1 //===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements C++ semantic analysis for scope specifiers.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclTemplate.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/NestedNameSpecifier.h"
20 #include "clang/Basic/PartialDiagnostic.h"
21 #include "clang/Sema/DeclSpec.h"
22 #include "clang/Sema/Lookup.h"
23 #include "clang/Sema/Template.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/Support/raw_ostream.h"
26 using namespace clang;
27
28 /// \brief Find the current instantiation that associated with the given type.
getCurrentInstantiationOf(QualType T,DeclContext * CurContext)29 static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
30 DeclContext *CurContext) {
31 if (T.isNull())
32 return nullptr;
33
34 const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
35 if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
36 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
37 if (!Record->isDependentContext() ||
38 Record->isCurrentInstantiation(CurContext))
39 return Record;
40
41 return nullptr;
42 } else if (isa<InjectedClassNameType>(Ty))
43 return cast<InjectedClassNameType>(Ty)->getDecl();
44 else
45 return nullptr;
46 }
47
48 /// \brief Compute the DeclContext that is associated with the given type.
49 ///
50 /// \param T the type for which we are attempting to find a DeclContext.
51 ///
52 /// \returns the declaration context represented by the type T,
53 /// or NULL if the declaration context cannot be computed (e.g., because it is
54 /// dependent and not the current instantiation).
computeDeclContext(QualType T)55 DeclContext *Sema::computeDeclContext(QualType T) {
56 if (!T->isDependentType())
57 if (const TagType *Tag = T->getAs<TagType>())
58 return Tag->getDecl();
59
60 return ::getCurrentInstantiationOf(T, CurContext);
61 }
62
63 /// \brief Compute the DeclContext that is associated with the given
64 /// scope specifier.
65 ///
66 /// \param SS the C++ scope specifier as it appears in the source
67 ///
68 /// \param EnteringContext when true, we will be entering the context of
69 /// this scope specifier, so we can retrieve the declaration context of a
70 /// class template or class template partial specialization even if it is
71 /// not the current instantiation.
72 ///
73 /// \returns the declaration context represented by the scope specifier @p SS,
74 /// or NULL if the declaration context cannot be computed (e.g., because it is
75 /// dependent and not the current instantiation).
computeDeclContext(const CXXScopeSpec & SS,bool EnteringContext)76 DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
77 bool EnteringContext) {
78 if (!SS.isSet() || SS.isInvalid())
79 return nullptr;
80
81 NestedNameSpecifier *NNS = SS.getScopeRep();
82 if (NNS->isDependent()) {
83 // If this nested-name-specifier refers to the current
84 // instantiation, return its DeclContext.
85 if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
86 return Record;
87
88 if (EnteringContext) {
89 const Type *NNSType = NNS->getAsType();
90 if (!NNSType) {
91 return nullptr;
92 }
93
94 // Look through type alias templates, per C++0x [temp.dep.type]p1.
95 NNSType = Context.getCanonicalType(NNSType);
96 if (const TemplateSpecializationType *SpecType
97 = NNSType->getAs<TemplateSpecializationType>()) {
98 // We are entering the context of the nested name specifier, so try to
99 // match the nested name specifier to either a primary class template
100 // or a class template partial specialization.
101 if (ClassTemplateDecl *ClassTemplate
102 = dyn_cast_or_null<ClassTemplateDecl>(
103 SpecType->getTemplateName().getAsTemplateDecl())) {
104 QualType ContextType
105 = Context.getCanonicalType(QualType(SpecType, 0));
106
107 // If the type of the nested name specifier is the same as the
108 // injected class name of the named class template, we're entering
109 // into that class template definition.
110 QualType Injected
111 = ClassTemplate->getInjectedClassNameSpecialization();
112 if (Context.hasSameType(Injected, ContextType))
113 return ClassTemplate->getTemplatedDecl();
114
115 // If the type of the nested name specifier is the same as the
116 // type of one of the class template's class template partial
117 // specializations, we're entering into the definition of that
118 // class template partial specialization.
119 if (ClassTemplatePartialSpecializationDecl *PartialSpec
120 = ClassTemplate->findPartialSpecialization(ContextType))
121 return PartialSpec;
122 }
123 } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
124 // The nested name specifier refers to a member of a class template.
125 return RecordT->getDecl();
126 }
127 }
128
129 return nullptr;
130 }
131
132 switch (NNS->getKind()) {
133 case NestedNameSpecifier::Identifier:
134 llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
135
136 case NestedNameSpecifier::Namespace:
137 return NNS->getAsNamespace();
138
139 case NestedNameSpecifier::NamespaceAlias:
140 return NNS->getAsNamespaceAlias()->getNamespace();
141
142 case NestedNameSpecifier::TypeSpec:
143 case NestedNameSpecifier::TypeSpecWithTemplate: {
144 const TagType *Tag = NNS->getAsType()->getAs<TagType>();
145 assert(Tag && "Non-tag type in nested-name-specifier");
146 return Tag->getDecl();
147 }
148
149 case NestedNameSpecifier::Global:
150 return Context.getTranslationUnitDecl();
151 }
152
153 llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
154 }
155
isDependentScopeSpecifier(const CXXScopeSpec & SS)156 bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
157 if (!SS.isSet() || SS.isInvalid())
158 return false;
159
160 return SS.getScopeRep()->isDependent();
161 }
162
163 /// \brief If the given nested name specifier refers to the current
164 /// instantiation, return the declaration that corresponds to that
165 /// current instantiation (C++0x [temp.dep.type]p1).
166 ///
167 /// \param NNS a dependent nested name specifier.
getCurrentInstantiationOf(NestedNameSpecifier * NNS)168 CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
169 assert(getLangOpts().CPlusPlus && "Only callable in C++");
170 assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
171
172 if (!NNS->getAsType())
173 return nullptr;
174
175 QualType T = QualType(NNS->getAsType(), 0);
176 return ::getCurrentInstantiationOf(T, CurContext);
177 }
178
179 /// \brief Require that the context specified by SS be complete.
180 ///
181 /// If SS refers to a type, this routine checks whether the type is
182 /// complete enough (or can be made complete enough) for name lookup
183 /// into the DeclContext. A type that is not yet completed can be
184 /// considered "complete enough" if it is a class/struct/union/enum
185 /// that is currently being defined. Or, if we have a type that names
186 /// a class template specialization that is not a complete type, we
187 /// will attempt to instantiate that class template.
RequireCompleteDeclContext(CXXScopeSpec & SS,DeclContext * DC)188 bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
189 DeclContext *DC) {
190 assert(DC && "given null context");
191
192 TagDecl *tag = dyn_cast<TagDecl>(DC);
193
194 // If this is a dependent type, then we consider it complete.
195 if (!tag || tag->isDependentContext())
196 return false;
197
198 // If we're currently defining this type, then lookup into the
199 // type is okay: don't complain that it isn't complete yet.
200 QualType type = Context.getTypeDeclType(tag);
201 const TagType *tagType = type->getAs<TagType>();
202 if (tagType && tagType->isBeingDefined())
203 return false;
204
205 SourceLocation loc = SS.getLastQualifierNameLoc();
206 if (loc.isInvalid()) loc = SS.getRange().getBegin();
207
208 // The type must be complete.
209 if (RequireCompleteType(loc, type, diag::err_incomplete_nested_name_spec,
210 SS.getRange())) {
211 SS.SetInvalid(SS.getRange());
212 return true;
213 }
214
215 // Fixed enum types are complete, but they aren't valid as scopes
216 // until we see a definition, so awkwardly pull out this special
217 // case.
218 const EnumType *enumType = dyn_cast_or_null<EnumType>(tagType);
219 if (!enumType || enumType->getDecl()->isCompleteDefinition())
220 return false;
221
222 // Try to instantiate the definition, if this is a specialization of an
223 // enumeration temploid.
224 EnumDecl *ED = enumType->getDecl();
225 if (EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
226 MemberSpecializationInfo *MSI = ED->getMemberSpecializationInfo();
227 if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
228 if (InstantiateEnum(loc, ED, Pattern, getTemplateInstantiationArgs(ED),
229 TSK_ImplicitInstantiation)) {
230 SS.SetInvalid(SS.getRange());
231 return true;
232 }
233 return false;
234 }
235 }
236
237 Diag(loc, diag::err_incomplete_nested_name_spec)
238 << type << SS.getRange();
239 SS.SetInvalid(SS.getRange());
240 return true;
241 }
242
ActOnCXXGlobalScopeSpecifier(Scope * S,SourceLocation CCLoc,CXXScopeSpec & SS)243 bool Sema::ActOnCXXGlobalScopeSpecifier(Scope *S, SourceLocation CCLoc,
244 CXXScopeSpec &SS) {
245 SS.MakeGlobal(Context, CCLoc);
246 return false;
247 }
248
249 /// \brief Determines whether the given declaration is an valid acceptable
250 /// result for name lookup of a nested-name-specifier.
isAcceptableNestedNameSpecifier(const NamedDecl * SD)251 bool Sema::isAcceptableNestedNameSpecifier(const NamedDecl *SD) {
252 if (!SD)
253 return false;
254
255 // Namespace and namespace aliases are fine.
256 if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
257 return true;
258
259 if (!isa<TypeDecl>(SD))
260 return false;
261
262 // Determine whether we have a class (or, in C++11, an enum) or
263 // a typedef thereof. If so, build the nested-name-specifier.
264 QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
265 if (T->isDependentType())
266 return true;
267 else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
268 if (TD->getUnderlyingType()->isRecordType() ||
269 (Context.getLangOpts().CPlusPlus11 &&
270 TD->getUnderlyingType()->isEnumeralType()))
271 return true;
272 } else if (isa<RecordDecl>(SD) ||
273 (Context.getLangOpts().CPlusPlus11 && isa<EnumDecl>(SD)))
274 return true;
275
276 return false;
277 }
278
279 /// \brief If the given nested-name-specifier begins with a bare identifier
280 /// (e.g., Base::), perform name lookup for that identifier as a
281 /// nested-name-specifier within the given scope, and return the result of that
282 /// name lookup.
FindFirstQualifierInScope(Scope * S,NestedNameSpecifier * NNS)283 NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
284 if (!S || !NNS)
285 return nullptr;
286
287 while (NNS->getPrefix())
288 NNS = NNS->getPrefix();
289
290 if (NNS->getKind() != NestedNameSpecifier::Identifier)
291 return nullptr;
292
293 LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
294 LookupNestedNameSpecifierName);
295 LookupName(Found, S);
296 assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
297
298 if (!Found.isSingleResult())
299 return nullptr;
300
301 NamedDecl *Result = Found.getFoundDecl();
302 if (isAcceptableNestedNameSpecifier(Result))
303 return Result;
304
305 return nullptr;
306 }
307
isNonTypeNestedNameSpecifier(Scope * S,CXXScopeSpec & SS,SourceLocation IdLoc,IdentifierInfo & II,ParsedType ObjectTypePtr)308 bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
309 SourceLocation IdLoc,
310 IdentifierInfo &II,
311 ParsedType ObjectTypePtr) {
312 QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
313 LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
314
315 // Determine where to perform name lookup
316 DeclContext *LookupCtx = nullptr;
317 bool isDependent = false;
318 if (!ObjectType.isNull()) {
319 // This nested-name-specifier occurs in a member access expression, e.g.,
320 // x->B::f, and we are looking into the type of the object.
321 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
322 LookupCtx = computeDeclContext(ObjectType);
323 isDependent = ObjectType->isDependentType();
324 } else if (SS.isSet()) {
325 // This nested-name-specifier occurs after another nested-name-specifier,
326 // so long into the context associated with the prior nested-name-specifier.
327 LookupCtx = computeDeclContext(SS, false);
328 isDependent = isDependentScopeSpecifier(SS);
329 Found.setContextRange(SS.getRange());
330 }
331
332 if (LookupCtx) {
333 // Perform "qualified" name lookup into the declaration context we
334 // computed, which is either the type of the base of a member access
335 // expression or the declaration context associated with a prior
336 // nested-name-specifier.
337
338 // The declaration context must be complete.
339 if (!LookupCtx->isDependentContext() &&
340 RequireCompleteDeclContext(SS, LookupCtx))
341 return false;
342
343 LookupQualifiedName(Found, LookupCtx);
344 } else if (isDependent) {
345 return false;
346 } else {
347 LookupName(Found, S);
348 }
349 Found.suppressDiagnostics();
350
351 if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
352 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
353
354 return false;
355 }
356
357 namespace {
358
359 // Callback to only accept typo corrections that can be a valid C++ member
360 // intializer: either a non-static field member or a base class.
361 class NestedNameSpecifierValidatorCCC : public CorrectionCandidateCallback {
362 public:
NestedNameSpecifierValidatorCCC(Sema & SRef)363 explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
364 : SRef(SRef) {}
365
ValidateCandidate(const TypoCorrection & candidate)366 bool ValidateCandidate(const TypoCorrection &candidate) override {
367 return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl());
368 }
369
370 private:
371 Sema &SRef;
372 };
373
374 }
375
376 /// \brief Build a new nested-name-specifier for "identifier::", as described
377 /// by ActOnCXXNestedNameSpecifier.
378 ///
379 /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
380 /// that it contains an extra parameter \p ScopeLookupResult.
381 ///
382 /// \param S Scope in which the nested-name-specifier occurs.
383 /// \param Identifier Identifier in the sequence "identifier" "::".
384 /// \param IdentifierLoc Location of the \p Identifier.
385 /// \param CCLoc Location of "::" following Identifier.
386 /// \param ObjectType Type of postfix expression if the nested-name-specifier
387 /// occurs in construct like: <tt>ptr->nns::f</tt>.
388 /// \param EnteringContext If true, enter the context specified by the
389 /// nested-name-specifier.
390 /// \param SS Optional nested name specifier preceding the identifier.
391 /// \param ScopeLookupResult Provides the result of name lookup within the
392 /// scope of the nested-name-specifier that was computed at template
393 /// definition time.
394 /// \param ErrorRecoveryLookup Specifies if the method is called to improve
395 /// error recovery and what kind of recovery is performed.
396 /// \param IsCorrectedToColon If not null, suggestion of replace '::' -> ':'
397 /// are allowed. The bool value pointed by this parameter is set to
398 /// 'true' if the identifier is treated as if it was followed by ':',
399 /// not '::'.
400 ///
401 /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
402 /// that it contains an extra parameter \p ScopeLookupResult, which provides
403 /// the result of name lookup within the scope of the nested-name-specifier
404 /// that was computed at template definition time.
405 ///
406 /// If ErrorRecoveryLookup is true, then this call is used to improve error
407 /// recovery. This means that it should not emit diagnostics, it should
408 /// just return true on failure. It also means it should only return a valid
409 /// scope if it *knows* that the result is correct. It should not return in a
410 /// dependent context, for example. Nor will it extend \p SS with the scope
411 /// specifier.
BuildCXXNestedNameSpecifier(Scope * S,IdentifierInfo & Identifier,SourceLocation IdentifierLoc,SourceLocation CCLoc,QualType ObjectType,bool EnteringContext,CXXScopeSpec & SS,NamedDecl * ScopeLookupResult,bool ErrorRecoveryLookup,bool * IsCorrectedToColon)412 bool Sema::BuildCXXNestedNameSpecifier(Scope *S,
413 IdentifierInfo &Identifier,
414 SourceLocation IdentifierLoc,
415 SourceLocation CCLoc,
416 QualType ObjectType,
417 bool EnteringContext,
418 CXXScopeSpec &SS,
419 NamedDecl *ScopeLookupResult,
420 bool ErrorRecoveryLookup,
421 bool *IsCorrectedToColon) {
422 LookupResult Found(*this, &Identifier, IdentifierLoc,
423 LookupNestedNameSpecifierName);
424
425 // Determine where to perform name lookup
426 DeclContext *LookupCtx = nullptr;
427 bool isDependent = false;
428 if (IsCorrectedToColon)
429 *IsCorrectedToColon = false;
430 if (!ObjectType.isNull()) {
431 // This nested-name-specifier occurs in a member access expression, e.g.,
432 // x->B::f, and we are looking into the type of the object.
433 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
434 LookupCtx = computeDeclContext(ObjectType);
435 isDependent = ObjectType->isDependentType();
436 } else if (SS.isSet()) {
437 // This nested-name-specifier occurs after another nested-name-specifier,
438 // so look into the context associated with the prior nested-name-specifier.
439 LookupCtx = computeDeclContext(SS, EnteringContext);
440 isDependent = isDependentScopeSpecifier(SS);
441 Found.setContextRange(SS.getRange());
442 }
443
444 bool ObjectTypeSearchedInScope = false;
445 if (LookupCtx) {
446 // Perform "qualified" name lookup into the declaration context we
447 // computed, which is either the type of the base of a member access
448 // expression or the declaration context associated with a prior
449 // nested-name-specifier.
450
451 // The declaration context must be complete.
452 if (!LookupCtx->isDependentContext() &&
453 RequireCompleteDeclContext(SS, LookupCtx))
454 return true;
455
456 LookupQualifiedName(Found, LookupCtx);
457
458 if (!ObjectType.isNull() && Found.empty()) {
459 // C++ [basic.lookup.classref]p4:
460 // If the id-expression in a class member access is a qualified-id of
461 // the form
462 //
463 // class-name-or-namespace-name::...
464 //
465 // the class-name-or-namespace-name following the . or -> operator is
466 // looked up both in the context of the entire postfix-expression and in
467 // the scope of the class of the object expression. If the name is found
468 // only in the scope of the class of the object expression, the name
469 // shall refer to a class-name. If the name is found only in the
470 // context of the entire postfix-expression, the name shall refer to a
471 // class-name or namespace-name. [...]
472 //
473 // Qualified name lookup into a class will not find a namespace-name,
474 // so we do not need to diagnose that case specifically. However,
475 // this qualified name lookup may find nothing. In that case, perform
476 // unqualified name lookup in the given scope (if available) or
477 // reconstruct the result from when name lookup was performed at template
478 // definition time.
479 if (S)
480 LookupName(Found, S);
481 else if (ScopeLookupResult)
482 Found.addDecl(ScopeLookupResult);
483
484 ObjectTypeSearchedInScope = true;
485 }
486 } else if (!isDependent) {
487 // Perform unqualified name lookup in the current scope.
488 LookupName(Found, S);
489 }
490
491 // If we performed lookup into a dependent context and did not find anything,
492 // that's fine: just build a dependent nested-name-specifier.
493 if (Found.empty() && isDependent &&
494 !(LookupCtx && LookupCtx->isRecord() &&
495 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
496 !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
497 // Don't speculate if we're just trying to improve error recovery.
498 if (ErrorRecoveryLookup)
499 return true;
500
501 // We were not able to compute the declaration context for a dependent
502 // base object type or prior nested-name-specifier, so this
503 // nested-name-specifier refers to an unknown specialization. Just build
504 // a dependent nested-name-specifier.
505 SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
506 return false;
507 }
508
509 // FIXME: Deal with ambiguities cleanly.
510
511 if (Found.empty() && !ErrorRecoveryLookup) {
512 // If identifier is not found as class-name-or-namespace-name, but is found
513 // as other entity, don't look for typos.
514 LookupResult R(*this, Found.getLookupNameInfo(), LookupOrdinaryName);
515 if (LookupCtx)
516 LookupQualifiedName(R, LookupCtx);
517 else if (S && !isDependent)
518 LookupName(R, S);
519 if (!R.empty()) {
520 // The identifier is found in ordinary lookup. If correction to colon is
521 // allowed, suggest replacement to ':'.
522 if (IsCorrectedToColon) {
523 *IsCorrectedToColon = true;
524 Diag(CCLoc, diag::err_nested_name_spec_is_not_class)
525 << &Identifier << getLangOpts().CPlusPlus
526 << FixItHint::CreateReplacement(CCLoc, ":");
527 if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
528 Diag(ND->getLocation(), diag::note_declared_at);
529 return true;
530 }
531 // Replacement '::' -> ':' is not allowed, just issue respective error.
532 Diag(R.getNameLoc(), diag::err_expected_class_or_namespace)
533 << &Identifier << getLangOpts().CPlusPlus;
534 if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
535 Diag(ND->getLocation(), diag::note_entity_declared_at) << &Identifier;
536 return true;
537 }
538 }
539
540 if (Found.empty() && !ErrorRecoveryLookup && !getLangOpts().MSVCCompat) {
541 // We haven't found anything, and we're not recovering from a
542 // different kind of error, so look for typos.
543 DeclarationName Name = Found.getLookupName();
544 NestedNameSpecifierValidatorCCC Validator(*this);
545 Found.clear();
546 if (TypoCorrection Corrected =
547 CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S,
548 &SS, Validator, CTK_ErrorRecovery, LookupCtx,
549 EnteringContext)) {
550 if (LookupCtx) {
551 bool DroppedSpecifier =
552 Corrected.WillReplaceSpecifier() &&
553 Name.getAsString() == Corrected.getAsString(getLangOpts());
554 if (DroppedSpecifier)
555 SS.clear();
556 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
557 << Name << LookupCtx << DroppedSpecifier
558 << SS.getRange());
559 } else
560 diagnoseTypo(Corrected, PDiag(diag::err_undeclared_var_use_suggest)
561 << Name);
562
563 if (NamedDecl *ND = Corrected.getCorrectionDecl())
564 Found.addDecl(ND);
565 Found.setLookupName(Corrected.getCorrection());
566 } else {
567 Found.setLookupName(&Identifier);
568 }
569 }
570
571 NamedDecl *SD = Found.getAsSingle<NamedDecl>();
572 if (isAcceptableNestedNameSpecifier(SD)) {
573 if (!ObjectType.isNull() && !ObjectTypeSearchedInScope &&
574 !getLangOpts().CPlusPlus11) {
575 // C++03 [basic.lookup.classref]p4:
576 // [...] If the name is found in both contexts, the
577 // class-name-or-namespace-name shall refer to the same entity.
578 //
579 // We already found the name in the scope of the object. Now, look
580 // into the current scope (the scope of the postfix-expression) to
581 // see if we can find the same name there. As above, if there is no
582 // scope, reconstruct the result from the template instantiation itself.
583 //
584 // Note that C++11 does *not* perform this redundant lookup.
585 NamedDecl *OuterDecl;
586 if (S) {
587 LookupResult FoundOuter(*this, &Identifier, IdentifierLoc,
588 LookupNestedNameSpecifierName);
589 LookupName(FoundOuter, S);
590 OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
591 } else
592 OuterDecl = ScopeLookupResult;
593
594 if (isAcceptableNestedNameSpecifier(OuterDecl) &&
595 OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
596 (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
597 !Context.hasSameType(
598 Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
599 Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
600 if (ErrorRecoveryLookup)
601 return true;
602
603 Diag(IdentifierLoc,
604 diag::err_nested_name_member_ref_lookup_ambiguous)
605 << &Identifier;
606 Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
607 << ObjectType;
608 Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
609
610 // Fall through so that we'll pick the name we found in the object
611 // type, since that's probably what the user wanted anyway.
612 }
613 }
614
615 // If we're just performing this lookup for error-recovery purposes,
616 // don't extend the nested-name-specifier. Just return now.
617 if (ErrorRecoveryLookup)
618 return false;
619
620 if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
621 SS.Extend(Context, Namespace, IdentifierLoc, CCLoc);
622 return false;
623 }
624
625 if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
626 SS.Extend(Context, Alias, IdentifierLoc, CCLoc);
627 return false;
628 }
629
630 QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
631 TypeLocBuilder TLB;
632 if (isa<InjectedClassNameType>(T)) {
633 InjectedClassNameTypeLoc InjectedTL
634 = TLB.push<InjectedClassNameTypeLoc>(T);
635 InjectedTL.setNameLoc(IdentifierLoc);
636 } else if (isa<RecordType>(T)) {
637 RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
638 RecordTL.setNameLoc(IdentifierLoc);
639 } else if (isa<TypedefType>(T)) {
640 TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
641 TypedefTL.setNameLoc(IdentifierLoc);
642 } else if (isa<EnumType>(T)) {
643 EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
644 EnumTL.setNameLoc(IdentifierLoc);
645 } else if (isa<TemplateTypeParmType>(T)) {
646 TemplateTypeParmTypeLoc TemplateTypeTL
647 = TLB.push<TemplateTypeParmTypeLoc>(T);
648 TemplateTypeTL.setNameLoc(IdentifierLoc);
649 } else if (isa<UnresolvedUsingType>(T)) {
650 UnresolvedUsingTypeLoc UnresolvedTL
651 = TLB.push<UnresolvedUsingTypeLoc>(T);
652 UnresolvedTL.setNameLoc(IdentifierLoc);
653 } else if (isa<SubstTemplateTypeParmType>(T)) {
654 SubstTemplateTypeParmTypeLoc TL
655 = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
656 TL.setNameLoc(IdentifierLoc);
657 } else if (isa<SubstTemplateTypeParmPackType>(T)) {
658 SubstTemplateTypeParmPackTypeLoc TL
659 = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
660 TL.setNameLoc(IdentifierLoc);
661 } else {
662 llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
663 }
664
665 if (T->isEnumeralType())
666 Diag(IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
667
668 SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
669 CCLoc);
670 return false;
671 }
672
673 // Otherwise, we have an error case. If we don't want diagnostics, just
674 // return an error now.
675 if (ErrorRecoveryLookup)
676 return true;
677
678 // If we didn't find anything during our lookup, try again with
679 // ordinary name lookup, which can help us produce better error
680 // messages.
681 if (Found.empty()) {
682 Found.clear(LookupOrdinaryName);
683 LookupName(Found, S);
684 }
685
686 // In Microsoft mode, if we are within a templated function and we can't
687 // resolve Identifier, then extend the SS with Identifier. This will have
688 // the effect of resolving Identifier during template instantiation.
689 // The goal is to be able to resolve a function call whose
690 // nested-name-specifier is located inside a dependent base class.
691 // Example:
692 //
693 // class C {
694 // public:
695 // static void foo2() { }
696 // };
697 // template <class T> class A { public: typedef C D; };
698 //
699 // template <class T> class B : public A<T> {
700 // public:
701 // void foo() { D::foo2(); }
702 // };
703 if (getLangOpts().MSVCCompat) {
704 DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
705 if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
706 SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
707 return false;
708 }
709 }
710
711 if (!Found.empty()) {
712 if (TypeDecl *TD = Found.getAsSingle<TypeDecl>())
713 Diag(IdentifierLoc, diag::err_expected_class_or_namespace)
714 << QualType(TD->getTypeForDecl(), 0) << getLangOpts().CPlusPlus;
715 else {
716 Diag(IdentifierLoc, diag::err_expected_class_or_namespace)
717 << &Identifier << getLangOpts().CPlusPlus;
718 if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
719 Diag(ND->getLocation(), diag::note_entity_declared_at) << &Identifier;
720 }
721 } else if (SS.isSet())
722 Diag(IdentifierLoc, diag::err_no_member) << &Identifier << LookupCtx
723 << SS.getRange();
724 else
725 Diag(IdentifierLoc, diag::err_undeclared_var_use) << &Identifier;
726
727 return true;
728 }
729
ActOnCXXNestedNameSpecifier(Scope * S,IdentifierInfo & Identifier,SourceLocation IdentifierLoc,SourceLocation CCLoc,ParsedType ObjectType,bool EnteringContext,CXXScopeSpec & SS,bool ErrorRecoveryLookup,bool * IsCorrectedToColon)730 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
731 IdentifierInfo &Identifier,
732 SourceLocation IdentifierLoc,
733 SourceLocation CCLoc,
734 ParsedType ObjectType,
735 bool EnteringContext,
736 CXXScopeSpec &SS,
737 bool ErrorRecoveryLookup,
738 bool *IsCorrectedToColon) {
739 if (SS.isInvalid())
740 return true;
741
742 return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc,
743 GetTypeFromParser(ObjectType),
744 EnteringContext, SS,
745 /*ScopeLookupResult=*/nullptr, false,
746 IsCorrectedToColon);
747 }
748
ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec & SS,const DeclSpec & DS,SourceLocation ColonColonLoc)749 bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
750 const DeclSpec &DS,
751 SourceLocation ColonColonLoc) {
752 if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
753 return true;
754
755 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
756
757 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
758 if (!T->isDependentType() && !T->getAs<TagType>()) {
759 Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class_or_namespace)
760 << T << getLangOpts().CPlusPlus;
761 return true;
762 }
763
764 TypeLocBuilder TLB;
765 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
766 DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
767 SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
768 ColonColonLoc);
769 return false;
770 }
771
772 /// IsInvalidUnlessNestedName - This method is used for error recovery
773 /// purposes to determine whether the specified identifier is only valid as
774 /// a nested name specifier, for example a namespace name. It is
775 /// conservatively correct to always return false from this method.
776 ///
777 /// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
IsInvalidUnlessNestedName(Scope * S,CXXScopeSpec & SS,IdentifierInfo & Identifier,SourceLocation IdentifierLoc,SourceLocation ColonLoc,ParsedType ObjectType,bool EnteringContext)778 bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
779 IdentifierInfo &Identifier,
780 SourceLocation IdentifierLoc,
781 SourceLocation ColonLoc,
782 ParsedType ObjectType,
783 bool EnteringContext) {
784 if (SS.isInvalid())
785 return false;
786
787 return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc,
788 GetTypeFromParser(ObjectType),
789 EnteringContext, SS,
790 /*ScopeLookupResult=*/nullptr, true);
791 }
792
ActOnCXXNestedNameSpecifier(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy Template,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,SourceLocation CCLoc,bool EnteringContext)793 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
794 CXXScopeSpec &SS,
795 SourceLocation TemplateKWLoc,
796 TemplateTy Template,
797 SourceLocation TemplateNameLoc,
798 SourceLocation LAngleLoc,
799 ASTTemplateArgsPtr TemplateArgsIn,
800 SourceLocation RAngleLoc,
801 SourceLocation CCLoc,
802 bool EnteringContext) {
803 if (SS.isInvalid())
804 return true;
805
806 // Translate the parser's template argument list in our AST format.
807 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
808 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
809
810 DependentTemplateName *DTN = Template.get().getAsDependentTemplateName();
811 if (DTN && DTN->isIdentifier()) {
812 // Handle a dependent template specialization for which we cannot resolve
813 // the template name.
814 assert(DTN->getQualifier() == SS.getScopeRep());
815 QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
816 DTN->getQualifier(),
817 DTN->getIdentifier(),
818 TemplateArgs);
819
820 // Create source-location information for this type.
821 TypeLocBuilder Builder;
822 DependentTemplateSpecializationTypeLoc SpecTL
823 = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
824 SpecTL.setElaboratedKeywordLoc(SourceLocation());
825 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
826 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
827 SpecTL.setTemplateNameLoc(TemplateNameLoc);
828 SpecTL.setLAngleLoc(LAngleLoc);
829 SpecTL.setRAngleLoc(RAngleLoc);
830 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
831 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
832
833 SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
834 CCLoc);
835 return false;
836 }
837
838 TemplateDecl *TD = Template.get().getAsTemplateDecl();
839 if (Template.get().getAsOverloadedTemplate() || DTN ||
840 isa<FunctionTemplateDecl>(TD) || isa<VarTemplateDecl>(TD)) {
841 SourceRange R(TemplateNameLoc, RAngleLoc);
842 if (SS.getRange().isValid())
843 R.setBegin(SS.getRange().getBegin());
844
845 Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
846 << (TD && isa<VarTemplateDecl>(TD)) << Template.get() << R;
847 NoteAllFoundTemplates(Template.get());
848 return true;
849 }
850
851 // We were able to resolve the template name to an actual template.
852 // Build an appropriate nested-name-specifier.
853 QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc,
854 TemplateArgs);
855 if (T.isNull())
856 return true;
857
858 // Alias template specializations can produce types which are not valid
859 // nested name specifiers.
860 if (!T->isDependentType() && !T->getAs<TagType>()) {
861 Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
862 NoteAllFoundTemplates(Template.get());
863 return true;
864 }
865
866 // Provide source-location information for the template specialization type.
867 TypeLocBuilder Builder;
868 TemplateSpecializationTypeLoc SpecTL
869 = Builder.push<TemplateSpecializationTypeLoc>(T);
870 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
871 SpecTL.setTemplateNameLoc(TemplateNameLoc);
872 SpecTL.setLAngleLoc(LAngleLoc);
873 SpecTL.setRAngleLoc(RAngleLoc);
874 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
875 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
876
877
878 SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
879 CCLoc);
880 return false;
881 }
882
883 namespace {
884 /// \brief A structure that stores a nested-name-specifier annotation,
885 /// including both the nested-name-specifier
886 struct NestedNameSpecifierAnnotation {
887 NestedNameSpecifier *NNS;
888 };
889 }
890
SaveNestedNameSpecifierAnnotation(CXXScopeSpec & SS)891 void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
892 if (SS.isEmpty() || SS.isInvalid())
893 return nullptr;
894
895 void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) +
896 SS.location_size()),
897 llvm::alignOf<NestedNameSpecifierAnnotation>());
898 NestedNameSpecifierAnnotation *Annotation
899 = new (Mem) NestedNameSpecifierAnnotation;
900 Annotation->NNS = SS.getScopeRep();
901 memcpy(Annotation + 1, SS.location_data(), SS.location_size());
902 return Annotation;
903 }
904
RestoreNestedNameSpecifierAnnotation(void * AnnotationPtr,SourceRange AnnotationRange,CXXScopeSpec & SS)905 void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
906 SourceRange AnnotationRange,
907 CXXScopeSpec &SS) {
908 if (!AnnotationPtr) {
909 SS.SetInvalid(AnnotationRange);
910 return;
911 }
912
913 NestedNameSpecifierAnnotation *Annotation
914 = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
915 SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
916 }
917
ShouldEnterDeclaratorScope(Scope * S,const CXXScopeSpec & SS)918 bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
919 assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
920
921 NestedNameSpecifier *Qualifier = SS.getScopeRep();
922
923 // There are only two places a well-formed program may qualify a
924 // declarator: first, when defining a namespace or class member
925 // out-of-line, and second, when naming an explicitly-qualified
926 // friend function. The latter case is governed by
927 // C++03 [basic.lookup.unqual]p10:
928 // In a friend declaration naming a member function, a name used
929 // in the function declarator and not part of a template-argument
930 // in a template-id is first looked up in the scope of the member
931 // function's class. If it is not found, or if the name is part of
932 // a template-argument in a template-id, the look up is as
933 // described for unqualified names in the definition of the class
934 // granting friendship.
935 // i.e. we don't push a scope unless it's a class member.
936
937 switch (Qualifier->getKind()) {
938 case NestedNameSpecifier::Global:
939 case NestedNameSpecifier::Namespace:
940 case NestedNameSpecifier::NamespaceAlias:
941 // These are always namespace scopes. We never want to enter a
942 // namespace scope from anything but a file context.
943 return CurContext->getRedeclContext()->isFileContext();
944
945 case NestedNameSpecifier::Identifier:
946 case NestedNameSpecifier::TypeSpec:
947 case NestedNameSpecifier::TypeSpecWithTemplate:
948 // These are never namespace scopes.
949 return true;
950 }
951
952 llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
953 }
954
955 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
956 /// scope or nested-name-specifier) is parsed, part of a declarator-id.
957 /// After this method is called, according to [C++ 3.4.3p3], names should be
958 /// looked up in the declarator-id's scope, until the declarator is parsed and
959 /// ActOnCXXExitDeclaratorScope is called.
960 /// The 'SS' should be a non-empty valid CXXScopeSpec.
ActOnCXXEnterDeclaratorScope(Scope * S,CXXScopeSpec & SS)961 bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
962 assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
963
964 if (SS.isInvalid()) return true;
965
966 DeclContext *DC = computeDeclContext(SS, true);
967 if (!DC) return true;
968
969 // Before we enter a declarator's context, we need to make sure that
970 // it is a complete declaration context.
971 if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
972 return true;
973
974 EnterDeclaratorContext(S, DC);
975
976 // Rebuild the nested name specifier for the new scope.
977 if (DC->isDependentContext())
978 RebuildNestedNameSpecifierInCurrentInstantiation(SS);
979
980 return false;
981 }
982
983 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
984 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
985 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
986 /// Used to indicate that names should revert to being looked up in the
987 /// defining scope.
ActOnCXXExitDeclaratorScope(Scope * S,const CXXScopeSpec & SS)988 void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
989 assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
990 if (SS.isInvalid())
991 return;
992 assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
993 "exiting declarator scope we never really entered");
994 ExitDeclaratorContext(S);
995 }
996