• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements C++ semantic analysis for scope specifiers.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclTemplate.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/NestedNameSpecifier.h"
20 #include "clang/Basic/PartialDiagnostic.h"
21 #include "clang/Sema/DeclSpec.h"
22 #include "clang/Sema/Lookup.h"
23 #include "clang/Sema/Template.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/Support/raw_ostream.h"
26 using namespace clang;
27 
28 /// \brief Find the current instantiation that associated with the given type.
getCurrentInstantiationOf(QualType T,DeclContext * CurContext)29 static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
30                                                 DeclContext *CurContext) {
31   if (T.isNull())
32     return nullptr;
33 
34   const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
35   if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
36     CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
37     if (!Record->isDependentContext() ||
38         Record->isCurrentInstantiation(CurContext))
39       return Record;
40 
41     return nullptr;
42   } else if (isa<InjectedClassNameType>(Ty))
43     return cast<InjectedClassNameType>(Ty)->getDecl();
44   else
45     return nullptr;
46 }
47 
48 /// \brief Compute the DeclContext that is associated with the given type.
49 ///
50 /// \param T the type for which we are attempting to find a DeclContext.
51 ///
52 /// \returns the declaration context represented by the type T,
53 /// or NULL if the declaration context cannot be computed (e.g., because it is
54 /// dependent and not the current instantiation).
computeDeclContext(QualType T)55 DeclContext *Sema::computeDeclContext(QualType T) {
56   if (!T->isDependentType())
57     if (const TagType *Tag = T->getAs<TagType>())
58       return Tag->getDecl();
59 
60   return ::getCurrentInstantiationOf(T, CurContext);
61 }
62 
63 /// \brief Compute the DeclContext that is associated with the given
64 /// scope specifier.
65 ///
66 /// \param SS the C++ scope specifier as it appears in the source
67 ///
68 /// \param EnteringContext when true, we will be entering the context of
69 /// this scope specifier, so we can retrieve the declaration context of a
70 /// class template or class template partial specialization even if it is
71 /// not the current instantiation.
72 ///
73 /// \returns the declaration context represented by the scope specifier @p SS,
74 /// or NULL if the declaration context cannot be computed (e.g., because it is
75 /// dependent and not the current instantiation).
computeDeclContext(const CXXScopeSpec & SS,bool EnteringContext)76 DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
77                                       bool EnteringContext) {
78   if (!SS.isSet() || SS.isInvalid())
79     return nullptr;
80 
81   NestedNameSpecifier *NNS = SS.getScopeRep();
82   if (NNS->isDependent()) {
83     // If this nested-name-specifier refers to the current
84     // instantiation, return its DeclContext.
85     if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
86       return Record;
87 
88     if (EnteringContext) {
89       const Type *NNSType = NNS->getAsType();
90       if (!NNSType) {
91         return nullptr;
92       }
93 
94       // Look through type alias templates, per C++0x [temp.dep.type]p1.
95       NNSType = Context.getCanonicalType(NNSType);
96       if (const TemplateSpecializationType *SpecType
97             = NNSType->getAs<TemplateSpecializationType>()) {
98         // We are entering the context of the nested name specifier, so try to
99         // match the nested name specifier to either a primary class template
100         // or a class template partial specialization.
101         if (ClassTemplateDecl *ClassTemplate
102               = dyn_cast_or_null<ClassTemplateDecl>(
103                             SpecType->getTemplateName().getAsTemplateDecl())) {
104           QualType ContextType
105             = Context.getCanonicalType(QualType(SpecType, 0));
106 
107           // If the type of the nested name specifier is the same as the
108           // injected class name of the named class template, we're entering
109           // into that class template definition.
110           QualType Injected
111             = ClassTemplate->getInjectedClassNameSpecialization();
112           if (Context.hasSameType(Injected, ContextType))
113             return ClassTemplate->getTemplatedDecl();
114 
115           // If the type of the nested name specifier is the same as the
116           // type of one of the class template's class template partial
117           // specializations, we're entering into the definition of that
118           // class template partial specialization.
119           if (ClassTemplatePartialSpecializationDecl *PartialSpec
120                 = ClassTemplate->findPartialSpecialization(ContextType))
121             return PartialSpec;
122         }
123       } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
124         // The nested name specifier refers to a member of a class template.
125         return RecordT->getDecl();
126       }
127     }
128 
129     return nullptr;
130   }
131 
132   switch (NNS->getKind()) {
133   case NestedNameSpecifier::Identifier:
134     llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
135 
136   case NestedNameSpecifier::Namespace:
137     return NNS->getAsNamespace();
138 
139   case NestedNameSpecifier::NamespaceAlias:
140     return NNS->getAsNamespaceAlias()->getNamespace();
141 
142   case NestedNameSpecifier::TypeSpec:
143   case NestedNameSpecifier::TypeSpecWithTemplate: {
144     const TagType *Tag = NNS->getAsType()->getAs<TagType>();
145     assert(Tag && "Non-tag type in nested-name-specifier");
146     return Tag->getDecl();
147   }
148 
149   case NestedNameSpecifier::Global:
150     return Context.getTranslationUnitDecl();
151   }
152 
153   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
154 }
155 
isDependentScopeSpecifier(const CXXScopeSpec & SS)156 bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
157   if (!SS.isSet() || SS.isInvalid())
158     return false;
159 
160   return SS.getScopeRep()->isDependent();
161 }
162 
163 /// \brief If the given nested name specifier refers to the current
164 /// instantiation, return the declaration that corresponds to that
165 /// current instantiation (C++0x [temp.dep.type]p1).
166 ///
167 /// \param NNS a dependent nested name specifier.
getCurrentInstantiationOf(NestedNameSpecifier * NNS)168 CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
169   assert(getLangOpts().CPlusPlus && "Only callable in C++");
170   assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
171 
172   if (!NNS->getAsType())
173     return nullptr;
174 
175   QualType T = QualType(NNS->getAsType(), 0);
176   return ::getCurrentInstantiationOf(T, CurContext);
177 }
178 
179 /// \brief Require that the context specified by SS be complete.
180 ///
181 /// If SS refers to a type, this routine checks whether the type is
182 /// complete enough (or can be made complete enough) for name lookup
183 /// into the DeclContext. A type that is not yet completed can be
184 /// considered "complete enough" if it is a class/struct/union/enum
185 /// that is currently being defined. Or, if we have a type that names
186 /// a class template specialization that is not a complete type, we
187 /// will attempt to instantiate that class template.
RequireCompleteDeclContext(CXXScopeSpec & SS,DeclContext * DC)188 bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
189                                       DeclContext *DC) {
190   assert(DC && "given null context");
191 
192   TagDecl *tag = dyn_cast<TagDecl>(DC);
193 
194   // If this is a dependent type, then we consider it complete.
195   if (!tag || tag->isDependentContext())
196     return false;
197 
198   // If we're currently defining this type, then lookup into the
199   // type is okay: don't complain that it isn't complete yet.
200   QualType type = Context.getTypeDeclType(tag);
201   const TagType *tagType = type->getAs<TagType>();
202   if (tagType && tagType->isBeingDefined())
203     return false;
204 
205   SourceLocation loc = SS.getLastQualifierNameLoc();
206   if (loc.isInvalid()) loc = SS.getRange().getBegin();
207 
208   // The type must be complete.
209   if (RequireCompleteType(loc, type, diag::err_incomplete_nested_name_spec,
210                           SS.getRange())) {
211     SS.SetInvalid(SS.getRange());
212     return true;
213   }
214 
215   // Fixed enum types are complete, but they aren't valid as scopes
216   // until we see a definition, so awkwardly pull out this special
217   // case.
218   const EnumType *enumType = dyn_cast_or_null<EnumType>(tagType);
219   if (!enumType || enumType->getDecl()->isCompleteDefinition())
220     return false;
221 
222   // Try to instantiate the definition, if this is a specialization of an
223   // enumeration temploid.
224   EnumDecl *ED = enumType->getDecl();
225   if (EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
226     MemberSpecializationInfo *MSI = ED->getMemberSpecializationInfo();
227     if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
228       if (InstantiateEnum(loc, ED, Pattern, getTemplateInstantiationArgs(ED),
229                           TSK_ImplicitInstantiation)) {
230         SS.SetInvalid(SS.getRange());
231         return true;
232       }
233       return false;
234     }
235   }
236 
237   Diag(loc, diag::err_incomplete_nested_name_spec)
238     << type << SS.getRange();
239   SS.SetInvalid(SS.getRange());
240   return true;
241 }
242 
ActOnCXXGlobalScopeSpecifier(Scope * S,SourceLocation CCLoc,CXXScopeSpec & SS)243 bool Sema::ActOnCXXGlobalScopeSpecifier(Scope *S, SourceLocation CCLoc,
244                                         CXXScopeSpec &SS) {
245   SS.MakeGlobal(Context, CCLoc);
246   return false;
247 }
248 
249 /// \brief Determines whether the given declaration is an valid acceptable
250 /// result for name lookup of a nested-name-specifier.
isAcceptableNestedNameSpecifier(const NamedDecl * SD)251 bool Sema::isAcceptableNestedNameSpecifier(const NamedDecl *SD) {
252   if (!SD)
253     return false;
254 
255   // Namespace and namespace aliases are fine.
256   if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
257     return true;
258 
259   if (!isa<TypeDecl>(SD))
260     return false;
261 
262   // Determine whether we have a class (or, in C++11, an enum) or
263   // a typedef thereof. If so, build the nested-name-specifier.
264   QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
265   if (T->isDependentType())
266     return true;
267   else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
268     if (TD->getUnderlyingType()->isRecordType() ||
269         (Context.getLangOpts().CPlusPlus11 &&
270          TD->getUnderlyingType()->isEnumeralType()))
271       return true;
272   } else if (isa<RecordDecl>(SD) ||
273              (Context.getLangOpts().CPlusPlus11 && isa<EnumDecl>(SD)))
274     return true;
275 
276   return false;
277 }
278 
279 /// \brief If the given nested-name-specifier begins with a bare identifier
280 /// (e.g., Base::), perform name lookup for that identifier as a
281 /// nested-name-specifier within the given scope, and return the result of that
282 /// name lookup.
FindFirstQualifierInScope(Scope * S,NestedNameSpecifier * NNS)283 NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
284   if (!S || !NNS)
285     return nullptr;
286 
287   while (NNS->getPrefix())
288     NNS = NNS->getPrefix();
289 
290   if (NNS->getKind() != NestedNameSpecifier::Identifier)
291     return nullptr;
292 
293   LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
294                      LookupNestedNameSpecifierName);
295   LookupName(Found, S);
296   assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
297 
298   if (!Found.isSingleResult())
299     return nullptr;
300 
301   NamedDecl *Result = Found.getFoundDecl();
302   if (isAcceptableNestedNameSpecifier(Result))
303     return Result;
304 
305   return nullptr;
306 }
307 
isNonTypeNestedNameSpecifier(Scope * S,CXXScopeSpec & SS,SourceLocation IdLoc,IdentifierInfo & II,ParsedType ObjectTypePtr)308 bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
309                                         SourceLocation IdLoc,
310                                         IdentifierInfo &II,
311                                         ParsedType ObjectTypePtr) {
312   QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
313   LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
314 
315   // Determine where to perform name lookup
316   DeclContext *LookupCtx = nullptr;
317   bool isDependent = false;
318   if (!ObjectType.isNull()) {
319     // This nested-name-specifier occurs in a member access expression, e.g.,
320     // x->B::f, and we are looking into the type of the object.
321     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
322     LookupCtx = computeDeclContext(ObjectType);
323     isDependent = ObjectType->isDependentType();
324   } else if (SS.isSet()) {
325     // This nested-name-specifier occurs after another nested-name-specifier,
326     // so long into the context associated with the prior nested-name-specifier.
327     LookupCtx = computeDeclContext(SS, false);
328     isDependent = isDependentScopeSpecifier(SS);
329     Found.setContextRange(SS.getRange());
330   }
331 
332   if (LookupCtx) {
333     // Perform "qualified" name lookup into the declaration context we
334     // computed, which is either the type of the base of a member access
335     // expression or the declaration context associated with a prior
336     // nested-name-specifier.
337 
338     // The declaration context must be complete.
339     if (!LookupCtx->isDependentContext() &&
340         RequireCompleteDeclContext(SS, LookupCtx))
341       return false;
342 
343     LookupQualifiedName(Found, LookupCtx);
344   } else if (isDependent) {
345     return false;
346   } else {
347     LookupName(Found, S);
348   }
349   Found.suppressDiagnostics();
350 
351   if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
352     return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
353 
354   return false;
355 }
356 
357 namespace {
358 
359 // Callback to only accept typo corrections that can be a valid C++ member
360 // intializer: either a non-static field member or a base class.
361 class NestedNameSpecifierValidatorCCC : public CorrectionCandidateCallback {
362  public:
NestedNameSpecifierValidatorCCC(Sema & SRef)363   explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
364       : SRef(SRef) {}
365 
ValidateCandidate(const TypoCorrection & candidate)366   bool ValidateCandidate(const TypoCorrection &candidate) override {
367     return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl());
368   }
369 
370  private:
371   Sema &SRef;
372 };
373 
374 }
375 
376 /// \brief Build a new nested-name-specifier for "identifier::", as described
377 /// by ActOnCXXNestedNameSpecifier.
378 ///
379 /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
380 /// that it contains an extra parameter \p ScopeLookupResult.
381 ///
382 /// \param S Scope in which the nested-name-specifier occurs.
383 /// \param Identifier Identifier in the sequence "identifier" "::".
384 /// \param IdentifierLoc Location of the \p Identifier.
385 /// \param CCLoc Location of "::" following Identifier.
386 /// \param ObjectType Type of postfix expression if the nested-name-specifier
387 ///        occurs in construct like: <tt>ptr->nns::f</tt>.
388 /// \param EnteringContext If true, enter the context specified by the
389 ///        nested-name-specifier.
390 /// \param SS Optional nested name specifier preceding the identifier.
391 /// \param ScopeLookupResult Provides the result of name lookup within the
392 ///        scope of the nested-name-specifier that was computed at template
393 ///        definition time.
394 /// \param ErrorRecoveryLookup Specifies if the method is called to improve
395 ///        error recovery and what kind of recovery is performed.
396 /// \param IsCorrectedToColon If not null, suggestion of replace '::' -> ':'
397 ///        are allowed.  The bool value pointed by this parameter is set to
398 ///       'true' if the identifier is treated as if it was followed by ':',
399 ///        not '::'.
400 ///
401 /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
402 /// that it contains an extra parameter \p ScopeLookupResult, which provides
403 /// the result of name lookup within the scope of the nested-name-specifier
404 /// that was computed at template definition time.
405 ///
406 /// If ErrorRecoveryLookup is true, then this call is used to improve error
407 /// recovery.  This means that it should not emit diagnostics, it should
408 /// just return true on failure.  It also means it should only return a valid
409 /// scope if it *knows* that the result is correct.  It should not return in a
410 /// dependent context, for example. Nor will it extend \p SS with the scope
411 /// specifier.
BuildCXXNestedNameSpecifier(Scope * S,IdentifierInfo & Identifier,SourceLocation IdentifierLoc,SourceLocation CCLoc,QualType ObjectType,bool EnteringContext,CXXScopeSpec & SS,NamedDecl * ScopeLookupResult,bool ErrorRecoveryLookup,bool * IsCorrectedToColon)412 bool Sema::BuildCXXNestedNameSpecifier(Scope *S,
413                                        IdentifierInfo &Identifier,
414                                        SourceLocation IdentifierLoc,
415                                        SourceLocation CCLoc,
416                                        QualType ObjectType,
417                                        bool EnteringContext,
418                                        CXXScopeSpec &SS,
419                                        NamedDecl *ScopeLookupResult,
420                                        bool ErrorRecoveryLookup,
421                                        bool *IsCorrectedToColon) {
422   LookupResult Found(*this, &Identifier, IdentifierLoc,
423                      LookupNestedNameSpecifierName);
424 
425   // Determine where to perform name lookup
426   DeclContext *LookupCtx = nullptr;
427   bool isDependent = false;
428   if (IsCorrectedToColon)
429     *IsCorrectedToColon = false;
430   if (!ObjectType.isNull()) {
431     // This nested-name-specifier occurs in a member access expression, e.g.,
432     // x->B::f, and we are looking into the type of the object.
433     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
434     LookupCtx = computeDeclContext(ObjectType);
435     isDependent = ObjectType->isDependentType();
436   } else if (SS.isSet()) {
437     // This nested-name-specifier occurs after another nested-name-specifier,
438     // so look into the context associated with the prior nested-name-specifier.
439     LookupCtx = computeDeclContext(SS, EnteringContext);
440     isDependent = isDependentScopeSpecifier(SS);
441     Found.setContextRange(SS.getRange());
442   }
443 
444   bool ObjectTypeSearchedInScope = false;
445   if (LookupCtx) {
446     // Perform "qualified" name lookup into the declaration context we
447     // computed, which is either the type of the base of a member access
448     // expression or the declaration context associated with a prior
449     // nested-name-specifier.
450 
451     // The declaration context must be complete.
452     if (!LookupCtx->isDependentContext() &&
453         RequireCompleteDeclContext(SS, LookupCtx))
454       return true;
455 
456     LookupQualifiedName(Found, LookupCtx);
457 
458     if (!ObjectType.isNull() && Found.empty()) {
459       // C++ [basic.lookup.classref]p4:
460       //   If the id-expression in a class member access is a qualified-id of
461       //   the form
462       //
463       //        class-name-or-namespace-name::...
464       //
465       //   the class-name-or-namespace-name following the . or -> operator is
466       //   looked up both in the context of the entire postfix-expression and in
467       //   the scope of the class of the object expression. If the name is found
468       //   only in the scope of the class of the object expression, the name
469       //   shall refer to a class-name. If the name is found only in the
470       //   context of the entire postfix-expression, the name shall refer to a
471       //   class-name or namespace-name. [...]
472       //
473       // Qualified name lookup into a class will not find a namespace-name,
474       // so we do not need to diagnose that case specifically. However,
475       // this qualified name lookup may find nothing. In that case, perform
476       // unqualified name lookup in the given scope (if available) or
477       // reconstruct the result from when name lookup was performed at template
478       // definition time.
479       if (S)
480         LookupName(Found, S);
481       else if (ScopeLookupResult)
482         Found.addDecl(ScopeLookupResult);
483 
484       ObjectTypeSearchedInScope = true;
485     }
486   } else if (!isDependent) {
487     // Perform unqualified name lookup in the current scope.
488     LookupName(Found, S);
489   }
490 
491   // If we performed lookup into a dependent context and did not find anything,
492   // that's fine: just build a dependent nested-name-specifier.
493   if (Found.empty() && isDependent &&
494       !(LookupCtx && LookupCtx->isRecord() &&
495         (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
496          !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
497     // Don't speculate if we're just trying to improve error recovery.
498     if (ErrorRecoveryLookup)
499       return true;
500 
501     // We were not able to compute the declaration context for a dependent
502     // base object type or prior nested-name-specifier, so this
503     // nested-name-specifier refers to an unknown specialization. Just build
504     // a dependent nested-name-specifier.
505     SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
506     return false;
507   }
508 
509   // FIXME: Deal with ambiguities cleanly.
510 
511   if (Found.empty() && !ErrorRecoveryLookup) {
512     // If identifier is not found as class-name-or-namespace-name, but is found
513     // as other entity, don't look for typos.
514     LookupResult R(*this, Found.getLookupNameInfo(), LookupOrdinaryName);
515     if (LookupCtx)
516       LookupQualifiedName(R, LookupCtx);
517     else if (S && !isDependent)
518       LookupName(R, S);
519     if (!R.empty()) {
520       // The identifier is found in ordinary lookup. If correction to colon is
521       // allowed, suggest replacement to ':'.
522       if (IsCorrectedToColon) {
523         *IsCorrectedToColon = true;
524         Diag(CCLoc, diag::err_nested_name_spec_is_not_class)
525             << &Identifier << getLangOpts().CPlusPlus
526             << FixItHint::CreateReplacement(CCLoc, ":");
527         if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
528           Diag(ND->getLocation(), diag::note_declared_at);
529         return true;
530       }
531       // Replacement '::' -> ':' is not allowed, just issue respective error.
532       Diag(R.getNameLoc(), diag::err_expected_class_or_namespace)
533           << &Identifier << getLangOpts().CPlusPlus;
534       if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
535         Diag(ND->getLocation(), diag::note_entity_declared_at) << &Identifier;
536       return true;
537     }
538   }
539 
540   if (Found.empty() && !ErrorRecoveryLookup && !getLangOpts().MSVCCompat) {
541     // We haven't found anything, and we're not recovering from a
542     // different kind of error, so look for typos.
543     DeclarationName Name = Found.getLookupName();
544     NestedNameSpecifierValidatorCCC Validator(*this);
545     Found.clear();
546     if (TypoCorrection Corrected =
547             CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S,
548                         &SS, Validator, CTK_ErrorRecovery, LookupCtx,
549                         EnteringContext)) {
550       if (LookupCtx) {
551         bool DroppedSpecifier =
552             Corrected.WillReplaceSpecifier() &&
553             Name.getAsString() == Corrected.getAsString(getLangOpts());
554         if (DroppedSpecifier)
555           SS.clear();
556         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
557                                   << Name << LookupCtx << DroppedSpecifier
558                                   << SS.getRange());
559       } else
560         diagnoseTypo(Corrected, PDiag(diag::err_undeclared_var_use_suggest)
561                                   << Name);
562 
563       if (NamedDecl *ND = Corrected.getCorrectionDecl())
564         Found.addDecl(ND);
565       Found.setLookupName(Corrected.getCorrection());
566     } else {
567       Found.setLookupName(&Identifier);
568     }
569   }
570 
571   NamedDecl *SD = Found.getAsSingle<NamedDecl>();
572   if (isAcceptableNestedNameSpecifier(SD)) {
573     if (!ObjectType.isNull() && !ObjectTypeSearchedInScope &&
574         !getLangOpts().CPlusPlus11) {
575       // C++03 [basic.lookup.classref]p4:
576       //   [...] If the name is found in both contexts, the
577       //   class-name-or-namespace-name shall refer to the same entity.
578       //
579       // We already found the name in the scope of the object. Now, look
580       // into the current scope (the scope of the postfix-expression) to
581       // see if we can find the same name there. As above, if there is no
582       // scope, reconstruct the result from the template instantiation itself.
583       //
584       // Note that C++11 does *not* perform this redundant lookup.
585       NamedDecl *OuterDecl;
586       if (S) {
587         LookupResult FoundOuter(*this, &Identifier, IdentifierLoc,
588                                 LookupNestedNameSpecifierName);
589         LookupName(FoundOuter, S);
590         OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
591       } else
592         OuterDecl = ScopeLookupResult;
593 
594       if (isAcceptableNestedNameSpecifier(OuterDecl) &&
595           OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
596           (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
597            !Context.hasSameType(
598                             Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
599                                Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
600         if (ErrorRecoveryLookup)
601           return true;
602 
603          Diag(IdentifierLoc,
604               diag::err_nested_name_member_ref_lookup_ambiguous)
605            << &Identifier;
606          Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
607            << ObjectType;
608          Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
609 
610          // Fall through so that we'll pick the name we found in the object
611          // type, since that's probably what the user wanted anyway.
612        }
613     }
614 
615     // If we're just performing this lookup for error-recovery purposes,
616     // don't extend the nested-name-specifier. Just return now.
617     if (ErrorRecoveryLookup)
618       return false;
619 
620     if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
621       SS.Extend(Context, Namespace, IdentifierLoc, CCLoc);
622       return false;
623     }
624 
625     if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
626       SS.Extend(Context, Alias, IdentifierLoc, CCLoc);
627       return false;
628     }
629 
630     QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
631     TypeLocBuilder TLB;
632     if (isa<InjectedClassNameType>(T)) {
633       InjectedClassNameTypeLoc InjectedTL
634         = TLB.push<InjectedClassNameTypeLoc>(T);
635       InjectedTL.setNameLoc(IdentifierLoc);
636     } else if (isa<RecordType>(T)) {
637       RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
638       RecordTL.setNameLoc(IdentifierLoc);
639     } else if (isa<TypedefType>(T)) {
640       TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
641       TypedefTL.setNameLoc(IdentifierLoc);
642     } else if (isa<EnumType>(T)) {
643       EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
644       EnumTL.setNameLoc(IdentifierLoc);
645     } else if (isa<TemplateTypeParmType>(T)) {
646       TemplateTypeParmTypeLoc TemplateTypeTL
647         = TLB.push<TemplateTypeParmTypeLoc>(T);
648       TemplateTypeTL.setNameLoc(IdentifierLoc);
649     } else if (isa<UnresolvedUsingType>(T)) {
650       UnresolvedUsingTypeLoc UnresolvedTL
651         = TLB.push<UnresolvedUsingTypeLoc>(T);
652       UnresolvedTL.setNameLoc(IdentifierLoc);
653     } else if (isa<SubstTemplateTypeParmType>(T)) {
654       SubstTemplateTypeParmTypeLoc TL
655         = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
656       TL.setNameLoc(IdentifierLoc);
657     } else if (isa<SubstTemplateTypeParmPackType>(T)) {
658       SubstTemplateTypeParmPackTypeLoc TL
659         = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
660       TL.setNameLoc(IdentifierLoc);
661     } else {
662       llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
663     }
664 
665     if (T->isEnumeralType())
666       Diag(IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
667 
668     SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
669               CCLoc);
670     return false;
671   }
672 
673   // Otherwise, we have an error case.  If we don't want diagnostics, just
674   // return an error now.
675   if (ErrorRecoveryLookup)
676     return true;
677 
678   // If we didn't find anything during our lookup, try again with
679   // ordinary name lookup, which can help us produce better error
680   // messages.
681   if (Found.empty()) {
682     Found.clear(LookupOrdinaryName);
683     LookupName(Found, S);
684   }
685 
686   // In Microsoft mode, if we are within a templated function and we can't
687   // resolve Identifier, then extend the SS with Identifier. This will have
688   // the effect of resolving Identifier during template instantiation.
689   // The goal is to be able to resolve a function call whose
690   // nested-name-specifier is located inside a dependent base class.
691   // Example:
692   //
693   // class C {
694   // public:
695   //    static void foo2() {  }
696   // };
697   // template <class T> class A { public: typedef C D; };
698   //
699   // template <class T> class B : public A<T> {
700   // public:
701   //   void foo() { D::foo2(); }
702   // };
703   if (getLangOpts().MSVCCompat) {
704     DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
705     if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
706       SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
707       return false;
708     }
709   }
710 
711   if (!Found.empty()) {
712     if (TypeDecl *TD = Found.getAsSingle<TypeDecl>())
713       Diag(IdentifierLoc, diag::err_expected_class_or_namespace)
714           << QualType(TD->getTypeForDecl(), 0) << getLangOpts().CPlusPlus;
715     else {
716       Diag(IdentifierLoc, diag::err_expected_class_or_namespace)
717           << &Identifier << getLangOpts().CPlusPlus;
718       if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
719         Diag(ND->getLocation(), diag::note_entity_declared_at) << &Identifier;
720     }
721   } else if (SS.isSet())
722     Diag(IdentifierLoc, diag::err_no_member) << &Identifier << LookupCtx
723                                              << SS.getRange();
724   else
725     Diag(IdentifierLoc, diag::err_undeclared_var_use) << &Identifier;
726 
727   return true;
728 }
729 
ActOnCXXNestedNameSpecifier(Scope * S,IdentifierInfo & Identifier,SourceLocation IdentifierLoc,SourceLocation CCLoc,ParsedType ObjectType,bool EnteringContext,CXXScopeSpec & SS,bool ErrorRecoveryLookup,bool * IsCorrectedToColon)730 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
731                                        IdentifierInfo &Identifier,
732                                        SourceLocation IdentifierLoc,
733                                        SourceLocation CCLoc,
734                                        ParsedType ObjectType,
735                                        bool EnteringContext,
736                                        CXXScopeSpec &SS,
737                                        bool ErrorRecoveryLookup,
738                                        bool *IsCorrectedToColon) {
739   if (SS.isInvalid())
740     return true;
741 
742   return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc,
743                                      GetTypeFromParser(ObjectType),
744                                      EnteringContext, SS,
745                                      /*ScopeLookupResult=*/nullptr, false,
746                                      IsCorrectedToColon);
747 }
748 
ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec & SS,const DeclSpec & DS,SourceLocation ColonColonLoc)749 bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
750                                                const DeclSpec &DS,
751                                                SourceLocation ColonColonLoc) {
752   if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
753     return true;
754 
755   assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
756 
757   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
758   if (!T->isDependentType() && !T->getAs<TagType>()) {
759     Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class_or_namespace)
760       << T << getLangOpts().CPlusPlus;
761     return true;
762   }
763 
764   TypeLocBuilder TLB;
765   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
766   DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
767   SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
768             ColonColonLoc);
769   return false;
770 }
771 
772 /// IsInvalidUnlessNestedName - This method is used for error recovery
773 /// purposes to determine whether the specified identifier is only valid as
774 /// a nested name specifier, for example a namespace name.  It is
775 /// conservatively correct to always return false from this method.
776 ///
777 /// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
IsInvalidUnlessNestedName(Scope * S,CXXScopeSpec & SS,IdentifierInfo & Identifier,SourceLocation IdentifierLoc,SourceLocation ColonLoc,ParsedType ObjectType,bool EnteringContext)778 bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
779                                      IdentifierInfo &Identifier,
780                                      SourceLocation IdentifierLoc,
781                                      SourceLocation ColonLoc,
782                                      ParsedType ObjectType,
783                                      bool EnteringContext) {
784   if (SS.isInvalid())
785     return false;
786 
787   return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc,
788                                       GetTypeFromParser(ObjectType),
789                                       EnteringContext, SS,
790                                       /*ScopeLookupResult=*/nullptr, true);
791 }
792 
ActOnCXXNestedNameSpecifier(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy Template,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,SourceLocation CCLoc,bool EnteringContext)793 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
794                                        CXXScopeSpec &SS,
795                                        SourceLocation TemplateKWLoc,
796                                        TemplateTy Template,
797                                        SourceLocation TemplateNameLoc,
798                                        SourceLocation LAngleLoc,
799                                        ASTTemplateArgsPtr TemplateArgsIn,
800                                        SourceLocation RAngleLoc,
801                                        SourceLocation CCLoc,
802                                        bool EnteringContext) {
803   if (SS.isInvalid())
804     return true;
805 
806   // Translate the parser's template argument list in our AST format.
807   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
808   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
809 
810   DependentTemplateName *DTN = Template.get().getAsDependentTemplateName();
811   if (DTN && DTN->isIdentifier()) {
812     // Handle a dependent template specialization for which we cannot resolve
813     // the template name.
814     assert(DTN->getQualifier() == SS.getScopeRep());
815     QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
816                                                           DTN->getQualifier(),
817                                                           DTN->getIdentifier(),
818                                                                 TemplateArgs);
819 
820     // Create source-location information for this type.
821     TypeLocBuilder Builder;
822     DependentTemplateSpecializationTypeLoc SpecTL
823       = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
824     SpecTL.setElaboratedKeywordLoc(SourceLocation());
825     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
826     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
827     SpecTL.setTemplateNameLoc(TemplateNameLoc);
828     SpecTL.setLAngleLoc(LAngleLoc);
829     SpecTL.setRAngleLoc(RAngleLoc);
830     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
831       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
832 
833     SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
834               CCLoc);
835     return false;
836   }
837 
838   TemplateDecl *TD = Template.get().getAsTemplateDecl();
839   if (Template.get().getAsOverloadedTemplate() || DTN ||
840       isa<FunctionTemplateDecl>(TD) || isa<VarTemplateDecl>(TD)) {
841     SourceRange R(TemplateNameLoc, RAngleLoc);
842     if (SS.getRange().isValid())
843       R.setBegin(SS.getRange().getBegin());
844 
845     Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
846       << (TD && isa<VarTemplateDecl>(TD)) << Template.get() << R;
847     NoteAllFoundTemplates(Template.get());
848     return true;
849   }
850 
851   // We were able to resolve the template name to an actual template.
852   // Build an appropriate nested-name-specifier.
853   QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc,
854                                    TemplateArgs);
855   if (T.isNull())
856     return true;
857 
858   // Alias template specializations can produce types which are not valid
859   // nested name specifiers.
860   if (!T->isDependentType() && !T->getAs<TagType>()) {
861     Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
862     NoteAllFoundTemplates(Template.get());
863     return true;
864   }
865 
866   // Provide source-location information for the template specialization type.
867   TypeLocBuilder Builder;
868   TemplateSpecializationTypeLoc SpecTL
869     = Builder.push<TemplateSpecializationTypeLoc>(T);
870   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
871   SpecTL.setTemplateNameLoc(TemplateNameLoc);
872   SpecTL.setLAngleLoc(LAngleLoc);
873   SpecTL.setRAngleLoc(RAngleLoc);
874   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
875     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
876 
877 
878   SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
879             CCLoc);
880   return false;
881 }
882 
883 namespace {
884   /// \brief A structure that stores a nested-name-specifier annotation,
885   /// including both the nested-name-specifier
886   struct NestedNameSpecifierAnnotation {
887     NestedNameSpecifier *NNS;
888   };
889 }
890 
SaveNestedNameSpecifierAnnotation(CXXScopeSpec & SS)891 void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
892   if (SS.isEmpty() || SS.isInvalid())
893     return nullptr;
894 
895   void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) +
896                                                         SS.location_size()),
897                                llvm::alignOf<NestedNameSpecifierAnnotation>());
898   NestedNameSpecifierAnnotation *Annotation
899     = new (Mem) NestedNameSpecifierAnnotation;
900   Annotation->NNS = SS.getScopeRep();
901   memcpy(Annotation + 1, SS.location_data(), SS.location_size());
902   return Annotation;
903 }
904 
RestoreNestedNameSpecifierAnnotation(void * AnnotationPtr,SourceRange AnnotationRange,CXXScopeSpec & SS)905 void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
906                                                 SourceRange AnnotationRange,
907                                                 CXXScopeSpec &SS) {
908   if (!AnnotationPtr) {
909     SS.SetInvalid(AnnotationRange);
910     return;
911   }
912 
913   NestedNameSpecifierAnnotation *Annotation
914     = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
915   SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
916 }
917 
ShouldEnterDeclaratorScope(Scope * S,const CXXScopeSpec & SS)918 bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
919   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
920 
921   NestedNameSpecifier *Qualifier = SS.getScopeRep();
922 
923   // There are only two places a well-formed program may qualify a
924   // declarator: first, when defining a namespace or class member
925   // out-of-line, and second, when naming an explicitly-qualified
926   // friend function.  The latter case is governed by
927   // C++03 [basic.lookup.unqual]p10:
928   //   In a friend declaration naming a member function, a name used
929   //   in the function declarator and not part of a template-argument
930   //   in a template-id is first looked up in the scope of the member
931   //   function's class. If it is not found, or if the name is part of
932   //   a template-argument in a template-id, the look up is as
933   //   described for unqualified names in the definition of the class
934   //   granting friendship.
935   // i.e. we don't push a scope unless it's a class member.
936 
937   switch (Qualifier->getKind()) {
938   case NestedNameSpecifier::Global:
939   case NestedNameSpecifier::Namespace:
940   case NestedNameSpecifier::NamespaceAlias:
941     // These are always namespace scopes.  We never want to enter a
942     // namespace scope from anything but a file context.
943     return CurContext->getRedeclContext()->isFileContext();
944 
945   case NestedNameSpecifier::Identifier:
946   case NestedNameSpecifier::TypeSpec:
947   case NestedNameSpecifier::TypeSpecWithTemplate:
948     // These are never namespace scopes.
949     return true;
950   }
951 
952   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
953 }
954 
955 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
956 /// scope or nested-name-specifier) is parsed, part of a declarator-id.
957 /// After this method is called, according to [C++ 3.4.3p3], names should be
958 /// looked up in the declarator-id's scope, until the declarator is parsed and
959 /// ActOnCXXExitDeclaratorScope is called.
960 /// The 'SS' should be a non-empty valid CXXScopeSpec.
ActOnCXXEnterDeclaratorScope(Scope * S,CXXScopeSpec & SS)961 bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
962   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
963 
964   if (SS.isInvalid()) return true;
965 
966   DeclContext *DC = computeDeclContext(SS, true);
967   if (!DC) return true;
968 
969   // Before we enter a declarator's context, we need to make sure that
970   // it is a complete declaration context.
971   if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
972     return true;
973 
974   EnterDeclaratorContext(S, DC);
975 
976   // Rebuild the nested name specifier for the new scope.
977   if (DC->isDependentContext())
978     RebuildNestedNameSpecifierInCurrentInstantiation(SS);
979 
980   return false;
981 }
982 
983 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
984 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
985 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
986 /// Used to indicate that names should revert to being looked up in the
987 /// defining scope.
ActOnCXXExitDeclaratorScope(Scope * S,const CXXScopeSpec & SS)988 void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
989   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
990   if (SS.isInvalid())
991     return;
992   assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
993          "exiting declarator scope we never really entered");
994   ExitDeclaratorContext(S);
995 }
996