBoolYes; } else { m_supports_detach_stay_stopped = eLazyBoolNo; } } if (m_supports_detach_stay_stopped == eLazyBoolNo) { error.SetErrorString("Stays stopped not supported by this target."); return error; } else { size_t num_sent = SendPacket ("D1", 2); if (num_sent == 0) error.SetErrorString ("Sending extended disconnect packet failed."); } } else { size_t num_sent = SendPacket ("D", 1); if (num_sent == 0) error.SetErrorString ("Sending disconnect packet failed."); } return error; } Error GDBRemoteCommunicationClient::GetMemoryRegionInfo (lldb::addr_t addr, lldb_private::MemoryRegionInfo ®ion_info) { Error error; region_info.Clear(); if (m_supports_memory_region_info != eLazyBoolNo) { m_supports_memory_region_info = eLazyBoolYes; char packet[64]; const int packet_len = ::snprintf(packet, sizeof(packet), "qMemoryRegionInfo:%" PRIx64, (uint64_t)addr); assert (packet_len < (int)sizeof(packet)); StringExtractorGDBRemote response; if (SendPacketAndWaitForResponse (packet, packet_len, response, false)) { std::string name; std::string value; addr_t addr_value; bool success = true; bool saw_permissions = false; while (success && response.GetNameColonValue(name, value)) { if (name.compare ("start") == 0) { addr_value = Args::StringToUInt64(value.c_str(), LLDB_INVALID_ADDRESS, 16, &success); if (success) region_info.GetRange().SetRangeBase(addr_value); } else if (name.compare ("size") == 0) { addr_value = Args::StringToUInt64(value.c_str(), 0, 16, &success); if (success) region_info.GetRange().SetByteSize (addr_value); } else if (name.compare ("permissions") == 0 && region_info.GetRange().IsValid()) { saw_permissions = true; if (region_info.GetRange().Contains (addr)) { if (value.find('r') != std::string::npos) region_info.SetReadable (MemoryRegionInfo::eYes); else region_info.SetReadable (MemoryRegionInfo::eNo); if (value.find('w') != std::string::npos) region_info.SetWritable (MemoryRegionInfo::eYes); else region_info.SetWritable (MemoryRegionInfo::eNo); if (value.find('x') != std::string::npos) region_info.SetExecutable (MemoryRegionInfo::eYes); else region_info.SetExecutable (MemoryRegionInfo::eNo); } else { // The reported region does not contain this address -- we're looking at an unmapped page region_info.SetReadable (MemoryRegionInfo::eNo); region_info.SetWritable (MemoryRegionInfo::eNo); region_info.SetExecutable (MemoryRegionInfo::eNo); } } else if (name.compare ("error") == 0) { StringExtractorGDBRemote name_extractor; // Swap "value" over into "name_extractor" name_extractor.GetStringRef().swap(value); // Now convert the HEX bytes into a string value name_extractor.GetHexByteString (value); error.SetErrorString(value.c_str()); } } // We got a valid address range back but no permissions -- which means this is an unmapped page if (region_info.GetRange().IsValid() && saw_permissions == false) { region_info.SetReadable (MemoryRegionInfo::eNo); region_info.SetWritable (MemoryRegionInfo::eNo); region_info.SetExecutable (MemoryRegionInfo::eNo); } } else { m_supports_memory_region_info = eLazyBoolNo; } } if (m_supports_memory_region_info == eLazyBoolNo) { error.SetErrorString("qMemoryRegionInfo is not supported"); } if (error.Fail()) region_info.Clear(); return error; } Error GDBRemoteCommunicationClient::GetWatchpointSupportInfo (uint32_t &num) { Error error; if (m_supports_watchpoint_support_info == eLazyBoolYes) { num = m_num_supported_hardware_watchpoints; return error; } // Set num to 0 first. num = 0; if (m_supports_watchpoint_support_info != eLazyBoolNo) { char packet[64]; const int packet_len = ::snprintf(packet, sizeof(packet), "qWatchpointSupportInfo:"); assert (packet_len < (int)sizeof(packet)); StringExtractorGDBRemote response; if (SendPacketAndWaitForResponse (packet, packet_len, response, false)) { m_supports_watchpoint_support_info = eLazyBoolYes; std::string name; std::string value; while (response.GetNameColonValue(name, value)) { if (name.compare ("num") == 0) { num = Args::StringToUInt32(value.c_str(), 0, 0); m_num_supported_hardware_watchpoints = num; } } } else { m_supports_watchpoint_support_info = eLazyBoolNo; } } if (m_supports_watchpoint_support_info == eLazyBoolNo) { error.SetErrorString("qWatchpointSupportInfo is not supported"); } return error; } lldb_private::Error GDBRemoteCommunicationClient::GetWatchpointSupportInfo (uint32_t &num, bool& after) { Error error(GetWatchpointSupportInfo(num)); if (error.Success()) error = GetWatchpointsTriggerAfterInstruction(after); return error; } lldb_private::Error GDBRemoteCommunicationClient::GetWatchpointsTriggerAfterInstruction (bool &after) { Error error; // we assume watchpoints will happen after running the relevant opcode // and we only want to override this behavior if we have explicitly // received a qHostInfo telling us otherwise if (m_qHostInfo_is_valid != eLazyBoolYes) after = true; else after = (m_watchpoints_trigger_after_instruction != eLazyBoolNo); return error; } int GDBRemoteCommunicationClient::SetSTDIN (char const *path) { if (path && path[0]) { StreamString packet; packet.PutCString("QSetSTDIN:"); packet.PutBytesAsRawHex8(path, strlen(path)); StringExtractorGDBRemote response; if (SendPacketAndWaitForResponse (packet.GetData(), packet.GetSize(), response, false)) { if (response.IsOKResponse()) return 0; uint8_t error = response.GetError(); if (error) return error; } } return -1; } int GDBRemoteCommunicationClient::SetSTDOUT (char const *path) { if (path && path[0]) { StreamString packet; packet.PutCString("QSetSTDOUT:"); packet.PutBytesAsRawHex8(path, strlen(path)); StringExtractorGDBRemote response; if (SendPacketAndWaitForResponse (packet.GetData(), packet.GetSize(), response, false)) { if (response.IsOKResponse()) return 0; uint8_t error = response.GetError(); if (error) return error; } } return -1; } int GDBRemoteCommunicationClient::SetSTDERR (char const *path) { if (path && path[0]) { StreamString packet; packet.PutCString("QSetSTDERR:"); packet.PutBytesAsRawHex8(path, strlen(path)); StringExtractorGDBRemote response; if (SendPacketAndWaitForResponse (packet.GetData(), packet.GetSize(), response, false)) { if (response.IsOKResponse()) return 0; uint8_t error = response.GetError(); if (error) return error; } } return -1; } int GDBRemoteCommunicationClient::SetWorkingDir (char const *path) { if (path && path[0]) { StreamString packet; packet.PutCString("QSetWorkingDir:"); packet.PutBytesAsRawHex8(path, strlen(path)); StringExtractorGDBRemote response; if (SendPacketAndWaitForResponse (packet.GetData(), packet.GetSize(), response, false)) { if (response.IsOKResponse()) return 0; uint8_t error = response.GetError(); if (error) return error; } } return -1; } int GDBRemoteCommunicationClient::SetDisableASLR (bool enable) { char packet[32]; const int packet_len = ::snprintf (packet, sizeof (packet), "QSetDisableASLR:%i", enable ? 1 : 0); assert (packet_len < (int)sizeof(packet)); StringExtractorGDBRemote response; if (SendPacketAndWaitForResponse (packet, packet_len, response, false)) { if (response.IsOKResponse()) return 0; uint8_t error = response.GetError(); if (error) return error; } return -1; } bool GDBRemoteCommunicationClient::DecodeProcessInfoResponse (StringExtractorGDBRemote &response, ProcessInstanceInfo &process_info) { if (response.IsNormalResponse()) { std::string name; std::string value; StringExtractor extractor; while (response.GetNameColonValue(name, value)) { if (name.compare("pid") == 0) { process_info.SetProcessID (Args::StringToUInt32 (value.c_str(), LLDB_INVALID_PROCESS_ID, 0)); } else if (name.compare("ppid") == 0) { process_info.SetParentProcessID (Args::StringToUInt32 (value.c_str(), LLDB_INVALID_PROCESS_ID, 0)); } else if (name.compare("uid") == 0) { process_info.SetUserID (Args::StringToUInt32 (value.c_str(), UINT32_MAX, 0)); } else if (name.compare("euid") == 0) { process_info.SetEffectiveUserID (Args::StringToUInt32 (value.c_str(), UINT32_MAX, 0)); } else if (name.compare("gid") == 0) { process_info.SetGroupID (Args::StringToUInt32 (value.c_str(), UINT32_MAX, 0)); } else if (name.compare("egid") == 0) { process_info.SetEffectiveGroupID (Args::StringToUInt32 (value.c_str(), UINT32_MAX, 0)); } else if (name.compare("triple") == 0) { // The triple comes as ASCII hex bytes since it contains '-' chars extractor.GetStringRef().swap(value); extractor.SetFilePos(0); extractor.GetHexByteString (value); process_info.GetArchitecture ().SetTriple (value.c_str()); } else if (name.compare("name") == 0) { StringExtractor extractor; // The process name from ASCII hex bytes since we can't // control the characters in a process name extractor.GetStringRef().swap(value); extractor.SetFilePos(0); extractor.GetHexByteString (value); process_info.GetExecutableFile().SetFile (value.c_str(), false); } } if (process_info.GetProcessID() != LLDB_INVALID_PROCESS_ID) return true; } return false; } bool GDBRemoteCommunicationClient::GetProcessInfo (lldb::pid_t pid, ProcessInstanceInfo &process_info) { process_info.Clear(); if (m_supports_qProcessInfoPID) { char packet[32]; const int packet_len = ::snprintf (packet, sizeof (packet), "qProcessInfoPID:%" PRIu64, pid); assert (packet_len < (int)sizeof(packet)); StringExtractorGDBRemote response; if (SendPacketAndWaitForResponse (packet, packet_len, response, false)) { return DecodeProcessInfoResponse (response, process_info); } else { m_supports_qProcessInfoPID = false; return false; } } return false; } bool GDBRemoteCommunicationClient::GetCurrentProcessInfo () { if (m_qProcessInfo_is_valid == eLazyBoolYes) return true; if (m_qProcessInfo_is_valid == eLazyBoolNo) return false; GetHostInfo (); StringExtractorGDBRemote response; if (SendPacketAndWaitForResponse ("qProcessInfo", response, false)) { if (response.IsNormalResponse()) { std::string name; std::string value; uint32_t cpu = LLDB_INVALID_CPUTYPE; uint32_t sub = 0; std::string arch_name; std::string os_name; std::string vendor_name; std::string triple; uint32_t pointer_byte_size = 0; StringExtractor extractor; ByteOrder byte_order = eByteOrderInvalid; uint32_t num_keys_decoded = 0; while (response.GetNameColonValue(name, value)) { if (name.compare("cputype") == 0) { cpu = Args::StringToUInt32 (value.c_str(), LLDB_INVALID_CPUTYPE, 16); if (cpu != LLDB_INVALID_CPUTYPE) ++num_keys_decoded; } else if (name.compare("cpusubtype") == 0) { sub = Args::StringToUInt32 (value.c_str(), 0, 16); if (sub != 0) ++num_keys_decoded; } else if (name.compare("ostype") == 0) { os_name.swap (value); ++num_keys_decoded; } else if (name.compare("vendor") == 0) { vendor_name.swap(value); ++num_keys_decoded; } else if (name.compare("endian") == 0) { ++num_keys_decoded; if (value.compare("little") == 0) byte_order = eByteOrderLittle; else if (value.compare("big") == 0) byte_order = eByteOrderBig; else if (value.compare("pdp") == 0) byte_order = eByteOrderPDP; else --num_keys_decoded; } else if (name.compare("ptrsize") == 0) { pointer_byte_size = Args::StringToUInt32 (value.c_str(), 0, 16); if (pointer_byte_size != 0) ++num_keys_decoded; } } if (num_keys_decoded > 0) m_qProcessInfo_is_valid = eLazyBoolYes; if (cpu != LLDB_INVALID_CPUTYPE && !os_name.empty() && !vendor_name.empty()) { m_process_arch.SetArchitecture (eArchTypeMachO, cpu, sub); if (pointer_byte_size) { assert (pointer_byte_size == m_process_arch.GetAddressByteSize()); } m_host_arch.GetTriple().setVendorName (llvm::StringRef (vendor_name)); m_host_arch.GetTriple().setOSName (llvm::StringRef (os_name)); return true; } } } else { m_qProcessInfo_is_valid = eLazyBoolNo; } return false; } uint32_t GDBRemoteCommunicationClient::FindProcesses (const ProcessInstanceInfoMatch &match_info, ProcessInstanceInfoList &process_infos) { process_infos.Clear(); if (m_supports_qfProcessInfo) { StreamString packet; packet.PutCString ("qfProcessInfo"); if (!match_info.MatchAllProcesses()) { packet.PutChar (':'); const char *name = match_info.GetProcessInfo().GetName(); bool has_name_match = false; if (name && name[0]) { has_name_match = true; NameMatchType name_match_type = match_info.GetNameMatchType(); switch (name_match_type) { case eNameMatchIgnore: has_name_match = false; break; case eNameMatchEquals: packet.PutCString ("name_match:equals;"); break; case eNameMatchContains: packet.PutCString ("name_match:contains;"); break; case eNameMatchStartsWith: packet.PutCString ("name_match:starts_with;"); break; case eNameMatchEndsWith: packet.PutCString ("name_match:ends_with;"); break; case eNameMatchRegularExpression: packet.PutCString ("name_match:regex;"); break; } if (has_name_match) { packet.PutCString ("name:"); packet.PutBytesAsRawHex8(name, ::strlen(name)); packet.PutChar (';'); } } if (match_info.GetProcessInfo().ProcessIDIsValid()) packet.Printf("pid:%" PRIu64 ";",match_info.GetProcessInfo().GetProcessID()); if (match_info.GetProcessInfo().ParentProcessIDIsValid()) packet.Printf("parent_pid:%" PRIu64 ";",match_info.GetProcessInfo().GetParentProcessID()); if (match_info.GetProcessInfo().UserIDIsValid()) packet.Printf("uid:%u;",match_info.GetProcessInfo().GetUserID()); if (match_info.GetProcessInfo().GroupIDIsValid()) packet.Printf("gid:%u;",match_info.GetProcessInfo().GetGroupID()); if (match_info.GetProcessInfo().EffectiveUserIDIsValid()) packet.Printf("euid:%u;",match_info.GetProcessInfo().GetEffectiveUserID()); if (match_info.GetProcessInfo().EffectiveGroupIDIsValid()) packet.Printf("egid:%u;",match_info.GetProcessInfo().GetEffectiveGroupID()); if (match_info.GetProcessInfo().EffectiveGroupIDIsValid()) packet.Printf("all_users:%u;",match_info.GetMatchAllUsers() ? 1 : 0); if (match_info.GetProcessInfo().GetArchitecture().IsValid()) { const ArchSpec &match_arch = match_info.GetProcessInfo().GetArchitecture(); const llvm::Triple &triple = match_arch.GetTriple(); packet.PutCString("triple:"); packet.PutCStringAsRawHex8(triple.getTriple().c_str()); packet.PutChar (';'); } } StringExtractorGDBRemote response; if (SendPacketAndWaitForResponse (packet.GetData(), packet.GetSize(), response, false)) { do { ProcessInstanceInfo process_info; if (!DecodeProcessInfoResponse (response, process_info)) break; process_infos.Append(process_info); response.GetStringRef().clear(); response.SetFilePos(0); } while (SendPacketAndWaitForResponse ("qsProcessInfo", strlen ("qsProcessInfo"), response, false)); } else { m_supports_qfProcessInfo = false; return 0; } } return process_infos.GetSize(); } bool GDBRemoteCommunicationClient::GetUserName (uint32_t uid, std::string &name) { if (m_supports_qUserName) { char packet[32]; const int packet_len = ::snprintf (packet, sizeof (packet), "qUserName:%i", uid); assert (packet_len < (int)sizeof(packet)); StringExtractorGDBRemote response; if (SendPacketAndWaitForResponse (packet, packet_len, response, false)) { if (response.IsNormalResponse()) { // Make sure we parsed the right number of characters. The response is // the hex encoded user name and should make up the entire packet. // If there are any non-hex ASCII bytes, the length won't match below.. if (response.GetHexByteString (name) * 2 == response.GetStringRef().size()) return true; } } else { m_supports_qUserName = false; return false; } } return false; } bool GDBRemoteCommunicationClient::GetGroupName (uint32_t gid, std::string &name) { if (m_supports_qGroupName) { char packet[32]; const int packet_len = ::snprintf (packet, sizeof (packet), "qGroupName:%i", gid); assert (packet_len < (int)sizeof(packet)); StringExtractorGDBRemote response; if (SendPacketAndWaitForResponse (packet, packet_len, response, false)) { if (response.IsNormalResponse()) { // Make sure we parsed the right number of characters. The response is // the hex encoded group name and should make up the entire packet. // If there are any non-hex ASCII bytes, the length won't match below.. if (response.GetHexByteString (name) * 2 == response.GetStringRef().size()) return true; } } else { m_supports_qGroupName = false; return false; } } return false; } void GDBRemoteCommunicationClient::TestPacketSpeed (const uint32_t num_packets) { uint32_t i; TimeValue start_time, end_time; uint64_t total_time_nsec; float packets_per_second; if (SendSpeedTestPacket (0, 0)) { for (uint32_t send_size = 0; send_size <= 1024; send_size *= 2) { for (uint32_t recv_size = 0; recv_size <= 1024; recv_size *= 2) { start_time = TimeValue::Now(); for (i=0; i 0) { if (bytes_left >= 26) { packet.PutCString("abcdefghijklmnopqrstuvwxyz"); bytes_left -= 26; } else { packet.Printf ("%*.*s;", bytes_left, bytes_left, "abcdefghijklmnopqrstuvwxyz"); bytes_left = 0; } } StringExtractorGDBRemote response; return SendPacketAndWaitForResponse (packet.GetData(), packet.GetSize(), response, false) > 0; return false; } uint16_t GDBRemoteCommunicationClient::LaunchGDBserverAndGetPort () { StringExtractorGDBRemote response; if (SendPacketAndWaitForResponse("qLaunchGDBServer", strlen("qLaunchGDBServer"), response, false)) { std::string name; std::string value; uint16_t port = 0; //lldb::pid_t pid = LLDB_INVALID_PROCESS_ID; while (response.GetNameColonValue(name, value)) { if (name.size() == 4 && name.compare("port") == 0) port = Args::StringToUInt32(value.c_str(), 0, 0); // if (name.size() == 3 && name.compare("pid") == 0) // pid = Args::StringToUInt32(value.c_str(), LLDB_INVALID_PROCESS_ID, 0); } return port; } return 0; } bool GDBRemoteCommunicationClient::SetCurrentThread (uint64_t tid) { if (m_curr_tid == tid) return true; char packet[32]; int packet_len; if (tid == UINT64_MAX) packet_len = ::snprintf (packet, sizeof(packet), "Hg-1"); else packet_len = ::snprintf (packet, sizeof(packet), "Hg%" PRIx64, tid); assert (packet_len + 1 < (int)sizeof(packet)); StringExtractorGDBRemote response; if (SendPacketAndWaitForResponse(packet, packet_len, response, false)) { if (response.IsOKResponse()) { m_curr_tid = tid; return true; } } return false; } bool GDBRemoteCommunicationClient::SetCurrentThreadForRun (uint64_t tid) { if (m_curr_tid_run == tid) return true; char packet[32]; int packet_len; if (tid == UINT64_MAX) packet_len = ::snprintf (packet, sizeof(packet), "Hc-1"); else packet_len = ::snprintf (packet, sizeof(packet), "Hc%" PRIx64, tid); assert (packet_len + 1 < (int)sizeof(packet)); StringExtractorGDBRemote response; if (SendPacketAndWaitForResponse(packet, packet_len, response, false)) { if (response.IsOKResponse()) { m_curr_tid_run = tid; return true; } } return false; } bool GDBRemoteCommunicationClient::GetStopReply (StringExtractorGDBRemote &response) { if (SendPacketAndWaitForResponse("?", 1, response, false)) return response.IsNormalResponse(); return false; } bool GDBRemoteCommunicationClient::GetThreadStopInfo (lldb::tid_t tid, StringExtractorGDBRemote &response) { if (m_supports_qThreadStopInfo) { char packet[256]; int packet_len = ::snprintf(packet, sizeof(packet), "qThreadStopInfo%" PRIx64, tid); assert (packet_len < (int)sizeof(packet)); if (SendPacketAndWaitForResponse(packet, packet_len, response, false)) { if (response.IsNormalResponse()) return true; else return false; } else { m_supports_qThreadStopInfo = false; } } // if (SetCurrentThread (tid)) // return GetStopReply (response); return false; } uint8_t GDBRemoteCommunicationClient::SendGDBStoppointTypePacket (GDBStoppointType type, bool insert, addr_t addr, uint32_t length) { switch (type) { case eBreakpointSoftware: if (!m_supports_z0) return UINT8_MAX; break; case eBreakpointHardware: if (!m_supports_z1) return UINT8_MAX; break; case eWatchpointWrite: if (!m_supports_z2) return UINT8_MAX; break; case eWatchpointRead: if (!m_supports_z3) return UINT8_MAX; break; case eWatchpointReadWrite: if (!m_supports_z4) return UINT8_MAX; break; } char packet[64]; const int packet_len = ::snprintf (packet, sizeof(packet), "%c%i,%" PRIx64 ",%x", insert ? 'Z' : 'z', type, addr, length); assert (packet_len + 1 < (int)sizeof(packet)); StringExtractorGDBRemote response; if (SendPacketAndWaitForResponse(packet, packet_len, response, true)) { if (response.IsOKResponse()) return 0; else if (response.IsErrorResponse()) return response.GetError(); } else { switch (type) { case eBreakpointSoftware: m_supports_z0 = false; break; case eBreakpointHardware: m_supports_z1 = false; break; case eWatchpointWrite: m_supports_z2 = false; break; case eWatchpointRead: m_supports_z3 = false; break; case eWatchpointReadWrite: m_supports_z4 = false; break; } } return UINT8_MAX; } size_t GDBRemoteCommunicationClient::GetCurrentThreadIDs (std::vector &thread_ids, bool &sequence_mutex_unavailable) { Mutex::Locker locker; thread_ids.clear(); if (GetSequenceMutex (locker, "ProcessGDBRemote::UpdateThreadList() failed due to not getting the sequence mutex")) { sequence_mutex_unavailable = false; StringExtractorGDBRemote response; for (SendPacketNoLock ("qfThreadInfo", strlen("qfThreadInfo")) && WaitForPacketWithTimeoutMicroSecondsNoLock (response, GetPacketTimeoutInMicroSeconds ()); response.IsNormalResponse(); SendPacketNoLock ("qsThreadInfo", strlen("qsThreadInfo")) && WaitForPacketWithTimeoutMicroSecondsNoLock (response, GetPacketTimeoutInMicroSeconds ())) { char ch = response.GetChar(); if (ch == 'l') break; if (ch == 'm') { do { tid_t tid = response.GetHexMaxU64(false, LLDB_INVALID_THREAD_ID); if (tid != LLDB_INVALID_THREAD_ID) { thread_ids.push_back (tid); } ch = response.GetChar(); // Skip the command separator } while (ch == ','); // Make sure we got a comma separator } } } else { #if defined (LLDB_CONFIGURATION_DEBUG) // assert(!"ProcessGDBRemote::UpdateThreadList() failed due to not getting the sequence mutex"); #else Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_PROCESS | GDBR_LOG_PACKETS)); if (log) log->Printf("error: failed to get packet sequence mutex, not sending packet 'qfThreadInfo'"); #endif sequence_mutex_unavailable = true; } return thread_ids.size(); } lldb::addr_t GDBRemoteCommunicationClient::GetShlibInfoAddr() { if (!IsRunning()) { StringExtractorGDBRemote response; if (SendPacketAndWaitForResponse("qShlibInfoAddr", ::strlen ("qShlibInfoAddr"), response, false)) { if (response.IsNormalResponse()) return response.GetHexMaxU64(false, LLDB_INVALID_ADDRESS); } } return LLDB_INVALID_ADDRESS; }