• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //===----------------------------------------------------------------------===/
8 //
9 //  This file implements semantic analysis for C++ templates.
10 //===----------------------------------------------------------------------===/
11 
12 #include "TreeTransform.h"
13 #include "clang/AST/ASTConsumer.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/DeclFriend.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/RecursiveASTVisitor.h"
20 #include "clang/AST/TypeVisitor.h"
21 #include "clang/Basic/LangOptions.h"
22 #include "clang/Basic/PartialDiagnostic.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Sema/DeclSpec.h"
25 #include "clang/Sema/Lookup.h"
26 #include "clang/Sema/ParsedTemplate.h"
27 #include "clang/Sema/Scope.h"
28 #include "clang/Sema/SemaInternal.h"
29 #include "clang/Sema/Template.h"
30 #include "clang/Sema/TemplateDeduction.h"
31 #include "llvm/ADT/SmallBitVector.h"
32 #include "llvm/ADT/SmallString.h"
33 #include "llvm/ADT/StringExtras.h"
34 using namespace clang;
35 using namespace sema;
36 
37 // Exported for use by Parser.
38 SourceRange
getTemplateParamsRange(TemplateParameterList const * const * Ps,unsigned N)39 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
40                               unsigned N) {
41   if (!N) return SourceRange();
42   return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
43 }
44 
45 /// \brief Determine whether the declaration found is acceptable as the name
46 /// of a template and, if so, return that template declaration. Otherwise,
47 /// returns NULL.
isAcceptableTemplateName(ASTContext & Context,NamedDecl * Orig,bool AllowFunctionTemplates)48 static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
49                                            NamedDecl *Orig,
50                                            bool AllowFunctionTemplates) {
51   NamedDecl *D = Orig->getUnderlyingDecl();
52 
53   if (isa<TemplateDecl>(D)) {
54     if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
55       return nullptr;
56 
57     return Orig;
58   }
59 
60   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
61     // C++ [temp.local]p1:
62     //   Like normal (non-template) classes, class templates have an
63     //   injected-class-name (Clause 9). The injected-class-name
64     //   can be used with or without a template-argument-list. When
65     //   it is used without a template-argument-list, it is
66     //   equivalent to the injected-class-name followed by the
67     //   template-parameters of the class template enclosed in
68     //   <>. When it is used with a template-argument-list, it
69     //   refers to the specified class template specialization,
70     //   which could be the current specialization or another
71     //   specialization.
72     if (Record->isInjectedClassName()) {
73       Record = cast<CXXRecordDecl>(Record->getDeclContext());
74       if (Record->getDescribedClassTemplate())
75         return Record->getDescribedClassTemplate();
76 
77       if (ClassTemplateSpecializationDecl *Spec
78             = dyn_cast<ClassTemplateSpecializationDecl>(Record))
79         return Spec->getSpecializedTemplate();
80     }
81 
82     return nullptr;
83   }
84 
85   return nullptr;
86 }
87 
FilterAcceptableTemplateNames(LookupResult & R,bool AllowFunctionTemplates)88 void Sema::FilterAcceptableTemplateNames(LookupResult &R,
89                                          bool AllowFunctionTemplates) {
90   // The set of class templates we've already seen.
91   llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
92   LookupResult::Filter filter = R.makeFilter();
93   while (filter.hasNext()) {
94     NamedDecl *Orig = filter.next();
95     NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
96                                                AllowFunctionTemplates);
97     if (!Repl)
98       filter.erase();
99     else if (Repl != Orig) {
100 
101       // C++ [temp.local]p3:
102       //   A lookup that finds an injected-class-name (10.2) can result in an
103       //   ambiguity in certain cases (for example, if it is found in more than
104       //   one base class). If all of the injected-class-names that are found
105       //   refer to specializations of the same class template, and if the name
106       //   is used as a template-name, the reference refers to the class
107       //   template itself and not a specialization thereof, and is not
108       //   ambiguous.
109       if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
110         if (!ClassTemplates.insert(ClassTmpl)) {
111           filter.erase();
112           continue;
113         }
114 
115       // FIXME: we promote access to public here as a workaround to
116       // the fact that LookupResult doesn't let us remember that we
117       // found this template through a particular injected class name,
118       // which means we end up doing nasty things to the invariants.
119       // Pretending that access is public is *much* safer.
120       filter.replace(Repl, AS_public);
121     }
122   }
123   filter.done();
124 }
125 
hasAnyAcceptableTemplateNames(LookupResult & R,bool AllowFunctionTemplates)126 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
127                                          bool AllowFunctionTemplates) {
128   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
129     if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
130       return true;
131 
132   return false;
133 }
134 
isTemplateName(Scope * S,CXXScopeSpec & SS,bool hasTemplateKeyword,UnqualifiedId & Name,ParsedType ObjectTypePtr,bool EnteringContext,TemplateTy & TemplateResult,bool & MemberOfUnknownSpecialization)135 TemplateNameKind Sema::isTemplateName(Scope *S,
136                                       CXXScopeSpec &SS,
137                                       bool hasTemplateKeyword,
138                                       UnqualifiedId &Name,
139                                       ParsedType ObjectTypePtr,
140                                       bool EnteringContext,
141                                       TemplateTy &TemplateResult,
142                                       bool &MemberOfUnknownSpecialization) {
143   assert(getLangOpts().CPlusPlus && "No template names in C!");
144 
145   DeclarationName TName;
146   MemberOfUnknownSpecialization = false;
147 
148   switch (Name.getKind()) {
149   case UnqualifiedId::IK_Identifier:
150     TName = DeclarationName(Name.Identifier);
151     break;
152 
153   case UnqualifiedId::IK_OperatorFunctionId:
154     TName = Context.DeclarationNames.getCXXOperatorName(
155                                               Name.OperatorFunctionId.Operator);
156     break;
157 
158   case UnqualifiedId::IK_LiteralOperatorId:
159     TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
160     break;
161 
162   default:
163     return TNK_Non_template;
164   }
165 
166   QualType ObjectType = ObjectTypePtr.get();
167 
168   LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
169   LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
170                      MemberOfUnknownSpecialization);
171   if (R.empty()) return TNK_Non_template;
172   if (R.isAmbiguous()) {
173     // Suppress diagnostics;  we'll redo this lookup later.
174     R.suppressDiagnostics();
175 
176     // FIXME: we might have ambiguous templates, in which case we
177     // should at least parse them properly!
178     return TNK_Non_template;
179   }
180 
181   TemplateName Template;
182   TemplateNameKind TemplateKind;
183 
184   unsigned ResultCount = R.end() - R.begin();
185   if (ResultCount > 1) {
186     // We assume that we'll preserve the qualifier from a function
187     // template name in other ways.
188     Template = Context.getOverloadedTemplateName(R.begin(), R.end());
189     TemplateKind = TNK_Function_template;
190 
191     // We'll do this lookup again later.
192     R.suppressDiagnostics();
193   } else {
194     TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
195 
196     if (SS.isSet() && !SS.isInvalid()) {
197       NestedNameSpecifier *Qualifier = SS.getScopeRep();
198       Template = Context.getQualifiedTemplateName(Qualifier,
199                                                   hasTemplateKeyword, TD);
200     } else {
201       Template = TemplateName(TD);
202     }
203 
204     if (isa<FunctionTemplateDecl>(TD)) {
205       TemplateKind = TNK_Function_template;
206 
207       // We'll do this lookup again later.
208       R.suppressDiagnostics();
209     } else {
210       assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
211              isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD));
212       TemplateKind =
213           isa<VarTemplateDecl>(TD) ? TNK_Var_template : TNK_Type_template;
214     }
215   }
216 
217   TemplateResult = TemplateTy::make(Template);
218   return TemplateKind;
219 }
220 
DiagnoseUnknownTemplateName(const IdentifierInfo & II,SourceLocation IILoc,Scope * S,const CXXScopeSpec * SS,TemplateTy & SuggestedTemplate,TemplateNameKind & SuggestedKind)221 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
222                                        SourceLocation IILoc,
223                                        Scope *S,
224                                        const CXXScopeSpec *SS,
225                                        TemplateTy &SuggestedTemplate,
226                                        TemplateNameKind &SuggestedKind) {
227   // We can't recover unless there's a dependent scope specifier preceding the
228   // template name.
229   // FIXME: Typo correction?
230   if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
231       computeDeclContext(*SS))
232     return false;
233 
234   // The code is missing a 'template' keyword prior to the dependent template
235   // name.
236   NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
237   Diag(IILoc, diag::err_template_kw_missing)
238     << Qualifier << II.getName()
239     << FixItHint::CreateInsertion(IILoc, "template ");
240   SuggestedTemplate
241     = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
242   SuggestedKind = TNK_Dependent_template_name;
243   return true;
244 }
245 
LookupTemplateName(LookupResult & Found,Scope * S,CXXScopeSpec & SS,QualType ObjectType,bool EnteringContext,bool & MemberOfUnknownSpecialization)246 void Sema::LookupTemplateName(LookupResult &Found,
247                               Scope *S, CXXScopeSpec &SS,
248                               QualType ObjectType,
249                               bool EnteringContext,
250                               bool &MemberOfUnknownSpecialization) {
251   // Determine where to perform name lookup
252   MemberOfUnknownSpecialization = false;
253   DeclContext *LookupCtx = nullptr;
254   bool isDependent = false;
255   if (!ObjectType.isNull()) {
256     // This nested-name-specifier occurs in a member access expression, e.g.,
257     // x->B::f, and we are looking into the type of the object.
258     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
259     LookupCtx = computeDeclContext(ObjectType);
260     isDependent = ObjectType->isDependentType();
261     assert((isDependent || !ObjectType->isIncompleteType() ||
262             ObjectType->castAs<TagType>()->isBeingDefined()) &&
263            "Caller should have completed object type");
264 
265     // Template names cannot appear inside an Objective-C class or object type.
266     if (ObjectType->isObjCObjectOrInterfaceType()) {
267       Found.clear();
268       return;
269     }
270   } else if (SS.isSet()) {
271     // This nested-name-specifier occurs after another nested-name-specifier,
272     // so long into the context associated with the prior nested-name-specifier.
273     LookupCtx = computeDeclContext(SS, EnteringContext);
274     isDependent = isDependentScopeSpecifier(SS);
275 
276     // The declaration context must be complete.
277     if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
278       return;
279   }
280 
281   bool ObjectTypeSearchedInScope = false;
282   bool AllowFunctionTemplatesInLookup = true;
283   if (LookupCtx) {
284     // Perform "qualified" name lookup into the declaration context we
285     // computed, which is either the type of the base of a member access
286     // expression or the declaration context associated with a prior
287     // nested-name-specifier.
288     LookupQualifiedName(Found, LookupCtx);
289     if (!ObjectType.isNull() && Found.empty()) {
290       // C++ [basic.lookup.classref]p1:
291       //   In a class member access expression (5.2.5), if the . or -> token is
292       //   immediately followed by an identifier followed by a <, the
293       //   identifier must be looked up to determine whether the < is the
294       //   beginning of a template argument list (14.2) or a less-than operator.
295       //   The identifier is first looked up in the class of the object
296       //   expression. If the identifier is not found, it is then looked up in
297       //   the context of the entire postfix-expression and shall name a class
298       //   or function template.
299       if (S) LookupName(Found, S);
300       ObjectTypeSearchedInScope = true;
301       AllowFunctionTemplatesInLookup = false;
302     }
303   } else if (isDependent && (!S || ObjectType.isNull())) {
304     // We cannot look into a dependent object type or nested nme
305     // specifier.
306     MemberOfUnknownSpecialization = true;
307     return;
308   } else {
309     // Perform unqualified name lookup in the current scope.
310     LookupName(Found, S);
311 
312     if (!ObjectType.isNull())
313       AllowFunctionTemplatesInLookup = false;
314   }
315 
316   if (Found.empty() && !isDependent) {
317     // If we did not find any names, attempt to correct any typos.
318     DeclarationName Name = Found.getLookupName();
319     Found.clear();
320     // Simple filter callback that, for keywords, only accepts the C++ *_cast
321     CorrectionCandidateCallback FilterCCC;
322     FilterCCC.WantTypeSpecifiers = false;
323     FilterCCC.WantExpressionKeywords = false;
324     FilterCCC.WantRemainingKeywords = false;
325     FilterCCC.WantCXXNamedCasts = true;
326     if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(),
327                                                Found.getLookupKind(), S, &SS,
328                                                FilterCCC, CTK_ErrorRecovery,
329                                                LookupCtx)) {
330       Found.setLookupName(Corrected.getCorrection());
331       if (Corrected.getCorrectionDecl())
332         Found.addDecl(Corrected.getCorrectionDecl());
333       FilterAcceptableTemplateNames(Found);
334       if (!Found.empty()) {
335         if (LookupCtx) {
336           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
337           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
338                                   Name.getAsString() == CorrectedStr;
339           diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
340                                     << Name << LookupCtx << DroppedSpecifier
341                                     << SS.getRange());
342         } else {
343           diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
344         }
345       }
346     } else {
347       Found.setLookupName(Name);
348     }
349   }
350 
351   FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
352   if (Found.empty()) {
353     if (isDependent)
354       MemberOfUnknownSpecialization = true;
355     return;
356   }
357 
358   if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
359       !getLangOpts().CPlusPlus11) {
360     // C++03 [basic.lookup.classref]p1:
361     //   [...] If the lookup in the class of the object expression finds a
362     //   template, the name is also looked up in the context of the entire
363     //   postfix-expression and [...]
364     //
365     // Note: C++11 does not perform this second lookup.
366     LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
367                             LookupOrdinaryName);
368     LookupName(FoundOuter, S);
369     FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
370 
371     if (FoundOuter.empty()) {
372       //   - if the name is not found, the name found in the class of the
373       //     object expression is used, otherwise
374     } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
375                FoundOuter.isAmbiguous()) {
376       //   - if the name is found in the context of the entire
377       //     postfix-expression and does not name a class template, the name
378       //     found in the class of the object expression is used, otherwise
379       FoundOuter.clear();
380     } else if (!Found.isSuppressingDiagnostics()) {
381       //   - if the name found is a class template, it must refer to the same
382       //     entity as the one found in the class of the object expression,
383       //     otherwise the program is ill-formed.
384       if (!Found.isSingleResult() ||
385           Found.getFoundDecl()->getCanonicalDecl()
386             != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
387         Diag(Found.getNameLoc(),
388              diag::ext_nested_name_member_ref_lookup_ambiguous)
389           << Found.getLookupName()
390           << ObjectType;
391         Diag(Found.getRepresentativeDecl()->getLocation(),
392              diag::note_ambig_member_ref_object_type)
393           << ObjectType;
394         Diag(FoundOuter.getFoundDecl()->getLocation(),
395              diag::note_ambig_member_ref_scope);
396 
397         // Recover by taking the template that we found in the object
398         // expression's type.
399       }
400     }
401   }
402 }
403 
404 /// ActOnDependentIdExpression - Handle a dependent id-expression that
405 /// was just parsed.  This is only possible with an explicit scope
406 /// specifier naming a dependent type.
407 ExprResult
ActOnDependentIdExpression(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,bool isAddressOfOperand,const TemplateArgumentListInfo * TemplateArgs)408 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
409                                  SourceLocation TemplateKWLoc,
410                                  const DeclarationNameInfo &NameInfo,
411                                  bool isAddressOfOperand,
412                            const TemplateArgumentListInfo *TemplateArgs) {
413   DeclContext *DC = getFunctionLevelDeclContext();
414 
415   if (!isAddressOfOperand &&
416       isa<CXXMethodDecl>(DC) &&
417       cast<CXXMethodDecl>(DC)->isInstance()) {
418     QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
419 
420     // Since the 'this' expression is synthesized, we don't need to
421     // perform the double-lookup check.
422     NamedDecl *FirstQualifierInScope = nullptr;
423 
424     return CXXDependentScopeMemberExpr::Create(
425         Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true,
426         /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
427         FirstQualifierInScope, NameInfo, TemplateArgs);
428   }
429 
430   return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
431 }
432 
433 ExprResult
BuildDependentDeclRefExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)434 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
435                                 SourceLocation TemplateKWLoc,
436                                 const DeclarationNameInfo &NameInfo,
437                                 const TemplateArgumentListInfo *TemplateArgs) {
438   return DependentScopeDeclRefExpr::Create(
439       Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
440       TemplateArgs);
441 }
442 
443 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
444 /// that the template parameter 'PrevDecl' is being shadowed by a new
445 /// declaration at location Loc. Returns true to indicate that this is
446 /// an error, and false otherwise.
DiagnoseTemplateParameterShadow(SourceLocation Loc,Decl * PrevDecl)447 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
448   assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
449 
450   // Microsoft Visual C++ permits template parameters to be shadowed.
451   if (getLangOpts().MicrosoftExt)
452     return;
453 
454   // C++ [temp.local]p4:
455   //   A template-parameter shall not be redeclared within its
456   //   scope (including nested scopes).
457   Diag(Loc, diag::err_template_param_shadow)
458     << cast<NamedDecl>(PrevDecl)->getDeclName();
459   Diag(PrevDecl->getLocation(), diag::note_template_param_here);
460   return;
461 }
462 
463 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
464 /// the parameter D to reference the templated declaration and return a pointer
465 /// to the template declaration. Otherwise, do nothing to D and return null.
AdjustDeclIfTemplate(Decl * & D)466 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
467   if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
468     D = Temp->getTemplatedDecl();
469     return Temp;
470   }
471   return nullptr;
472 }
473 
getTemplatePackExpansion(SourceLocation EllipsisLoc) const474 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
475                                              SourceLocation EllipsisLoc) const {
476   assert(Kind == Template &&
477          "Only template template arguments can be pack expansions here");
478   assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
479          "Template template argument pack expansion without packs");
480   ParsedTemplateArgument Result(*this);
481   Result.EllipsisLoc = EllipsisLoc;
482   return Result;
483 }
484 
translateTemplateArgument(Sema & SemaRef,const ParsedTemplateArgument & Arg)485 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
486                                             const ParsedTemplateArgument &Arg) {
487 
488   switch (Arg.getKind()) {
489   case ParsedTemplateArgument::Type: {
490     TypeSourceInfo *DI;
491     QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
492     if (!DI)
493       DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
494     return TemplateArgumentLoc(TemplateArgument(T), DI);
495   }
496 
497   case ParsedTemplateArgument::NonType: {
498     Expr *E = static_cast<Expr *>(Arg.getAsExpr());
499     return TemplateArgumentLoc(TemplateArgument(E), E);
500   }
501 
502   case ParsedTemplateArgument::Template: {
503     TemplateName Template = Arg.getAsTemplate().get();
504     TemplateArgument TArg;
505     if (Arg.getEllipsisLoc().isValid())
506       TArg = TemplateArgument(Template, Optional<unsigned int>());
507     else
508       TArg = Template;
509     return TemplateArgumentLoc(TArg,
510                                Arg.getScopeSpec().getWithLocInContext(
511                                                               SemaRef.Context),
512                                Arg.getLocation(),
513                                Arg.getEllipsisLoc());
514   }
515   }
516 
517   llvm_unreachable("Unhandled parsed template argument");
518 }
519 
520 /// \brief Translates template arguments as provided by the parser
521 /// into template arguments used by semantic analysis.
translateTemplateArguments(const ASTTemplateArgsPtr & TemplateArgsIn,TemplateArgumentListInfo & TemplateArgs)522 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
523                                       TemplateArgumentListInfo &TemplateArgs) {
524  for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
525    TemplateArgs.addArgument(translateTemplateArgument(*this,
526                                                       TemplateArgsIn[I]));
527 }
528 
maybeDiagnoseTemplateParameterShadow(Sema & SemaRef,Scope * S,SourceLocation Loc,IdentifierInfo * Name)529 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
530                                                  SourceLocation Loc,
531                                                  IdentifierInfo *Name) {
532   NamedDecl *PrevDecl = SemaRef.LookupSingleName(
533       S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForRedeclaration);
534   if (PrevDecl && PrevDecl->isTemplateParameter())
535     SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
536 }
537 
538 /// ActOnTypeParameter - Called when a C++ template type parameter
539 /// (e.g., "typename T") has been parsed. Typename specifies whether
540 /// the keyword "typename" was used to declare the type parameter
541 /// (otherwise, "class" was used), and KeyLoc is the location of the
542 /// "class" or "typename" keyword. ParamName is the name of the
543 /// parameter (NULL indicates an unnamed template parameter) and
544 /// ParamNameLoc is the location of the parameter name (if any).
545 /// If the type parameter has a default argument, it will be added
546 /// later via ActOnTypeParameterDefault.
ActOnTypeParameter(Scope * S,bool Typename,SourceLocation EllipsisLoc,SourceLocation KeyLoc,IdentifierInfo * ParamName,SourceLocation ParamNameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedType DefaultArg)547 Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
548                                SourceLocation EllipsisLoc,
549                                SourceLocation KeyLoc,
550                                IdentifierInfo *ParamName,
551                                SourceLocation ParamNameLoc,
552                                unsigned Depth, unsigned Position,
553                                SourceLocation EqualLoc,
554                                ParsedType DefaultArg) {
555   assert(S->isTemplateParamScope() &&
556          "Template type parameter not in template parameter scope!");
557   bool Invalid = false;
558 
559   SourceLocation Loc = ParamNameLoc;
560   if (!ParamName)
561     Loc = KeyLoc;
562 
563   bool IsParameterPack = EllipsisLoc.isValid();
564   TemplateTypeParmDecl *Param
565     = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
566                                    KeyLoc, Loc, Depth, Position, ParamName,
567                                    Typename, IsParameterPack);
568   Param->setAccess(AS_public);
569   if (Invalid)
570     Param->setInvalidDecl();
571 
572   if (ParamName) {
573     maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
574 
575     // Add the template parameter into the current scope.
576     S->AddDecl(Param);
577     IdResolver.AddDecl(Param);
578   }
579 
580   // C++0x [temp.param]p9:
581   //   A default template-argument may be specified for any kind of
582   //   template-parameter that is not a template parameter pack.
583   if (DefaultArg && IsParameterPack) {
584     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
585     DefaultArg = ParsedType();
586   }
587 
588   // Handle the default argument, if provided.
589   if (DefaultArg) {
590     TypeSourceInfo *DefaultTInfo;
591     GetTypeFromParser(DefaultArg, &DefaultTInfo);
592 
593     assert(DefaultTInfo && "expected source information for type");
594 
595     // Check for unexpanded parameter packs.
596     if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
597                                         UPPC_DefaultArgument))
598       return Param;
599 
600     // Check the template argument itself.
601     if (CheckTemplateArgument(Param, DefaultTInfo)) {
602       Param->setInvalidDecl();
603       return Param;
604     }
605 
606     Param->setDefaultArgument(DefaultTInfo, false);
607   }
608 
609   return Param;
610 }
611 
612 /// \brief Check that the type of a non-type template parameter is
613 /// well-formed.
614 ///
615 /// \returns the (possibly-promoted) parameter type if valid;
616 /// otherwise, produces a diagnostic and returns a NULL type.
617 QualType
CheckNonTypeTemplateParameterType(QualType T,SourceLocation Loc)618 Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
619   // We don't allow variably-modified types as the type of non-type template
620   // parameters.
621   if (T->isVariablyModifiedType()) {
622     Diag(Loc, diag::err_variably_modified_nontype_template_param)
623       << T;
624     return QualType();
625   }
626 
627   // C++ [temp.param]p4:
628   //
629   // A non-type template-parameter shall have one of the following
630   // (optionally cv-qualified) types:
631   //
632   //       -- integral or enumeration type,
633   if (T->isIntegralOrEnumerationType() ||
634       //   -- pointer to object or pointer to function,
635       T->isPointerType() ||
636       //   -- reference to object or reference to function,
637       T->isReferenceType() ||
638       //   -- pointer to member,
639       T->isMemberPointerType() ||
640       //   -- std::nullptr_t.
641       T->isNullPtrType() ||
642       // If T is a dependent type, we can't do the check now, so we
643       // assume that it is well-formed.
644       T->isDependentType()) {
645     // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
646     // are ignored when determining its type.
647     return T.getUnqualifiedType();
648   }
649 
650   // C++ [temp.param]p8:
651   //
652   //   A non-type template-parameter of type "array of T" or
653   //   "function returning T" is adjusted to be of type "pointer to
654   //   T" or "pointer to function returning T", respectively.
655   else if (T->isArrayType())
656     // FIXME: Keep the type prior to promotion?
657     return Context.getArrayDecayedType(T);
658   else if (T->isFunctionType())
659     // FIXME: Keep the type prior to promotion?
660     return Context.getPointerType(T);
661 
662   Diag(Loc, diag::err_template_nontype_parm_bad_type)
663     << T;
664 
665   return QualType();
666 }
667 
ActOnNonTypeTemplateParameter(Scope * S,Declarator & D,unsigned Depth,unsigned Position,SourceLocation EqualLoc,Expr * Default)668 Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
669                                           unsigned Depth,
670                                           unsigned Position,
671                                           SourceLocation EqualLoc,
672                                           Expr *Default) {
673   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
674   QualType T = TInfo->getType();
675 
676   assert(S->isTemplateParamScope() &&
677          "Non-type template parameter not in template parameter scope!");
678   bool Invalid = false;
679 
680   T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
681   if (T.isNull()) {
682     T = Context.IntTy; // Recover with an 'int' type.
683     Invalid = true;
684   }
685 
686   IdentifierInfo *ParamName = D.getIdentifier();
687   bool IsParameterPack = D.hasEllipsis();
688   NonTypeTemplateParmDecl *Param
689     = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
690                                       D.getLocStart(),
691                                       D.getIdentifierLoc(),
692                                       Depth, Position, ParamName, T,
693                                       IsParameterPack, TInfo);
694   Param->setAccess(AS_public);
695 
696   if (Invalid)
697     Param->setInvalidDecl();
698 
699   if (ParamName) {
700     maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
701                                          ParamName);
702 
703     // Add the template parameter into the current scope.
704     S->AddDecl(Param);
705     IdResolver.AddDecl(Param);
706   }
707 
708   // C++0x [temp.param]p9:
709   //   A default template-argument may be specified for any kind of
710   //   template-parameter that is not a template parameter pack.
711   if (Default && IsParameterPack) {
712     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
713     Default = nullptr;
714   }
715 
716   // Check the well-formedness of the default template argument, if provided.
717   if (Default) {
718     // Check for unexpanded parameter packs.
719     if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
720       return Param;
721 
722     TemplateArgument Converted;
723     ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
724     if (DefaultRes.isInvalid()) {
725       Param->setInvalidDecl();
726       return Param;
727     }
728     Default = DefaultRes.get();
729 
730     Param->setDefaultArgument(Default, false);
731   }
732 
733   return Param;
734 }
735 
736 /// ActOnTemplateTemplateParameter - Called when a C++ template template
737 /// parameter (e.g. T in template <template \<typename> class T> class array)
738 /// has been parsed. S is the current scope.
ActOnTemplateTemplateParameter(Scope * S,SourceLocation TmpLoc,TemplateParameterList * Params,SourceLocation EllipsisLoc,IdentifierInfo * Name,SourceLocation NameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedTemplateArgument Default)739 Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
740                                            SourceLocation TmpLoc,
741                                            TemplateParameterList *Params,
742                                            SourceLocation EllipsisLoc,
743                                            IdentifierInfo *Name,
744                                            SourceLocation NameLoc,
745                                            unsigned Depth,
746                                            unsigned Position,
747                                            SourceLocation EqualLoc,
748                                            ParsedTemplateArgument Default) {
749   assert(S->isTemplateParamScope() &&
750          "Template template parameter not in template parameter scope!");
751 
752   // Construct the parameter object.
753   bool IsParameterPack = EllipsisLoc.isValid();
754   TemplateTemplateParmDecl *Param =
755     TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
756                                      NameLoc.isInvalid()? TmpLoc : NameLoc,
757                                      Depth, Position, IsParameterPack,
758                                      Name, Params);
759   Param->setAccess(AS_public);
760 
761   // If the template template parameter has a name, then link the identifier
762   // into the scope and lookup mechanisms.
763   if (Name) {
764     maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
765 
766     S->AddDecl(Param);
767     IdResolver.AddDecl(Param);
768   }
769 
770   if (Params->size() == 0) {
771     Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
772     << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
773     Param->setInvalidDecl();
774   }
775 
776   // C++0x [temp.param]p9:
777   //   A default template-argument may be specified for any kind of
778   //   template-parameter that is not a template parameter pack.
779   if (IsParameterPack && !Default.isInvalid()) {
780     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
781     Default = ParsedTemplateArgument();
782   }
783 
784   if (!Default.isInvalid()) {
785     // Check only that we have a template template argument. We don't want to
786     // try to check well-formedness now, because our template template parameter
787     // might have dependent types in its template parameters, which we wouldn't
788     // be able to match now.
789     //
790     // If none of the template template parameter's template arguments mention
791     // other template parameters, we could actually perform more checking here.
792     // However, it isn't worth doing.
793     TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
794     if (DefaultArg.getArgument().getAsTemplate().isNull()) {
795       Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
796         << DefaultArg.getSourceRange();
797       return Param;
798     }
799 
800     // Check for unexpanded parameter packs.
801     if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
802                                         DefaultArg.getArgument().getAsTemplate(),
803                                         UPPC_DefaultArgument))
804       return Param;
805 
806     Param->setDefaultArgument(DefaultArg, false);
807   }
808 
809   return Param;
810 }
811 
812 /// ActOnTemplateParameterList - Builds a TemplateParameterList that
813 /// contains the template parameters in Params/NumParams.
814 TemplateParameterList *
ActOnTemplateParameterList(unsigned Depth,SourceLocation ExportLoc,SourceLocation TemplateLoc,SourceLocation LAngleLoc,Decl ** Params,unsigned NumParams,SourceLocation RAngleLoc)815 Sema::ActOnTemplateParameterList(unsigned Depth,
816                                  SourceLocation ExportLoc,
817                                  SourceLocation TemplateLoc,
818                                  SourceLocation LAngleLoc,
819                                  Decl **Params, unsigned NumParams,
820                                  SourceLocation RAngleLoc) {
821   if (ExportLoc.isValid())
822     Diag(ExportLoc, diag::warn_template_export_unsupported);
823 
824   return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
825                                        (NamedDecl**)Params, NumParams,
826                                        RAngleLoc);
827 }
828 
SetNestedNameSpecifier(TagDecl * T,const CXXScopeSpec & SS)829 static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
830   if (SS.isSet())
831     T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
832 }
833 
834 DeclResult
CheckClassTemplate(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,TemplateParameterList * TemplateParams,AccessSpecifier AS,SourceLocation ModulePrivateLoc,unsigned NumOuterTemplateParamLists,TemplateParameterList ** OuterTemplateParamLists)835 Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
836                          SourceLocation KWLoc, CXXScopeSpec &SS,
837                          IdentifierInfo *Name, SourceLocation NameLoc,
838                          AttributeList *Attr,
839                          TemplateParameterList *TemplateParams,
840                          AccessSpecifier AS, SourceLocation ModulePrivateLoc,
841                          unsigned NumOuterTemplateParamLists,
842                          TemplateParameterList** OuterTemplateParamLists) {
843   assert(TemplateParams && TemplateParams->size() > 0 &&
844          "No template parameters");
845   assert(TUK != TUK_Reference && "Can only declare or define class templates");
846   bool Invalid = false;
847 
848   // Check that we can declare a template here.
849   if (CheckTemplateDeclScope(S, TemplateParams))
850     return true;
851 
852   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
853   assert(Kind != TTK_Enum && "can't build template of enumerated type");
854 
855   // There is no such thing as an unnamed class template.
856   if (!Name) {
857     Diag(KWLoc, diag::err_template_unnamed_class);
858     return true;
859   }
860 
861   // Find any previous declaration with this name. For a friend with no
862   // scope explicitly specified, we only look for tag declarations (per
863   // C++11 [basic.lookup.elab]p2).
864   DeclContext *SemanticContext;
865   LookupResult Previous(*this, Name, NameLoc,
866                         (SS.isEmpty() && TUK == TUK_Friend)
867                           ? LookupTagName : LookupOrdinaryName,
868                         ForRedeclaration);
869   if (SS.isNotEmpty() && !SS.isInvalid()) {
870     SemanticContext = computeDeclContext(SS, true);
871     if (!SemanticContext) {
872       // FIXME: Horrible, horrible hack! We can't currently represent this
873       // in the AST, and historically we have just ignored such friend
874       // class templates, so don't complain here.
875       Diag(NameLoc, TUK == TUK_Friend
876                         ? diag::warn_template_qualified_friend_ignored
877                         : diag::err_template_qualified_declarator_no_match)
878           << SS.getScopeRep() << SS.getRange();
879       return TUK != TUK_Friend;
880     }
881 
882     if (RequireCompleteDeclContext(SS, SemanticContext))
883       return true;
884 
885     // If we're adding a template to a dependent context, we may need to
886     // rebuilding some of the types used within the template parameter list,
887     // now that we know what the current instantiation is.
888     if (SemanticContext->isDependentContext()) {
889       ContextRAII SavedContext(*this, SemanticContext);
890       if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
891         Invalid = true;
892     } else if (TUK != TUK_Friend && TUK != TUK_Reference)
893       diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
894 
895     LookupQualifiedName(Previous, SemanticContext);
896   } else {
897     SemanticContext = CurContext;
898     LookupName(Previous, S);
899   }
900 
901   if (Previous.isAmbiguous())
902     return true;
903 
904   NamedDecl *PrevDecl = nullptr;
905   if (Previous.begin() != Previous.end())
906     PrevDecl = (*Previous.begin())->getUnderlyingDecl();
907 
908   // If there is a previous declaration with the same name, check
909   // whether this is a valid redeclaration.
910   ClassTemplateDecl *PrevClassTemplate
911     = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
912 
913   // We may have found the injected-class-name of a class template,
914   // class template partial specialization, or class template specialization.
915   // In these cases, grab the template that is being defined or specialized.
916   if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
917       cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
918     PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
919     PrevClassTemplate
920       = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
921     if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
922       PrevClassTemplate
923         = cast<ClassTemplateSpecializationDecl>(PrevDecl)
924             ->getSpecializedTemplate();
925     }
926   }
927 
928   if (TUK == TUK_Friend) {
929     // C++ [namespace.memdef]p3:
930     //   [...] When looking for a prior declaration of a class or a function
931     //   declared as a friend, and when the name of the friend class or
932     //   function is neither a qualified name nor a template-id, scopes outside
933     //   the innermost enclosing namespace scope are not considered.
934     if (!SS.isSet()) {
935       DeclContext *OutermostContext = CurContext;
936       while (!OutermostContext->isFileContext())
937         OutermostContext = OutermostContext->getLookupParent();
938 
939       if (PrevDecl &&
940           (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
941            OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
942         SemanticContext = PrevDecl->getDeclContext();
943       } else {
944         // Declarations in outer scopes don't matter. However, the outermost
945         // context we computed is the semantic context for our new
946         // declaration.
947         PrevDecl = PrevClassTemplate = nullptr;
948         SemanticContext = OutermostContext;
949 
950         // Check that the chosen semantic context doesn't already contain a
951         // declaration of this name as a non-tag type.
952         LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
953                               ForRedeclaration);
954         DeclContext *LookupContext = SemanticContext;
955         while (LookupContext->isTransparentContext())
956           LookupContext = LookupContext->getLookupParent();
957         LookupQualifiedName(Previous, LookupContext);
958 
959         if (Previous.isAmbiguous())
960           return true;
961 
962         if (Previous.begin() != Previous.end())
963           PrevDecl = (*Previous.begin())->getUnderlyingDecl();
964       }
965     }
966   } else if (PrevDecl &&
967              !isDeclInScope(PrevDecl, SemanticContext, S, SS.isValid()))
968     PrevDecl = PrevClassTemplate = nullptr;
969 
970   if (PrevClassTemplate) {
971     // Ensure that the template parameter lists are compatible. Skip this check
972     // for a friend in a dependent context: the template parameter list itself
973     // could be dependent.
974     if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
975         !TemplateParameterListsAreEqual(TemplateParams,
976                                    PrevClassTemplate->getTemplateParameters(),
977                                         /*Complain=*/true,
978                                         TPL_TemplateMatch))
979       return true;
980 
981     // C++ [temp.class]p4:
982     //   In a redeclaration, partial specialization, explicit
983     //   specialization or explicit instantiation of a class template,
984     //   the class-key shall agree in kind with the original class
985     //   template declaration (7.1.5.3).
986     RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
987     if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
988                                       TUK == TUK_Definition,  KWLoc, *Name)) {
989       Diag(KWLoc, diag::err_use_with_wrong_tag)
990         << Name
991         << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
992       Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
993       Kind = PrevRecordDecl->getTagKind();
994     }
995 
996     // Check for redefinition of this class template.
997     if (TUK == TUK_Definition) {
998       if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
999         Diag(NameLoc, diag::err_redefinition) << Name;
1000         Diag(Def->getLocation(), diag::note_previous_definition);
1001         // FIXME: Would it make sense to try to "forget" the previous
1002         // definition, as part of error recovery?
1003         return true;
1004       }
1005     }
1006   } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
1007     // Maybe we will complain about the shadowed template parameter.
1008     DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1009     // Just pretend that we didn't see the previous declaration.
1010     PrevDecl = nullptr;
1011   } else if (PrevDecl) {
1012     // C++ [temp]p5:
1013     //   A class template shall not have the same name as any other
1014     //   template, class, function, object, enumeration, enumerator,
1015     //   namespace, or type in the same scope (3.3), except as specified
1016     //   in (14.5.4).
1017     Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1018     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1019     return true;
1020   }
1021 
1022   // Check the template parameter list of this declaration, possibly
1023   // merging in the template parameter list from the previous class
1024   // template declaration. Skip this check for a friend in a dependent
1025   // context, because the template parameter list might be dependent.
1026   if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1027       CheckTemplateParameterList(
1028           TemplateParams,
1029           PrevClassTemplate ? PrevClassTemplate->getTemplateParameters()
1030                             : nullptr,
1031           (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
1032            SemanticContext->isDependentContext())
1033               ? TPC_ClassTemplateMember
1034               : TUK == TUK_Friend ? TPC_FriendClassTemplate
1035                                   : TPC_ClassTemplate))
1036     Invalid = true;
1037 
1038   if (SS.isSet()) {
1039     // If the name of the template was qualified, we must be defining the
1040     // template out-of-line.
1041     if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1042       Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1043                                       : diag::err_member_decl_does_not_match)
1044         << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
1045       Invalid = true;
1046     }
1047   }
1048 
1049   CXXRecordDecl *NewClass =
1050     CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1051                           PrevClassTemplate?
1052                             PrevClassTemplate->getTemplatedDecl() : nullptr,
1053                           /*DelayTypeCreation=*/true);
1054   SetNestedNameSpecifier(NewClass, SS);
1055   if (NumOuterTemplateParamLists > 0)
1056     NewClass->setTemplateParameterListsInfo(Context,
1057                                             NumOuterTemplateParamLists,
1058                                             OuterTemplateParamLists);
1059 
1060   // Add alignment attributes if necessary; these attributes are checked when
1061   // the ASTContext lays out the structure.
1062   if (TUK == TUK_Definition) {
1063     AddAlignmentAttributesForRecord(NewClass);
1064     AddMsStructLayoutForRecord(NewClass);
1065   }
1066 
1067   ClassTemplateDecl *NewTemplate
1068     = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1069                                 DeclarationName(Name), TemplateParams,
1070                                 NewClass, PrevClassTemplate);
1071   NewClass->setDescribedClassTemplate(NewTemplate);
1072 
1073   if (ModulePrivateLoc.isValid())
1074     NewTemplate->setModulePrivate();
1075 
1076   // Build the type for the class template declaration now.
1077   QualType T = NewTemplate->getInjectedClassNameSpecialization();
1078   T = Context.getInjectedClassNameType(NewClass, T);
1079   assert(T->isDependentType() && "Class template type is not dependent?");
1080   (void)T;
1081 
1082   // If we are providing an explicit specialization of a member that is a
1083   // class template, make a note of that.
1084   if (PrevClassTemplate &&
1085       PrevClassTemplate->getInstantiatedFromMemberTemplate())
1086     PrevClassTemplate->setMemberSpecialization();
1087 
1088   // Set the access specifier.
1089   if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1090     SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1091 
1092   // Set the lexical context of these templates
1093   NewClass->setLexicalDeclContext(CurContext);
1094   NewTemplate->setLexicalDeclContext(CurContext);
1095 
1096   if (TUK == TUK_Definition)
1097     NewClass->startDefinition();
1098 
1099   if (Attr)
1100     ProcessDeclAttributeList(S, NewClass, Attr);
1101 
1102   if (PrevClassTemplate)
1103     mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
1104 
1105   AddPushedVisibilityAttribute(NewClass);
1106 
1107   if (TUK != TUK_Friend)
1108     PushOnScopeChains(NewTemplate, S);
1109   else {
1110     if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1111       NewTemplate->setAccess(PrevClassTemplate->getAccess());
1112       NewClass->setAccess(PrevClassTemplate->getAccess());
1113     }
1114 
1115     NewTemplate->setObjectOfFriendDecl();
1116 
1117     // Friend templates are visible in fairly strange ways.
1118     if (!CurContext->isDependentContext()) {
1119       DeclContext *DC = SemanticContext->getRedeclContext();
1120       DC->makeDeclVisibleInContext(NewTemplate);
1121       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1122         PushOnScopeChains(NewTemplate, EnclosingScope,
1123                           /* AddToContext = */ false);
1124     }
1125 
1126     FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1127                                             NewClass->getLocation(),
1128                                             NewTemplate,
1129                                     /*FIXME:*/NewClass->getLocation());
1130     Friend->setAccess(AS_public);
1131     CurContext->addDecl(Friend);
1132   }
1133 
1134   if (Invalid) {
1135     NewTemplate->setInvalidDecl();
1136     NewClass->setInvalidDecl();
1137   }
1138 
1139   ActOnDocumentableDecl(NewTemplate);
1140 
1141   return NewTemplate;
1142 }
1143 
1144 /// \brief Diagnose the presence of a default template argument on a
1145 /// template parameter, which is ill-formed in certain contexts.
1146 ///
1147 /// \returns true if the default template argument should be dropped.
DiagnoseDefaultTemplateArgument(Sema & S,Sema::TemplateParamListContext TPC,SourceLocation ParamLoc,SourceRange DefArgRange)1148 static bool DiagnoseDefaultTemplateArgument(Sema &S,
1149                                             Sema::TemplateParamListContext TPC,
1150                                             SourceLocation ParamLoc,
1151                                             SourceRange DefArgRange) {
1152   switch (TPC) {
1153   case Sema::TPC_ClassTemplate:
1154   case Sema::TPC_VarTemplate:
1155   case Sema::TPC_TypeAliasTemplate:
1156     return false;
1157 
1158   case Sema::TPC_FunctionTemplate:
1159   case Sema::TPC_FriendFunctionTemplateDefinition:
1160     // C++ [temp.param]p9:
1161     //   A default template-argument shall not be specified in a
1162     //   function template declaration or a function template
1163     //   definition [...]
1164     //   If a friend function template declaration specifies a default
1165     //   template-argument, that declaration shall be a definition and shall be
1166     //   the only declaration of the function template in the translation unit.
1167     // (C++98/03 doesn't have this wording; see DR226).
1168     S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
1169          diag::warn_cxx98_compat_template_parameter_default_in_function_template
1170            : diag::ext_template_parameter_default_in_function_template)
1171       << DefArgRange;
1172     return false;
1173 
1174   case Sema::TPC_ClassTemplateMember:
1175     // C++0x [temp.param]p9:
1176     //   A default template-argument shall not be specified in the
1177     //   template-parameter-lists of the definition of a member of a
1178     //   class template that appears outside of the member's class.
1179     S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1180       << DefArgRange;
1181     return true;
1182 
1183   case Sema::TPC_FriendClassTemplate:
1184   case Sema::TPC_FriendFunctionTemplate:
1185     // C++ [temp.param]p9:
1186     //   A default template-argument shall not be specified in a
1187     //   friend template declaration.
1188     S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1189       << DefArgRange;
1190     return true;
1191 
1192     // FIXME: C++0x [temp.param]p9 allows default template-arguments
1193     // for friend function templates if there is only a single
1194     // declaration (and it is a definition). Strange!
1195   }
1196 
1197   llvm_unreachable("Invalid TemplateParamListContext!");
1198 }
1199 
1200 /// \brief Check for unexpanded parameter packs within the template parameters
1201 /// of a template template parameter, recursively.
DiagnoseUnexpandedParameterPacks(Sema & S,TemplateTemplateParmDecl * TTP)1202 static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1203                                              TemplateTemplateParmDecl *TTP) {
1204   // A template template parameter which is a parameter pack is also a pack
1205   // expansion.
1206   if (TTP->isParameterPack())
1207     return false;
1208 
1209   TemplateParameterList *Params = TTP->getTemplateParameters();
1210   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1211     NamedDecl *P = Params->getParam(I);
1212     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1213       if (!NTTP->isParameterPack() &&
1214           S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1215                                             NTTP->getTypeSourceInfo(),
1216                                       Sema::UPPC_NonTypeTemplateParameterType))
1217         return true;
1218 
1219       continue;
1220     }
1221 
1222     if (TemplateTemplateParmDecl *InnerTTP
1223                                         = dyn_cast<TemplateTemplateParmDecl>(P))
1224       if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1225         return true;
1226   }
1227 
1228   return false;
1229 }
1230 
1231 /// \brief Checks the validity of a template parameter list, possibly
1232 /// considering the template parameter list from a previous
1233 /// declaration.
1234 ///
1235 /// If an "old" template parameter list is provided, it must be
1236 /// equivalent (per TemplateParameterListsAreEqual) to the "new"
1237 /// template parameter list.
1238 ///
1239 /// \param NewParams Template parameter list for a new template
1240 /// declaration. This template parameter list will be updated with any
1241 /// default arguments that are carried through from the previous
1242 /// template parameter list.
1243 ///
1244 /// \param OldParams If provided, template parameter list from a
1245 /// previous declaration of the same template. Default template
1246 /// arguments will be merged from the old template parameter list to
1247 /// the new template parameter list.
1248 ///
1249 /// \param TPC Describes the context in which we are checking the given
1250 /// template parameter list.
1251 ///
1252 /// \returns true if an error occurred, false otherwise.
CheckTemplateParameterList(TemplateParameterList * NewParams,TemplateParameterList * OldParams,TemplateParamListContext TPC)1253 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1254                                       TemplateParameterList *OldParams,
1255                                       TemplateParamListContext TPC) {
1256   bool Invalid = false;
1257 
1258   // C++ [temp.param]p10:
1259   //   The set of default template-arguments available for use with a
1260   //   template declaration or definition is obtained by merging the
1261   //   default arguments from the definition (if in scope) and all
1262   //   declarations in scope in the same way default function
1263   //   arguments are (8.3.6).
1264   bool SawDefaultArgument = false;
1265   SourceLocation PreviousDefaultArgLoc;
1266 
1267   // Dummy initialization to avoid warnings.
1268   TemplateParameterList::iterator OldParam = NewParams->end();
1269   if (OldParams)
1270     OldParam = OldParams->begin();
1271 
1272   bool RemoveDefaultArguments = false;
1273   for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1274                                     NewParamEnd = NewParams->end();
1275        NewParam != NewParamEnd; ++NewParam) {
1276     // Variables used to diagnose redundant default arguments
1277     bool RedundantDefaultArg = false;
1278     SourceLocation OldDefaultLoc;
1279     SourceLocation NewDefaultLoc;
1280 
1281     // Variable used to diagnose missing default arguments
1282     bool MissingDefaultArg = false;
1283 
1284     // Variable used to diagnose non-final parameter packs
1285     bool SawParameterPack = false;
1286 
1287     if (TemplateTypeParmDecl *NewTypeParm
1288           = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1289       // Check the presence of a default argument here.
1290       if (NewTypeParm->hasDefaultArgument() &&
1291           DiagnoseDefaultTemplateArgument(*this, TPC,
1292                                           NewTypeParm->getLocation(),
1293                NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1294                                                        .getSourceRange()))
1295         NewTypeParm->removeDefaultArgument();
1296 
1297       // Merge default arguments for template type parameters.
1298       TemplateTypeParmDecl *OldTypeParm
1299           = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
1300 
1301       if (NewTypeParm->isParameterPack()) {
1302         assert(!NewTypeParm->hasDefaultArgument() &&
1303                "Parameter packs can't have a default argument!");
1304         SawParameterPack = true;
1305       } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1306                  NewTypeParm->hasDefaultArgument()) {
1307         OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1308         NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1309         SawDefaultArgument = true;
1310         RedundantDefaultArg = true;
1311         PreviousDefaultArgLoc = NewDefaultLoc;
1312       } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1313         // Merge the default argument from the old declaration to the
1314         // new declaration.
1315         NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1316                                         true);
1317         PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1318       } else if (NewTypeParm->hasDefaultArgument()) {
1319         SawDefaultArgument = true;
1320         PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1321       } else if (SawDefaultArgument)
1322         MissingDefaultArg = true;
1323     } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1324                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1325       // Check for unexpanded parameter packs.
1326       if (!NewNonTypeParm->isParameterPack() &&
1327           DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1328                                           NewNonTypeParm->getTypeSourceInfo(),
1329                                           UPPC_NonTypeTemplateParameterType)) {
1330         Invalid = true;
1331         continue;
1332       }
1333 
1334       // Check the presence of a default argument here.
1335       if (NewNonTypeParm->hasDefaultArgument() &&
1336           DiagnoseDefaultTemplateArgument(*this, TPC,
1337                                           NewNonTypeParm->getLocation(),
1338                     NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1339         NewNonTypeParm->removeDefaultArgument();
1340       }
1341 
1342       // Merge default arguments for non-type template parameters
1343       NonTypeTemplateParmDecl *OldNonTypeParm
1344         = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
1345       if (NewNonTypeParm->isParameterPack()) {
1346         assert(!NewNonTypeParm->hasDefaultArgument() &&
1347                "Parameter packs can't have a default argument!");
1348         if (!NewNonTypeParm->isPackExpansion())
1349           SawParameterPack = true;
1350       } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1351                  NewNonTypeParm->hasDefaultArgument()) {
1352         OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1353         NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1354         SawDefaultArgument = true;
1355         RedundantDefaultArg = true;
1356         PreviousDefaultArgLoc = NewDefaultLoc;
1357       } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1358         // Merge the default argument from the old declaration to the
1359         // new declaration.
1360         // FIXME: We need to create a new kind of "default argument"
1361         // expression that points to a previous non-type template
1362         // parameter.
1363         NewNonTypeParm->setDefaultArgument(
1364                                          OldNonTypeParm->getDefaultArgument(),
1365                                          /*Inherited=*/ true);
1366         PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1367       } else if (NewNonTypeParm->hasDefaultArgument()) {
1368         SawDefaultArgument = true;
1369         PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1370       } else if (SawDefaultArgument)
1371         MissingDefaultArg = true;
1372     } else {
1373       TemplateTemplateParmDecl *NewTemplateParm
1374         = cast<TemplateTemplateParmDecl>(*NewParam);
1375 
1376       // Check for unexpanded parameter packs, recursively.
1377       if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1378         Invalid = true;
1379         continue;
1380       }
1381 
1382       // Check the presence of a default argument here.
1383       if (NewTemplateParm->hasDefaultArgument() &&
1384           DiagnoseDefaultTemplateArgument(*this, TPC,
1385                                           NewTemplateParm->getLocation(),
1386                      NewTemplateParm->getDefaultArgument().getSourceRange()))
1387         NewTemplateParm->removeDefaultArgument();
1388 
1389       // Merge default arguments for template template parameters
1390       TemplateTemplateParmDecl *OldTemplateParm
1391         = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
1392       if (NewTemplateParm->isParameterPack()) {
1393         assert(!NewTemplateParm->hasDefaultArgument() &&
1394                "Parameter packs can't have a default argument!");
1395         if (!NewTemplateParm->isPackExpansion())
1396           SawParameterPack = true;
1397       } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1398           NewTemplateParm->hasDefaultArgument()) {
1399         OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1400         NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1401         SawDefaultArgument = true;
1402         RedundantDefaultArg = true;
1403         PreviousDefaultArgLoc = NewDefaultLoc;
1404       } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1405         // Merge the default argument from the old declaration to the
1406         // new declaration.
1407         // FIXME: We need to create a new kind of "default argument" expression
1408         // that points to a previous template template parameter.
1409         NewTemplateParm->setDefaultArgument(
1410                                           OldTemplateParm->getDefaultArgument(),
1411                                           /*Inherited=*/ true);
1412         PreviousDefaultArgLoc
1413           = OldTemplateParm->getDefaultArgument().getLocation();
1414       } else if (NewTemplateParm->hasDefaultArgument()) {
1415         SawDefaultArgument = true;
1416         PreviousDefaultArgLoc
1417           = NewTemplateParm->getDefaultArgument().getLocation();
1418       } else if (SawDefaultArgument)
1419         MissingDefaultArg = true;
1420     }
1421 
1422     // C++11 [temp.param]p11:
1423     //   If a template parameter of a primary class template or alias template
1424     //   is a template parameter pack, it shall be the last template parameter.
1425     if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
1426         (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
1427          TPC == TPC_TypeAliasTemplate)) {
1428       Diag((*NewParam)->getLocation(),
1429            diag::err_template_param_pack_must_be_last_template_parameter);
1430       Invalid = true;
1431     }
1432 
1433     if (RedundantDefaultArg) {
1434       // C++ [temp.param]p12:
1435       //   A template-parameter shall not be given default arguments
1436       //   by two different declarations in the same scope.
1437       Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1438       Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1439       Invalid = true;
1440     } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1441       // C++ [temp.param]p11:
1442       //   If a template-parameter of a class template has a default
1443       //   template-argument, each subsequent template-parameter shall either
1444       //   have a default template-argument supplied or be a template parameter
1445       //   pack.
1446       Diag((*NewParam)->getLocation(),
1447            diag::err_template_param_default_arg_missing);
1448       Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1449       Invalid = true;
1450       RemoveDefaultArguments = true;
1451     }
1452 
1453     // If we have an old template parameter list that we're merging
1454     // in, move on to the next parameter.
1455     if (OldParams)
1456       ++OldParam;
1457   }
1458 
1459   // We were missing some default arguments at the end of the list, so remove
1460   // all of the default arguments.
1461   if (RemoveDefaultArguments) {
1462     for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1463                                       NewParamEnd = NewParams->end();
1464          NewParam != NewParamEnd; ++NewParam) {
1465       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1466         TTP->removeDefaultArgument();
1467       else if (NonTypeTemplateParmDecl *NTTP
1468                                 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1469         NTTP->removeDefaultArgument();
1470       else
1471         cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1472     }
1473   }
1474 
1475   return Invalid;
1476 }
1477 
1478 namespace {
1479 
1480 /// A class which looks for a use of a certain level of template
1481 /// parameter.
1482 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1483   typedef RecursiveASTVisitor<DependencyChecker> super;
1484 
1485   unsigned Depth;
1486   bool Match;
1487   SourceLocation MatchLoc;
1488 
DependencyChecker__anonc1e5694a0111::DependencyChecker1489   DependencyChecker(unsigned Depth) : Depth(Depth), Match(false) {}
1490 
DependencyChecker__anonc1e5694a0111::DependencyChecker1491   DependencyChecker(TemplateParameterList *Params) : Match(false) {
1492     NamedDecl *ND = Params->getParam(0);
1493     if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1494       Depth = PD->getDepth();
1495     } else if (NonTypeTemplateParmDecl *PD =
1496                  dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1497       Depth = PD->getDepth();
1498     } else {
1499       Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1500     }
1501   }
1502 
Matches__anonc1e5694a0111::DependencyChecker1503   bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
1504     if (ParmDepth >= Depth) {
1505       Match = true;
1506       MatchLoc = Loc;
1507       return true;
1508     }
1509     return false;
1510   }
1511 
VisitTemplateTypeParmTypeLoc__anonc1e5694a0111::DependencyChecker1512   bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
1513     return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
1514   }
1515 
VisitTemplateTypeParmType__anonc1e5694a0111::DependencyChecker1516   bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1517     return !Matches(T->getDepth());
1518   }
1519 
TraverseTemplateName__anonc1e5694a0111::DependencyChecker1520   bool TraverseTemplateName(TemplateName N) {
1521     if (TemplateTemplateParmDecl *PD =
1522           dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1523       if (Matches(PD->getDepth()))
1524         return false;
1525     return super::TraverseTemplateName(N);
1526   }
1527 
VisitDeclRefExpr__anonc1e5694a0111::DependencyChecker1528   bool VisitDeclRefExpr(DeclRefExpr *E) {
1529     if (NonTypeTemplateParmDecl *PD =
1530           dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
1531       if (Matches(PD->getDepth(), E->getExprLoc()))
1532         return false;
1533     return super::VisitDeclRefExpr(E);
1534   }
1535 
VisitSubstTemplateTypeParmType__anonc1e5694a0111::DependencyChecker1536   bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
1537     return TraverseType(T->getReplacementType());
1538   }
1539 
1540   bool
VisitSubstTemplateTypeParmPackType__anonc1e5694a0111::DependencyChecker1541   VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
1542     return TraverseTemplateArgument(T->getArgumentPack());
1543   }
1544 
TraverseInjectedClassNameType__anonc1e5694a0111::DependencyChecker1545   bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1546     return TraverseType(T->getInjectedSpecializationType());
1547   }
1548 };
1549 }
1550 
1551 /// Determines whether a given type depends on the given parameter
1552 /// list.
1553 static bool
DependsOnTemplateParameters(QualType T,TemplateParameterList * Params)1554 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1555   DependencyChecker Checker(Params);
1556   Checker.TraverseType(T);
1557   return Checker.Match;
1558 }
1559 
1560 // Find the source range corresponding to the named type in the given
1561 // nested-name-specifier, if any.
getRangeOfTypeInNestedNameSpecifier(ASTContext & Context,QualType T,const CXXScopeSpec & SS)1562 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1563                                                        QualType T,
1564                                                        const CXXScopeSpec &SS) {
1565   NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1566   while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1567     if (const Type *CurType = NNS->getAsType()) {
1568       if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1569         return NNSLoc.getTypeLoc().getSourceRange();
1570     } else
1571       break;
1572 
1573     NNSLoc = NNSLoc.getPrefix();
1574   }
1575 
1576   return SourceRange();
1577 }
1578 
1579 /// \brief Match the given template parameter lists to the given scope
1580 /// specifier, returning the template parameter list that applies to the
1581 /// name.
1582 ///
1583 /// \param DeclStartLoc the start of the declaration that has a scope
1584 /// specifier or a template parameter list.
1585 ///
1586 /// \param DeclLoc The location of the declaration itself.
1587 ///
1588 /// \param SS the scope specifier that will be matched to the given template
1589 /// parameter lists. This scope specifier precedes a qualified name that is
1590 /// being declared.
1591 ///
1592 /// \param TemplateId The template-id following the scope specifier, if there
1593 /// is one. Used to check for a missing 'template<>'.
1594 ///
1595 /// \param ParamLists the template parameter lists, from the outermost to the
1596 /// innermost template parameter lists.
1597 ///
1598 /// \param IsFriend Whether to apply the slightly different rules for
1599 /// matching template parameters to scope specifiers in friend
1600 /// declarations.
1601 ///
1602 /// \param IsExplicitSpecialization will be set true if the entity being
1603 /// declared is an explicit specialization, false otherwise.
1604 ///
1605 /// \returns the template parameter list, if any, that corresponds to the
1606 /// name that is preceded by the scope specifier @p SS. This template
1607 /// parameter list may have template parameters (if we're declaring a
1608 /// template) or may have no template parameters (if we're declaring a
1609 /// template specialization), or may be NULL (if what we're declaring isn't
1610 /// itself a template).
MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,SourceLocation DeclLoc,const CXXScopeSpec & SS,TemplateIdAnnotation * TemplateId,ArrayRef<TemplateParameterList * > ParamLists,bool IsFriend,bool & IsExplicitSpecialization,bool & Invalid)1611 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
1612     SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
1613     TemplateIdAnnotation *TemplateId,
1614     ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
1615     bool &IsExplicitSpecialization, bool &Invalid) {
1616   IsExplicitSpecialization = false;
1617   Invalid = false;
1618 
1619   // The sequence of nested types to which we will match up the template
1620   // parameter lists. We first build this list by starting with the type named
1621   // by the nested-name-specifier and walking out until we run out of types.
1622   SmallVector<QualType, 4> NestedTypes;
1623   QualType T;
1624   if (SS.getScopeRep()) {
1625     if (CXXRecordDecl *Record
1626               = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1627       T = Context.getTypeDeclType(Record);
1628     else
1629       T = QualType(SS.getScopeRep()->getAsType(), 0);
1630   }
1631 
1632   // If we found an explicit specialization that prevents us from needing
1633   // 'template<>' headers, this will be set to the location of that
1634   // explicit specialization.
1635   SourceLocation ExplicitSpecLoc;
1636 
1637   while (!T.isNull()) {
1638     NestedTypes.push_back(T);
1639 
1640     // Retrieve the parent of a record type.
1641     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1642       // If this type is an explicit specialization, we're done.
1643       if (ClassTemplateSpecializationDecl *Spec
1644           = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1645         if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1646             Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1647           ExplicitSpecLoc = Spec->getLocation();
1648           break;
1649         }
1650       } else if (Record->getTemplateSpecializationKind()
1651                                                 == TSK_ExplicitSpecialization) {
1652         ExplicitSpecLoc = Record->getLocation();
1653         break;
1654       }
1655 
1656       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1657         T = Context.getTypeDeclType(Parent);
1658       else
1659         T = QualType();
1660       continue;
1661     }
1662 
1663     if (const TemplateSpecializationType *TST
1664                                      = T->getAs<TemplateSpecializationType>()) {
1665       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1666         if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1667           T = Context.getTypeDeclType(Parent);
1668         else
1669           T = QualType();
1670         continue;
1671       }
1672     }
1673 
1674     // Look one step prior in a dependent template specialization type.
1675     if (const DependentTemplateSpecializationType *DependentTST
1676                           = T->getAs<DependentTemplateSpecializationType>()) {
1677       if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1678         T = QualType(NNS->getAsType(), 0);
1679       else
1680         T = QualType();
1681       continue;
1682     }
1683 
1684     // Look one step prior in a dependent name type.
1685     if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1686       if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1687         T = QualType(NNS->getAsType(), 0);
1688       else
1689         T = QualType();
1690       continue;
1691     }
1692 
1693     // Retrieve the parent of an enumeration type.
1694     if (const EnumType *EnumT = T->getAs<EnumType>()) {
1695       // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1696       // check here.
1697       EnumDecl *Enum = EnumT->getDecl();
1698 
1699       // Get to the parent type.
1700       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1701         T = Context.getTypeDeclType(Parent);
1702       else
1703         T = QualType();
1704       continue;
1705     }
1706 
1707     T = QualType();
1708   }
1709   // Reverse the nested types list, since we want to traverse from the outermost
1710   // to the innermost while checking template-parameter-lists.
1711   std::reverse(NestedTypes.begin(), NestedTypes.end());
1712 
1713   // C++0x [temp.expl.spec]p17:
1714   //   A member or a member template may be nested within many
1715   //   enclosing class templates. In an explicit specialization for
1716   //   such a member, the member declaration shall be preceded by a
1717   //   template<> for each enclosing class template that is
1718   //   explicitly specialized.
1719   bool SawNonEmptyTemplateParameterList = false;
1720 
1721   auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
1722     if (SawNonEmptyTemplateParameterList) {
1723       Diag(DeclLoc, diag::err_specialize_member_of_template)
1724         << !Recovery << Range;
1725       Invalid = true;
1726       IsExplicitSpecialization = false;
1727       return true;
1728     }
1729 
1730     return false;
1731   };
1732 
1733   auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
1734     // Check that we can have an explicit specialization here.
1735     if (CheckExplicitSpecialization(Range, true))
1736       return true;
1737 
1738     // We don't have a template header, but we should.
1739     SourceLocation ExpectedTemplateLoc;
1740     if (!ParamLists.empty())
1741       ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1742     else
1743       ExpectedTemplateLoc = DeclStartLoc;
1744 
1745     Diag(DeclLoc, diag::err_template_spec_needs_header)
1746       << Range
1747       << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1748     return false;
1749   };
1750 
1751   unsigned ParamIdx = 0;
1752   for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1753        ++TypeIdx) {
1754     T = NestedTypes[TypeIdx];
1755 
1756     // Whether we expect a 'template<>' header.
1757     bool NeedEmptyTemplateHeader = false;
1758 
1759     // Whether we expect a template header with parameters.
1760     bool NeedNonemptyTemplateHeader = false;
1761 
1762     // For a dependent type, the set of template parameters that we
1763     // expect to see.
1764     TemplateParameterList *ExpectedTemplateParams = nullptr;
1765 
1766     // C++0x [temp.expl.spec]p15:
1767     //   A member or a member template may be nested within many enclosing
1768     //   class templates. In an explicit specialization for such a member, the
1769     //   member declaration shall be preceded by a template<> for each
1770     //   enclosing class template that is explicitly specialized.
1771     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1772       if (ClassTemplatePartialSpecializationDecl *Partial
1773             = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1774         ExpectedTemplateParams = Partial->getTemplateParameters();
1775         NeedNonemptyTemplateHeader = true;
1776       } else if (Record->isDependentType()) {
1777         if (Record->getDescribedClassTemplate()) {
1778           ExpectedTemplateParams = Record->getDescribedClassTemplate()
1779                                                       ->getTemplateParameters();
1780           NeedNonemptyTemplateHeader = true;
1781         }
1782       } else if (ClassTemplateSpecializationDecl *Spec
1783                      = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1784         // C++0x [temp.expl.spec]p4:
1785         //   Members of an explicitly specialized class template are defined
1786         //   in the same manner as members of normal classes, and not using
1787         //   the template<> syntax.
1788         if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1789           NeedEmptyTemplateHeader = true;
1790         else
1791           continue;
1792       } else if (Record->getTemplateSpecializationKind()) {
1793         if (Record->getTemplateSpecializationKind()
1794                                                 != TSK_ExplicitSpecialization &&
1795             TypeIdx == NumTypes - 1)
1796           IsExplicitSpecialization = true;
1797 
1798         continue;
1799       }
1800     } else if (const TemplateSpecializationType *TST
1801                                      = T->getAs<TemplateSpecializationType>()) {
1802       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1803         ExpectedTemplateParams = Template->getTemplateParameters();
1804         NeedNonemptyTemplateHeader = true;
1805       }
1806     } else if (T->getAs<DependentTemplateSpecializationType>()) {
1807       // FIXME:  We actually could/should check the template arguments here
1808       // against the corresponding template parameter list.
1809       NeedNonemptyTemplateHeader = false;
1810     }
1811 
1812     // C++ [temp.expl.spec]p16:
1813     //   In an explicit specialization declaration for a member of a class
1814     //   template or a member template that ap- pears in namespace scope, the
1815     //   member template and some of its enclosing class templates may remain
1816     //   unspecialized, except that the declaration shall not explicitly
1817     //   specialize a class member template if its en- closing class templates
1818     //   are not explicitly specialized as well.
1819     if (ParamIdx < ParamLists.size()) {
1820       if (ParamLists[ParamIdx]->size() == 0) {
1821         if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
1822                                         false))
1823           return nullptr;
1824       } else
1825         SawNonEmptyTemplateParameterList = true;
1826     }
1827 
1828     if (NeedEmptyTemplateHeader) {
1829       // If we're on the last of the types, and we need a 'template<>' header
1830       // here, then it's an explicit specialization.
1831       if (TypeIdx == NumTypes - 1)
1832         IsExplicitSpecialization = true;
1833 
1834       if (ParamIdx < ParamLists.size()) {
1835         if (ParamLists[ParamIdx]->size() > 0) {
1836           // The header has template parameters when it shouldn't. Complain.
1837           Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1838                diag::err_template_param_list_matches_nontemplate)
1839             << T
1840             << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1841                            ParamLists[ParamIdx]->getRAngleLoc())
1842             << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1843           Invalid = true;
1844           return nullptr;
1845         }
1846 
1847         // Consume this template header.
1848         ++ParamIdx;
1849         continue;
1850       }
1851 
1852       if (!IsFriend)
1853         if (DiagnoseMissingExplicitSpecialization(
1854                 getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
1855           return nullptr;
1856 
1857       continue;
1858     }
1859 
1860     if (NeedNonemptyTemplateHeader) {
1861       // In friend declarations we can have template-ids which don't
1862       // depend on the corresponding template parameter lists.  But
1863       // assume that empty parameter lists are supposed to match this
1864       // template-id.
1865       if (IsFriend && T->isDependentType()) {
1866         if (ParamIdx < ParamLists.size() &&
1867             DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1868           ExpectedTemplateParams = nullptr;
1869         else
1870           continue;
1871       }
1872 
1873       if (ParamIdx < ParamLists.size()) {
1874         // Check the template parameter list, if we can.
1875         if (ExpectedTemplateParams &&
1876             !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1877                                             ExpectedTemplateParams,
1878                                             true, TPL_TemplateMatch))
1879           Invalid = true;
1880 
1881         if (!Invalid &&
1882             CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
1883                                        TPC_ClassTemplateMember))
1884           Invalid = true;
1885 
1886         ++ParamIdx;
1887         continue;
1888       }
1889 
1890       Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1891         << T
1892         << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1893       Invalid = true;
1894       continue;
1895     }
1896   }
1897 
1898   // If there were at least as many template-ids as there were template
1899   // parameter lists, then there are no template parameter lists remaining for
1900   // the declaration itself.
1901   if (ParamIdx >= ParamLists.size()) {
1902     if (TemplateId && !IsFriend) {
1903       // We don't have a template header for the declaration itself, but we
1904       // should.
1905       IsExplicitSpecialization = true;
1906       DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
1907                                                         TemplateId->RAngleLoc));
1908 
1909       // Fabricate an empty template parameter list for the invented header.
1910       return TemplateParameterList::Create(Context, SourceLocation(),
1911                                            SourceLocation(), nullptr, 0,
1912                                            SourceLocation());
1913     }
1914 
1915     return nullptr;
1916   }
1917 
1918   // If there were too many template parameter lists, complain about that now.
1919   if (ParamIdx < ParamLists.size() - 1) {
1920     bool HasAnyExplicitSpecHeader = false;
1921     bool AllExplicitSpecHeaders = true;
1922     for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
1923       if (ParamLists[I]->size() == 0)
1924         HasAnyExplicitSpecHeader = true;
1925       else
1926         AllExplicitSpecHeaders = false;
1927     }
1928 
1929     Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1930          AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
1931                                 : diag::err_template_spec_extra_headers)
1932         << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1933                        ParamLists[ParamLists.size() - 2]->getRAngleLoc());
1934 
1935     // If there was a specialization somewhere, such that 'template<>' is
1936     // not required, and there were any 'template<>' headers, note where the
1937     // specialization occurred.
1938     if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1939       Diag(ExplicitSpecLoc,
1940            diag::note_explicit_template_spec_does_not_need_header)
1941         << NestedTypes.back();
1942 
1943     // We have a template parameter list with no corresponding scope, which
1944     // means that the resulting template declaration can't be instantiated
1945     // properly (we'll end up with dependent nodes when we shouldn't).
1946     if (!AllExplicitSpecHeaders)
1947       Invalid = true;
1948   }
1949 
1950   // C++ [temp.expl.spec]p16:
1951   //   In an explicit specialization declaration for a member of a class
1952   //   template or a member template that ap- pears in namespace scope, the
1953   //   member template and some of its enclosing class templates may remain
1954   //   unspecialized, except that the declaration shall not explicitly
1955   //   specialize a class member template if its en- closing class templates
1956   //   are not explicitly specialized as well.
1957   if (ParamLists.back()->size() == 0 &&
1958       CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
1959                                   false))
1960     return nullptr;
1961 
1962   // Return the last template parameter list, which corresponds to the
1963   // entity being declared.
1964   return ParamLists.back();
1965 }
1966 
NoteAllFoundTemplates(TemplateName Name)1967 void Sema::NoteAllFoundTemplates(TemplateName Name) {
1968   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1969     Diag(Template->getLocation(), diag::note_template_declared_here)
1970         << (isa<FunctionTemplateDecl>(Template)
1971                 ? 0
1972                 : isa<ClassTemplateDecl>(Template)
1973                       ? 1
1974                       : isa<VarTemplateDecl>(Template)
1975                             ? 2
1976                             : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
1977         << Template->getDeclName();
1978     return;
1979   }
1980 
1981   if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
1982     for (OverloadedTemplateStorage::iterator I = OST->begin(),
1983                                           IEnd = OST->end();
1984          I != IEnd; ++I)
1985       Diag((*I)->getLocation(), diag::note_template_declared_here)
1986         << 0 << (*I)->getDeclName();
1987 
1988     return;
1989   }
1990 }
1991 
CheckTemplateIdType(TemplateName Name,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)1992 QualType Sema::CheckTemplateIdType(TemplateName Name,
1993                                    SourceLocation TemplateLoc,
1994                                    TemplateArgumentListInfo &TemplateArgs) {
1995   DependentTemplateName *DTN
1996     = Name.getUnderlying().getAsDependentTemplateName();
1997   if (DTN && DTN->isIdentifier())
1998     // When building a template-id where the template-name is dependent,
1999     // assume the template is a type template. Either our assumption is
2000     // correct, or the code is ill-formed and will be diagnosed when the
2001     // dependent name is substituted.
2002     return Context.getDependentTemplateSpecializationType(ETK_None,
2003                                                           DTN->getQualifier(),
2004                                                           DTN->getIdentifier(),
2005                                                           TemplateArgs);
2006 
2007   TemplateDecl *Template = Name.getAsTemplateDecl();
2008   if (!Template || isa<FunctionTemplateDecl>(Template) ||
2009       isa<VarTemplateDecl>(Template)) {
2010     // We might have a substituted template template parameter pack. If so,
2011     // build a template specialization type for it.
2012     if (Name.getAsSubstTemplateTemplateParmPack())
2013       return Context.getTemplateSpecializationType(Name, TemplateArgs);
2014 
2015     Diag(TemplateLoc, diag::err_template_id_not_a_type)
2016       << Name;
2017     NoteAllFoundTemplates(Name);
2018     return QualType();
2019   }
2020 
2021   // Check that the template argument list is well-formed for this
2022   // template.
2023   SmallVector<TemplateArgument, 4> Converted;
2024   if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
2025                                 false, Converted))
2026     return QualType();
2027 
2028   QualType CanonType;
2029 
2030   bool InstantiationDependent = false;
2031   if (TypeAliasTemplateDecl *AliasTemplate =
2032           dyn_cast<TypeAliasTemplateDecl>(Template)) {
2033     // Find the canonical type for this type alias template specialization.
2034     TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
2035     if (Pattern->isInvalidDecl())
2036       return QualType();
2037 
2038     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2039                                       Converted.data(), Converted.size());
2040 
2041     // Only substitute for the innermost template argument list.
2042     MultiLevelTemplateArgumentList TemplateArgLists;
2043     TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
2044     unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
2045     for (unsigned I = 0; I < Depth; ++I)
2046       TemplateArgLists.addOuterTemplateArguments(None);
2047 
2048     LocalInstantiationScope Scope(*this);
2049     InstantiatingTemplate Inst(*this, TemplateLoc, Template);
2050     if (Inst.isInvalid())
2051       return QualType();
2052 
2053     CanonType = SubstType(Pattern->getUnderlyingType(),
2054                           TemplateArgLists, AliasTemplate->getLocation(),
2055                           AliasTemplate->getDeclName());
2056     if (CanonType.isNull())
2057       return QualType();
2058   } else if (Name.isDependent() ||
2059              TemplateSpecializationType::anyDependentTemplateArguments(
2060                TemplateArgs, InstantiationDependent)) {
2061     // This class template specialization is a dependent
2062     // type. Therefore, its canonical type is another class template
2063     // specialization type that contains all of the converted
2064     // arguments in canonical form. This ensures that, e.g., A<T> and
2065     // A<T, T> have identical types when A is declared as:
2066     //
2067     //   template<typename T, typename U = T> struct A;
2068     TemplateName CanonName = Context.getCanonicalTemplateName(Name);
2069     CanonType = Context.getTemplateSpecializationType(CanonName,
2070                                                       Converted.data(),
2071                                                       Converted.size());
2072 
2073     // FIXME: CanonType is not actually the canonical type, and unfortunately
2074     // it is a TemplateSpecializationType that we will never use again.
2075     // In the future, we need to teach getTemplateSpecializationType to only
2076     // build the canonical type and return that to us.
2077     CanonType = Context.getCanonicalType(CanonType);
2078 
2079     // This might work out to be a current instantiation, in which
2080     // case the canonical type needs to be the InjectedClassNameType.
2081     //
2082     // TODO: in theory this could be a simple hashtable lookup; most
2083     // changes to CurContext don't change the set of current
2084     // instantiations.
2085     if (isa<ClassTemplateDecl>(Template)) {
2086       for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
2087         // If we get out to a namespace, we're done.
2088         if (Ctx->isFileContext()) break;
2089 
2090         // If this isn't a record, keep looking.
2091         CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
2092         if (!Record) continue;
2093 
2094         // Look for one of the two cases with InjectedClassNameTypes
2095         // and check whether it's the same template.
2096         if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
2097             !Record->getDescribedClassTemplate())
2098           continue;
2099 
2100         // Fetch the injected class name type and check whether its
2101         // injected type is equal to the type we just built.
2102         QualType ICNT = Context.getTypeDeclType(Record);
2103         QualType Injected = cast<InjectedClassNameType>(ICNT)
2104           ->getInjectedSpecializationType();
2105 
2106         if (CanonType != Injected->getCanonicalTypeInternal())
2107           continue;
2108 
2109         // If so, the canonical type of this TST is the injected
2110         // class name type of the record we just found.
2111         assert(ICNT.isCanonical());
2112         CanonType = ICNT;
2113         break;
2114       }
2115     }
2116   } else if (ClassTemplateDecl *ClassTemplate
2117                = dyn_cast<ClassTemplateDecl>(Template)) {
2118     // Find the class template specialization declaration that
2119     // corresponds to these arguments.
2120     void *InsertPos = nullptr;
2121     ClassTemplateSpecializationDecl *Decl
2122       = ClassTemplate->findSpecialization(Converted, InsertPos);
2123     if (!Decl) {
2124       // This is the first time we have referenced this class template
2125       // specialization. Create the canonical declaration and add it to
2126       // the set of specializations.
2127       Decl = ClassTemplateSpecializationDecl::Create(Context,
2128                             ClassTemplate->getTemplatedDecl()->getTagKind(),
2129                                                 ClassTemplate->getDeclContext(),
2130                             ClassTemplate->getTemplatedDecl()->getLocStart(),
2131                                                 ClassTemplate->getLocation(),
2132                                                      ClassTemplate,
2133                                                      Converted.data(),
2134                                                      Converted.size(), nullptr);
2135       ClassTemplate->AddSpecialization(Decl, InsertPos);
2136       if (ClassTemplate->isOutOfLine())
2137         Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
2138     }
2139 
2140     // Diagnose uses of this specialization.
2141     (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
2142 
2143     CanonType = Context.getTypeDeclType(Decl);
2144     assert(isa<RecordType>(CanonType) &&
2145            "type of non-dependent specialization is not a RecordType");
2146   }
2147 
2148   // Build the fully-sugared type for this class template
2149   // specialization, which refers back to the class template
2150   // specialization we created or found.
2151   return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2152 }
2153 
2154 TypeResult
ActOnTemplateIdType(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateD,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,bool IsCtorOrDtorName)2155 Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
2156                           TemplateTy TemplateD, SourceLocation TemplateLoc,
2157                           SourceLocation LAngleLoc,
2158                           ASTTemplateArgsPtr TemplateArgsIn,
2159                           SourceLocation RAngleLoc,
2160                           bool IsCtorOrDtorName) {
2161   if (SS.isInvalid())
2162     return true;
2163 
2164   TemplateName Template = TemplateD.get();
2165 
2166   // Translate the parser's template argument list in our AST format.
2167   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2168   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2169 
2170   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2171     QualType T
2172       = Context.getDependentTemplateSpecializationType(ETK_None,
2173                                                        DTN->getQualifier(),
2174                                                        DTN->getIdentifier(),
2175                                                        TemplateArgs);
2176     // Build type-source information.
2177     TypeLocBuilder TLB;
2178     DependentTemplateSpecializationTypeLoc SpecTL
2179       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2180     SpecTL.setElaboratedKeywordLoc(SourceLocation());
2181     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2182     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2183     SpecTL.setTemplateNameLoc(TemplateLoc);
2184     SpecTL.setLAngleLoc(LAngleLoc);
2185     SpecTL.setRAngleLoc(RAngleLoc);
2186     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2187       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2188     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2189   }
2190 
2191   QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2192 
2193   if (Result.isNull())
2194     return true;
2195 
2196   // Build type-source information.
2197   TypeLocBuilder TLB;
2198   TemplateSpecializationTypeLoc SpecTL
2199     = TLB.push<TemplateSpecializationTypeLoc>(Result);
2200   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2201   SpecTL.setTemplateNameLoc(TemplateLoc);
2202   SpecTL.setLAngleLoc(LAngleLoc);
2203   SpecTL.setRAngleLoc(RAngleLoc);
2204   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2205     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2206 
2207   // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
2208   // constructor or destructor name (in such a case, the scope specifier
2209   // will be attached to the enclosing Decl or Expr node).
2210   if (SS.isNotEmpty() && !IsCtorOrDtorName) {
2211     // Create an elaborated-type-specifier containing the nested-name-specifier.
2212     Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2213     ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2214     ElabTL.setElaboratedKeywordLoc(SourceLocation());
2215     ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2216   }
2217 
2218   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2219 }
2220 
ActOnTagTemplateIdType(TagUseKind TUK,TypeSpecifierType TagSpec,SourceLocation TagLoc,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateD,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)2221 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2222                                         TypeSpecifierType TagSpec,
2223                                         SourceLocation TagLoc,
2224                                         CXXScopeSpec &SS,
2225                                         SourceLocation TemplateKWLoc,
2226                                         TemplateTy TemplateD,
2227                                         SourceLocation TemplateLoc,
2228                                         SourceLocation LAngleLoc,
2229                                         ASTTemplateArgsPtr TemplateArgsIn,
2230                                         SourceLocation RAngleLoc) {
2231   TemplateName Template = TemplateD.get();
2232 
2233   // Translate the parser's template argument list in our AST format.
2234   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2235   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2236 
2237   // Determine the tag kind
2238   TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2239   ElaboratedTypeKeyword Keyword
2240     = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2241 
2242   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2243     QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2244                                                           DTN->getQualifier(),
2245                                                           DTN->getIdentifier(),
2246                                                                 TemplateArgs);
2247 
2248     // Build type-source information.
2249     TypeLocBuilder TLB;
2250     DependentTemplateSpecializationTypeLoc SpecTL
2251       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2252     SpecTL.setElaboratedKeywordLoc(TagLoc);
2253     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2254     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2255     SpecTL.setTemplateNameLoc(TemplateLoc);
2256     SpecTL.setLAngleLoc(LAngleLoc);
2257     SpecTL.setRAngleLoc(RAngleLoc);
2258     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2259       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2260     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2261   }
2262 
2263   if (TypeAliasTemplateDecl *TAT =
2264         dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2265     // C++0x [dcl.type.elab]p2:
2266     //   If the identifier resolves to a typedef-name or the simple-template-id
2267     //   resolves to an alias template specialization, the
2268     //   elaborated-type-specifier is ill-formed.
2269     Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2270     Diag(TAT->getLocation(), diag::note_declared_at);
2271   }
2272 
2273   QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2274   if (Result.isNull())
2275     return TypeResult(true);
2276 
2277   // Check the tag kind
2278   if (const RecordType *RT = Result->getAs<RecordType>()) {
2279     RecordDecl *D = RT->getDecl();
2280 
2281     IdentifierInfo *Id = D->getIdentifier();
2282     assert(Id && "templated class must have an identifier");
2283 
2284     if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2285                                       TagLoc, *Id)) {
2286       Diag(TagLoc, diag::err_use_with_wrong_tag)
2287         << Result
2288         << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2289       Diag(D->getLocation(), diag::note_previous_use);
2290     }
2291   }
2292 
2293   // Provide source-location information for the template specialization.
2294   TypeLocBuilder TLB;
2295   TemplateSpecializationTypeLoc SpecTL
2296     = TLB.push<TemplateSpecializationTypeLoc>(Result);
2297   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2298   SpecTL.setTemplateNameLoc(TemplateLoc);
2299   SpecTL.setLAngleLoc(LAngleLoc);
2300   SpecTL.setRAngleLoc(RAngleLoc);
2301   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2302     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2303 
2304   // Construct an elaborated type containing the nested-name-specifier (if any)
2305   // and tag keyword.
2306   Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2307   ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2308   ElabTL.setElaboratedKeywordLoc(TagLoc);
2309   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2310   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2311 }
2312 
2313 static bool CheckTemplatePartialSpecializationArgs(
2314     Sema &S, SourceLocation NameLoc, TemplateParameterList *TemplateParams,
2315     unsigned ExplicitArgs, SmallVectorImpl<TemplateArgument> &TemplateArgs);
2316 
2317 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
2318                                              NamedDecl *PrevDecl,
2319                                              SourceLocation Loc,
2320                                              bool IsPartialSpecialization);
2321 
2322 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
2323 
isTemplateArgumentTemplateParameter(const TemplateArgument & Arg,unsigned Depth,unsigned Index)2324 static bool isTemplateArgumentTemplateParameter(
2325     const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
2326   switch (Arg.getKind()) {
2327   case TemplateArgument::Null:
2328   case TemplateArgument::NullPtr:
2329   case TemplateArgument::Integral:
2330   case TemplateArgument::Declaration:
2331   case TemplateArgument::Pack:
2332   case TemplateArgument::TemplateExpansion:
2333     return false;
2334 
2335   case TemplateArgument::Type: {
2336     QualType Type = Arg.getAsType();
2337     const TemplateTypeParmType *TPT =
2338         Arg.getAsType()->getAs<TemplateTypeParmType>();
2339     return TPT && !Type.hasQualifiers() &&
2340            TPT->getDepth() == Depth && TPT->getIndex() == Index;
2341   }
2342 
2343   case TemplateArgument::Expression: {
2344     DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
2345     if (!DRE || !DRE->getDecl())
2346       return false;
2347     const NonTypeTemplateParmDecl *NTTP =
2348         dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
2349     return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
2350   }
2351 
2352   case TemplateArgument::Template:
2353     const TemplateTemplateParmDecl *TTP =
2354         dyn_cast_or_null<TemplateTemplateParmDecl>(
2355             Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
2356     return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
2357   }
2358   llvm_unreachable("unexpected kind of template argument");
2359 }
2360 
isSameAsPrimaryTemplate(TemplateParameterList * Params,ArrayRef<TemplateArgument> Args)2361 static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
2362                                     ArrayRef<TemplateArgument> Args) {
2363   if (Params->size() != Args.size())
2364     return false;
2365 
2366   unsigned Depth = Params->getDepth();
2367 
2368   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
2369     TemplateArgument Arg = Args[I];
2370 
2371     // If the parameter is a pack expansion, the argument must be a pack
2372     // whose only element is a pack expansion.
2373     if (Params->getParam(I)->isParameterPack()) {
2374       if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
2375           !Arg.pack_begin()->isPackExpansion())
2376         return false;
2377       Arg = Arg.pack_begin()->getPackExpansionPattern();
2378     }
2379 
2380     if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
2381       return false;
2382   }
2383 
2384   return true;
2385 }
2386 
2387 /// Convert the parser's template argument list representation into our form.
2388 static TemplateArgumentListInfo
makeTemplateArgumentListInfo(Sema & S,TemplateIdAnnotation & TemplateId)2389 makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
2390   TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
2391                                         TemplateId.RAngleLoc);
2392   ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
2393                                      TemplateId.NumArgs);
2394   S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
2395   return TemplateArgs;
2396 }
2397 
ActOnVarTemplateSpecialization(Scope * S,Declarator & D,TypeSourceInfo * DI,SourceLocation TemplateKWLoc,TemplateParameterList * TemplateParams,VarDecl::StorageClass SC,bool IsPartialSpecialization)2398 DeclResult Sema::ActOnVarTemplateSpecialization(
2399     Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
2400     TemplateParameterList *TemplateParams, VarDecl::StorageClass SC,
2401     bool IsPartialSpecialization) {
2402   // D must be variable template id.
2403   assert(D.getName().getKind() == UnqualifiedId::IK_TemplateId &&
2404          "Variable template specialization is declared with a template it.");
2405 
2406   TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2407   TemplateArgumentListInfo TemplateArgs =
2408       makeTemplateArgumentListInfo(*this, *TemplateId);
2409   SourceLocation TemplateNameLoc = D.getIdentifierLoc();
2410   SourceLocation LAngleLoc = TemplateId->LAngleLoc;
2411   SourceLocation RAngleLoc = TemplateId->RAngleLoc;
2412 
2413   TemplateName Name = TemplateId->Template.get();
2414 
2415   // The template-id must name a variable template.
2416   VarTemplateDecl *VarTemplate =
2417       dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
2418   if (!VarTemplate) {
2419     NamedDecl *FnTemplate;
2420     if (auto *OTS = Name.getAsOverloadedTemplate())
2421       FnTemplate = *OTS->begin();
2422     else
2423       FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
2424     if (FnTemplate)
2425       return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
2426                << FnTemplate->getDeclName();
2427     return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
2428              << IsPartialSpecialization;
2429   }
2430 
2431   // Check for unexpanded parameter packs in any of the template arguments.
2432   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2433     if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
2434                                         UPPC_PartialSpecialization))
2435       return true;
2436 
2437   // Check that the template argument list is well-formed for this
2438   // template.
2439   SmallVector<TemplateArgument, 4> Converted;
2440   if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
2441                                 false, Converted))
2442     return true;
2443 
2444   // Check that the type of this variable template specialization
2445   // matches the expected type.
2446   TypeSourceInfo *ExpectedDI;
2447   {
2448     // Do substitution on the type of the declaration
2449     TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
2450                                          Converted.data(), Converted.size());
2451     InstantiatingTemplate Inst(*this, TemplateKWLoc, VarTemplate);
2452     if (Inst.isInvalid())
2453       return true;
2454     VarDecl *Templated = VarTemplate->getTemplatedDecl();
2455     ExpectedDI =
2456         SubstType(Templated->getTypeSourceInfo(),
2457                   MultiLevelTemplateArgumentList(TemplateArgList),
2458                   Templated->getTypeSpecStartLoc(), Templated->getDeclName());
2459   }
2460   if (!ExpectedDI)
2461     return true;
2462 
2463   // Find the variable template (partial) specialization declaration that
2464   // corresponds to these arguments.
2465   if (IsPartialSpecialization) {
2466     if (CheckTemplatePartialSpecializationArgs(
2467             *this, TemplateNameLoc, VarTemplate->getTemplateParameters(),
2468             TemplateArgs.size(), Converted))
2469       return true;
2470 
2471     bool InstantiationDependent;
2472     if (!Name.isDependent() &&
2473         !TemplateSpecializationType::anyDependentTemplateArguments(
2474             TemplateArgs.getArgumentArray(), TemplateArgs.size(),
2475             InstantiationDependent)) {
2476       Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
2477           << VarTemplate->getDeclName();
2478       IsPartialSpecialization = false;
2479     }
2480 
2481     if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
2482                                 Converted)) {
2483       // C++ [temp.class.spec]p9b3:
2484       //
2485       //   -- The argument list of the specialization shall not be identical
2486       //      to the implicit argument list of the primary template.
2487       Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
2488         << /*variable template*/ 1
2489         << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
2490         << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
2491       // FIXME: Recover from this by treating the declaration as a redeclaration
2492       // of the primary template.
2493       return true;
2494     }
2495   }
2496 
2497   void *InsertPos = nullptr;
2498   VarTemplateSpecializationDecl *PrevDecl = nullptr;
2499 
2500   if (IsPartialSpecialization)
2501     // FIXME: Template parameter list matters too
2502     PrevDecl = VarTemplate->findPartialSpecialization(Converted, InsertPos);
2503   else
2504     PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos);
2505 
2506   VarTemplateSpecializationDecl *Specialization = nullptr;
2507 
2508   // Check whether we can declare a variable template specialization in
2509   // the current scope.
2510   if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
2511                                        TemplateNameLoc,
2512                                        IsPartialSpecialization))
2513     return true;
2514 
2515   if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
2516     // Since the only prior variable template specialization with these
2517     // arguments was referenced but not declared,  reuse that
2518     // declaration node as our own, updating its source location and
2519     // the list of outer template parameters to reflect our new declaration.
2520     Specialization = PrevDecl;
2521     Specialization->setLocation(TemplateNameLoc);
2522     PrevDecl = nullptr;
2523   } else if (IsPartialSpecialization) {
2524     // Create a new class template partial specialization declaration node.
2525     VarTemplatePartialSpecializationDecl *PrevPartial =
2526         cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
2527     VarTemplatePartialSpecializationDecl *Partial =
2528         VarTemplatePartialSpecializationDecl::Create(
2529             Context, VarTemplate->getDeclContext(), TemplateKWLoc,
2530             TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
2531             Converted.data(), Converted.size(), TemplateArgs);
2532 
2533     if (!PrevPartial)
2534       VarTemplate->AddPartialSpecialization(Partial, InsertPos);
2535     Specialization = Partial;
2536 
2537     // If we are providing an explicit specialization of a member variable
2538     // template specialization, make a note of that.
2539     if (PrevPartial && PrevPartial->getInstantiatedFromMember())
2540       PrevPartial->setMemberSpecialization();
2541 
2542     // Check that all of the template parameters of the variable template
2543     // partial specialization are deducible from the template
2544     // arguments. If not, this variable template partial specialization
2545     // will never be used.
2546     llvm::SmallBitVector DeducibleParams(TemplateParams->size());
2547     MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
2548                                TemplateParams->getDepth(), DeducibleParams);
2549 
2550     if (!DeducibleParams.all()) {
2551       unsigned NumNonDeducible =
2552           DeducibleParams.size() - DeducibleParams.count();
2553       Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
2554         << /*variable template*/ 1 << (NumNonDeducible > 1)
2555         << SourceRange(TemplateNameLoc, RAngleLoc);
2556       for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
2557         if (!DeducibleParams[I]) {
2558           NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
2559           if (Param->getDeclName())
2560             Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
2561                 << Param->getDeclName();
2562           else
2563             Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
2564                 << "(anonymous)";
2565         }
2566       }
2567     }
2568   } else {
2569     // Create a new class template specialization declaration node for
2570     // this explicit specialization or friend declaration.
2571     Specialization = VarTemplateSpecializationDecl::Create(
2572         Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
2573         VarTemplate, DI->getType(), DI, SC, Converted.data(), Converted.size());
2574     Specialization->setTemplateArgsInfo(TemplateArgs);
2575 
2576     if (!PrevDecl)
2577       VarTemplate->AddSpecialization(Specialization, InsertPos);
2578   }
2579 
2580   // C++ [temp.expl.spec]p6:
2581   //   If a template, a member template or the member of a class template is
2582   //   explicitly specialized then that specialization shall be declared
2583   //   before the first use of that specialization that would cause an implicit
2584   //   instantiation to take place, in every translation unit in which such a
2585   //   use occurs; no diagnostic is required.
2586   if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
2587     bool Okay = false;
2588     for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
2589       // Is there any previous explicit specialization declaration?
2590       if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
2591         Okay = true;
2592         break;
2593       }
2594     }
2595 
2596     if (!Okay) {
2597       SourceRange Range(TemplateNameLoc, RAngleLoc);
2598       Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
2599           << Name << Range;
2600 
2601       Diag(PrevDecl->getPointOfInstantiation(),
2602            diag::note_instantiation_required_here)
2603           << (PrevDecl->getTemplateSpecializationKind() !=
2604               TSK_ImplicitInstantiation);
2605       return true;
2606     }
2607   }
2608 
2609   Specialization->setTemplateKeywordLoc(TemplateKWLoc);
2610   Specialization->setLexicalDeclContext(CurContext);
2611 
2612   // Add the specialization into its lexical context, so that it can
2613   // be seen when iterating through the list of declarations in that
2614   // context. However, specializations are not found by name lookup.
2615   CurContext->addDecl(Specialization);
2616 
2617   // Note that this is an explicit specialization.
2618   Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
2619 
2620   if (PrevDecl) {
2621     // Check that this isn't a redefinition of this specialization,
2622     // merging with previous declarations.
2623     LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
2624                           ForRedeclaration);
2625     PrevSpec.addDecl(PrevDecl);
2626     D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
2627   } else if (Specialization->isStaticDataMember() &&
2628              Specialization->isOutOfLine()) {
2629     Specialization->setAccess(VarTemplate->getAccess());
2630   }
2631 
2632   // Link instantiations of static data members back to the template from
2633   // which they were instantiated.
2634   if (Specialization->isStaticDataMember())
2635     Specialization->setInstantiationOfStaticDataMember(
2636         VarTemplate->getTemplatedDecl(),
2637         Specialization->getSpecializationKind());
2638 
2639   return Specialization;
2640 }
2641 
2642 namespace {
2643 /// \brief A partial specialization whose template arguments have matched
2644 /// a given template-id.
2645 struct PartialSpecMatchResult {
2646   VarTemplatePartialSpecializationDecl *Partial;
2647   TemplateArgumentList *Args;
2648 };
2649 }
2650 
2651 DeclResult
CheckVarTemplateId(VarTemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation TemplateNameLoc,const TemplateArgumentListInfo & TemplateArgs)2652 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
2653                          SourceLocation TemplateNameLoc,
2654                          const TemplateArgumentListInfo &TemplateArgs) {
2655   assert(Template && "A variable template id without template?");
2656 
2657   // Check that the template argument list is well-formed for this template.
2658   SmallVector<TemplateArgument, 4> Converted;
2659   if (CheckTemplateArgumentList(
2660           Template, TemplateNameLoc,
2661           const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
2662           Converted))
2663     return true;
2664 
2665   // Find the variable template specialization declaration that
2666   // corresponds to these arguments.
2667   void *InsertPos = nullptr;
2668   if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
2669           Converted, InsertPos))
2670     // If we already have a variable template specialization, return it.
2671     return Spec;
2672 
2673   // This is the first time we have referenced this variable template
2674   // specialization. Create the canonical declaration and add it to
2675   // the set of specializations, based on the closest partial specialization
2676   // that it represents. That is,
2677   VarDecl *InstantiationPattern = Template->getTemplatedDecl();
2678   TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
2679                                        Converted.data(), Converted.size());
2680   TemplateArgumentList *InstantiationArgs = &TemplateArgList;
2681   bool AmbiguousPartialSpec = false;
2682   typedef PartialSpecMatchResult MatchResult;
2683   SmallVector<MatchResult, 4> Matched;
2684   SourceLocation PointOfInstantiation = TemplateNameLoc;
2685   TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation);
2686 
2687   // 1. Attempt to find the closest partial specialization that this
2688   // specializes, if any.
2689   // If any of the template arguments is dependent, then this is probably
2690   // a placeholder for an incomplete declarative context; which must be
2691   // complete by instantiation time. Thus, do not search through the partial
2692   // specializations yet.
2693   // TODO: Unify with InstantiateClassTemplateSpecialization()?
2694   //       Perhaps better after unification of DeduceTemplateArguments() and
2695   //       getMoreSpecializedPartialSpecialization().
2696   bool InstantiationDependent = false;
2697   if (!TemplateSpecializationType::anyDependentTemplateArguments(
2698           TemplateArgs, InstantiationDependent)) {
2699 
2700     SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
2701     Template->getPartialSpecializations(PartialSpecs);
2702 
2703     for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
2704       VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
2705       TemplateDeductionInfo Info(FailedCandidates.getLocation());
2706 
2707       if (TemplateDeductionResult Result =
2708               DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
2709         // Store the failed-deduction information for use in diagnostics, later.
2710         // TODO: Actually use the failed-deduction info?
2711         FailedCandidates.addCandidate()
2712             .set(Partial, MakeDeductionFailureInfo(Context, Result, Info));
2713         (void)Result;
2714       } else {
2715         Matched.push_back(PartialSpecMatchResult());
2716         Matched.back().Partial = Partial;
2717         Matched.back().Args = Info.take();
2718       }
2719     }
2720 
2721     if (Matched.size() >= 1) {
2722       SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
2723       if (Matched.size() == 1) {
2724         //   -- If exactly one matching specialization is found, the
2725         //      instantiation is generated from that specialization.
2726         // We don't need to do anything for this.
2727       } else {
2728         //   -- If more than one matching specialization is found, the
2729         //      partial order rules (14.5.4.2) are used to determine
2730         //      whether one of the specializations is more specialized
2731         //      than the others. If none of the specializations is more
2732         //      specialized than all of the other matching
2733         //      specializations, then the use of the variable template is
2734         //      ambiguous and the program is ill-formed.
2735         for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
2736                                                    PEnd = Matched.end();
2737              P != PEnd; ++P) {
2738           if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
2739                                                       PointOfInstantiation) ==
2740               P->Partial)
2741             Best = P;
2742         }
2743 
2744         // Determine if the best partial specialization is more specialized than
2745         // the others.
2746         for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
2747                                                    PEnd = Matched.end();
2748              P != PEnd; ++P) {
2749           if (P != Best && getMoreSpecializedPartialSpecialization(
2750                                P->Partial, Best->Partial,
2751                                PointOfInstantiation) != Best->Partial) {
2752             AmbiguousPartialSpec = true;
2753             break;
2754           }
2755         }
2756       }
2757 
2758       // Instantiate using the best variable template partial specialization.
2759       InstantiationPattern = Best->Partial;
2760       InstantiationArgs = Best->Args;
2761     } else {
2762       //   -- If no match is found, the instantiation is generated
2763       //      from the primary template.
2764       // InstantiationPattern = Template->getTemplatedDecl();
2765     }
2766   }
2767 
2768   // 2. Create the canonical declaration.
2769   // Note that we do not instantiate the variable just yet, since
2770   // instantiation is handled in DoMarkVarDeclReferenced().
2771   // FIXME: LateAttrs et al.?
2772   VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
2773       Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
2774       Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/);
2775   if (!Decl)
2776     return true;
2777 
2778   if (AmbiguousPartialSpec) {
2779     // Partial ordering did not produce a clear winner. Complain.
2780     Decl->setInvalidDecl();
2781     Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
2782         << Decl;
2783 
2784     // Print the matching partial specializations.
2785     for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
2786                                                PEnd = Matched.end();
2787          P != PEnd; ++P)
2788       Diag(P->Partial->getLocation(), diag::note_partial_spec_match)
2789           << getTemplateArgumentBindingsText(
2790                  P->Partial->getTemplateParameters(), *P->Args);
2791     return true;
2792   }
2793 
2794   if (VarTemplatePartialSpecializationDecl *D =
2795           dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
2796     Decl->setInstantiationOf(D, InstantiationArgs);
2797 
2798   assert(Decl && "No variable template specialization?");
2799   return Decl;
2800 }
2801 
2802 ExprResult
CheckVarTemplateId(const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,VarTemplateDecl * Template,SourceLocation TemplateLoc,const TemplateArgumentListInfo * TemplateArgs)2803 Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
2804                          const DeclarationNameInfo &NameInfo,
2805                          VarTemplateDecl *Template, SourceLocation TemplateLoc,
2806                          const TemplateArgumentListInfo *TemplateArgs) {
2807 
2808   DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
2809                                        *TemplateArgs);
2810   if (Decl.isInvalid())
2811     return ExprError();
2812 
2813   VarDecl *Var = cast<VarDecl>(Decl.get());
2814   if (!Var->getTemplateSpecializationKind())
2815     Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
2816                                        NameInfo.getLoc());
2817 
2818   // Build an ordinary singleton decl ref.
2819   return BuildDeclarationNameExpr(SS, NameInfo, Var,
2820                                   /*FoundD=*/nullptr, TemplateArgs);
2821 }
2822 
BuildTemplateIdExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,bool RequiresADL,const TemplateArgumentListInfo * TemplateArgs)2823 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2824                                      SourceLocation TemplateKWLoc,
2825                                      LookupResult &R,
2826                                      bool RequiresADL,
2827                                  const TemplateArgumentListInfo *TemplateArgs) {
2828   // FIXME: Can we do any checking at this point? I guess we could check the
2829   // template arguments that we have against the template name, if the template
2830   // name refers to a single template. That's not a terribly common case,
2831   // though.
2832   // foo<int> could identify a single function unambiguously
2833   // This approach does NOT work, since f<int>(1);
2834   // gets resolved prior to resorting to overload resolution
2835   // i.e., template<class T> void f(double);
2836   //       vs template<class T, class U> void f(U);
2837 
2838   // These should be filtered out by our callers.
2839   assert(!R.empty() && "empty lookup results when building templateid");
2840   assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2841 
2842   // In C++1y, check variable template ids.
2843   bool InstantiationDependent;
2844   if (R.getAsSingle<VarTemplateDecl>() &&
2845       !TemplateSpecializationType::anyDependentTemplateArguments(
2846            *TemplateArgs, InstantiationDependent)) {
2847     return CheckVarTemplateId(SS, R.getLookupNameInfo(),
2848                               R.getAsSingle<VarTemplateDecl>(),
2849                               TemplateKWLoc, TemplateArgs);
2850   }
2851 
2852   // We don't want lookup warnings at this point.
2853   R.suppressDiagnostics();
2854 
2855   UnresolvedLookupExpr *ULE
2856     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2857                                    SS.getWithLocInContext(Context),
2858                                    TemplateKWLoc,
2859                                    R.getLookupNameInfo(),
2860                                    RequiresADL, TemplateArgs,
2861                                    R.begin(), R.end());
2862 
2863   return ULE;
2864 }
2865 
2866 // We actually only call this from template instantiation.
2867 ExprResult
BuildQualifiedTemplateIdExpr(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)2868 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2869                                    SourceLocation TemplateKWLoc,
2870                                    const DeclarationNameInfo &NameInfo,
2871                              const TemplateArgumentListInfo *TemplateArgs) {
2872 
2873   assert(TemplateArgs || TemplateKWLoc.isValid());
2874   DeclContext *DC;
2875   if (!(DC = computeDeclContext(SS, false)) ||
2876       DC->isDependentContext() ||
2877       RequireCompleteDeclContext(SS, DC))
2878     return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
2879 
2880   bool MemberOfUnknownSpecialization;
2881   LookupResult R(*this, NameInfo, LookupOrdinaryName);
2882   LookupTemplateName(R, (Scope*)nullptr, SS, QualType(), /*Entering*/ false,
2883                      MemberOfUnknownSpecialization);
2884 
2885   if (R.isAmbiguous())
2886     return ExprError();
2887 
2888   if (R.empty()) {
2889     Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
2890       << NameInfo.getName() << SS.getRange();
2891     return ExprError();
2892   }
2893 
2894   if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
2895     Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
2896       << SS.getScopeRep()
2897       << NameInfo.getName().getAsString() << SS.getRange();
2898     Diag(Temp->getLocation(), diag::note_referenced_class_template);
2899     return ExprError();
2900   }
2901 
2902   return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
2903 }
2904 
2905 /// \brief Form a dependent template name.
2906 ///
2907 /// This action forms a dependent template name given the template
2908 /// name and its (presumably dependent) scope specifier. For
2909 /// example, given "MetaFun::template apply", the scope specifier \p
2910 /// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2911 /// of the "template" keyword, and "apply" is the \p Name.
ActOnDependentTemplateName(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Name,ParsedType ObjectType,bool EnteringContext,TemplateTy & Result)2912 TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2913                                                   CXXScopeSpec &SS,
2914                                                   SourceLocation TemplateKWLoc,
2915                                                   UnqualifiedId &Name,
2916                                                   ParsedType ObjectType,
2917                                                   bool EnteringContext,
2918                                                   TemplateTy &Result) {
2919   if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
2920     Diag(TemplateKWLoc,
2921          getLangOpts().CPlusPlus11 ?
2922            diag::warn_cxx98_compat_template_outside_of_template :
2923            diag::ext_template_outside_of_template)
2924       << FixItHint::CreateRemoval(TemplateKWLoc);
2925 
2926   DeclContext *LookupCtx = nullptr;
2927   if (SS.isSet())
2928     LookupCtx = computeDeclContext(SS, EnteringContext);
2929   if (!LookupCtx && ObjectType)
2930     LookupCtx = computeDeclContext(ObjectType.get());
2931   if (LookupCtx) {
2932     // C++0x [temp.names]p5:
2933     //   If a name prefixed by the keyword template is not the name of
2934     //   a template, the program is ill-formed. [Note: the keyword
2935     //   template may not be applied to non-template members of class
2936     //   templates. -end note ] [ Note: as is the case with the
2937     //   typename prefix, the template prefix is allowed in cases
2938     //   where it is not strictly necessary; i.e., when the
2939     //   nested-name-specifier or the expression on the left of the ->
2940     //   or . is not dependent on a template-parameter, or the use
2941     //   does not appear in the scope of a template. -end note]
2942     //
2943     // Note: C++03 was more strict here, because it banned the use of
2944     // the "template" keyword prior to a template-name that was not a
2945     // dependent name. C++ DR468 relaxed this requirement (the
2946     // "template" keyword is now permitted). We follow the C++0x
2947     // rules, even in C++03 mode with a warning, retroactively applying the DR.
2948     bool MemberOfUnknownSpecialization;
2949     TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
2950                                           ObjectType, EnteringContext, Result,
2951                                           MemberOfUnknownSpecialization);
2952     if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
2953         isa<CXXRecordDecl>(LookupCtx) &&
2954         (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
2955          cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
2956       // This is a dependent template. Handle it below.
2957     } else if (TNK == TNK_Non_template) {
2958       Diag(Name.getLocStart(),
2959            diag::err_template_kw_refers_to_non_template)
2960         << GetNameFromUnqualifiedId(Name).getName()
2961         << Name.getSourceRange()
2962         << TemplateKWLoc;
2963       return TNK_Non_template;
2964     } else {
2965       // We found something; return it.
2966       return TNK;
2967     }
2968   }
2969 
2970   NestedNameSpecifier *Qualifier = SS.getScopeRep();
2971 
2972   switch (Name.getKind()) {
2973   case UnqualifiedId::IK_Identifier:
2974     Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2975                                                               Name.Identifier));
2976     return TNK_Dependent_template_name;
2977 
2978   case UnqualifiedId::IK_OperatorFunctionId:
2979     Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2980                                              Name.OperatorFunctionId.Operator));
2981     return TNK_Function_template;
2982 
2983   case UnqualifiedId::IK_LiteralOperatorId:
2984     llvm_unreachable("literal operator id cannot have a dependent scope");
2985 
2986   default:
2987     break;
2988   }
2989 
2990   Diag(Name.getLocStart(),
2991        diag::err_template_kw_refers_to_non_template)
2992     << GetNameFromUnqualifiedId(Name).getName()
2993     << Name.getSourceRange()
2994     << TemplateKWLoc;
2995   return TNK_Non_template;
2996 }
2997 
CheckTemplateTypeArgument(TemplateTypeParmDecl * Param,TemplateArgumentLoc & AL,SmallVectorImpl<TemplateArgument> & Converted)2998 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2999                                      TemplateArgumentLoc &AL,
3000                           SmallVectorImpl<TemplateArgument> &Converted) {
3001   const TemplateArgument &Arg = AL.getArgument();
3002   QualType ArgType;
3003   TypeSourceInfo *TSI = nullptr;
3004 
3005   // Check template type parameter.
3006   switch(Arg.getKind()) {
3007   case TemplateArgument::Type:
3008     // C++ [temp.arg.type]p1:
3009     //   A template-argument for a template-parameter which is a
3010     //   type shall be a type-id.
3011     ArgType = Arg.getAsType();
3012     TSI = AL.getTypeSourceInfo();
3013     break;
3014   case TemplateArgument::Template: {
3015     // We have a template type parameter but the template argument
3016     // is a template without any arguments.
3017     SourceRange SR = AL.getSourceRange();
3018     TemplateName Name = Arg.getAsTemplate();
3019     Diag(SR.getBegin(), diag::err_template_missing_args)
3020       << Name << SR;
3021     if (TemplateDecl *Decl = Name.getAsTemplateDecl())
3022       Diag(Decl->getLocation(), diag::note_template_decl_here);
3023 
3024     return true;
3025   }
3026   case TemplateArgument::Expression: {
3027     // We have a template type parameter but the template argument is an
3028     // expression; see if maybe it is missing the "typename" keyword.
3029     CXXScopeSpec SS;
3030     DeclarationNameInfo NameInfo;
3031 
3032     if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
3033       SS.Adopt(ArgExpr->getQualifierLoc());
3034       NameInfo = ArgExpr->getNameInfo();
3035     } else if (DependentScopeDeclRefExpr *ArgExpr =
3036                dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
3037       SS.Adopt(ArgExpr->getQualifierLoc());
3038       NameInfo = ArgExpr->getNameInfo();
3039     } else if (CXXDependentScopeMemberExpr *ArgExpr =
3040                dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
3041       if (ArgExpr->isImplicitAccess()) {
3042         SS.Adopt(ArgExpr->getQualifierLoc());
3043         NameInfo = ArgExpr->getMemberNameInfo();
3044       }
3045     }
3046 
3047     if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
3048       LookupResult Result(*this, NameInfo, LookupOrdinaryName);
3049       LookupParsedName(Result, CurScope, &SS);
3050 
3051       if (Result.getAsSingle<TypeDecl>() ||
3052           Result.getResultKind() ==
3053               LookupResult::NotFoundInCurrentInstantiation) {
3054         // Suggest that the user add 'typename' before the NNS.
3055         SourceLocation Loc = AL.getSourceRange().getBegin();
3056         Diag(Loc, getLangOpts().MSVCCompat
3057                       ? diag::ext_ms_template_type_arg_missing_typename
3058                       : diag::err_template_arg_must_be_type_suggest)
3059             << FixItHint::CreateInsertion(Loc, "typename ");
3060         Diag(Param->getLocation(), diag::note_template_param_here);
3061 
3062         // Recover by synthesizing a type using the location information that we
3063         // already have.
3064         ArgType =
3065             Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II);
3066         TypeLocBuilder TLB;
3067         DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
3068         TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
3069         TL.setQualifierLoc(SS.getWithLocInContext(Context));
3070         TL.setNameLoc(NameInfo.getLoc());
3071         TSI = TLB.getTypeSourceInfo(Context, ArgType);
3072 
3073         // Overwrite our input TemplateArgumentLoc so that we can recover
3074         // properly.
3075         AL = TemplateArgumentLoc(TemplateArgument(ArgType),
3076                                  TemplateArgumentLocInfo(TSI));
3077 
3078         break;
3079       }
3080     }
3081     // fallthrough
3082   }
3083   default: {
3084     // We have a template type parameter but the template argument
3085     // is not a type.
3086     SourceRange SR = AL.getSourceRange();
3087     Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
3088     Diag(Param->getLocation(), diag::note_template_param_here);
3089 
3090     return true;
3091   }
3092   }
3093 
3094   if (CheckTemplateArgument(Param, TSI))
3095     return true;
3096 
3097   // Add the converted template type argument.
3098   ArgType = Context.getCanonicalType(ArgType);
3099 
3100   // Objective-C ARC:
3101   //   If an explicitly-specified template argument type is a lifetime type
3102   //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
3103   if (getLangOpts().ObjCAutoRefCount &&
3104       ArgType->isObjCLifetimeType() &&
3105       !ArgType.getObjCLifetime()) {
3106     Qualifiers Qs;
3107     Qs.setObjCLifetime(Qualifiers::OCL_Strong);
3108     ArgType = Context.getQualifiedType(ArgType, Qs);
3109   }
3110 
3111   Converted.push_back(TemplateArgument(ArgType));
3112   return false;
3113 }
3114 
3115 /// \brief Substitute template arguments into the default template argument for
3116 /// the given template type parameter.
3117 ///
3118 /// \param SemaRef the semantic analysis object for which we are performing
3119 /// the substitution.
3120 ///
3121 /// \param Template the template that we are synthesizing template arguments
3122 /// for.
3123 ///
3124 /// \param TemplateLoc the location of the template name that started the
3125 /// template-id we are checking.
3126 ///
3127 /// \param RAngleLoc the location of the right angle bracket ('>') that
3128 /// terminates the template-id.
3129 ///
3130 /// \param Param the template template parameter whose default we are
3131 /// substituting into.
3132 ///
3133 /// \param Converted the list of template arguments provided for template
3134 /// parameters that precede \p Param in the template parameter list.
3135 /// \returns the substituted template argument, or NULL if an error occurred.
3136 static TypeSourceInfo *
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTypeParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted)3137 SubstDefaultTemplateArgument(Sema &SemaRef,
3138                              TemplateDecl *Template,
3139                              SourceLocation TemplateLoc,
3140                              SourceLocation RAngleLoc,
3141                              TemplateTypeParmDecl *Param,
3142                          SmallVectorImpl<TemplateArgument> &Converted) {
3143   TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
3144 
3145   // If the argument type is dependent, instantiate it now based
3146   // on the previously-computed template arguments.
3147   if (ArgType->getType()->isDependentType()) {
3148     Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
3149                                      Template, Converted,
3150                                      SourceRange(TemplateLoc, RAngleLoc));
3151     if (Inst.isInvalid())
3152       return nullptr;
3153 
3154     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3155                                       Converted.data(), Converted.size());
3156 
3157     // Only substitute for the innermost template argument list.
3158     MultiLevelTemplateArgumentList TemplateArgLists;
3159     TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3160     for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3161       TemplateArgLists.addOuterTemplateArguments(None);
3162 
3163     Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3164     ArgType =
3165         SemaRef.SubstType(ArgType, TemplateArgLists,
3166                           Param->getDefaultArgumentLoc(), Param->getDeclName());
3167   }
3168 
3169   return ArgType;
3170 }
3171 
3172 /// \brief Substitute template arguments into the default template argument for
3173 /// the given non-type template parameter.
3174 ///
3175 /// \param SemaRef the semantic analysis object for which we are performing
3176 /// the substitution.
3177 ///
3178 /// \param Template the template that we are synthesizing template arguments
3179 /// for.
3180 ///
3181 /// \param TemplateLoc the location of the template name that started the
3182 /// template-id we are checking.
3183 ///
3184 /// \param RAngleLoc the location of the right angle bracket ('>') that
3185 /// terminates the template-id.
3186 ///
3187 /// \param Param the non-type template parameter whose default we are
3188 /// substituting into.
3189 ///
3190 /// \param Converted the list of template arguments provided for template
3191 /// parameters that precede \p Param in the template parameter list.
3192 ///
3193 /// \returns the substituted template argument, or NULL if an error occurred.
3194 static ExprResult
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,NonTypeTemplateParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted)3195 SubstDefaultTemplateArgument(Sema &SemaRef,
3196                              TemplateDecl *Template,
3197                              SourceLocation TemplateLoc,
3198                              SourceLocation RAngleLoc,
3199                              NonTypeTemplateParmDecl *Param,
3200                         SmallVectorImpl<TemplateArgument> &Converted) {
3201   Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
3202                                    Template, Converted,
3203                                    SourceRange(TemplateLoc, RAngleLoc));
3204   if (Inst.isInvalid())
3205     return ExprError();
3206 
3207   TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3208                                     Converted.data(), Converted.size());
3209 
3210   // Only substitute for the innermost template argument list.
3211   MultiLevelTemplateArgumentList TemplateArgLists;
3212   TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3213   for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3214     TemplateArgLists.addOuterTemplateArguments(None);
3215 
3216   Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3217   EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
3218   return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
3219 }
3220 
3221 /// \brief Substitute template arguments into the default template argument for
3222 /// the given template template parameter.
3223 ///
3224 /// \param SemaRef the semantic analysis object for which we are performing
3225 /// the substitution.
3226 ///
3227 /// \param Template the template that we are synthesizing template arguments
3228 /// for.
3229 ///
3230 /// \param TemplateLoc the location of the template name that started the
3231 /// template-id we are checking.
3232 ///
3233 /// \param RAngleLoc the location of the right angle bracket ('>') that
3234 /// terminates the template-id.
3235 ///
3236 /// \param Param the template template parameter whose default we are
3237 /// substituting into.
3238 ///
3239 /// \param Converted the list of template arguments provided for template
3240 /// parameters that precede \p Param in the template parameter list.
3241 ///
3242 /// \param QualifierLoc Will be set to the nested-name-specifier (with
3243 /// source-location information) that precedes the template name.
3244 ///
3245 /// \returns the substituted template argument, or NULL if an error occurred.
3246 static TemplateName
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTemplateParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted,NestedNameSpecifierLoc & QualifierLoc)3247 SubstDefaultTemplateArgument(Sema &SemaRef,
3248                              TemplateDecl *Template,
3249                              SourceLocation TemplateLoc,
3250                              SourceLocation RAngleLoc,
3251                              TemplateTemplateParmDecl *Param,
3252                        SmallVectorImpl<TemplateArgument> &Converted,
3253                              NestedNameSpecifierLoc &QualifierLoc) {
3254   Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Template, Converted,
3255                                    SourceRange(TemplateLoc, RAngleLoc));
3256   if (Inst.isInvalid())
3257     return TemplateName();
3258 
3259   TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3260                                     Converted.data(), Converted.size());
3261 
3262   // Only substitute for the innermost template argument list.
3263   MultiLevelTemplateArgumentList TemplateArgLists;
3264   TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3265   for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3266     TemplateArgLists.addOuterTemplateArguments(None);
3267 
3268   Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3269   // Substitute into the nested-name-specifier first,
3270   QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
3271   if (QualifierLoc) {
3272     QualifierLoc =
3273         SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
3274     if (!QualifierLoc)
3275       return TemplateName();
3276   }
3277 
3278   return SemaRef.SubstTemplateName(
3279              QualifierLoc,
3280              Param->getDefaultArgument().getArgument().getAsTemplate(),
3281              Param->getDefaultArgument().getTemplateNameLoc(),
3282              TemplateArgLists);
3283 }
3284 
3285 /// \brief If the given template parameter has a default template
3286 /// argument, substitute into that default template argument and
3287 /// return the corresponding template argument.
3288 TemplateArgumentLoc
SubstDefaultTemplateArgumentIfAvailable(TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,Decl * Param,SmallVectorImpl<TemplateArgument> & Converted,bool & HasDefaultArg)3289 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
3290                                               SourceLocation TemplateLoc,
3291                                               SourceLocation RAngleLoc,
3292                                               Decl *Param,
3293                                               SmallVectorImpl<TemplateArgument>
3294                                                 &Converted,
3295                                               bool &HasDefaultArg) {
3296   HasDefaultArg = false;
3297 
3298   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
3299     if (!TypeParm->hasDefaultArgument())
3300       return TemplateArgumentLoc();
3301 
3302     HasDefaultArg = true;
3303     TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
3304                                                       TemplateLoc,
3305                                                       RAngleLoc,
3306                                                       TypeParm,
3307                                                       Converted);
3308     if (DI)
3309       return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
3310 
3311     return TemplateArgumentLoc();
3312   }
3313 
3314   if (NonTypeTemplateParmDecl *NonTypeParm
3315         = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3316     if (!NonTypeParm->hasDefaultArgument())
3317       return TemplateArgumentLoc();
3318 
3319     HasDefaultArg = true;
3320     ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
3321                                                   TemplateLoc,
3322                                                   RAngleLoc,
3323                                                   NonTypeParm,
3324                                                   Converted);
3325     if (Arg.isInvalid())
3326       return TemplateArgumentLoc();
3327 
3328     Expr *ArgE = Arg.getAs<Expr>();
3329     return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
3330   }
3331 
3332   TemplateTemplateParmDecl *TempTempParm
3333     = cast<TemplateTemplateParmDecl>(Param);
3334   if (!TempTempParm->hasDefaultArgument())
3335     return TemplateArgumentLoc();
3336 
3337   HasDefaultArg = true;
3338   NestedNameSpecifierLoc QualifierLoc;
3339   TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
3340                                                     TemplateLoc,
3341                                                     RAngleLoc,
3342                                                     TempTempParm,
3343                                                     Converted,
3344                                                     QualifierLoc);
3345   if (TName.isNull())
3346     return TemplateArgumentLoc();
3347 
3348   return TemplateArgumentLoc(TemplateArgument(TName),
3349                 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
3350                 TempTempParm->getDefaultArgument().getTemplateNameLoc());
3351 }
3352 
3353 /// \brief Check that the given template argument corresponds to the given
3354 /// template parameter.
3355 ///
3356 /// \param Param The template parameter against which the argument will be
3357 /// checked.
3358 ///
3359 /// \param Arg The template argument.
3360 ///
3361 /// \param Template The template in which the template argument resides.
3362 ///
3363 /// \param TemplateLoc The location of the template name for the template
3364 /// whose argument list we're matching.
3365 ///
3366 /// \param RAngleLoc The location of the right angle bracket ('>') that closes
3367 /// the template argument list.
3368 ///
3369 /// \param ArgumentPackIndex The index into the argument pack where this
3370 /// argument will be placed. Only valid if the parameter is a parameter pack.
3371 ///
3372 /// \param Converted The checked, converted argument will be added to the
3373 /// end of this small vector.
3374 ///
3375 /// \param CTAK Describes how we arrived at this particular template argument:
3376 /// explicitly written, deduced, etc.
3377 ///
3378 /// \returns true on error, false otherwise.
CheckTemplateArgument(NamedDecl * Param,TemplateArgumentLoc & Arg,NamedDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,unsigned ArgumentPackIndex,SmallVectorImpl<TemplateArgument> & Converted,CheckTemplateArgumentKind CTAK)3379 bool Sema::CheckTemplateArgument(NamedDecl *Param,
3380                                  TemplateArgumentLoc &Arg,
3381                                  NamedDecl *Template,
3382                                  SourceLocation TemplateLoc,
3383                                  SourceLocation RAngleLoc,
3384                                  unsigned ArgumentPackIndex,
3385                             SmallVectorImpl<TemplateArgument> &Converted,
3386                                  CheckTemplateArgumentKind CTAK) {
3387   // Check template type parameters.
3388   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
3389     return CheckTemplateTypeArgument(TTP, Arg, Converted);
3390 
3391   // Check non-type template parameters.
3392   if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3393     // Do substitution on the type of the non-type template parameter
3394     // with the template arguments we've seen thus far.  But if the
3395     // template has a dependent context then we cannot substitute yet.
3396     QualType NTTPType = NTTP->getType();
3397     if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
3398       NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
3399 
3400     if (NTTPType->isDependentType() &&
3401         !isa<TemplateTemplateParmDecl>(Template) &&
3402         !Template->getDeclContext()->isDependentContext()) {
3403       // Do substitution on the type of the non-type template parameter.
3404       InstantiatingTemplate Inst(*this, TemplateLoc, Template,
3405                                  NTTP, Converted,
3406                                  SourceRange(TemplateLoc, RAngleLoc));
3407       if (Inst.isInvalid())
3408         return true;
3409 
3410       TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3411                                         Converted.data(), Converted.size());
3412       NTTPType = SubstType(NTTPType,
3413                            MultiLevelTemplateArgumentList(TemplateArgs),
3414                            NTTP->getLocation(),
3415                            NTTP->getDeclName());
3416       // If that worked, check the non-type template parameter type
3417       // for validity.
3418       if (!NTTPType.isNull())
3419         NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
3420                                                      NTTP->getLocation());
3421       if (NTTPType.isNull())
3422         return true;
3423     }
3424 
3425     switch (Arg.getArgument().getKind()) {
3426     case TemplateArgument::Null:
3427       llvm_unreachable("Should never see a NULL template argument here");
3428 
3429     case TemplateArgument::Expression: {
3430       TemplateArgument Result;
3431       ExprResult Res =
3432         CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
3433                               Result, CTAK);
3434       if (Res.isInvalid())
3435         return true;
3436 
3437       Converted.push_back(Result);
3438       break;
3439     }
3440 
3441     case TemplateArgument::Declaration:
3442     case TemplateArgument::Integral:
3443     case TemplateArgument::NullPtr:
3444       // We've already checked this template argument, so just copy
3445       // it to the list of converted arguments.
3446       Converted.push_back(Arg.getArgument());
3447       break;
3448 
3449     case TemplateArgument::Template:
3450     case TemplateArgument::TemplateExpansion:
3451       // We were given a template template argument. It may not be ill-formed;
3452       // see below.
3453       if (DependentTemplateName *DTN
3454             = Arg.getArgument().getAsTemplateOrTemplatePattern()
3455                                               .getAsDependentTemplateName()) {
3456         // We have a template argument such as \c T::template X, which we
3457         // parsed as a template template argument. However, since we now
3458         // know that we need a non-type template argument, convert this
3459         // template name into an expression.
3460 
3461         DeclarationNameInfo NameInfo(DTN->getIdentifier(),
3462                                      Arg.getTemplateNameLoc());
3463 
3464         CXXScopeSpec SS;
3465         SS.Adopt(Arg.getTemplateQualifierLoc());
3466         // FIXME: the template-template arg was a DependentTemplateName,
3467         // so it was provided with a template keyword. However, its source
3468         // location is not stored in the template argument structure.
3469         SourceLocation TemplateKWLoc;
3470         ExprResult E = DependentScopeDeclRefExpr::Create(
3471             Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
3472             nullptr);
3473 
3474         // If we parsed the template argument as a pack expansion, create a
3475         // pack expansion expression.
3476         if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
3477           E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
3478           if (E.isInvalid())
3479             return true;
3480         }
3481 
3482         TemplateArgument Result;
3483         E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result);
3484         if (E.isInvalid())
3485           return true;
3486 
3487         Converted.push_back(Result);
3488         break;
3489       }
3490 
3491       // We have a template argument that actually does refer to a class
3492       // template, alias template, or template template parameter, and
3493       // therefore cannot be a non-type template argument.
3494       Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
3495         << Arg.getSourceRange();
3496 
3497       Diag(Param->getLocation(), diag::note_template_param_here);
3498       return true;
3499 
3500     case TemplateArgument::Type: {
3501       // We have a non-type template parameter but the template
3502       // argument is a type.
3503 
3504       // C++ [temp.arg]p2:
3505       //   In a template-argument, an ambiguity between a type-id and
3506       //   an expression is resolved to a type-id, regardless of the
3507       //   form of the corresponding template-parameter.
3508       //
3509       // We warn specifically about this case, since it can be rather
3510       // confusing for users.
3511       QualType T = Arg.getArgument().getAsType();
3512       SourceRange SR = Arg.getSourceRange();
3513       if (T->isFunctionType())
3514         Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
3515       else
3516         Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
3517       Diag(Param->getLocation(), diag::note_template_param_here);
3518       return true;
3519     }
3520 
3521     case TemplateArgument::Pack:
3522       llvm_unreachable("Caller must expand template argument packs");
3523     }
3524 
3525     return false;
3526   }
3527 
3528 
3529   // Check template template parameters.
3530   TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
3531 
3532   // Substitute into the template parameter list of the template
3533   // template parameter, since previously-supplied template arguments
3534   // may appear within the template template parameter.
3535   {
3536     // Set up a template instantiation context.
3537     LocalInstantiationScope Scope(*this);
3538     InstantiatingTemplate Inst(*this, TemplateLoc, Template,
3539                                TempParm, Converted,
3540                                SourceRange(TemplateLoc, RAngleLoc));
3541     if (Inst.isInvalid())
3542       return true;
3543 
3544     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3545                                       Converted.data(), Converted.size());
3546     TempParm = cast_or_null<TemplateTemplateParmDecl>(
3547                       SubstDecl(TempParm, CurContext,
3548                                 MultiLevelTemplateArgumentList(TemplateArgs)));
3549     if (!TempParm)
3550       return true;
3551   }
3552 
3553   switch (Arg.getArgument().getKind()) {
3554   case TemplateArgument::Null:
3555     llvm_unreachable("Should never see a NULL template argument here");
3556 
3557   case TemplateArgument::Template:
3558   case TemplateArgument::TemplateExpansion:
3559     if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex))
3560       return true;
3561 
3562     Converted.push_back(Arg.getArgument());
3563     break;
3564 
3565   case TemplateArgument::Expression:
3566   case TemplateArgument::Type:
3567     // We have a template template parameter but the template
3568     // argument does not refer to a template.
3569     Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
3570       << getLangOpts().CPlusPlus11;
3571     return true;
3572 
3573   case TemplateArgument::Declaration:
3574     llvm_unreachable("Declaration argument with template template parameter");
3575   case TemplateArgument::Integral:
3576     llvm_unreachable("Integral argument with template template parameter");
3577   case TemplateArgument::NullPtr:
3578     llvm_unreachable("Null pointer argument with template template parameter");
3579 
3580   case TemplateArgument::Pack:
3581     llvm_unreachable("Caller must expand template argument packs");
3582   }
3583 
3584   return false;
3585 }
3586 
3587 /// \brief Diagnose an arity mismatch in the
diagnoseArityMismatch(Sema & S,TemplateDecl * Template,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)3588 static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
3589                                   SourceLocation TemplateLoc,
3590                                   TemplateArgumentListInfo &TemplateArgs) {
3591   TemplateParameterList *Params = Template->getTemplateParameters();
3592   unsigned NumParams = Params->size();
3593   unsigned NumArgs = TemplateArgs.size();
3594 
3595   SourceRange Range;
3596   if (NumArgs > NumParams)
3597     Range = SourceRange(TemplateArgs[NumParams].getLocation(),
3598                         TemplateArgs.getRAngleLoc());
3599   S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3600     << (NumArgs > NumParams)
3601     << (isa<ClassTemplateDecl>(Template)? 0 :
3602         isa<FunctionTemplateDecl>(Template)? 1 :
3603         isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3604     << Template << Range;
3605   S.Diag(Template->getLocation(), diag::note_template_decl_here)
3606     << Params->getSourceRange();
3607   return true;
3608 }
3609 
3610 /// \brief Check whether the template parameter is a pack expansion, and if so,
3611 /// determine the number of parameters produced by that expansion. For instance:
3612 ///
3613 /// \code
3614 /// template<typename ...Ts> struct A {
3615 ///   template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
3616 /// };
3617 /// \endcode
3618 ///
3619 /// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
3620 /// is not a pack expansion, so returns an empty Optional.
getExpandedPackSize(NamedDecl * Param)3621 static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
3622   if (NonTypeTemplateParmDecl *NTTP
3623         = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3624     if (NTTP->isExpandedParameterPack())
3625       return NTTP->getNumExpansionTypes();
3626   }
3627 
3628   if (TemplateTemplateParmDecl *TTP
3629         = dyn_cast<TemplateTemplateParmDecl>(Param)) {
3630     if (TTP->isExpandedParameterPack())
3631       return TTP->getNumExpansionTemplateParameters();
3632   }
3633 
3634   return None;
3635 }
3636 
3637 /// \brief Check that the given template argument list is well-formed
3638 /// for specializing the given template.
CheckTemplateArgumentList(TemplateDecl * Template,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs,bool PartialTemplateArgs,SmallVectorImpl<TemplateArgument> & Converted)3639 bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
3640                                      SourceLocation TemplateLoc,
3641                                      TemplateArgumentListInfo &TemplateArgs,
3642                                      bool PartialTemplateArgs,
3643                           SmallVectorImpl<TemplateArgument> &Converted) {
3644   TemplateParameterList *Params = Template->getTemplateParameters();
3645 
3646   SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
3647 
3648   // C++ [temp.arg]p1:
3649   //   [...] The type and form of each template-argument specified in
3650   //   a template-id shall match the type and form specified for the
3651   //   corresponding parameter declared by the template in its
3652   //   template-parameter-list.
3653   bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
3654   SmallVector<TemplateArgument, 2> ArgumentPack;
3655   unsigned ArgIdx = 0, NumArgs = TemplateArgs.size();
3656   LocalInstantiationScope InstScope(*this, true);
3657   for (TemplateParameterList::iterator Param = Params->begin(),
3658                                        ParamEnd = Params->end();
3659        Param != ParamEnd; /* increment in loop */) {
3660     // If we have an expanded parameter pack, make sure we don't have too
3661     // many arguments.
3662     if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
3663       if (*Expansions == ArgumentPack.size()) {
3664         // We're done with this parameter pack. Pack up its arguments and add
3665         // them to the list.
3666         Converted.push_back(
3667           TemplateArgument::CreatePackCopy(Context,
3668                                            ArgumentPack.data(),
3669                                            ArgumentPack.size()));
3670         ArgumentPack.clear();
3671 
3672         // This argument is assigned to the next parameter.
3673         ++Param;
3674         continue;
3675       } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
3676         // Not enough arguments for this parameter pack.
3677         Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3678           << false
3679           << (isa<ClassTemplateDecl>(Template)? 0 :
3680               isa<FunctionTemplateDecl>(Template)? 1 :
3681               isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3682           << Template;
3683         Diag(Template->getLocation(), diag::note_template_decl_here)
3684           << Params->getSourceRange();
3685         return true;
3686       }
3687     }
3688 
3689     if (ArgIdx < NumArgs) {
3690       // Check the template argument we were given.
3691       if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
3692                                 TemplateLoc, RAngleLoc,
3693                                 ArgumentPack.size(), Converted))
3694         return true;
3695 
3696       if (TemplateArgs[ArgIdx].getArgument().isPackExpansion() &&
3697           isa<TypeAliasTemplateDecl>(Template) &&
3698           !(Param + 1 == ParamEnd && (*Param)->isTemplateParameterPack() &&
3699             !getExpandedPackSize(*Param))) {
3700         // Core issue 1430: we have a pack expansion as an argument to an
3701         // alias template, and it's not part of a final parameter pack. This
3702         // can't be canonicalized, so reject it now.
3703         Diag(TemplateArgs[ArgIdx].getLocation(),
3704              diag::err_alias_template_expansion_into_fixed_list)
3705           << TemplateArgs[ArgIdx].getSourceRange();
3706         Diag((*Param)->getLocation(), diag::note_template_param_here);
3707         return true;
3708       }
3709 
3710       // We're now done with this argument.
3711       ++ArgIdx;
3712 
3713       if ((*Param)->isTemplateParameterPack()) {
3714         // The template parameter was a template parameter pack, so take the
3715         // deduced argument and place it on the argument pack. Note that we
3716         // stay on the same template parameter so that we can deduce more
3717         // arguments.
3718         ArgumentPack.push_back(Converted.pop_back_val());
3719       } else {
3720         // Move to the next template parameter.
3721         ++Param;
3722       }
3723 
3724       // If we just saw a pack expansion, then directly convert the remaining
3725       // arguments, because we don't know what parameters they'll match up
3726       // with.
3727       if (TemplateArgs[ArgIdx-1].getArgument().isPackExpansion()) {
3728         bool InFinalParameterPack = Param != ParamEnd &&
3729                                     Param + 1 == ParamEnd &&
3730                                     (*Param)->isTemplateParameterPack() &&
3731                                     !getExpandedPackSize(*Param);
3732 
3733         if (!InFinalParameterPack && !ArgumentPack.empty()) {
3734           // If we were part way through filling in an expanded parameter pack,
3735           // fall back to just producing individual arguments.
3736           Converted.insert(Converted.end(),
3737                            ArgumentPack.begin(), ArgumentPack.end());
3738           ArgumentPack.clear();
3739         }
3740 
3741         while (ArgIdx < NumArgs) {
3742           if (InFinalParameterPack)
3743             ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument());
3744           else
3745             Converted.push_back(TemplateArgs[ArgIdx].getArgument());
3746           ++ArgIdx;
3747         }
3748 
3749         // Push the argument pack onto the list of converted arguments.
3750         if (InFinalParameterPack) {
3751           Converted.push_back(
3752             TemplateArgument::CreatePackCopy(Context,
3753                                              ArgumentPack.data(),
3754                                              ArgumentPack.size()));
3755           ArgumentPack.clear();
3756         }
3757 
3758         return false;
3759       }
3760 
3761       continue;
3762     }
3763 
3764     // If we're checking a partial template argument list, we're done.
3765     if (PartialTemplateArgs) {
3766       if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
3767         Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3768                                                          ArgumentPack.data(),
3769                                                          ArgumentPack.size()));
3770 
3771       return false;
3772     }
3773 
3774     // If we have a template parameter pack with no more corresponding
3775     // arguments, just break out now and we'll fill in the argument pack below.
3776     if ((*Param)->isTemplateParameterPack()) {
3777       assert(!getExpandedPackSize(*Param) &&
3778              "Should have dealt with this already");
3779 
3780       // A non-expanded parameter pack before the end of the parameter list
3781       // only occurs for an ill-formed template parameter list, unless we've
3782       // got a partial argument list for a function template, so just bail out.
3783       if (Param + 1 != ParamEnd)
3784         return true;
3785 
3786       Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3787                                                        ArgumentPack.data(),
3788                                                        ArgumentPack.size()));
3789       ArgumentPack.clear();
3790 
3791       ++Param;
3792       continue;
3793     }
3794 
3795     // Check whether we have a default argument.
3796     TemplateArgumentLoc Arg;
3797 
3798     // Retrieve the default template argument from the template
3799     // parameter. For each kind of template parameter, we substitute the
3800     // template arguments provided thus far and any "outer" template arguments
3801     // (when the template parameter was part of a nested template) into
3802     // the default argument.
3803     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
3804       if (!TTP->hasDefaultArgument())
3805         return diagnoseArityMismatch(*this, Template, TemplateLoc,
3806                                      TemplateArgs);
3807 
3808       TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
3809                                                              Template,
3810                                                              TemplateLoc,
3811                                                              RAngleLoc,
3812                                                              TTP,
3813                                                              Converted);
3814       if (!ArgType)
3815         return true;
3816 
3817       Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
3818                                 ArgType);
3819     } else if (NonTypeTemplateParmDecl *NTTP
3820                  = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3821       if (!NTTP->hasDefaultArgument())
3822         return diagnoseArityMismatch(*this, Template, TemplateLoc,
3823                                      TemplateArgs);
3824 
3825       ExprResult E = SubstDefaultTemplateArgument(*this, Template,
3826                                                               TemplateLoc,
3827                                                               RAngleLoc,
3828                                                               NTTP,
3829                                                               Converted);
3830       if (E.isInvalid())
3831         return true;
3832 
3833       Expr *Ex = E.getAs<Expr>();
3834       Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
3835     } else {
3836       TemplateTemplateParmDecl *TempParm
3837         = cast<TemplateTemplateParmDecl>(*Param);
3838 
3839       if (!TempParm->hasDefaultArgument())
3840         return diagnoseArityMismatch(*this, Template, TemplateLoc,
3841                                      TemplateArgs);
3842 
3843       NestedNameSpecifierLoc QualifierLoc;
3844       TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
3845                                                        TemplateLoc,
3846                                                        RAngleLoc,
3847                                                        TempParm,
3848                                                        Converted,
3849                                                        QualifierLoc);
3850       if (Name.isNull())
3851         return true;
3852 
3853       Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
3854                            TempParm->getDefaultArgument().getTemplateNameLoc());
3855     }
3856 
3857     // Introduce an instantiation record that describes where we are using
3858     // the default template argument.
3859     InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted,
3860                                SourceRange(TemplateLoc, RAngleLoc));
3861     if (Inst.isInvalid())
3862       return true;
3863 
3864     // Check the default template argument.
3865     if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
3866                               RAngleLoc, 0, Converted))
3867       return true;
3868 
3869     // Core issue 150 (assumed resolution): if this is a template template
3870     // parameter, keep track of the default template arguments from the
3871     // template definition.
3872     if (isTemplateTemplateParameter)
3873       TemplateArgs.addArgument(Arg);
3874 
3875     // Move to the next template parameter and argument.
3876     ++Param;
3877     ++ArgIdx;
3878   }
3879 
3880   // If we're performing a partial argument substitution, allow any trailing
3881   // pack expansions; they might be empty. This can happen even if
3882   // PartialTemplateArgs is false (the list of arguments is complete but
3883   // still dependent).
3884   if (ArgIdx < NumArgs && CurrentInstantiationScope &&
3885       CurrentInstantiationScope->getPartiallySubstitutedPack()) {
3886     while (ArgIdx < NumArgs &&
3887            TemplateArgs[ArgIdx].getArgument().isPackExpansion())
3888       Converted.push_back(TemplateArgs[ArgIdx++].getArgument());
3889   }
3890 
3891   // If we have any leftover arguments, then there were too many arguments.
3892   // Complain and fail.
3893   if (ArgIdx < NumArgs)
3894     return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
3895 
3896   return false;
3897 }
3898 
3899 namespace {
3900   class UnnamedLocalNoLinkageFinder
3901     : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
3902   {
3903     Sema &S;
3904     SourceRange SR;
3905 
3906     typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
3907 
3908   public:
UnnamedLocalNoLinkageFinder(Sema & S,SourceRange SR)3909     UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
3910 
Visit(QualType T)3911     bool Visit(QualType T) {
3912       return inherited::Visit(T.getTypePtr());
3913     }
3914 
3915 #define TYPE(Class, Parent) \
3916     bool Visit##Class##Type(const Class##Type *);
3917 #define ABSTRACT_TYPE(Class, Parent) \
3918     bool Visit##Class##Type(const Class##Type *) { return false; }
3919 #define NON_CANONICAL_TYPE(Class, Parent) \
3920     bool Visit##Class##Type(const Class##Type *) { return false; }
3921 #include "clang/AST/TypeNodes.def"
3922 
3923     bool VisitTagDecl(const TagDecl *Tag);
3924     bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
3925   };
3926 }
3927 
VisitBuiltinType(const BuiltinType *)3928 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
3929   return false;
3930 }
3931 
VisitComplexType(const ComplexType * T)3932 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
3933   return Visit(T->getElementType());
3934 }
3935 
VisitPointerType(const PointerType * T)3936 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
3937   return Visit(T->getPointeeType());
3938 }
3939 
VisitBlockPointerType(const BlockPointerType * T)3940 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
3941                                                     const BlockPointerType* T) {
3942   return Visit(T->getPointeeType());
3943 }
3944 
VisitLValueReferenceType(const LValueReferenceType * T)3945 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
3946                                                 const LValueReferenceType* T) {
3947   return Visit(T->getPointeeType());
3948 }
3949 
VisitRValueReferenceType(const RValueReferenceType * T)3950 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
3951                                                 const RValueReferenceType* T) {
3952   return Visit(T->getPointeeType());
3953 }
3954 
VisitMemberPointerType(const MemberPointerType * T)3955 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
3956                                                   const MemberPointerType* T) {
3957   return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
3958 }
3959 
VisitConstantArrayType(const ConstantArrayType * T)3960 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
3961                                                   const ConstantArrayType* T) {
3962   return Visit(T->getElementType());
3963 }
3964 
VisitIncompleteArrayType(const IncompleteArrayType * T)3965 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
3966                                                  const IncompleteArrayType* T) {
3967   return Visit(T->getElementType());
3968 }
3969 
VisitVariableArrayType(const VariableArrayType * T)3970 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
3971                                                    const VariableArrayType* T) {
3972   return Visit(T->getElementType());
3973 }
3974 
VisitDependentSizedArrayType(const DependentSizedArrayType * T)3975 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
3976                                             const DependentSizedArrayType* T) {
3977   return Visit(T->getElementType());
3978 }
3979 
VisitDependentSizedExtVectorType(const DependentSizedExtVectorType * T)3980 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
3981                                          const DependentSizedExtVectorType* T) {
3982   return Visit(T->getElementType());
3983 }
3984 
VisitVectorType(const VectorType * T)3985 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
3986   return Visit(T->getElementType());
3987 }
3988 
VisitExtVectorType(const ExtVectorType * T)3989 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
3990   return Visit(T->getElementType());
3991 }
3992 
VisitFunctionProtoType(const FunctionProtoType * T)3993 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
3994                                                   const FunctionProtoType* T) {
3995   for (const auto &A : T->param_types()) {
3996     if (Visit(A))
3997       return true;
3998   }
3999 
4000   return Visit(T->getReturnType());
4001 }
4002 
VisitFunctionNoProtoType(const FunctionNoProtoType * T)4003 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
4004                                                const FunctionNoProtoType* T) {
4005   return Visit(T->getReturnType());
4006 }
4007 
VisitUnresolvedUsingType(const UnresolvedUsingType *)4008 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
4009                                                   const UnresolvedUsingType*) {
4010   return false;
4011 }
4012 
VisitTypeOfExprType(const TypeOfExprType *)4013 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
4014   return false;
4015 }
4016 
VisitTypeOfType(const TypeOfType * T)4017 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
4018   return Visit(T->getUnderlyingType());
4019 }
4020 
VisitDecltypeType(const DecltypeType *)4021 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
4022   return false;
4023 }
4024 
VisitUnaryTransformType(const UnaryTransformType *)4025 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
4026                                                     const UnaryTransformType*) {
4027   return false;
4028 }
4029 
VisitAutoType(const AutoType * T)4030 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
4031   return Visit(T->getDeducedType());
4032 }
4033 
VisitRecordType(const RecordType * T)4034 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
4035   return VisitTagDecl(T->getDecl());
4036 }
4037 
VisitEnumType(const EnumType * T)4038 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
4039   return VisitTagDecl(T->getDecl());
4040 }
4041 
VisitTemplateTypeParmType(const TemplateTypeParmType *)4042 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
4043                                                  const TemplateTypeParmType*) {
4044   return false;
4045 }
4046 
VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *)4047 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
4048                                         const SubstTemplateTypeParmPackType *) {
4049   return false;
4050 }
4051 
VisitTemplateSpecializationType(const TemplateSpecializationType *)4052 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
4053                                             const TemplateSpecializationType*) {
4054   return false;
4055 }
4056 
VisitInjectedClassNameType(const InjectedClassNameType * T)4057 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
4058                                               const InjectedClassNameType* T) {
4059   return VisitTagDecl(T->getDecl());
4060 }
4061 
VisitDependentNameType(const DependentNameType * T)4062 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
4063                                                    const DependentNameType* T) {
4064   return VisitNestedNameSpecifier(T->getQualifier());
4065 }
4066 
VisitDependentTemplateSpecializationType(const DependentTemplateSpecializationType * T)4067 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
4068                                  const DependentTemplateSpecializationType* T) {
4069   return VisitNestedNameSpecifier(T->getQualifier());
4070 }
4071 
VisitPackExpansionType(const PackExpansionType * T)4072 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
4073                                                    const PackExpansionType* T) {
4074   return Visit(T->getPattern());
4075 }
4076 
VisitObjCObjectType(const ObjCObjectType *)4077 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
4078   return false;
4079 }
4080 
VisitObjCInterfaceType(const ObjCInterfaceType *)4081 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
4082                                                    const ObjCInterfaceType *) {
4083   return false;
4084 }
4085 
VisitObjCObjectPointerType(const ObjCObjectPointerType *)4086 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
4087                                                 const ObjCObjectPointerType *) {
4088   return false;
4089 }
4090 
VisitAtomicType(const AtomicType * T)4091 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
4092   return Visit(T->getValueType());
4093 }
4094 
VisitTagDecl(const TagDecl * Tag)4095 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
4096   if (Tag->getDeclContext()->isFunctionOrMethod()) {
4097     S.Diag(SR.getBegin(),
4098            S.getLangOpts().CPlusPlus11 ?
4099              diag::warn_cxx98_compat_template_arg_local_type :
4100              diag::ext_template_arg_local_type)
4101       << S.Context.getTypeDeclType(Tag) << SR;
4102     return true;
4103   }
4104 
4105   if (!Tag->hasNameForLinkage()) {
4106     S.Diag(SR.getBegin(),
4107            S.getLangOpts().CPlusPlus11 ?
4108              diag::warn_cxx98_compat_template_arg_unnamed_type :
4109              diag::ext_template_arg_unnamed_type) << SR;
4110     S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
4111     return true;
4112   }
4113 
4114   return false;
4115 }
4116 
VisitNestedNameSpecifier(NestedNameSpecifier * NNS)4117 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
4118                                                     NestedNameSpecifier *NNS) {
4119   if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
4120     return true;
4121 
4122   switch (NNS->getKind()) {
4123   case NestedNameSpecifier::Identifier:
4124   case NestedNameSpecifier::Namespace:
4125   case NestedNameSpecifier::NamespaceAlias:
4126   case NestedNameSpecifier::Global:
4127     return false;
4128 
4129   case NestedNameSpecifier::TypeSpec:
4130   case NestedNameSpecifier::TypeSpecWithTemplate:
4131     return Visit(QualType(NNS->getAsType(), 0));
4132   }
4133   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
4134 }
4135 
4136 
4137 /// \brief Check a template argument against its corresponding
4138 /// template type parameter.
4139 ///
4140 /// This routine implements the semantics of C++ [temp.arg.type]. It
4141 /// returns true if an error occurred, and false otherwise.
CheckTemplateArgument(TemplateTypeParmDecl * Param,TypeSourceInfo * ArgInfo)4142 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
4143                                  TypeSourceInfo *ArgInfo) {
4144   assert(ArgInfo && "invalid TypeSourceInfo");
4145   QualType Arg = ArgInfo->getType();
4146   SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
4147 
4148   if (Arg->isVariablyModifiedType()) {
4149     return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
4150   } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
4151     return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
4152   }
4153 
4154   // C++03 [temp.arg.type]p2:
4155   //   A local type, a type with no linkage, an unnamed type or a type
4156   //   compounded from any of these types shall not be used as a
4157   //   template-argument for a template type-parameter.
4158   //
4159   // C++11 allows these, and even in C++03 we allow them as an extension with
4160   // a warning.
4161   bool NeedsCheck;
4162   if (LangOpts.CPlusPlus11)
4163     NeedsCheck =
4164         !Diags.isIgnored(diag::warn_cxx98_compat_template_arg_unnamed_type,
4165                          SR.getBegin()) ||
4166         !Diags.isIgnored(diag::warn_cxx98_compat_template_arg_local_type,
4167                          SR.getBegin());
4168   else
4169     NeedsCheck = Arg->hasUnnamedOrLocalType();
4170 
4171   if (NeedsCheck) {
4172     UnnamedLocalNoLinkageFinder Finder(*this, SR);
4173     (void)Finder.Visit(Context.getCanonicalType(Arg));
4174   }
4175 
4176   return false;
4177 }
4178 
4179 enum NullPointerValueKind {
4180   NPV_NotNullPointer,
4181   NPV_NullPointer,
4182   NPV_Error
4183 };
4184 
4185 /// \brief Determine whether the given template argument is a null pointer
4186 /// value of the appropriate type.
4187 static NullPointerValueKind
isNullPointerValueTemplateArgument(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * Arg)4188 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
4189                                    QualType ParamType, Expr *Arg) {
4190   if (Arg->isValueDependent() || Arg->isTypeDependent())
4191     return NPV_NotNullPointer;
4192 
4193   if (!S.getLangOpts().CPlusPlus11 || S.getLangOpts().MSVCCompat)
4194     return NPV_NotNullPointer;
4195 
4196   // Determine whether we have a constant expression.
4197   ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
4198   if (ArgRV.isInvalid())
4199     return NPV_Error;
4200   Arg = ArgRV.get();
4201 
4202   Expr::EvalResult EvalResult;
4203   SmallVector<PartialDiagnosticAt, 8> Notes;
4204   EvalResult.Diag = &Notes;
4205   if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
4206       EvalResult.HasSideEffects) {
4207     SourceLocation DiagLoc = Arg->getExprLoc();
4208 
4209     // If our only note is the usual "invalid subexpression" note, just point
4210     // the caret at its location rather than producing an essentially
4211     // redundant note.
4212     if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
4213         diag::note_invalid_subexpr_in_const_expr) {
4214       DiagLoc = Notes[0].first;
4215       Notes.clear();
4216     }
4217 
4218     S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
4219       << Arg->getType() << Arg->getSourceRange();
4220     for (unsigned I = 0, N = Notes.size(); I != N; ++I)
4221       S.Diag(Notes[I].first, Notes[I].second);
4222 
4223     S.Diag(Param->getLocation(), diag::note_template_param_here);
4224     return NPV_Error;
4225   }
4226 
4227   // C++11 [temp.arg.nontype]p1:
4228   //   - an address constant expression of type std::nullptr_t
4229   if (Arg->getType()->isNullPtrType())
4230     return NPV_NullPointer;
4231 
4232   //   - a constant expression that evaluates to a null pointer value (4.10); or
4233   //   - a constant expression that evaluates to a null member pointer value
4234   //     (4.11); or
4235   if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
4236       (EvalResult.Val.isMemberPointer() &&
4237        !EvalResult.Val.getMemberPointerDecl())) {
4238     // If our expression has an appropriate type, we've succeeded.
4239     bool ObjCLifetimeConversion;
4240     if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
4241         S.IsQualificationConversion(Arg->getType(), ParamType, false,
4242                                      ObjCLifetimeConversion))
4243       return NPV_NullPointer;
4244 
4245     // The types didn't match, but we know we got a null pointer; complain,
4246     // then recover as if the types were correct.
4247     S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
4248       << Arg->getType() << ParamType << Arg->getSourceRange();
4249     S.Diag(Param->getLocation(), diag::note_template_param_here);
4250     return NPV_NullPointer;
4251   }
4252 
4253   // If we don't have a null pointer value, but we do have a NULL pointer
4254   // constant, suggest a cast to the appropriate type.
4255   if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
4256     std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
4257     S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
4258         << ParamType << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
4259         << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getLocEnd()),
4260                                       ")");
4261     S.Diag(Param->getLocation(), diag::note_template_param_here);
4262     return NPV_NullPointer;
4263   }
4264 
4265   // FIXME: If we ever want to support general, address-constant expressions
4266   // as non-type template arguments, we should return the ExprResult here to
4267   // be interpreted by the caller.
4268   return NPV_NotNullPointer;
4269 }
4270 
4271 /// \brief Checks whether the given template argument is compatible with its
4272 /// template parameter.
CheckTemplateArgumentIsCompatibleWithParameter(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * ArgIn,Expr * Arg,QualType ArgType)4273 static bool CheckTemplateArgumentIsCompatibleWithParameter(
4274     Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
4275     Expr *Arg, QualType ArgType) {
4276   bool ObjCLifetimeConversion;
4277   if (ParamType->isPointerType() &&
4278       !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
4279       S.IsQualificationConversion(ArgType, ParamType, false,
4280                                   ObjCLifetimeConversion)) {
4281     // For pointer-to-object types, qualification conversions are
4282     // permitted.
4283   } else {
4284     if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
4285       if (!ParamRef->getPointeeType()->isFunctionType()) {
4286         // C++ [temp.arg.nontype]p5b3:
4287         //   For a non-type template-parameter of type reference to
4288         //   object, no conversions apply. The type referred to by the
4289         //   reference may be more cv-qualified than the (otherwise
4290         //   identical) type of the template- argument. The
4291         //   template-parameter is bound directly to the
4292         //   template-argument, which shall be an lvalue.
4293 
4294         // FIXME: Other qualifiers?
4295         unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
4296         unsigned ArgQuals = ArgType.getCVRQualifiers();
4297 
4298         if ((ParamQuals | ArgQuals) != ParamQuals) {
4299           S.Diag(Arg->getLocStart(),
4300                  diag::err_template_arg_ref_bind_ignores_quals)
4301             << ParamType << Arg->getType() << Arg->getSourceRange();
4302           S.Diag(Param->getLocation(), diag::note_template_param_here);
4303           return true;
4304         }
4305       }
4306     }
4307 
4308     // At this point, the template argument refers to an object or
4309     // function with external linkage. We now need to check whether the
4310     // argument and parameter types are compatible.
4311     if (!S.Context.hasSameUnqualifiedType(ArgType,
4312                                           ParamType.getNonReferenceType())) {
4313       // We can't perform this conversion or binding.
4314       if (ParamType->isReferenceType())
4315         S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
4316           << ParamType << ArgIn->getType() << Arg->getSourceRange();
4317       else
4318         S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
4319           << ArgIn->getType() << ParamType << Arg->getSourceRange();
4320       S.Diag(Param->getLocation(), diag::note_template_param_here);
4321       return true;
4322     }
4323   }
4324 
4325   return false;
4326 }
4327 
4328 /// \brief Checks whether the given template argument is the address
4329 /// of an object or function according to C++ [temp.arg.nontype]p1.
4330 static bool
CheckTemplateArgumentAddressOfObjectOrFunction(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * ArgIn,TemplateArgument & Converted)4331 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
4332                                                NonTypeTemplateParmDecl *Param,
4333                                                QualType ParamType,
4334                                                Expr *ArgIn,
4335                                                TemplateArgument &Converted) {
4336   bool Invalid = false;
4337   Expr *Arg = ArgIn;
4338   QualType ArgType = Arg->getType();
4339 
4340   bool AddressTaken = false;
4341   SourceLocation AddrOpLoc;
4342   if (S.getLangOpts().MicrosoftExt) {
4343     // Microsoft Visual C++ strips all casts, allows an arbitrary number of
4344     // dereference and address-of operators.
4345     Arg = Arg->IgnoreParenCasts();
4346 
4347     bool ExtWarnMSTemplateArg = false;
4348     UnaryOperatorKind FirstOpKind;
4349     SourceLocation FirstOpLoc;
4350     while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4351       UnaryOperatorKind UnOpKind = UnOp->getOpcode();
4352       if (UnOpKind == UO_Deref)
4353         ExtWarnMSTemplateArg = true;
4354       if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
4355         Arg = UnOp->getSubExpr()->IgnoreParenCasts();
4356         if (!AddrOpLoc.isValid()) {
4357           FirstOpKind = UnOpKind;
4358           FirstOpLoc = UnOp->getOperatorLoc();
4359         }
4360       } else
4361         break;
4362     }
4363     if (FirstOpLoc.isValid()) {
4364       if (ExtWarnMSTemplateArg)
4365         S.Diag(ArgIn->getLocStart(), diag::ext_ms_deref_template_argument)
4366           << ArgIn->getSourceRange();
4367 
4368       if (FirstOpKind == UO_AddrOf)
4369         AddressTaken = true;
4370       else if (Arg->getType()->isPointerType()) {
4371         // We cannot let pointers get dereferenced here, that is obviously not a
4372         // constant expression.
4373         assert(FirstOpKind == UO_Deref);
4374         S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
4375           << Arg->getSourceRange();
4376       }
4377     }
4378   } else {
4379     // See through any implicit casts we added to fix the type.
4380     Arg = Arg->IgnoreImpCasts();
4381 
4382     // C++ [temp.arg.nontype]p1:
4383     //
4384     //   A template-argument for a non-type, non-template
4385     //   template-parameter shall be one of: [...]
4386     //
4387     //     -- the address of an object or function with external
4388     //        linkage, including function templates and function
4389     //        template-ids but excluding non-static class members,
4390     //        expressed as & id-expression where the & is optional if
4391     //        the name refers to a function or array, or if the
4392     //        corresponding template-parameter is a reference; or
4393 
4394     // In C++98/03 mode, give an extension warning on any extra parentheses.
4395     // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4396     bool ExtraParens = false;
4397     while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4398       if (!Invalid && !ExtraParens) {
4399         S.Diag(Arg->getLocStart(),
4400                S.getLangOpts().CPlusPlus11
4401                    ? diag::warn_cxx98_compat_template_arg_extra_parens
4402                    : diag::ext_template_arg_extra_parens)
4403             << Arg->getSourceRange();
4404         ExtraParens = true;
4405       }
4406 
4407       Arg = Parens->getSubExpr();
4408     }
4409 
4410     while (SubstNonTypeTemplateParmExpr *subst =
4411                dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4412       Arg = subst->getReplacement()->IgnoreImpCasts();
4413 
4414     if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4415       if (UnOp->getOpcode() == UO_AddrOf) {
4416         Arg = UnOp->getSubExpr();
4417         AddressTaken = true;
4418         AddrOpLoc = UnOp->getOperatorLoc();
4419       }
4420     }
4421 
4422     while (SubstNonTypeTemplateParmExpr *subst =
4423                dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4424       Arg = subst->getReplacement()->IgnoreImpCasts();
4425   }
4426 
4427   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
4428   ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
4429 
4430   // If our parameter has pointer type, check for a null template value.
4431   if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
4432     NullPointerValueKind NPV;
4433     // dllimport'd entities aren't constant but are available inside of template
4434     // arguments.
4435     if (Entity && Entity->hasAttr<DLLImportAttr>())
4436       NPV = NPV_NotNullPointer;
4437     else
4438       NPV = isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn);
4439     switch (NPV) {
4440     case NPV_NullPointer:
4441       S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4442       Converted = TemplateArgument(ParamType, /*isNullPtr=*/true);
4443       return false;
4444 
4445     case NPV_Error:
4446       return true;
4447 
4448     case NPV_NotNullPointer:
4449       break;
4450     }
4451   }
4452 
4453   // Stop checking the precise nature of the argument if it is value dependent,
4454   // it should be checked when instantiated.
4455   if (Arg->isValueDependent()) {
4456     Converted = TemplateArgument(ArgIn);
4457     return false;
4458   }
4459 
4460   if (isa<CXXUuidofExpr>(Arg)) {
4461     if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType,
4462                                                        ArgIn, Arg, ArgType))
4463       return true;
4464 
4465     Converted = TemplateArgument(ArgIn);
4466     return false;
4467   }
4468 
4469   if (!DRE) {
4470     S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
4471     << Arg->getSourceRange();
4472     S.Diag(Param->getLocation(), diag::note_template_param_here);
4473     return true;
4474   }
4475 
4476   // Cannot refer to non-static data members
4477   if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
4478     S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
4479       << Entity << Arg->getSourceRange();
4480     S.Diag(Param->getLocation(), diag::note_template_param_here);
4481     return true;
4482   }
4483 
4484   // Cannot refer to non-static member functions
4485   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
4486     if (!Method->isStatic()) {
4487       S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
4488         << Method << Arg->getSourceRange();
4489       S.Diag(Param->getLocation(), diag::note_template_param_here);
4490       return true;
4491     }
4492   }
4493 
4494   FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
4495   VarDecl *Var = dyn_cast<VarDecl>(Entity);
4496 
4497   // A non-type template argument must refer to an object or function.
4498   if (!Func && !Var) {
4499     // We found something, but we don't know specifically what it is.
4500     S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
4501       << Arg->getSourceRange();
4502     S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4503     return true;
4504   }
4505 
4506   // Address / reference template args must have external linkage in C++98.
4507   if (Entity->getFormalLinkage() == InternalLinkage) {
4508     S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ?
4509              diag::warn_cxx98_compat_template_arg_object_internal :
4510              diag::ext_template_arg_object_internal)
4511       << !Func << Entity << Arg->getSourceRange();
4512     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
4513       << !Func;
4514   } else if (!Entity->hasLinkage()) {
4515     S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
4516       << !Func << Entity << Arg->getSourceRange();
4517     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
4518       << !Func;
4519     return true;
4520   }
4521 
4522   if (Func) {
4523     // If the template parameter has pointer type, the function decays.
4524     if (ParamType->isPointerType() && !AddressTaken)
4525       ArgType = S.Context.getPointerType(Func->getType());
4526     else if (AddressTaken && ParamType->isReferenceType()) {
4527       // If we originally had an address-of operator, but the
4528       // parameter has reference type, complain and (if things look
4529       // like they will work) drop the address-of operator.
4530       if (!S.Context.hasSameUnqualifiedType(Func->getType(),
4531                                             ParamType.getNonReferenceType())) {
4532         S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4533           << ParamType;
4534         S.Diag(Param->getLocation(), diag::note_template_param_here);
4535         return true;
4536       }
4537 
4538       S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4539         << ParamType
4540         << FixItHint::CreateRemoval(AddrOpLoc);
4541       S.Diag(Param->getLocation(), diag::note_template_param_here);
4542 
4543       ArgType = Func->getType();
4544     }
4545   } else {
4546     // A value of reference type is not an object.
4547     if (Var->getType()->isReferenceType()) {
4548       S.Diag(Arg->getLocStart(),
4549              diag::err_template_arg_reference_var)
4550         << Var->getType() << Arg->getSourceRange();
4551       S.Diag(Param->getLocation(), diag::note_template_param_here);
4552       return true;
4553     }
4554 
4555     // A template argument must have static storage duration.
4556     if (Var->getTLSKind()) {
4557       S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
4558         << Arg->getSourceRange();
4559       S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
4560       return true;
4561     }
4562 
4563     // If the template parameter has pointer type, we must have taken
4564     // the address of this object.
4565     if (ParamType->isReferenceType()) {
4566       if (AddressTaken) {
4567         // If we originally had an address-of operator, but the
4568         // parameter has reference type, complain and (if things look
4569         // like they will work) drop the address-of operator.
4570         if (!S.Context.hasSameUnqualifiedType(Var->getType(),
4571                                             ParamType.getNonReferenceType())) {
4572           S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4573             << ParamType;
4574           S.Diag(Param->getLocation(), diag::note_template_param_here);
4575           return true;
4576         }
4577 
4578         S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4579           << ParamType
4580           << FixItHint::CreateRemoval(AddrOpLoc);
4581         S.Diag(Param->getLocation(), diag::note_template_param_here);
4582 
4583         ArgType = Var->getType();
4584       }
4585     } else if (!AddressTaken && ParamType->isPointerType()) {
4586       if (Var->getType()->isArrayType()) {
4587         // Array-to-pointer decay.
4588         ArgType = S.Context.getArrayDecayedType(Var->getType());
4589       } else {
4590         // If the template parameter has pointer type but the address of
4591         // this object was not taken, complain and (possibly) recover by
4592         // taking the address of the entity.
4593         ArgType = S.Context.getPointerType(Var->getType());
4594         if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
4595           S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
4596             << ParamType;
4597           S.Diag(Param->getLocation(), diag::note_template_param_here);
4598           return true;
4599         }
4600 
4601         S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
4602           << ParamType
4603           << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
4604 
4605         S.Diag(Param->getLocation(), diag::note_template_param_here);
4606       }
4607     }
4608   }
4609 
4610   if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
4611                                                      Arg, ArgType))
4612     return true;
4613 
4614   // Create the template argument.
4615   Converted = TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()),
4616                                ParamType->isReferenceType());
4617   S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false);
4618   return false;
4619 }
4620 
4621 /// \brief Checks whether the given template argument is a pointer to
4622 /// member constant according to C++ [temp.arg.nontype]p1.
CheckTemplateArgumentPointerToMember(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * & ResultArg,TemplateArgument & Converted)4623 static bool CheckTemplateArgumentPointerToMember(Sema &S,
4624                                                  NonTypeTemplateParmDecl *Param,
4625                                                  QualType ParamType,
4626                                                  Expr *&ResultArg,
4627                                                  TemplateArgument &Converted) {
4628   bool Invalid = false;
4629 
4630   // Check for a null pointer value.
4631   Expr *Arg = ResultArg;
4632   switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
4633   case NPV_Error:
4634     return true;
4635   case NPV_NullPointer:
4636     S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4637     Converted = TemplateArgument(ParamType, /*isNullPtr*/true);
4638     if (S.Context.getTargetInfo().getCXXABI().isMicrosoft())
4639       S.RequireCompleteType(Arg->getExprLoc(), ParamType, 0);
4640     return false;
4641   case NPV_NotNullPointer:
4642     break;
4643   }
4644 
4645   bool ObjCLifetimeConversion;
4646   if (S.IsQualificationConversion(Arg->getType(),
4647                                   ParamType.getNonReferenceType(),
4648                                   false, ObjCLifetimeConversion)) {
4649     Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp,
4650                               Arg->getValueKind()).get();
4651     ResultArg = Arg;
4652   } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(),
4653                 ParamType.getNonReferenceType())) {
4654     // We can't perform this conversion.
4655     S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
4656       << Arg->getType() << ParamType << Arg->getSourceRange();
4657     S.Diag(Param->getLocation(), diag::note_template_param_here);
4658     return true;
4659   }
4660 
4661   // See through any implicit casts we added to fix the type.
4662   while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
4663     Arg = Cast->getSubExpr();
4664 
4665   // C++ [temp.arg.nontype]p1:
4666   //
4667   //   A template-argument for a non-type, non-template
4668   //   template-parameter shall be one of: [...]
4669   //
4670   //     -- a pointer to member expressed as described in 5.3.1.
4671   DeclRefExpr *DRE = nullptr;
4672 
4673   // In C++98/03 mode, give an extension warning on any extra parentheses.
4674   // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4675   bool ExtraParens = false;
4676   while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4677     if (!Invalid && !ExtraParens) {
4678       S.Diag(Arg->getLocStart(),
4679              S.getLangOpts().CPlusPlus11 ?
4680                diag::warn_cxx98_compat_template_arg_extra_parens :
4681                diag::ext_template_arg_extra_parens)
4682         << Arg->getSourceRange();
4683       ExtraParens = true;
4684     }
4685 
4686     Arg = Parens->getSubExpr();
4687   }
4688 
4689   while (SubstNonTypeTemplateParmExpr *subst =
4690            dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4691     Arg = subst->getReplacement()->IgnoreImpCasts();
4692 
4693   // A pointer-to-member constant written &Class::member.
4694   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4695     if (UnOp->getOpcode() == UO_AddrOf) {
4696       DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
4697       if (DRE && !DRE->getQualifier())
4698         DRE = nullptr;
4699     }
4700   }
4701   // A constant of pointer-to-member type.
4702   else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
4703     if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
4704       if (VD->getType()->isMemberPointerType()) {
4705         if (isa<NonTypeTemplateParmDecl>(VD)) {
4706           if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4707             Converted = TemplateArgument(Arg);
4708           } else {
4709             VD = cast<ValueDecl>(VD->getCanonicalDecl());
4710             Converted = TemplateArgument(VD, /*isReferenceParam*/false);
4711           }
4712           return Invalid;
4713         }
4714       }
4715     }
4716 
4717     DRE = nullptr;
4718   }
4719 
4720   if (!DRE)
4721     return S.Diag(Arg->getLocStart(),
4722                   diag::err_template_arg_not_pointer_to_member_form)
4723       << Arg->getSourceRange();
4724 
4725   if (isa<FieldDecl>(DRE->getDecl()) ||
4726       isa<IndirectFieldDecl>(DRE->getDecl()) ||
4727       isa<CXXMethodDecl>(DRE->getDecl())) {
4728     assert((isa<FieldDecl>(DRE->getDecl()) ||
4729             isa<IndirectFieldDecl>(DRE->getDecl()) ||
4730             !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
4731            "Only non-static member pointers can make it here");
4732 
4733     // Okay: this is the address of a non-static member, and therefore
4734     // a member pointer constant.
4735     if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4736       Converted = TemplateArgument(Arg);
4737     } else {
4738       ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
4739       Converted = TemplateArgument(D, /*isReferenceParam*/false);
4740     }
4741     return Invalid;
4742   }
4743 
4744   // We found something else, but we don't know specifically what it is.
4745   S.Diag(Arg->getLocStart(),
4746          diag::err_template_arg_not_pointer_to_member_form)
4747     << Arg->getSourceRange();
4748   S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4749   return true;
4750 }
4751 
4752 /// \brief Check a template argument against its corresponding
4753 /// non-type template parameter.
4754 ///
4755 /// This routine implements the semantics of C++ [temp.arg.nontype].
4756 /// If an error occurred, it returns ExprError(); otherwise, it
4757 /// returns the converted template argument. \p
4758 /// InstantiatedParamType is the type of the non-type template
4759 /// parameter after it has been instantiated.
CheckTemplateArgument(NonTypeTemplateParmDecl * Param,QualType InstantiatedParamType,Expr * Arg,TemplateArgument & Converted,CheckTemplateArgumentKind CTAK)4760 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
4761                                        QualType InstantiatedParamType, Expr *Arg,
4762                                        TemplateArgument &Converted,
4763                                        CheckTemplateArgumentKind CTAK) {
4764   SourceLocation StartLoc = Arg->getLocStart();
4765 
4766   // If either the parameter has a dependent type or the argument is
4767   // type-dependent, there's nothing we can check now.
4768   if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
4769     // FIXME: Produce a cloned, canonical expression?
4770     Converted = TemplateArgument(Arg);
4771     return Arg;
4772   }
4773 
4774   // C++ [temp.arg.nontype]p5:
4775   //   The following conversions are performed on each expression used
4776   //   as a non-type template-argument. If a non-type
4777   //   template-argument cannot be converted to the type of the
4778   //   corresponding template-parameter then the program is
4779   //   ill-formed.
4780   QualType ParamType = InstantiatedParamType;
4781   if (ParamType->isIntegralOrEnumerationType()) {
4782     // C++11:
4783     //   -- for a non-type template-parameter of integral or
4784     //      enumeration type, conversions permitted in a converted
4785     //      constant expression are applied.
4786     //
4787     // C++98:
4788     //   -- for a non-type template-parameter of integral or
4789     //      enumeration type, integral promotions (4.5) and integral
4790     //      conversions (4.7) are applied.
4791 
4792     if (CTAK == CTAK_Deduced &&
4793         !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
4794       // C++ [temp.deduct.type]p17:
4795       //   If, in the declaration of a function template with a non-type
4796       //   template-parameter, the non-type template-parameter is used
4797       //   in an expression in the function parameter-list and, if the
4798       //   corresponding template-argument is deduced, the
4799       //   template-argument type shall match the type of the
4800       //   template-parameter exactly, except that a template-argument
4801       //   deduced from an array bound may be of any integral type.
4802       Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
4803         << Arg->getType().getUnqualifiedType()
4804         << ParamType.getUnqualifiedType();
4805       Diag(Param->getLocation(), diag::note_template_param_here);
4806       return ExprError();
4807     }
4808 
4809     if (getLangOpts().CPlusPlus11) {
4810       // We can't check arbitrary value-dependent arguments.
4811       // FIXME: If there's no viable conversion to the template parameter type,
4812       // we should be able to diagnose that prior to instantiation.
4813       if (Arg->isValueDependent()) {
4814         Converted = TemplateArgument(Arg);
4815         return Arg;
4816       }
4817 
4818       // C++ [temp.arg.nontype]p1:
4819       //   A template-argument for a non-type, non-template template-parameter
4820       //   shall be one of:
4821       //
4822       //     -- for a non-type template-parameter of integral or enumeration
4823       //        type, a converted constant expression of the type of the
4824       //        template-parameter; or
4825       llvm::APSInt Value;
4826       ExprResult ArgResult =
4827         CheckConvertedConstantExpression(Arg, ParamType, Value,
4828                                          CCEK_TemplateArg);
4829       if (ArgResult.isInvalid())
4830         return ExprError();
4831 
4832       // Widen the argument value to sizeof(parameter type). This is almost
4833       // always a no-op, except when the parameter type is bool. In
4834       // that case, this may extend the argument from 1 bit to 8 bits.
4835       QualType IntegerType = ParamType;
4836       if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4837         IntegerType = Enum->getDecl()->getIntegerType();
4838       Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
4839 
4840       Converted = TemplateArgument(Context, Value,
4841                                    Context.getCanonicalType(ParamType));
4842       return ArgResult;
4843     }
4844 
4845     ExprResult ArgResult = DefaultLvalueConversion(Arg);
4846     if (ArgResult.isInvalid())
4847       return ExprError();
4848     Arg = ArgResult.get();
4849 
4850     QualType ArgType = Arg->getType();
4851 
4852     // C++ [temp.arg.nontype]p1:
4853     //   A template-argument for a non-type, non-template
4854     //   template-parameter shall be one of:
4855     //
4856     //     -- an integral constant-expression of integral or enumeration
4857     //        type; or
4858     //     -- the name of a non-type template-parameter; or
4859     SourceLocation NonConstantLoc;
4860     llvm::APSInt Value;
4861     if (!ArgType->isIntegralOrEnumerationType()) {
4862       Diag(Arg->getLocStart(),
4863            diag::err_template_arg_not_integral_or_enumeral)
4864         << ArgType << Arg->getSourceRange();
4865       Diag(Param->getLocation(), diag::note_template_param_here);
4866       return ExprError();
4867     } else if (!Arg->isValueDependent()) {
4868       class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
4869         QualType T;
4870 
4871       public:
4872         TmplArgICEDiagnoser(QualType T) : T(T) { }
4873 
4874         void diagnoseNotICE(Sema &S, SourceLocation Loc,
4875                             SourceRange SR) override {
4876           S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
4877         }
4878       } Diagnoser(ArgType);
4879 
4880       Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
4881                                             false).get();
4882       if (!Arg)
4883         return ExprError();
4884     }
4885 
4886     // From here on out, all we care about are the unqualified forms
4887     // of the parameter and argument types.
4888     ParamType = ParamType.getUnqualifiedType();
4889     ArgType = ArgType.getUnqualifiedType();
4890 
4891     // Try to convert the argument to the parameter's type.
4892     if (Context.hasSameType(ParamType, ArgType)) {
4893       // Okay: no conversion necessary
4894     } else if (ParamType->isBooleanType()) {
4895       // This is an integral-to-boolean conversion.
4896       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
4897     } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
4898                !ParamType->isEnumeralType()) {
4899       // This is an integral promotion or conversion.
4900       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
4901     } else {
4902       // We can't perform this conversion.
4903       Diag(Arg->getLocStart(),
4904            diag::err_template_arg_not_convertible)
4905         << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
4906       Diag(Param->getLocation(), diag::note_template_param_here);
4907       return ExprError();
4908     }
4909 
4910     // Add the value of this argument to the list of converted
4911     // arguments. We use the bitwidth and signedness of the template
4912     // parameter.
4913     if (Arg->isValueDependent()) {
4914       // The argument is value-dependent. Create a new
4915       // TemplateArgument with the converted expression.
4916       Converted = TemplateArgument(Arg);
4917       return Arg;
4918     }
4919 
4920     QualType IntegerType = Context.getCanonicalType(ParamType);
4921     if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4922       IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
4923 
4924     if (ParamType->isBooleanType()) {
4925       // Value must be zero or one.
4926       Value = Value != 0;
4927       unsigned AllowedBits = Context.getTypeSize(IntegerType);
4928       if (Value.getBitWidth() != AllowedBits)
4929         Value = Value.extOrTrunc(AllowedBits);
4930       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4931     } else {
4932       llvm::APSInt OldValue = Value;
4933 
4934       // Coerce the template argument's value to the value it will have
4935       // based on the template parameter's type.
4936       unsigned AllowedBits = Context.getTypeSize(IntegerType);
4937       if (Value.getBitWidth() != AllowedBits)
4938         Value = Value.extOrTrunc(AllowedBits);
4939       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4940 
4941       // Complain if an unsigned parameter received a negative value.
4942       if (IntegerType->isUnsignedIntegerOrEnumerationType()
4943                && (OldValue.isSigned() && OldValue.isNegative())) {
4944         Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
4945           << OldValue.toString(10) << Value.toString(10) << Param->getType()
4946           << Arg->getSourceRange();
4947         Diag(Param->getLocation(), diag::note_template_param_here);
4948       }
4949 
4950       // Complain if we overflowed the template parameter's type.
4951       unsigned RequiredBits;
4952       if (IntegerType->isUnsignedIntegerOrEnumerationType())
4953         RequiredBits = OldValue.getActiveBits();
4954       else if (OldValue.isUnsigned())
4955         RequiredBits = OldValue.getActiveBits() + 1;
4956       else
4957         RequiredBits = OldValue.getMinSignedBits();
4958       if (RequiredBits > AllowedBits) {
4959         Diag(Arg->getLocStart(),
4960              diag::warn_template_arg_too_large)
4961           << OldValue.toString(10) << Value.toString(10) << Param->getType()
4962           << Arg->getSourceRange();
4963         Diag(Param->getLocation(), diag::note_template_param_here);
4964       }
4965     }
4966 
4967     Converted = TemplateArgument(Context, Value,
4968                                  ParamType->isEnumeralType()
4969                                    ? Context.getCanonicalType(ParamType)
4970                                    : IntegerType);
4971     return Arg;
4972   }
4973 
4974   QualType ArgType = Arg->getType();
4975   DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
4976 
4977   // Handle pointer-to-function, reference-to-function, and
4978   // pointer-to-member-function all in (roughly) the same way.
4979   if (// -- For a non-type template-parameter of type pointer to
4980       //    function, only the function-to-pointer conversion (4.3) is
4981       //    applied. If the template-argument represents a set of
4982       //    overloaded functions (or a pointer to such), the matching
4983       //    function is selected from the set (13.4).
4984       (ParamType->isPointerType() &&
4985        ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
4986       // -- For a non-type template-parameter of type reference to
4987       //    function, no conversions apply. If the template-argument
4988       //    represents a set of overloaded functions, the matching
4989       //    function is selected from the set (13.4).
4990       (ParamType->isReferenceType() &&
4991        ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
4992       // -- For a non-type template-parameter of type pointer to
4993       //    member function, no conversions apply. If the
4994       //    template-argument represents a set of overloaded member
4995       //    functions, the matching member function is selected from
4996       //    the set (13.4).
4997       (ParamType->isMemberPointerType() &&
4998        ParamType->getAs<MemberPointerType>()->getPointeeType()
4999          ->isFunctionType())) {
5000 
5001     if (Arg->getType() == Context.OverloadTy) {
5002       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
5003                                                                 true,
5004                                                                 FoundResult)) {
5005         if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
5006           return ExprError();
5007 
5008         Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
5009         ArgType = Arg->getType();
5010       } else
5011         return ExprError();
5012     }
5013 
5014     if (!ParamType->isMemberPointerType()) {
5015       if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
5016                                                          ParamType,
5017                                                          Arg, Converted))
5018         return ExprError();
5019       return Arg;
5020     }
5021 
5022     if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
5023                                              Converted))
5024       return ExprError();
5025     return Arg;
5026   }
5027 
5028   if (ParamType->isPointerType()) {
5029     //   -- for a non-type template-parameter of type pointer to
5030     //      object, qualification conversions (4.4) and the
5031     //      array-to-pointer conversion (4.2) are applied.
5032     // C++0x also allows a value of std::nullptr_t.
5033     assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
5034            "Only object pointers allowed here");
5035 
5036     if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
5037                                                        ParamType,
5038                                                        Arg, Converted))
5039       return ExprError();
5040     return Arg;
5041   }
5042 
5043   if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
5044     //   -- For a non-type template-parameter of type reference to
5045     //      object, no conversions apply. The type referred to by the
5046     //      reference may be more cv-qualified than the (otherwise
5047     //      identical) type of the template-argument. The
5048     //      template-parameter is bound directly to the
5049     //      template-argument, which must be an lvalue.
5050     assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
5051            "Only object references allowed here");
5052 
5053     if (Arg->getType() == Context.OverloadTy) {
5054       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
5055                                                  ParamRefType->getPointeeType(),
5056                                                                 true,
5057                                                                 FoundResult)) {
5058         if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
5059           return ExprError();
5060 
5061         Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
5062         ArgType = Arg->getType();
5063       } else
5064         return ExprError();
5065     }
5066 
5067     if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
5068                                                        ParamType,
5069                                                        Arg, Converted))
5070       return ExprError();
5071     return Arg;
5072   }
5073 
5074   // Deal with parameters of type std::nullptr_t.
5075   if (ParamType->isNullPtrType()) {
5076     if (Arg->isTypeDependent() || Arg->isValueDependent()) {
5077       Converted = TemplateArgument(Arg);
5078       return Arg;
5079     }
5080 
5081     switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
5082     case NPV_NotNullPointer:
5083       Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
5084         << Arg->getType() << ParamType;
5085       Diag(Param->getLocation(), diag::note_template_param_here);
5086       return ExprError();
5087 
5088     case NPV_Error:
5089       return ExprError();
5090 
5091     case NPV_NullPointer:
5092       Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
5093       Converted = TemplateArgument(ParamType, /*isNullPtr*/true);
5094       return Arg;
5095     }
5096   }
5097 
5098   //     -- For a non-type template-parameter of type pointer to data
5099   //        member, qualification conversions (4.4) are applied.
5100   assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
5101 
5102   if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
5103                                            Converted))
5104     return ExprError();
5105   return Arg;
5106 }
5107 
5108 /// \brief Check a template argument against its corresponding
5109 /// template template parameter.
5110 ///
5111 /// This routine implements the semantics of C++ [temp.arg.template].
5112 /// It returns true if an error occurred, and false otherwise.
CheckTemplateArgument(TemplateTemplateParmDecl * Param,TemplateArgumentLoc & Arg,unsigned ArgumentPackIndex)5113 bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
5114                                  TemplateArgumentLoc &Arg,
5115                                  unsigned ArgumentPackIndex) {
5116   TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
5117   TemplateDecl *Template = Name.getAsTemplateDecl();
5118   if (!Template) {
5119     // Any dependent template name is fine.
5120     assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
5121     return false;
5122   }
5123 
5124   // C++0x [temp.arg.template]p1:
5125   //   A template-argument for a template template-parameter shall be
5126   //   the name of a class template or an alias template, expressed as an
5127   //   id-expression. When the template-argument names a class template, only
5128   //   primary class templates are considered when matching the
5129   //   template template argument with the corresponding parameter;
5130   //   partial specializations are not considered even if their
5131   //   parameter lists match that of the template template parameter.
5132   //
5133   // Note that we also allow template template parameters here, which
5134   // will happen when we are dealing with, e.g., class template
5135   // partial specializations.
5136   if (!isa<ClassTemplateDecl>(Template) &&
5137       !isa<TemplateTemplateParmDecl>(Template) &&
5138       !isa<TypeAliasTemplateDecl>(Template)) {
5139     assert(isa<FunctionTemplateDecl>(Template) &&
5140            "Only function templates are possible here");
5141     Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
5142     Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
5143       << Template;
5144   }
5145 
5146   TemplateParameterList *Params = Param->getTemplateParameters();
5147   if (Param->isExpandedParameterPack())
5148     Params = Param->getExpansionTemplateParameters(ArgumentPackIndex);
5149 
5150   return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
5151                                          Params,
5152                                          true,
5153                                          TPL_TemplateTemplateArgumentMatch,
5154                                          Arg.getLocation());
5155 }
5156 
5157 /// \brief Given a non-type template argument that refers to a
5158 /// declaration and the type of its corresponding non-type template
5159 /// parameter, produce an expression that properly refers to that
5160 /// declaration.
5161 ExprResult
BuildExpressionFromDeclTemplateArgument(const TemplateArgument & Arg,QualType ParamType,SourceLocation Loc)5162 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
5163                                               QualType ParamType,
5164                                               SourceLocation Loc) {
5165   // C++ [temp.param]p8:
5166   //
5167   //   A non-type template-parameter of type "array of T" or
5168   //   "function returning T" is adjusted to be of type "pointer to
5169   //   T" or "pointer to function returning T", respectively.
5170   if (ParamType->isArrayType())
5171     ParamType = Context.getArrayDecayedType(ParamType);
5172   else if (ParamType->isFunctionType())
5173     ParamType = Context.getPointerType(ParamType);
5174 
5175   // For a NULL non-type template argument, return nullptr casted to the
5176   // parameter's type.
5177   if (Arg.getKind() == TemplateArgument::NullPtr) {
5178     return ImpCastExprToType(
5179              new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
5180                              ParamType,
5181                              ParamType->getAs<MemberPointerType>()
5182                                ? CK_NullToMemberPointer
5183                                : CK_NullToPointer);
5184   }
5185   assert(Arg.getKind() == TemplateArgument::Declaration &&
5186          "Only declaration template arguments permitted here");
5187 
5188   ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
5189 
5190   if (VD->getDeclContext()->isRecord() &&
5191       (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
5192        isa<IndirectFieldDecl>(VD))) {
5193     // If the value is a class member, we might have a pointer-to-member.
5194     // Determine whether the non-type template template parameter is of
5195     // pointer-to-member type. If so, we need to build an appropriate
5196     // expression for a pointer-to-member, since a "normal" DeclRefExpr
5197     // would refer to the member itself.
5198     if (ParamType->isMemberPointerType()) {
5199       QualType ClassType
5200         = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
5201       NestedNameSpecifier *Qualifier
5202         = NestedNameSpecifier::Create(Context, nullptr, false,
5203                                       ClassType.getTypePtr());
5204       CXXScopeSpec SS;
5205       SS.MakeTrivial(Context, Qualifier, Loc);
5206 
5207       // The actual value-ness of this is unimportant, but for
5208       // internal consistency's sake, references to instance methods
5209       // are r-values.
5210       ExprValueKind VK = VK_LValue;
5211       if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
5212         VK = VK_RValue;
5213 
5214       ExprResult RefExpr = BuildDeclRefExpr(VD,
5215                                             VD->getType().getNonReferenceType(),
5216                                             VK,
5217                                             Loc,
5218                                             &SS);
5219       if (RefExpr.isInvalid())
5220         return ExprError();
5221 
5222       RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
5223 
5224       // We might need to perform a trailing qualification conversion, since
5225       // the element type on the parameter could be more qualified than the
5226       // element type in the expression we constructed.
5227       bool ObjCLifetimeConversion;
5228       if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
5229                                     ParamType.getUnqualifiedType(), false,
5230                                     ObjCLifetimeConversion))
5231         RefExpr = ImpCastExprToType(RefExpr.get(), ParamType.getUnqualifiedType(), CK_NoOp);
5232 
5233       assert(!RefExpr.isInvalid() &&
5234              Context.hasSameType(((Expr*) RefExpr.get())->getType(),
5235                                  ParamType.getUnqualifiedType()));
5236       return RefExpr;
5237     }
5238   }
5239 
5240   QualType T = VD->getType().getNonReferenceType();
5241 
5242   if (ParamType->isPointerType()) {
5243     // When the non-type template parameter is a pointer, take the
5244     // address of the declaration.
5245     ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
5246     if (RefExpr.isInvalid())
5247       return ExprError();
5248 
5249     if (T->isFunctionType() || T->isArrayType()) {
5250       // Decay functions and arrays.
5251       RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
5252       if (RefExpr.isInvalid())
5253         return ExprError();
5254 
5255       return RefExpr;
5256     }
5257 
5258     // Take the address of everything else
5259     return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
5260   }
5261 
5262   ExprValueKind VK = VK_RValue;
5263 
5264   // If the non-type template parameter has reference type, qualify the
5265   // resulting declaration reference with the extra qualifiers on the
5266   // type that the reference refers to.
5267   if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
5268     VK = VK_LValue;
5269     T = Context.getQualifiedType(T,
5270                               TargetRef->getPointeeType().getQualifiers());
5271   } else if (isa<FunctionDecl>(VD)) {
5272     // References to functions are always lvalues.
5273     VK = VK_LValue;
5274   }
5275 
5276   return BuildDeclRefExpr(VD, T, VK, Loc);
5277 }
5278 
5279 /// \brief Construct a new expression that refers to the given
5280 /// integral template argument with the given source-location
5281 /// information.
5282 ///
5283 /// This routine takes care of the mapping from an integral template
5284 /// argument (which may have any integral type) to the appropriate
5285 /// literal value.
5286 ExprResult
BuildExpressionFromIntegralTemplateArgument(const TemplateArgument & Arg,SourceLocation Loc)5287 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
5288                                                   SourceLocation Loc) {
5289   assert(Arg.getKind() == TemplateArgument::Integral &&
5290          "Operation is only valid for integral template arguments");
5291   QualType OrigT = Arg.getIntegralType();
5292 
5293   // If this is an enum type that we're instantiating, we need to use an integer
5294   // type the same size as the enumerator.  We don't want to build an
5295   // IntegerLiteral with enum type.  The integer type of an enum type can be of
5296   // any integral type with C++11 enum classes, make sure we create the right
5297   // type of literal for it.
5298   QualType T = OrigT;
5299   if (const EnumType *ET = OrigT->getAs<EnumType>())
5300     T = ET->getDecl()->getIntegerType();
5301 
5302   Expr *E;
5303   if (T->isAnyCharacterType()) {
5304     CharacterLiteral::CharacterKind Kind;
5305     if (T->isWideCharType())
5306       Kind = CharacterLiteral::Wide;
5307     else if (T->isChar16Type())
5308       Kind = CharacterLiteral::UTF16;
5309     else if (T->isChar32Type())
5310       Kind = CharacterLiteral::UTF32;
5311     else
5312       Kind = CharacterLiteral::Ascii;
5313 
5314     E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
5315                                        Kind, T, Loc);
5316   } else if (T->isBooleanType()) {
5317     E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
5318                                          T, Loc);
5319   } else if (T->isNullPtrType()) {
5320     E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
5321   } else {
5322     E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
5323   }
5324 
5325   if (OrigT->isEnumeralType()) {
5326     // FIXME: This is a hack. We need a better way to handle substituted
5327     // non-type template parameters.
5328     E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E,
5329                                nullptr,
5330                                Context.getTrivialTypeSourceInfo(OrigT, Loc),
5331                                Loc, Loc);
5332   }
5333 
5334   return E;
5335 }
5336 
5337 /// \brief Match two template parameters within template parameter lists.
MatchTemplateParameterKind(Sema & S,NamedDecl * New,NamedDecl * Old,bool Complain,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)5338 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
5339                                        bool Complain,
5340                                      Sema::TemplateParameterListEqualKind Kind,
5341                                        SourceLocation TemplateArgLoc) {
5342   // Check the actual kind (type, non-type, template).
5343   if (Old->getKind() != New->getKind()) {
5344     if (Complain) {
5345       unsigned NextDiag = diag::err_template_param_different_kind;
5346       if (TemplateArgLoc.isValid()) {
5347         S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
5348         NextDiag = diag::note_template_param_different_kind;
5349       }
5350       S.Diag(New->getLocation(), NextDiag)
5351         << (Kind != Sema::TPL_TemplateMatch);
5352       S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
5353         << (Kind != Sema::TPL_TemplateMatch);
5354     }
5355 
5356     return false;
5357   }
5358 
5359   // Check that both are parameter packs are neither are parameter packs.
5360   // However, if we are matching a template template argument to a
5361   // template template parameter, the template template parameter can have
5362   // a parameter pack where the template template argument does not.
5363   if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
5364       !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
5365         Old->isTemplateParameterPack())) {
5366     if (Complain) {
5367       unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
5368       if (TemplateArgLoc.isValid()) {
5369         S.Diag(TemplateArgLoc,
5370              diag::err_template_arg_template_params_mismatch);
5371         NextDiag = diag::note_template_parameter_pack_non_pack;
5372       }
5373 
5374       unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
5375                       : isa<NonTypeTemplateParmDecl>(New)? 1
5376                       : 2;
5377       S.Diag(New->getLocation(), NextDiag)
5378         << ParamKind << New->isParameterPack();
5379       S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
5380         << ParamKind << Old->isParameterPack();
5381     }
5382 
5383     return false;
5384   }
5385 
5386   // For non-type template parameters, check the type of the parameter.
5387   if (NonTypeTemplateParmDecl *OldNTTP
5388                                     = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
5389     NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
5390 
5391     // If we are matching a template template argument to a template
5392     // template parameter and one of the non-type template parameter types
5393     // is dependent, then we must wait until template instantiation time
5394     // to actually compare the arguments.
5395     if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
5396         (OldNTTP->getType()->isDependentType() ||
5397          NewNTTP->getType()->isDependentType()))
5398       return true;
5399 
5400     if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
5401       if (Complain) {
5402         unsigned NextDiag = diag::err_template_nontype_parm_different_type;
5403         if (TemplateArgLoc.isValid()) {
5404           S.Diag(TemplateArgLoc,
5405                  diag::err_template_arg_template_params_mismatch);
5406           NextDiag = diag::note_template_nontype_parm_different_type;
5407         }
5408         S.Diag(NewNTTP->getLocation(), NextDiag)
5409           << NewNTTP->getType()
5410           << (Kind != Sema::TPL_TemplateMatch);
5411         S.Diag(OldNTTP->getLocation(),
5412                diag::note_template_nontype_parm_prev_declaration)
5413           << OldNTTP->getType();
5414       }
5415 
5416       return false;
5417     }
5418 
5419     return true;
5420   }
5421 
5422   // For template template parameters, check the template parameter types.
5423   // The template parameter lists of template template
5424   // parameters must agree.
5425   if (TemplateTemplateParmDecl *OldTTP
5426                                     = dyn_cast<TemplateTemplateParmDecl>(Old)) {
5427     TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
5428     return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
5429                                             OldTTP->getTemplateParameters(),
5430                                             Complain,
5431                                         (Kind == Sema::TPL_TemplateMatch
5432                                            ? Sema::TPL_TemplateTemplateParmMatch
5433                                            : Kind),
5434                                             TemplateArgLoc);
5435   }
5436 
5437   return true;
5438 }
5439 
5440 /// \brief Diagnose a known arity mismatch when comparing template argument
5441 /// lists.
5442 static
DiagnoseTemplateParameterListArityMismatch(Sema & S,TemplateParameterList * New,TemplateParameterList * Old,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)5443 void DiagnoseTemplateParameterListArityMismatch(Sema &S,
5444                                                 TemplateParameterList *New,
5445                                                 TemplateParameterList *Old,
5446                                       Sema::TemplateParameterListEqualKind Kind,
5447                                                 SourceLocation TemplateArgLoc) {
5448   unsigned NextDiag = diag::err_template_param_list_different_arity;
5449   if (TemplateArgLoc.isValid()) {
5450     S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
5451     NextDiag = diag::note_template_param_list_different_arity;
5452   }
5453   S.Diag(New->getTemplateLoc(), NextDiag)
5454     << (New->size() > Old->size())
5455     << (Kind != Sema::TPL_TemplateMatch)
5456     << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
5457   S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
5458     << (Kind != Sema::TPL_TemplateMatch)
5459     << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
5460 }
5461 
5462 /// \brief Determine whether the given template parameter lists are
5463 /// equivalent.
5464 ///
5465 /// \param New  The new template parameter list, typically written in the
5466 /// source code as part of a new template declaration.
5467 ///
5468 /// \param Old  The old template parameter list, typically found via
5469 /// name lookup of the template declared with this template parameter
5470 /// list.
5471 ///
5472 /// \param Complain  If true, this routine will produce a diagnostic if
5473 /// the template parameter lists are not equivalent.
5474 ///
5475 /// \param Kind describes how we are to match the template parameter lists.
5476 ///
5477 /// \param TemplateArgLoc If this source location is valid, then we
5478 /// are actually checking the template parameter list of a template
5479 /// argument (New) against the template parameter list of its
5480 /// corresponding template template parameter (Old). We produce
5481 /// slightly different diagnostics in this scenario.
5482 ///
5483 /// \returns True if the template parameter lists are equal, false
5484 /// otherwise.
5485 bool
TemplateParameterListsAreEqual(TemplateParameterList * New,TemplateParameterList * Old,bool Complain,TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)5486 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
5487                                      TemplateParameterList *Old,
5488                                      bool Complain,
5489                                      TemplateParameterListEqualKind Kind,
5490                                      SourceLocation TemplateArgLoc) {
5491   if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
5492     if (Complain)
5493       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5494                                                  TemplateArgLoc);
5495 
5496     return false;
5497   }
5498 
5499   // C++0x [temp.arg.template]p3:
5500   //   A template-argument matches a template template-parameter (call it P)
5501   //   when each of the template parameters in the template-parameter-list of
5502   //   the template-argument's corresponding class template or alias template
5503   //   (call it A) matches the corresponding template parameter in the
5504   //   template-parameter-list of P. [...]
5505   TemplateParameterList::iterator NewParm = New->begin();
5506   TemplateParameterList::iterator NewParmEnd = New->end();
5507   for (TemplateParameterList::iterator OldParm = Old->begin(),
5508                                     OldParmEnd = Old->end();
5509        OldParm != OldParmEnd; ++OldParm) {
5510     if (Kind != TPL_TemplateTemplateArgumentMatch ||
5511         !(*OldParm)->isTemplateParameterPack()) {
5512       if (NewParm == NewParmEnd) {
5513         if (Complain)
5514           DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5515                                                      TemplateArgLoc);
5516 
5517         return false;
5518       }
5519 
5520       if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
5521                                       Kind, TemplateArgLoc))
5522         return false;
5523 
5524       ++NewParm;
5525       continue;
5526     }
5527 
5528     // C++0x [temp.arg.template]p3:
5529     //   [...] When P's template- parameter-list contains a template parameter
5530     //   pack (14.5.3), the template parameter pack will match zero or more
5531     //   template parameters or template parameter packs in the
5532     //   template-parameter-list of A with the same type and form as the
5533     //   template parameter pack in P (ignoring whether those template
5534     //   parameters are template parameter packs).
5535     for (; NewParm != NewParmEnd; ++NewParm) {
5536       if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
5537                                       Kind, TemplateArgLoc))
5538         return false;
5539     }
5540   }
5541 
5542   // Make sure we exhausted all of the arguments.
5543   if (NewParm != NewParmEnd) {
5544     if (Complain)
5545       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5546                                                  TemplateArgLoc);
5547 
5548     return false;
5549   }
5550 
5551   return true;
5552 }
5553 
5554 /// \brief Check whether a template can be declared within this scope.
5555 ///
5556 /// If the template declaration is valid in this scope, returns
5557 /// false. Otherwise, issues a diagnostic and returns true.
5558 bool
CheckTemplateDeclScope(Scope * S,TemplateParameterList * TemplateParams)5559 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
5560   if (!S)
5561     return false;
5562 
5563   // Find the nearest enclosing declaration scope.
5564   while ((S->getFlags() & Scope::DeclScope) == 0 ||
5565          (S->getFlags() & Scope::TemplateParamScope) != 0)
5566     S = S->getParent();
5567 
5568   // C++ [temp]p4:
5569   //   A template [...] shall not have C linkage.
5570   DeclContext *Ctx = S->getEntity();
5571   if (Ctx && Ctx->isExternCContext())
5572     return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
5573              << TemplateParams->getSourceRange();
5574 
5575   while (Ctx && isa<LinkageSpecDecl>(Ctx))
5576     Ctx = Ctx->getParent();
5577 
5578   // C++ [temp]p2:
5579   //   A template-declaration can appear only as a namespace scope or
5580   //   class scope declaration.
5581   if (Ctx) {
5582     if (Ctx->isFileContext())
5583       return false;
5584     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
5585       // C++ [temp.mem]p2:
5586       //   A local class shall not have member templates.
5587       if (RD->isLocalClass())
5588         return Diag(TemplateParams->getTemplateLoc(),
5589                     diag::err_template_inside_local_class)
5590           << TemplateParams->getSourceRange();
5591       else
5592         return false;
5593     }
5594   }
5595 
5596   return Diag(TemplateParams->getTemplateLoc(),
5597               diag::err_template_outside_namespace_or_class_scope)
5598     << TemplateParams->getSourceRange();
5599 }
5600 
5601 /// \brief Determine what kind of template specialization the given declaration
5602 /// is.
getTemplateSpecializationKind(Decl * D)5603 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
5604   if (!D)
5605     return TSK_Undeclared;
5606 
5607   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
5608     return Record->getTemplateSpecializationKind();
5609   if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
5610     return Function->getTemplateSpecializationKind();
5611   if (VarDecl *Var = dyn_cast<VarDecl>(D))
5612     return Var->getTemplateSpecializationKind();
5613 
5614   return TSK_Undeclared;
5615 }
5616 
5617 /// \brief Check whether a specialization is well-formed in the current
5618 /// context.
5619 ///
5620 /// This routine determines whether a template specialization can be declared
5621 /// in the current context (C++ [temp.expl.spec]p2).
5622 ///
5623 /// \param S the semantic analysis object for which this check is being
5624 /// performed.
5625 ///
5626 /// \param Specialized the entity being specialized or instantiated, which
5627 /// may be a kind of template (class template, function template, etc.) or
5628 /// a member of a class template (member function, static data member,
5629 /// member class).
5630 ///
5631 /// \param PrevDecl the previous declaration of this entity, if any.
5632 ///
5633 /// \param Loc the location of the explicit specialization or instantiation of
5634 /// this entity.
5635 ///
5636 /// \param IsPartialSpecialization whether this is a partial specialization of
5637 /// a class template.
5638 ///
5639 /// \returns true if there was an error that we cannot recover from, false
5640 /// otherwise.
CheckTemplateSpecializationScope(Sema & S,NamedDecl * Specialized,NamedDecl * PrevDecl,SourceLocation Loc,bool IsPartialSpecialization)5641 static bool CheckTemplateSpecializationScope(Sema &S,
5642                                              NamedDecl *Specialized,
5643                                              NamedDecl *PrevDecl,
5644                                              SourceLocation Loc,
5645                                              bool IsPartialSpecialization) {
5646   // Keep these "kind" numbers in sync with the %select statements in the
5647   // various diagnostics emitted by this routine.
5648   int EntityKind = 0;
5649   if (isa<ClassTemplateDecl>(Specialized))
5650     EntityKind = IsPartialSpecialization? 1 : 0;
5651   else if (isa<VarTemplateDecl>(Specialized))
5652     EntityKind = IsPartialSpecialization ? 3 : 2;
5653   else if (isa<FunctionTemplateDecl>(Specialized))
5654     EntityKind = 4;
5655   else if (isa<CXXMethodDecl>(Specialized))
5656     EntityKind = 5;
5657   else if (isa<VarDecl>(Specialized))
5658     EntityKind = 6;
5659   else if (isa<RecordDecl>(Specialized))
5660     EntityKind = 7;
5661   else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
5662     EntityKind = 8;
5663   else {
5664     S.Diag(Loc, diag::err_template_spec_unknown_kind)
5665       << S.getLangOpts().CPlusPlus11;
5666     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5667     return true;
5668   }
5669 
5670   // C++ [temp.expl.spec]p2:
5671   //   An explicit specialization shall be declared in the namespace
5672   //   of which the template is a member, or, for member templates, in
5673   //   the namespace of which the enclosing class or enclosing class
5674   //   template is a member. An explicit specialization of a member
5675   //   function, member class or static data member of a class
5676   //   template shall be declared in the namespace of which the class
5677   //   template is a member. Such a declaration may also be a
5678   //   definition. If the declaration is not a definition, the
5679   //   specialization may be defined later in the name- space in which
5680   //   the explicit specialization was declared, or in a namespace
5681   //   that encloses the one in which the explicit specialization was
5682   //   declared.
5683   if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5684     S.Diag(Loc, diag::err_template_spec_decl_function_scope)
5685       << Specialized;
5686     return true;
5687   }
5688 
5689   if (S.CurContext->isRecord() && !IsPartialSpecialization) {
5690     if (S.getLangOpts().MicrosoftExt) {
5691       // Do not warn for class scope explicit specialization during
5692       // instantiation, warning was already emitted during pattern
5693       // semantic analysis.
5694       if (!S.ActiveTemplateInstantiations.size())
5695         S.Diag(Loc, diag::ext_function_specialization_in_class)
5696           << Specialized;
5697     } else {
5698       S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5699         << Specialized;
5700       return true;
5701     }
5702   }
5703 
5704   if (S.CurContext->isRecord() &&
5705       !S.CurContext->Equals(Specialized->getDeclContext())) {
5706     // Make sure that we're specializing in the right record context.
5707     // Otherwise, things can go horribly wrong.
5708     S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5709       << Specialized;
5710     return true;
5711   }
5712 
5713   // C++ [temp.class.spec]p6:
5714   //   A class template partial specialization may be declared or redeclared
5715   //   in any namespace scope in which its definition may be defined (14.5.1
5716   //   and 14.5.2).
5717   DeclContext *SpecializedContext
5718     = Specialized->getDeclContext()->getEnclosingNamespaceContext();
5719   DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
5720 
5721   // Make sure that this redeclaration (or definition) occurs in an enclosing
5722   // namespace.
5723   // Note that HandleDeclarator() performs this check for explicit
5724   // specializations of function templates, static data members, and member
5725   // functions, so we skip the check here for those kinds of entities.
5726   // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
5727   // Should we refactor that check, so that it occurs later?
5728   if (!DC->Encloses(SpecializedContext) &&
5729       !(isa<FunctionTemplateDecl>(Specialized) ||
5730         isa<FunctionDecl>(Specialized) ||
5731         isa<VarTemplateDecl>(Specialized) ||
5732         isa<VarDecl>(Specialized))) {
5733     if (isa<TranslationUnitDecl>(SpecializedContext))
5734       S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
5735         << EntityKind << Specialized;
5736     else if (isa<NamespaceDecl>(SpecializedContext))
5737       S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
5738         << EntityKind << Specialized
5739         << cast<NamedDecl>(SpecializedContext);
5740     else
5741       llvm_unreachable("unexpected namespace context for specialization");
5742 
5743     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5744   } else if ((!PrevDecl ||
5745               getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
5746               getTemplateSpecializationKind(PrevDecl) ==
5747                   TSK_ImplicitInstantiation)) {
5748     // C++ [temp.exp.spec]p2:
5749     //   An explicit specialization shall be declared in the namespace of which
5750     //   the template is a member, or, for member templates, in the namespace
5751     //   of which the enclosing class or enclosing class template is a member.
5752     //   An explicit specialization of a member function, member class or
5753     //   static data member of a class template shall be declared in the
5754     //   namespace of which the class template is a member.
5755     //
5756     // C++11 [temp.expl.spec]p2:
5757     //   An explicit specialization shall be declared in a namespace enclosing
5758     //   the specialized template.
5759     // C++11 [temp.explicit]p3:
5760     //   An explicit instantiation shall appear in an enclosing namespace of its
5761     //   template.
5762     if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
5763       bool IsCPlusPlus11Extension = DC->Encloses(SpecializedContext);
5764       if (isa<TranslationUnitDecl>(SpecializedContext)) {
5765         assert(!IsCPlusPlus11Extension &&
5766                "DC encloses TU but isn't in enclosing namespace set");
5767         S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
5768           << EntityKind << Specialized;
5769       } else if (isa<NamespaceDecl>(SpecializedContext)) {
5770         int Diag;
5771         if (!IsCPlusPlus11Extension)
5772           Diag = diag::err_template_spec_decl_out_of_scope;
5773         else if (!S.getLangOpts().CPlusPlus11)
5774           Diag = diag::ext_template_spec_decl_out_of_scope;
5775         else
5776           Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
5777         S.Diag(Loc, Diag)
5778           << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
5779       }
5780 
5781       S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5782     }
5783   }
5784 
5785   return false;
5786 }
5787 
findTemplateParameter(unsigned Depth,Expr * E)5788 static SourceRange findTemplateParameter(unsigned Depth, Expr *E) {
5789   if (!E->isInstantiationDependent())
5790     return SourceLocation();
5791   DependencyChecker Checker(Depth);
5792   Checker.TraverseStmt(E);
5793   if (Checker.Match && Checker.MatchLoc.isInvalid())
5794     return E->getSourceRange();
5795   return Checker.MatchLoc;
5796 }
5797 
findTemplateParameter(unsigned Depth,TypeLoc TL)5798 static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
5799   if (!TL.getType()->isDependentType())
5800     return SourceLocation();
5801   DependencyChecker Checker(Depth);
5802   Checker.TraverseTypeLoc(TL);
5803   if (Checker.Match && Checker.MatchLoc.isInvalid())
5804     return TL.getSourceRange();
5805   return Checker.MatchLoc;
5806 }
5807 
5808 /// \brief Subroutine of Sema::CheckTemplatePartialSpecializationArgs
5809 /// that checks non-type template partial specialization arguments.
CheckNonTypeTemplatePartialSpecializationArgs(Sema & S,SourceLocation TemplateNameLoc,NonTypeTemplateParmDecl * Param,const TemplateArgument * Args,unsigned NumArgs,bool IsDefaultArgument)5810 static bool CheckNonTypeTemplatePartialSpecializationArgs(
5811     Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
5812     const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
5813   for (unsigned I = 0; I != NumArgs; ++I) {
5814     if (Args[I].getKind() == TemplateArgument::Pack) {
5815       if (CheckNonTypeTemplatePartialSpecializationArgs(
5816               S, TemplateNameLoc, Param, Args[I].pack_begin(),
5817               Args[I].pack_size(), IsDefaultArgument))
5818         return true;
5819 
5820       continue;
5821     }
5822 
5823     if (Args[I].getKind() != TemplateArgument::Expression)
5824       continue;
5825 
5826     Expr *ArgExpr = Args[I].getAsExpr();
5827 
5828     // We can have a pack expansion of any of the bullets below.
5829     if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
5830       ArgExpr = Expansion->getPattern();
5831 
5832     // Strip off any implicit casts we added as part of type checking.
5833     while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
5834       ArgExpr = ICE->getSubExpr();
5835 
5836     // C++ [temp.class.spec]p8:
5837     //   A non-type argument is non-specialized if it is the name of a
5838     //   non-type parameter. All other non-type arguments are
5839     //   specialized.
5840     //
5841     // Below, we check the two conditions that only apply to
5842     // specialized non-type arguments, so skip any non-specialized
5843     // arguments.
5844     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
5845       if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
5846         continue;
5847 
5848     // C++ [temp.class.spec]p9:
5849     //   Within the argument list of a class template partial
5850     //   specialization, the following restrictions apply:
5851     //     -- A partially specialized non-type argument expression
5852     //        shall not involve a template parameter of the partial
5853     //        specialization except when the argument expression is a
5854     //        simple identifier.
5855     SourceRange ParamUseRange =
5856         findTemplateParameter(Param->getDepth(), ArgExpr);
5857     if (ParamUseRange.isValid()) {
5858       if (IsDefaultArgument) {
5859         S.Diag(TemplateNameLoc,
5860                diag::err_dependent_non_type_arg_in_partial_spec);
5861         S.Diag(ParamUseRange.getBegin(),
5862                diag::note_dependent_non_type_default_arg_in_partial_spec)
5863           << ParamUseRange;
5864       } else {
5865         S.Diag(ParamUseRange.getBegin(),
5866                diag::err_dependent_non_type_arg_in_partial_spec)
5867           << ParamUseRange;
5868       }
5869       return true;
5870     }
5871 
5872     //     -- The type of a template parameter corresponding to a
5873     //        specialized non-type argument shall not be dependent on a
5874     //        parameter of the specialization.
5875     //
5876     // FIXME: We need to delay this check until instantiation in some cases:
5877     //
5878     //   template<template<typename> class X> struct A {
5879     //     template<typename T, X<T> N> struct B;
5880     //     template<typename T> struct B<T, 0>;
5881     //   };
5882     //   template<typename> using X = int;
5883     //   A<X>::B<int, 0> b;
5884     ParamUseRange = findTemplateParameter(
5885             Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
5886     if (ParamUseRange.isValid()) {
5887       S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getLocStart(),
5888              diag::err_dependent_typed_non_type_arg_in_partial_spec)
5889         << Param->getType() << ParamUseRange;
5890       S.Diag(Param->getLocation(), diag::note_template_param_here)
5891         << (IsDefaultArgument ? ParamUseRange : SourceRange());
5892       return true;
5893     }
5894   }
5895 
5896   return false;
5897 }
5898 
5899 /// \brief Check the non-type template arguments of a class template
5900 /// partial specialization according to C++ [temp.class.spec]p9.
5901 ///
5902 /// \param TemplateNameLoc the location of the template name.
5903 /// \param TemplateParams the template parameters of the primary class
5904 ///        template.
5905 /// \param NumExplicit the number of explicitly-specified template arguments.
5906 /// \param TemplateArgs the template arguments of the class template
5907 ///        partial specialization.
5908 ///
5909 /// \returns \c true if there was an error, \c false otherwise.
CheckTemplatePartialSpecializationArgs(Sema & S,SourceLocation TemplateNameLoc,TemplateParameterList * TemplateParams,unsigned NumExplicit,SmallVectorImpl<TemplateArgument> & TemplateArgs)5910 static bool CheckTemplatePartialSpecializationArgs(
5911     Sema &S, SourceLocation TemplateNameLoc,
5912     TemplateParameterList *TemplateParams, unsigned NumExplicit,
5913     SmallVectorImpl<TemplateArgument> &TemplateArgs) {
5914   const TemplateArgument *ArgList = TemplateArgs.data();
5915 
5916   for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5917     NonTypeTemplateParmDecl *Param
5918       = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
5919     if (!Param)
5920       continue;
5921 
5922     if (CheckNonTypeTemplatePartialSpecializationArgs(
5923             S, TemplateNameLoc, Param, &ArgList[I], 1, I >= NumExplicit))
5924       return true;
5925   }
5926 
5927   return false;
5928 }
5929 
5930 DeclResult
ActOnClassTemplateSpecialization(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,SourceLocation ModulePrivateLoc,TemplateIdAnnotation & TemplateId,AttributeList * Attr,MultiTemplateParamsArg TemplateParameterLists)5931 Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
5932                                        TagUseKind TUK,
5933                                        SourceLocation KWLoc,
5934                                        SourceLocation ModulePrivateLoc,
5935                                        TemplateIdAnnotation &TemplateId,
5936                                        AttributeList *Attr,
5937                                MultiTemplateParamsArg TemplateParameterLists) {
5938   assert(TUK != TUK_Reference && "References are not specializations");
5939 
5940   CXXScopeSpec &SS = TemplateId.SS;
5941 
5942   // NOTE: KWLoc is the location of the tag keyword. This will instead
5943   // store the location of the outermost template keyword in the declaration.
5944   SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
5945     ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
5946   SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
5947   SourceLocation LAngleLoc = TemplateId.LAngleLoc;
5948   SourceLocation RAngleLoc = TemplateId.RAngleLoc;
5949 
5950   // Find the class template we're specializing
5951   TemplateName Name = TemplateId.Template.get();
5952   ClassTemplateDecl *ClassTemplate
5953     = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
5954 
5955   if (!ClassTemplate) {
5956     Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
5957       << (Name.getAsTemplateDecl() &&
5958           isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
5959     return true;
5960   }
5961 
5962   bool isExplicitSpecialization = false;
5963   bool isPartialSpecialization = false;
5964 
5965   // Check the validity of the template headers that introduce this
5966   // template.
5967   // FIXME: We probably shouldn't complain about these headers for
5968   // friend declarations.
5969   bool Invalid = false;
5970   TemplateParameterList *TemplateParams =
5971       MatchTemplateParametersToScopeSpecifier(
5972           KWLoc, TemplateNameLoc, SS, &TemplateId,
5973           TemplateParameterLists, TUK == TUK_Friend, isExplicitSpecialization,
5974           Invalid);
5975   if (Invalid)
5976     return true;
5977 
5978   if (TemplateParams && TemplateParams->size() > 0) {
5979     isPartialSpecialization = true;
5980 
5981     if (TUK == TUK_Friend) {
5982       Diag(KWLoc, diag::err_partial_specialization_friend)
5983         << SourceRange(LAngleLoc, RAngleLoc);
5984       return true;
5985     }
5986 
5987     // C++ [temp.class.spec]p10:
5988     //   The template parameter list of a specialization shall not
5989     //   contain default template argument values.
5990     for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5991       Decl *Param = TemplateParams->getParam(I);
5992       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
5993         if (TTP->hasDefaultArgument()) {
5994           Diag(TTP->getDefaultArgumentLoc(),
5995                diag::err_default_arg_in_partial_spec);
5996           TTP->removeDefaultArgument();
5997         }
5998       } else if (NonTypeTemplateParmDecl *NTTP
5999                    = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
6000         if (Expr *DefArg = NTTP->getDefaultArgument()) {
6001           Diag(NTTP->getDefaultArgumentLoc(),
6002                diag::err_default_arg_in_partial_spec)
6003             << DefArg->getSourceRange();
6004           NTTP->removeDefaultArgument();
6005         }
6006       } else {
6007         TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
6008         if (TTP->hasDefaultArgument()) {
6009           Diag(TTP->getDefaultArgument().getLocation(),
6010                diag::err_default_arg_in_partial_spec)
6011             << TTP->getDefaultArgument().getSourceRange();
6012           TTP->removeDefaultArgument();
6013         }
6014       }
6015     }
6016   } else if (TemplateParams) {
6017     if (TUK == TUK_Friend)
6018       Diag(KWLoc, diag::err_template_spec_friend)
6019         << FixItHint::CreateRemoval(
6020                                 SourceRange(TemplateParams->getTemplateLoc(),
6021                                             TemplateParams->getRAngleLoc()))
6022         << SourceRange(LAngleLoc, RAngleLoc);
6023     else
6024       isExplicitSpecialization = true;
6025   } else {
6026     assert(TUK == TUK_Friend && "should have a 'template<>' for this decl");
6027   }
6028 
6029   // Check that the specialization uses the same tag kind as the
6030   // original template.
6031   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6032   assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
6033   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
6034                                     Kind, TUK == TUK_Definition, KWLoc,
6035                                     *ClassTemplate->getIdentifier())) {
6036     Diag(KWLoc, diag::err_use_with_wrong_tag)
6037       << ClassTemplate
6038       << FixItHint::CreateReplacement(KWLoc,
6039                             ClassTemplate->getTemplatedDecl()->getKindName());
6040     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
6041          diag::note_previous_use);
6042     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
6043   }
6044 
6045   // Translate the parser's template argument list in our AST format.
6046   TemplateArgumentListInfo TemplateArgs =
6047       makeTemplateArgumentListInfo(*this, TemplateId);
6048 
6049   // Check for unexpanded parameter packs in any of the template arguments.
6050   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6051     if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
6052                                         UPPC_PartialSpecialization))
6053       return true;
6054 
6055   // Check that the template argument list is well-formed for this
6056   // template.
6057   SmallVector<TemplateArgument, 4> Converted;
6058   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
6059                                 TemplateArgs, false, Converted))
6060     return true;
6061 
6062   // Find the class template (partial) specialization declaration that
6063   // corresponds to these arguments.
6064   if (isPartialSpecialization) {
6065     if (CheckTemplatePartialSpecializationArgs(
6066             *this, TemplateNameLoc, ClassTemplate->getTemplateParameters(),
6067             TemplateArgs.size(), Converted))
6068       return true;
6069 
6070     bool InstantiationDependent;
6071     if (!Name.isDependent() &&
6072         !TemplateSpecializationType::anyDependentTemplateArguments(
6073                                              TemplateArgs.getArgumentArray(),
6074                                                          TemplateArgs.size(),
6075                                                      InstantiationDependent)) {
6076       Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
6077         << ClassTemplate->getDeclName();
6078       isPartialSpecialization = false;
6079     }
6080   }
6081 
6082   void *InsertPos = nullptr;
6083   ClassTemplateSpecializationDecl *PrevDecl = nullptr;
6084 
6085   if (isPartialSpecialization)
6086     // FIXME: Template parameter list matters, too
6087     PrevDecl = ClassTemplate->findPartialSpecialization(Converted, InsertPos);
6088   else
6089     PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos);
6090 
6091   ClassTemplateSpecializationDecl *Specialization = nullptr;
6092 
6093   // Check whether we can declare a class template specialization in
6094   // the current scope.
6095   if (TUK != TUK_Friend &&
6096       CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
6097                                        TemplateNameLoc,
6098                                        isPartialSpecialization))
6099     return true;
6100 
6101   // The canonical type
6102   QualType CanonType;
6103   if (isPartialSpecialization) {
6104     // Build the canonical type that describes the converted template
6105     // arguments of the class template partial specialization.
6106     TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
6107     CanonType = Context.getTemplateSpecializationType(CanonTemplate,
6108                                                       Converted.data(),
6109                                                       Converted.size());
6110 
6111     if (Context.hasSameType(CanonType,
6112                         ClassTemplate->getInjectedClassNameSpecialization())) {
6113       // C++ [temp.class.spec]p9b3:
6114       //
6115       //   -- The argument list of the specialization shall not be identical
6116       //      to the implicit argument list of the primary template.
6117       Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
6118         << /*class template*/0 << (TUK == TUK_Definition)
6119         << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
6120       return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
6121                                 ClassTemplate->getIdentifier(),
6122                                 TemplateNameLoc,
6123                                 Attr,
6124                                 TemplateParams,
6125                                 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
6126                                 TemplateParameterLists.size() - 1,
6127                                 TemplateParameterLists.data());
6128     }
6129 
6130     // Create a new class template partial specialization declaration node.
6131     ClassTemplatePartialSpecializationDecl *PrevPartial
6132       = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
6133     ClassTemplatePartialSpecializationDecl *Partial
6134       = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
6135                                              ClassTemplate->getDeclContext(),
6136                                                        KWLoc, TemplateNameLoc,
6137                                                        TemplateParams,
6138                                                        ClassTemplate,
6139                                                        Converted.data(),
6140                                                        Converted.size(),
6141                                                        TemplateArgs,
6142                                                        CanonType,
6143                                                        PrevPartial);
6144     SetNestedNameSpecifier(Partial, SS);
6145     if (TemplateParameterLists.size() > 1 && SS.isSet()) {
6146       Partial->setTemplateParameterListsInfo(Context,
6147                                              TemplateParameterLists.size() - 1,
6148                                              TemplateParameterLists.data());
6149     }
6150 
6151     if (!PrevPartial)
6152       ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
6153     Specialization = Partial;
6154 
6155     // If we are providing an explicit specialization of a member class
6156     // template specialization, make a note of that.
6157     if (PrevPartial && PrevPartial->getInstantiatedFromMember())
6158       PrevPartial->setMemberSpecialization();
6159 
6160     // Check that all of the template parameters of the class template
6161     // partial specialization are deducible from the template
6162     // arguments. If not, this class template partial specialization
6163     // will never be used.
6164     llvm::SmallBitVector DeducibleParams(TemplateParams->size());
6165     MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
6166                                TemplateParams->getDepth(),
6167                                DeducibleParams);
6168 
6169     if (!DeducibleParams.all()) {
6170       unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
6171       Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
6172         << /*class template*/0 << (NumNonDeducible > 1)
6173         << SourceRange(TemplateNameLoc, RAngleLoc);
6174       for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
6175         if (!DeducibleParams[I]) {
6176           NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
6177           if (Param->getDeclName())
6178             Diag(Param->getLocation(),
6179                  diag::note_partial_spec_unused_parameter)
6180               << Param->getDeclName();
6181           else
6182             Diag(Param->getLocation(),
6183                  diag::note_partial_spec_unused_parameter)
6184               << "(anonymous)";
6185         }
6186       }
6187     }
6188   } else {
6189     // Create a new class template specialization declaration node for
6190     // this explicit specialization or friend declaration.
6191     Specialization
6192       = ClassTemplateSpecializationDecl::Create(Context, Kind,
6193                                              ClassTemplate->getDeclContext(),
6194                                                 KWLoc, TemplateNameLoc,
6195                                                 ClassTemplate,
6196                                                 Converted.data(),
6197                                                 Converted.size(),
6198                                                 PrevDecl);
6199     SetNestedNameSpecifier(Specialization, SS);
6200     if (TemplateParameterLists.size() > 0) {
6201       Specialization->setTemplateParameterListsInfo(Context,
6202                                               TemplateParameterLists.size(),
6203                                               TemplateParameterLists.data());
6204     }
6205 
6206     if (!PrevDecl)
6207       ClassTemplate->AddSpecialization(Specialization, InsertPos);
6208 
6209     CanonType = Context.getTypeDeclType(Specialization);
6210   }
6211 
6212   // C++ [temp.expl.spec]p6:
6213   //   If a template, a member template or the member of a class template is
6214   //   explicitly specialized then that specialization shall be declared
6215   //   before the first use of that specialization that would cause an implicit
6216   //   instantiation to take place, in every translation unit in which such a
6217   //   use occurs; no diagnostic is required.
6218   if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
6219     bool Okay = false;
6220     for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6221       // Is there any previous explicit specialization declaration?
6222       if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
6223         Okay = true;
6224         break;
6225       }
6226     }
6227 
6228     if (!Okay) {
6229       SourceRange Range(TemplateNameLoc, RAngleLoc);
6230       Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
6231         << Context.getTypeDeclType(Specialization) << Range;
6232 
6233       Diag(PrevDecl->getPointOfInstantiation(),
6234            diag::note_instantiation_required_here)
6235         << (PrevDecl->getTemplateSpecializationKind()
6236                                                 != TSK_ImplicitInstantiation);
6237       return true;
6238     }
6239   }
6240 
6241   // If this is not a friend, note that this is an explicit specialization.
6242   if (TUK != TUK_Friend)
6243     Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
6244 
6245   // Check that this isn't a redefinition of this specialization.
6246   if (TUK == TUK_Definition) {
6247     if (RecordDecl *Def = Specialization->getDefinition()) {
6248       SourceRange Range(TemplateNameLoc, RAngleLoc);
6249       Diag(TemplateNameLoc, diag::err_redefinition)
6250         << Context.getTypeDeclType(Specialization) << Range;
6251       Diag(Def->getLocation(), diag::note_previous_definition);
6252       Specialization->setInvalidDecl();
6253       return true;
6254     }
6255   }
6256 
6257   if (Attr)
6258     ProcessDeclAttributeList(S, Specialization, Attr);
6259 
6260   // Add alignment attributes if necessary; these attributes are checked when
6261   // the ASTContext lays out the structure.
6262   if (TUK == TUK_Definition) {
6263     AddAlignmentAttributesForRecord(Specialization);
6264     AddMsStructLayoutForRecord(Specialization);
6265   }
6266 
6267   if (ModulePrivateLoc.isValid())
6268     Diag(Specialization->getLocation(), diag::err_module_private_specialization)
6269       << (isPartialSpecialization? 1 : 0)
6270       << FixItHint::CreateRemoval(ModulePrivateLoc);
6271 
6272   // Build the fully-sugared type for this class template
6273   // specialization as the user wrote in the specialization
6274   // itself. This means that we'll pretty-print the type retrieved
6275   // from the specialization's declaration the way that the user
6276   // actually wrote the specialization, rather than formatting the
6277   // name based on the "canonical" representation used to store the
6278   // template arguments in the specialization.
6279   TypeSourceInfo *WrittenTy
6280     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
6281                                                 TemplateArgs, CanonType);
6282   if (TUK != TUK_Friend) {
6283     Specialization->setTypeAsWritten(WrittenTy);
6284     Specialization->setTemplateKeywordLoc(TemplateKWLoc);
6285   }
6286 
6287   // C++ [temp.expl.spec]p9:
6288   //   A template explicit specialization is in the scope of the
6289   //   namespace in which the template was defined.
6290   //
6291   // We actually implement this paragraph where we set the semantic
6292   // context (in the creation of the ClassTemplateSpecializationDecl),
6293   // but we also maintain the lexical context where the actual
6294   // definition occurs.
6295   Specialization->setLexicalDeclContext(CurContext);
6296 
6297   // We may be starting the definition of this specialization.
6298   if (TUK == TUK_Definition)
6299     Specialization->startDefinition();
6300 
6301   if (TUK == TUK_Friend) {
6302     FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
6303                                             TemplateNameLoc,
6304                                             WrittenTy,
6305                                             /*FIXME:*/KWLoc);
6306     Friend->setAccess(AS_public);
6307     CurContext->addDecl(Friend);
6308   } else {
6309     // Add the specialization into its lexical context, so that it can
6310     // be seen when iterating through the list of declarations in that
6311     // context. However, specializations are not found by name lookup.
6312     CurContext->addDecl(Specialization);
6313   }
6314   return Specialization;
6315 }
6316 
ActOnTemplateDeclarator(Scope * S,MultiTemplateParamsArg TemplateParameterLists,Declarator & D)6317 Decl *Sema::ActOnTemplateDeclarator(Scope *S,
6318                               MultiTemplateParamsArg TemplateParameterLists,
6319                                     Declarator &D) {
6320   Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
6321   ActOnDocumentableDecl(NewDecl);
6322   return NewDecl;
6323 }
6324 
ActOnStartOfFunctionTemplateDef(Scope * FnBodyScope,MultiTemplateParamsArg TemplateParameterLists,Declarator & D)6325 Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
6326                                MultiTemplateParamsArg TemplateParameterLists,
6327                                             Declarator &D) {
6328   assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
6329   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6330 
6331   if (FTI.hasPrototype) {
6332     // FIXME: Diagnose arguments without names in C.
6333   }
6334 
6335   Scope *ParentScope = FnBodyScope->getParent();
6336 
6337   D.setFunctionDefinitionKind(FDK_Definition);
6338   Decl *DP = HandleDeclarator(ParentScope, D,
6339                               TemplateParameterLists);
6340   return ActOnStartOfFunctionDef(FnBodyScope, DP);
6341 }
6342 
6343 /// \brief Strips various properties off an implicit instantiation
6344 /// that has just been explicitly specialized.
StripImplicitInstantiation(NamedDecl * D)6345 static void StripImplicitInstantiation(NamedDecl *D) {
6346   D->dropAttrs();
6347 
6348   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6349     FD->setInlineSpecified(false);
6350 
6351     for (auto I : FD->params())
6352       I->dropAttrs();
6353   }
6354 }
6355 
6356 /// \brief Compute the diagnostic location for an explicit instantiation
6357 //  declaration or definition.
DiagLocForExplicitInstantiation(NamedDecl * D,SourceLocation PointOfInstantiation)6358 static SourceLocation DiagLocForExplicitInstantiation(
6359     NamedDecl* D, SourceLocation PointOfInstantiation) {
6360   // Explicit instantiations following a specialization have no effect and
6361   // hence no PointOfInstantiation. In that case, walk decl backwards
6362   // until a valid name loc is found.
6363   SourceLocation PrevDiagLoc = PointOfInstantiation;
6364   for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
6365        Prev = Prev->getPreviousDecl()) {
6366     PrevDiagLoc = Prev->getLocation();
6367   }
6368   assert(PrevDiagLoc.isValid() &&
6369          "Explicit instantiation without point of instantiation?");
6370   return PrevDiagLoc;
6371 }
6372 
6373 /// \brief Diagnose cases where we have an explicit template specialization
6374 /// before/after an explicit template instantiation, producing diagnostics
6375 /// for those cases where they are required and determining whether the
6376 /// new specialization/instantiation will have any effect.
6377 ///
6378 /// \param NewLoc the location of the new explicit specialization or
6379 /// instantiation.
6380 ///
6381 /// \param NewTSK the kind of the new explicit specialization or instantiation.
6382 ///
6383 /// \param PrevDecl the previous declaration of the entity.
6384 ///
6385 /// \param PrevTSK the kind of the old explicit specialization or instantiatin.
6386 ///
6387 /// \param PrevPointOfInstantiation if valid, indicates where the previus
6388 /// declaration was instantiated (either implicitly or explicitly).
6389 ///
6390 /// \param HasNoEffect will be set to true to indicate that the new
6391 /// specialization or instantiation has no effect and should be ignored.
6392 ///
6393 /// \returns true if there was an error that should prevent the introduction of
6394 /// the new declaration into the AST, false otherwise.
6395 bool
CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,TemplateSpecializationKind NewTSK,NamedDecl * PrevDecl,TemplateSpecializationKind PrevTSK,SourceLocation PrevPointOfInstantiation,bool & HasNoEffect)6396 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
6397                                              TemplateSpecializationKind NewTSK,
6398                                              NamedDecl *PrevDecl,
6399                                              TemplateSpecializationKind PrevTSK,
6400                                         SourceLocation PrevPointOfInstantiation,
6401                                              bool &HasNoEffect) {
6402   HasNoEffect = false;
6403 
6404   switch (NewTSK) {
6405   case TSK_Undeclared:
6406   case TSK_ImplicitInstantiation:
6407     assert(
6408         (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&
6409         "previous declaration must be implicit!");
6410     return false;
6411 
6412   case TSK_ExplicitSpecialization:
6413     switch (PrevTSK) {
6414     case TSK_Undeclared:
6415     case TSK_ExplicitSpecialization:
6416       // Okay, we're just specializing something that is either already
6417       // explicitly specialized or has merely been mentioned without any
6418       // instantiation.
6419       return false;
6420 
6421     case TSK_ImplicitInstantiation:
6422       if (PrevPointOfInstantiation.isInvalid()) {
6423         // The declaration itself has not actually been instantiated, so it is
6424         // still okay to specialize it.
6425         StripImplicitInstantiation(PrevDecl);
6426         return false;
6427       }
6428       // Fall through
6429 
6430     case TSK_ExplicitInstantiationDeclaration:
6431     case TSK_ExplicitInstantiationDefinition:
6432       assert((PrevTSK == TSK_ImplicitInstantiation ||
6433               PrevPointOfInstantiation.isValid()) &&
6434              "Explicit instantiation without point of instantiation?");
6435 
6436       // C++ [temp.expl.spec]p6:
6437       //   If a template, a member template or the member of a class template
6438       //   is explicitly specialized then that specialization shall be declared
6439       //   before the first use of that specialization that would cause an
6440       //   implicit instantiation to take place, in every translation unit in
6441       //   which such a use occurs; no diagnostic is required.
6442       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6443         // Is there any previous explicit specialization declaration?
6444         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
6445           return false;
6446       }
6447 
6448       Diag(NewLoc, diag::err_specialization_after_instantiation)
6449         << PrevDecl;
6450       Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
6451         << (PrevTSK != TSK_ImplicitInstantiation);
6452 
6453       return true;
6454     }
6455 
6456   case TSK_ExplicitInstantiationDeclaration:
6457     switch (PrevTSK) {
6458     case TSK_ExplicitInstantiationDeclaration:
6459       // This explicit instantiation declaration is redundant (that's okay).
6460       HasNoEffect = true;
6461       return false;
6462 
6463     case TSK_Undeclared:
6464     case TSK_ImplicitInstantiation:
6465       // We're explicitly instantiating something that may have already been
6466       // implicitly instantiated; that's fine.
6467       return false;
6468 
6469     case TSK_ExplicitSpecialization:
6470       // C++0x [temp.explicit]p4:
6471       //   For a given set of template parameters, if an explicit instantiation
6472       //   of a template appears after a declaration of an explicit
6473       //   specialization for that template, the explicit instantiation has no
6474       //   effect.
6475       HasNoEffect = true;
6476       return false;
6477 
6478     case TSK_ExplicitInstantiationDefinition:
6479       // C++0x [temp.explicit]p10:
6480       //   If an entity is the subject of both an explicit instantiation
6481       //   declaration and an explicit instantiation definition in the same
6482       //   translation unit, the definition shall follow the declaration.
6483       Diag(NewLoc,
6484            diag::err_explicit_instantiation_declaration_after_definition);
6485 
6486       // Explicit instantiations following a specialization have no effect and
6487       // hence no PrevPointOfInstantiation. In that case, walk decl backwards
6488       // until a valid name loc is found.
6489       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
6490            diag::note_explicit_instantiation_definition_here);
6491       HasNoEffect = true;
6492       return false;
6493     }
6494 
6495   case TSK_ExplicitInstantiationDefinition:
6496     switch (PrevTSK) {
6497     case TSK_Undeclared:
6498     case TSK_ImplicitInstantiation:
6499       // We're explicitly instantiating something that may have already been
6500       // implicitly instantiated; that's fine.
6501       return false;
6502 
6503     case TSK_ExplicitSpecialization:
6504       // C++ DR 259, C++0x [temp.explicit]p4:
6505       //   For a given set of template parameters, if an explicit
6506       //   instantiation of a template appears after a declaration of
6507       //   an explicit specialization for that template, the explicit
6508       //   instantiation has no effect.
6509       //
6510       // In C++98/03 mode, we only give an extension warning here, because it
6511       // is not harmful to try to explicitly instantiate something that
6512       // has been explicitly specialized.
6513       Diag(NewLoc, getLangOpts().CPlusPlus11 ?
6514            diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
6515            diag::ext_explicit_instantiation_after_specialization)
6516         << PrevDecl;
6517       Diag(PrevDecl->getLocation(),
6518            diag::note_previous_template_specialization);
6519       HasNoEffect = true;
6520       return false;
6521 
6522     case TSK_ExplicitInstantiationDeclaration:
6523       // We're explicity instantiating a definition for something for which we
6524       // were previously asked to suppress instantiations. That's fine.
6525 
6526       // C++0x [temp.explicit]p4:
6527       //   For a given set of template parameters, if an explicit instantiation
6528       //   of a template appears after a declaration of an explicit
6529       //   specialization for that template, the explicit instantiation has no
6530       //   effect.
6531       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6532         // Is there any previous explicit specialization declaration?
6533         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
6534           HasNoEffect = true;
6535           break;
6536         }
6537       }
6538 
6539       return false;
6540 
6541     case TSK_ExplicitInstantiationDefinition:
6542       // C++0x [temp.spec]p5:
6543       //   For a given template and a given set of template-arguments,
6544       //     - an explicit instantiation definition shall appear at most once
6545       //       in a program,
6546 
6547       // MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
6548       Diag(NewLoc, (getLangOpts().MSVCCompat)
6549                        ? diag::warn_explicit_instantiation_duplicate
6550                        : diag::err_explicit_instantiation_duplicate)
6551           << PrevDecl;
6552       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
6553            diag::note_previous_explicit_instantiation);
6554       HasNoEffect = true;
6555       return false;
6556     }
6557   }
6558 
6559   llvm_unreachable("Missing specialization/instantiation case?");
6560 }
6561 
6562 /// \brief Perform semantic analysis for the given dependent function
6563 /// template specialization.
6564 ///
6565 /// The only possible way to get a dependent function template specialization
6566 /// is with a friend declaration, like so:
6567 ///
6568 /// \code
6569 ///   template \<class T> void foo(T);
6570 ///   template \<class T> class A {
6571 ///     friend void foo<>(T);
6572 ///   };
6573 /// \endcode
6574 ///
6575 /// There really isn't any useful analysis we can do here, so we
6576 /// just store the information.
6577 bool
CheckDependentFunctionTemplateSpecialization(FunctionDecl * FD,const TemplateArgumentListInfo & ExplicitTemplateArgs,LookupResult & Previous)6578 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
6579                    const TemplateArgumentListInfo &ExplicitTemplateArgs,
6580                                                    LookupResult &Previous) {
6581   // Remove anything from Previous that isn't a function template in
6582   // the correct context.
6583   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
6584   LookupResult::Filter F = Previous.makeFilter();
6585   while (F.hasNext()) {
6586     NamedDecl *D = F.next()->getUnderlyingDecl();
6587     if (!isa<FunctionTemplateDecl>(D) ||
6588         !FDLookupContext->InEnclosingNamespaceSetOf(
6589                               D->getDeclContext()->getRedeclContext()))
6590       F.erase();
6591   }
6592   F.done();
6593 
6594   // Should this be diagnosed here?
6595   if (Previous.empty()) return true;
6596 
6597   FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
6598                                          ExplicitTemplateArgs);
6599   return false;
6600 }
6601 
6602 /// \brief Perform semantic analysis for the given function template
6603 /// specialization.
6604 ///
6605 /// This routine performs all of the semantic analysis required for an
6606 /// explicit function template specialization. On successful completion,
6607 /// the function declaration \p FD will become a function template
6608 /// specialization.
6609 ///
6610 /// \param FD the function declaration, which will be updated to become a
6611 /// function template specialization.
6612 ///
6613 /// \param ExplicitTemplateArgs the explicitly-provided template arguments,
6614 /// if any. Note that this may be valid info even when 0 arguments are
6615 /// explicitly provided as in, e.g., \c void sort<>(char*, char*);
6616 /// as it anyway contains info on the angle brackets locations.
6617 ///
6618 /// \param Previous the set of declarations that may be specialized by
6619 /// this function specialization.
CheckFunctionTemplateSpecialization(FunctionDecl * FD,TemplateArgumentListInfo * ExplicitTemplateArgs,LookupResult & Previous)6620 bool Sema::CheckFunctionTemplateSpecialization(
6621     FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
6622     LookupResult &Previous) {
6623   // The set of function template specializations that could match this
6624   // explicit function template specialization.
6625   UnresolvedSet<8> Candidates;
6626   TemplateSpecCandidateSet FailedCandidates(FD->getLocation());
6627 
6628   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
6629   for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6630          I != E; ++I) {
6631     NamedDecl *Ovl = (*I)->getUnderlyingDecl();
6632     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
6633       // Only consider templates found within the same semantic lookup scope as
6634       // FD.
6635       if (!FDLookupContext->InEnclosingNamespaceSetOf(
6636                                 Ovl->getDeclContext()->getRedeclContext()))
6637         continue;
6638 
6639       // When matching a constexpr member function template specialization
6640       // against the primary template, we don't yet know whether the
6641       // specialization has an implicit 'const' (because we don't know whether
6642       // it will be a static member function until we know which template it
6643       // specializes), so adjust it now assuming it specializes this template.
6644       QualType FT = FD->getType();
6645       if (FD->isConstexpr()) {
6646         CXXMethodDecl *OldMD =
6647           dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
6648         if (OldMD && OldMD->isConst()) {
6649           const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
6650           FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6651           EPI.TypeQuals |= Qualifiers::Const;
6652           FT = Context.getFunctionType(FPT->getReturnType(),
6653                                        FPT->getParamTypes(), EPI);
6654         }
6655       }
6656 
6657       // C++ [temp.expl.spec]p11:
6658       //   A trailing template-argument can be left unspecified in the
6659       //   template-id naming an explicit function template specialization
6660       //   provided it can be deduced from the function argument type.
6661       // Perform template argument deduction to determine whether we may be
6662       // specializing this template.
6663       // FIXME: It is somewhat wasteful to build
6664       TemplateDeductionInfo Info(FailedCandidates.getLocation());
6665       FunctionDecl *Specialization = nullptr;
6666       if (TemplateDeductionResult TDK = DeduceTemplateArguments(
6667               cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
6668               ExplicitTemplateArgs, FT, Specialization, Info)) {
6669         // Template argument deduction failed; record why it failed, so
6670         // that we can provide nifty diagnostics.
6671         FailedCandidates.addCandidate()
6672             .set(FunTmpl->getTemplatedDecl(),
6673                  MakeDeductionFailureInfo(Context, TDK, Info));
6674         (void)TDK;
6675         continue;
6676       }
6677 
6678       // Record this candidate.
6679       Candidates.addDecl(Specialization, I.getAccess());
6680     }
6681   }
6682 
6683   // Find the most specialized function template.
6684   UnresolvedSetIterator Result = getMostSpecialized(
6685       Candidates.begin(), Candidates.end(), FailedCandidates,
6686       FD->getLocation(),
6687       PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
6688       PDiag(diag::err_function_template_spec_ambiguous)
6689           << FD->getDeclName() << (ExplicitTemplateArgs != nullptr),
6690       PDiag(diag::note_function_template_spec_matched));
6691 
6692   if (Result == Candidates.end())
6693     return true;
6694 
6695   // Ignore access information;  it doesn't figure into redeclaration checking.
6696   FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6697 
6698   FunctionTemplateSpecializationInfo *SpecInfo
6699     = Specialization->getTemplateSpecializationInfo();
6700   assert(SpecInfo && "Function template specialization info missing?");
6701 
6702   // Note: do not overwrite location info if previous template
6703   // specialization kind was explicit.
6704   TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
6705   if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
6706     Specialization->setLocation(FD->getLocation());
6707     // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
6708     // function can differ from the template declaration with respect to
6709     // the constexpr specifier.
6710     Specialization->setConstexpr(FD->isConstexpr());
6711   }
6712 
6713   // FIXME: Check if the prior specialization has a point of instantiation.
6714   // If so, we have run afoul of .
6715 
6716   // If this is a friend declaration, then we're not really declaring
6717   // an explicit specialization.
6718   bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
6719 
6720   // Check the scope of this explicit specialization.
6721   if (!isFriend &&
6722       CheckTemplateSpecializationScope(*this,
6723                                        Specialization->getPrimaryTemplate(),
6724                                        Specialization, FD->getLocation(),
6725                                        false))
6726     return true;
6727 
6728   // C++ [temp.expl.spec]p6:
6729   //   If a template, a member template or the member of a class template is
6730   //   explicitly specialized then that specialization shall be declared
6731   //   before the first use of that specialization that would cause an implicit
6732   //   instantiation to take place, in every translation unit in which such a
6733   //   use occurs; no diagnostic is required.
6734   bool HasNoEffect = false;
6735   if (!isFriend &&
6736       CheckSpecializationInstantiationRedecl(FD->getLocation(),
6737                                              TSK_ExplicitSpecialization,
6738                                              Specialization,
6739                                    SpecInfo->getTemplateSpecializationKind(),
6740                                          SpecInfo->getPointOfInstantiation(),
6741                                              HasNoEffect))
6742     return true;
6743 
6744   // Mark the prior declaration as an explicit specialization, so that later
6745   // clients know that this is an explicit specialization.
6746   if (!isFriend) {
6747     SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
6748     MarkUnusedFileScopedDecl(Specialization);
6749   }
6750 
6751   // Turn the given function declaration into a function template
6752   // specialization, with the template arguments from the previous
6753   // specialization.
6754   // Take copies of (semantic and syntactic) template argument lists.
6755   const TemplateArgumentList* TemplArgs = new (Context)
6756     TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
6757   FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
6758                                         TemplArgs, /*InsertPos=*/nullptr,
6759                                     SpecInfo->getTemplateSpecializationKind(),
6760                                         ExplicitTemplateArgs);
6761 
6762   // The "previous declaration" for this function template specialization is
6763   // the prior function template specialization.
6764   Previous.clear();
6765   Previous.addDecl(Specialization);
6766   return false;
6767 }
6768 
6769 /// \brief Perform semantic analysis for the given non-template member
6770 /// specialization.
6771 ///
6772 /// This routine performs all of the semantic analysis required for an
6773 /// explicit member function specialization. On successful completion,
6774 /// the function declaration \p FD will become a member function
6775 /// specialization.
6776 ///
6777 /// \param Member the member declaration, which will be updated to become a
6778 /// specialization.
6779 ///
6780 /// \param Previous the set of declarations, one of which may be specialized
6781 /// by this function specialization;  the set will be modified to contain the
6782 /// redeclared member.
6783 bool
CheckMemberSpecialization(NamedDecl * Member,LookupResult & Previous)6784 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
6785   assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
6786 
6787   // Try to find the member we are instantiating.
6788   NamedDecl *Instantiation = nullptr;
6789   NamedDecl *InstantiatedFrom = nullptr;
6790   MemberSpecializationInfo *MSInfo = nullptr;
6791 
6792   if (Previous.empty()) {
6793     // Nowhere to look anyway.
6794   } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
6795     for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6796            I != E; ++I) {
6797       NamedDecl *D = (*I)->getUnderlyingDecl();
6798       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
6799         QualType Adjusted = Function->getType();
6800         if (!hasExplicitCallingConv(Adjusted))
6801           Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType());
6802         if (Context.hasSameType(Adjusted, Method->getType())) {
6803           Instantiation = Method;
6804           InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
6805           MSInfo = Method->getMemberSpecializationInfo();
6806           break;
6807         }
6808       }
6809     }
6810   } else if (isa<VarDecl>(Member)) {
6811     VarDecl *PrevVar;
6812     if (Previous.isSingleResult() &&
6813         (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
6814       if (PrevVar->isStaticDataMember()) {
6815         Instantiation = PrevVar;
6816         InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
6817         MSInfo = PrevVar->getMemberSpecializationInfo();
6818       }
6819   } else if (isa<RecordDecl>(Member)) {
6820     CXXRecordDecl *PrevRecord;
6821     if (Previous.isSingleResult() &&
6822         (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
6823       Instantiation = PrevRecord;
6824       InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
6825       MSInfo = PrevRecord->getMemberSpecializationInfo();
6826     }
6827   } else if (isa<EnumDecl>(Member)) {
6828     EnumDecl *PrevEnum;
6829     if (Previous.isSingleResult() &&
6830         (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
6831       Instantiation = PrevEnum;
6832       InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
6833       MSInfo = PrevEnum->getMemberSpecializationInfo();
6834     }
6835   }
6836 
6837   if (!Instantiation) {
6838     // There is no previous declaration that matches. Since member
6839     // specializations are always out-of-line, the caller will complain about
6840     // this mismatch later.
6841     return false;
6842   }
6843 
6844   // If this is a friend, just bail out here before we start turning
6845   // things into explicit specializations.
6846   if (Member->getFriendObjectKind() != Decl::FOK_None) {
6847     // Preserve instantiation information.
6848     if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
6849       cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
6850                                       cast<CXXMethodDecl>(InstantiatedFrom),
6851         cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
6852     } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
6853       cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6854                                       cast<CXXRecordDecl>(InstantiatedFrom),
6855         cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
6856     }
6857 
6858     Previous.clear();
6859     Previous.addDecl(Instantiation);
6860     return false;
6861   }
6862 
6863   // Make sure that this is a specialization of a member.
6864   if (!InstantiatedFrom) {
6865     Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
6866       << Member;
6867     Diag(Instantiation->getLocation(), diag::note_specialized_decl);
6868     return true;
6869   }
6870 
6871   // C++ [temp.expl.spec]p6:
6872   //   If a template, a member template or the member of a class template is
6873   //   explicitly specialized then that specialization shall be declared
6874   //   before the first use of that specialization that would cause an implicit
6875   //   instantiation to take place, in every translation unit in which such a
6876   //   use occurs; no diagnostic is required.
6877   assert(MSInfo && "Member specialization info missing?");
6878 
6879   bool HasNoEffect = false;
6880   if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
6881                                              TSK_ExplicitSpecialization,
6882                                              Instantiation,
6883                                      MSInfo->getTemplateSpecializationKind(),
6884                                            MSInfo->getPointOfInstantiation(),
6885                                              HasNoEffect))
6886     return true;
6887 
6888   // Check the scope of this explicit specialization.
6889   if (CheckTemplateSpecializationScope(*this,
6890                                        InstantiatedFrom,
6891                                        Instantiation, Member->getLocation(),
6892                                        false))
6893     return true;
6894 
6895   // Note that this is an explicit instantiation of a member.
6896   // the original declaration to note that it is an explicit specialization
6897   // (if it was previously an implicit instantiation). This latter step
6898   // makes bookkeeping easier.
6899   if (isa<FunctionDecl>(Member)) {
6900     FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
6901     if (InstantiationFunction->getTemplateSpecializationKind() ==
6902           TSK_ImplicitInstantiation) {
6903       InstantiationFunction->setTemplateSpecializationKind(
6904                                                   TSK_ExplicitSpecialization);
6905       InstantiationFunction->setLocation(Member->getLocation());
6906     }
6907 
6908     cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
6909                                         cast<CXXMethodDecl>(InstantiatedFrom),
6910                                                   TSK_ExplicitSpecialization);
6911     MarkUnusedFileScopedDecl(InstantiationFunction);
6912   } else if (isa<VarDecl>(Member)) {
6913     VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
6914     if (InstantiationVar->getTemplateSpecializationKind() ==
6915           TSK_ImplicitInstantiation) {
6916       InstantiationVar->setTemplateSpecializationKind(
6917                                                   TSK_ExplicitSpecialization);
6918       InstantiationVar->setLocation(Member->getLocation());
6919     }
6920 
6921     cast<VarDecl>(Member)->setInstantiationOfStaticDataMember(
6922         cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
6923     MarkUnusedFileScopedDecl(InstantiationVar);
6924   } else if (isa<CXXRecordDecl>(Member)) {
6925     CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
6926     if (InstantiationClass->getTemplateSpecializationKind() ==
6927           TSK_ImplicitInstantiation) {
6928       InstantiationClass->setTemplateSpecializationKind(
6929                                                    TSK_ExplicitSpecialization);
6930       InstantiationClass->setLocation(Member->getLocation());
6931     }
6932 
6933     cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6934                                         cast<CXXRecordDecl>(InstantiatedFrom),
6935                                                    TSK_ExplicitSpecialization);
6936   } else {
6937     assert(isa<EnumDecl>(Member) && "Only member enums remain");
6938     EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation);
6939     if (InstantiationEnum->getTemplateSpecializationKind() ==
6940           TSK_ImplicitInstantiation) {
6941       InstantiationEnum->setTemplateSpecializationKind(
6942                                                    TSK_ExplicitSpecialization);
6943       InstantiationEnum->setLocation(Member->getLocation());
6944     }
6945 
6946     cast<EnumDecl>(Member)->setInstantiationOfMemberEnum(
6947         cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
6948   }
6949 
6950   // Save the caller the trouble of having to figure out which declaration
6951   // this specialization matches.
6952   Previous.clear();
6953   Previous.addDecl(Instantiation);
6954   return false;
6955 }
6956 
6957 /// \brief Check the scope of an explicit instantiation.
6958 ///
6959 /// \returns true if a serious error occurs, false otherwise.
CheckExplicitInstantiationScope(Sema & S,NamedDecl * D,SourceLocation InstLoc,bool WasQualifiedName)6960 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
6961                                             SourceLocation InstLoc,
6962                                             bool WasQualifiedName) {
6963   DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
6964   DeclContext *CurContext = S.CurContext->getRedeclContext();
6965 
6966   if (CurContext->isRecord()) {
6967     S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
6968       << D;
6969     return true;
6970   }
6971 
6972   // C++11 [temp.explicit]p3:
6973   //   An explicit instantiation shall appear in an enclosing namespace of its
6974   //   template. If the name declared in the explicit instantiation is an
6975   //   unqualified name, the explicit instantiation shall appear in the
6976   //   namespace where its template is declared or, if that namespace is inline
6977   //   (7.3.1), any namespace from its enclosing namespace set.
6978   //
6979   // This is DR275, which we do not retroactively apply to C++98/03.
6980   if (WasQualifiedName) {
6981     if (CurContext->Encloses(OrigContext))
6982       return false;
6983   } else {
6984     if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
6985       return false;
6986   }
6987 
6988   if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
6989     if (WasQualifiedName)
6990       S.Diag(InstLoc,
6991              S.getLangOpts().CPlusPlus11?
6992                diag::err_explicit_instantiation_out_of_scope :
6993                diag::warn_explicit_instantiation_out_of_scope_0x)
6994         << D << NS;
6995     else
6996       S.Diag(InstLoc,
6997              S.getLangOpts().CPlusPlus11?
6998                diag::err_explicit_instantiation_unqualified_wrong_namespace :
6999                diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
7000         << D << NS;
7001   } else
7002     S.Diag(InstLoc,
7003            S.getLangOpts().CPlusPlus11?
7004              diag::err_explicit_instantiation_must_be_global :
7005              diag::warn_explicit_instantiation_must_be_global_0x)
7006       << D;
7007   S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
7008   return false;
7009 }
7010 
7011 /// \brief Determine whether the given scope specifier has a template-id in it.
ScopeSpecifierHasTemplateId(const CXXScopeSpec & SS)7012 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
7013   if (!SS.isSet())
7014     return false;
7015 
7016   // C++11 [temp.explicit]p3:
7017   //   If the explicit instantiation is for a member function, a member class
7018   //   or a static data member of a class template specialization, the name of
7019   //   the class template specialization in the qualified-id for the member
7020   //   name shall be a simple-template-id.
7021   //
7022   // C++98 has the same restriction, just worded differently.
7023   for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS;
7024        NNS = NNS->getPrefix())
7025     if (const Type *T = NNS->getAsType())
7026       if (isa<TemplateSpecializationType>(T))
7027         return true;
7028 
7029   return false;
7030 }
7031 
7032 // Explicit instantiation of a class template specialization
7033 DeclResult
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,const CXXScopeSpec & SS,TemplateTy TemplateD,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,AttributeList * Attr)7034 Sema::ActOnExplicitInstantiation(Scope *S,
7035                                  SourceLocation ExternLoc,
7036                                  SourceLocation TemplateLoc,
7037                                  unsigned TagSpec,
7038                                  SourceLocation KWLoc,
7039                                  const CXXScopeSpec &SS,
7040                                  TemplateTy TemplateD,
7041                                  SourceLocation TemplateNameLoc,
7042                                  SourceLocation LAngleLoc,
7043                                  ASTTemplateArgsPtr TemplateArgsIn,
7044                                  SourceLocation RAngleLoc,
7045                                  AttributeList *Attr) {
7046   // Find the class template we're specializing
7047   TemplateName Name = TemplateD.get();
7048   TemplateDecl *TD = Name.getAsTemplateDecl();
7049   // Check that the specialization uses the same tag kind as the
7050   // original template.
7051   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7052   assert(Kind != TTK_Enum &&
7053          "Invalid enum tag in class template explicit instantiation!");
7054 
7055   if (isa<TypeAliasTemplateDecl>(TD)) {
7056       Diag(KWLoc, diag::err_tag_reference_non_tag) << Kind;
7057       Diag(TD->getTemplatedDecl()->getLocation(),
7058            diag::note_previous_use);
7059     return true;
7060   }
7061 
7062   ClassTemplateDecl *ClassTemplate = cast<ClassTemplateDecl>(TD);
7063 
7064   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
7065                                     Kind, /*isDefinition*/false, KWLoc,
7066                                     *ClassTemplate->getIdentifier())) {
7067     Diag(KWLoc, diag::err_use_with_wrong_tag)
7068       << ClassTemplate
7069       << FixItHint::CreateReplacement(KWLoc,
7070                             ClassTemplate->getTemplatedDecl()->getKindName());
7071     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
7072          diag::note_previous_use);
7073     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
7074   }
7075 
7076   // C++0x [temp.explicit]p2:
7077   //   There are two forms of explicit instantiation: an explicit instantiation
7078   //   definition and an explicit instantiation declaration. An explicit
7079   //   instantiation declaration begins with the extern keyword. [...]
7080   TemplateSpecializationKind TSK
7081     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7082                            : TSK_ExplicitInstantiationDeclaration;
7083 
7084   // Translate the parser's template argument list in our AST format.
7085   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
7086   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
7087 
7088   // Check that the template argument list is well-formed for this
7089   // template.
7090   SmallVector<TemplateArgument, 4> Converted;
7091   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
7092                                 TemplateArgs, false, Converted))
7093     return true;
7094 
7095   // Find the class template specialization declaration that
7096   // corresponds to these arguments.
7097   void *InsertPos = nullptr;
7098   ClassTemplateSpecializationDecl *PrevDecl
7099     = ClassTemplate->findSpecialization(Converted, InsertPos);
7100 
7101   TemplateSpecializationKind PrevDecl_TSK
7102     = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
7103 
7104   // C++0x [temp.explicit]p2:
7105   //   [...] An explicit instantiation shall appear in an enclosing
7106   //   namespace of its template. [...]
7107   //
7108   // This is C++ DR 275.
7109   if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
7110                                       SS.isSet()))
7111     return true;
7112 
7113   ClassTemplateSpecializationDecl *Specialization = nullptr;
7114 
7115   bool HasNoEffect = false;
7116   if (PrevDecl) {
7117     if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
7118                                                PrevDecl, PrevDecl_TSK,
7119                                             PrevDecl->getPointOfInstantiation(),
7120                                                HasNoEffect))
7121       return PrevDecl;
7122 
7123     // Even though HasNoEffect == true means that this explicit instantiation
7124     // has no effect on semantics, we go on to put its syntax in the AST.
7125 
7126     if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
7127         PrevDecl_TSK == TSK_Undeclared) {
7128       // Since the only prior class template specialization with these
7129       // arguments was referenced but not declared, reuse that
7130       // declaration node as our own, updating the source location
7131       // for the template name to reflect our new declaration.
7132       // (Other source locations will be updated later.)
7133       Specialization = PrevDecl;
7134       Specialization->setLocation(TemplateNameLoc);
7135       PrevDecl = nullptr;
7136     }
7137   }
7138 
7139   if (!Specialization) {
7140     // Create a new class template specialization declaration node for
7141     // this explicit specialization.
7142     Specialization
7143       = ClassTemplateSpecializationDecl::Create(Context, Kind,
7144                                              ClassTemplate->getDeclContext(),
7145                                                 KWLoc, TemplateNameLoc,
7146                                                 ClassTemplate,
7147                                                 Converted.data(),
7148                                                 Converted.size(),
7149                                                 PrevDecl);
7150     SetNestedNameSpecifier(Specialization, SS);
7151 
7152     if (!HasNoEffect && !PrevDecl) {
7153       // Insert the new specialization.
7154       ClassTemplate->AddSpecialization(Specialization, InsertPos);
7155     }
7156   }
7157 
7158   // Build the fully-sugared type for this explicit instantiation as
7159   // the user wrote in the explicit instantiation itself. This means
7160   // that we'll pretty-print the type retrieved from the
7161   // specialization's declaration the way that the user actually wrote
7162   // the explicit instantiation, rather than formatting the name based
7163   // on the "canonical" representation used to store the template
7164   // arguments in the specialization.
7165   TypeSourceInfo *WrittenTy
7166     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
7167                                                 TemplateArgs,
7168                                   Context.getTypeDeclType(Specialization));
7169   Specialization->setTypeAsWritten(WrittenTy);
7170 
7171   // Set source locations for keywords.
7172   Specialization->setExternLoc(ExternLoc);
7173   Specialization->setTemplateKeywordLoc(TemplateLoc);
7174   Specialization->setRBraceLoc(SourceLocation());
7175 
7176   if (Attr)
7177     ProcessDeclAttributeList(S, Specialization, Attr);
7178 
7179   // Add the explicit instantiation into its lexical context. However,
7180   // since explicit instantiations are never found by name lookup, we
7181   // just put it into the declaration context directly.
7182   Specialization->setLexicalDeclContext(CurContext);
7183   CurContext->addDecl(Specialization);
7184 
7185   // Syntax is now OK, so return if it has no other effect on semantics.
7186   if (HasNoEffect) {
7187     // Set the template specialization kind.
7188     Specialization->setTemplateSpecializationKind(TSK);
7189     return Specialization;
7190   }
7191 
7192   // C++ [temp.explicit]p3:
7193   //   A definition of a class template or class member template
7194   //   shall be in scope at the point of the explicit instantiation of
7195   //   the class template or class member template.
7196   //
7197   // This check comes when we actually try to perform the
7198   // instantiation.
7199   ClassTemplateSpecializationDecl *Def
7200     = cast_or_null<ClassTemplateSpecializationDecl>(
7201                                               Specialization->getDefinition());
7202   if (!Def)
7203     InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
7204   else if (TSK == TSK_ExplicitInstantiationDefinition) {
7205     MarkVTableUsed(TemplateNameLoc, Specialization, true);
7206     Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
7207   }
7208 
7209   // Instantiate the members of this class template specialization.
7210   Def = cast_or_null<ClassTemplateSpecializationDecl>(
7211                                        Specialization->getDefinition());
7212   if (Def) {
7213     TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
7214 
7215     // Fix a TSK_ExplicitInstantiationDeclaration followed by a
7216     // TSK_ExplicitInstantiationDefinition
7217     if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
7218         TSK == TSK_ExplicitInstantiationDefinition)
7219       // FIXME: Need to notify the ASTMutationListener that we did this.
7220       Def->setTemplateSpecializationKind(TSK);
7221 
7222     InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
7223   }
7224 
7225   // Set the template specialization kind.
7226   Specialization->setTemplateSpecializationKind(TSK);
7227   return Specialization;
7228 }
7229 
7230 // Explicit instantiation of a member class of a class template.
7231 DeclResult
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr)7232 Sema::ActOnExplicitInstantiation(Scope *S,
7233                                  SourceLocation ExternLoc,
7234                                  SourceLocation TemplateLoc,
7235                                  unsigned TagSpec,
7236                                  SourceLocation KWLoc,
7237                                  CXXScopeSpec &SS,
7238                                  IdentifierInfo *Name,
7239                                  SourceLocation NameLoc,
7240                                  AttributeList *Attr) {
7241 
7242   bool Owned = false;
7243   bool IsDependent = false;
7244   Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
7245                         KWLoc, SS, Name, NameLoc, Attr, AS_none,
7246                         /*ModulePrivateLoc=*/SourceLocation(),
7247                         MultiTemplateParamsArg(), Owned, IsDependent,
7248                         SourceLocation(), false, TypeResult(),
7249                         /*IsTypeSpecifier*/false);
7250   assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
7251 
7252   if (!TagD)
7253     return true;
7254 
7255   TagDecl *Tag = cast<TagDecl>(TagD);
7256   assert(!Tag->isEnum() && "shouldn't see enumerations here");
7257 
7258   if (Tag->isInvalidDecl())
7259     return true;
7260 
7261   CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
7262   CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
7263   if (!Pattern) {
7264     Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
7265       << Context.getTypeDeclType(Record);
7266     Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
7267     return true;
7268   }
7269 
7270   // C++0x [temp.explicit]p2:
7271   //   If the explicit instantiation is for a class or member class, the
7272   //   elaborated-type-specifier in the declaration shall include a
7273   //   simple-template-id.
7274   //
7275   // C++98 has the same restriction, just worded differently.
7276   if (!ScopeSpecifierHasTemplateId(SS))
7277     Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
7278       << Record << SS.getRange();
7279 
7280   // C++0x [temp.explicit]p2:
7281   //   There are two forms of explicit instantiation: an explicit instantiation
7282   //   definition and an explicit instantiation declaration. An explicit
7283   //   instantiation declaration begins with the extern keyword. [...]
7284   TemplateSpecializationKind TSK
7285     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7286                            : TSK_ExplicitInstantiationDeclaration;
7287 
7288   // C++0x [temp.explicit]p2:
7289   //   [...] An explicit instantiation shall appear in an enclosing
7290   //   namespace of its template. [...]
7291   //
7292   // This is C++ DR 275.
7293   CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
7294 
7295   // Verify that it is okay to explicitly instantiate here.
7296   CXXRecordDecl *PrevDecl
7297     = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
7298   if (!PrevDecl && Record->getDefinition())
7299     PrevDecl = Record;
7300   if (PrevDecl) {
7301     MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
7302     bool HasNoEffect = false;
7303     assert(MSInfo && "No member specialization information?");
7304     if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
7305                                                PrevDecl,
7306                                         MSInfo->getTemplateSpecializationKind(),
7307                                              MSInfo->getPointOfInstantiation(),
7308                                                HasNoEffect))
7309       return true;
7310     if (HasNoEffect)
7311       return TagD;
7312   }
7313 
7314   CXXRecordDecl *RecordDef
7315     = cast_or_null<CXXRecordDecl>(Record->getDefinition());
7316   if (!RecordDef) {
7317     // C++ [temp.explicit]p3:
7318     //   A definition of a member class of a class template shall be in scope
7319     //   at the point of an explicit instantiation of the member class.
7320     CXXRecordDecl *Def
7321       = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
7322     if (!Def) {
7323       Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
7324         << 0 << Record->getDeclName() << Record->getDeclContext();
7325       Diag(Pattern->getLocation(), diag::note_forward_declaration)
7326         << Pattern;
7327       return true;
7328     } else {
7329       if (InstantiateClass(NameLoc, Record, Def,
7330                            getTemplateInstantiationArgs(Record),
7331                            TSK))
7332         return true;
7333 
7334       RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
7335       if (!RecordDef)
7336         return true;
7337     }
7338   }
7339 
7340   // Instantiate all of the members of the class.
7341   InstantiateClassMembers(NameLoc, RecordDef,
7342                           getTemplateInstantiationArgs(Record), TSK);
7343 
7344   if (TSK == TSK_ExplicitInstantiationDefinition)
7345     MarkVTableUsed(NameLoc, RecordDef, true);
7346 
7347   // FIXME: We don't have any representation for explicit instantiations of
7348   // member classes. Such a representation is not needed for compilation, but it
7349   // should be available for clients that want to see all of the declarations in
7350   // the source code.
7351   return TagD;
7352 }
7353 
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,Declarator & D)7354 DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
7355                                             SourceLocation ExternLoc,
7356                                             SourceLocation TemplateLoc,
7357                                             Declarator &D) {
7358   // Explicit instantiations always require a name.
7359   // TODO: check if/when DNInfo should replace Name.
7360   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
7361   DeclarationName Name = NameInfo.getName();
7362   if (!Name) {
7363     if (!D.isInvalidType())
7364       Diag(D.getDeclSpec().getLocStart(),
7365            diag::err_explicit_instantiation_requires_name)
7366         << D.getDeclSpec().getSourceRange()
7367         << D.getSourceRange();
7368 
7369     return true;
7370   }
7371 
7372   // The scope passed in may not be a decl scope.  Zip up the scope tree until
7373   // we find one that is.
7374   while ((S->getFlags() & Scope::DeclScope) == 0 ||
7375          (S->getFlags() & Scope::TemplateParamScope) != 0)
7376     S = S->getParent();
7377 
7378   // Determine the type of the declaration.
7379   TypeSourceInfo *T = GetTypeForDeclarator(D, S);
7380   QualType R = T->getType();
7381   if (R.isNull())
7382     return true;
7383 
7384   // C++ [dcl.stc]p1:
7385   //   A storage-class-specifier shall not be specified in [...] an explicit
7386   //   instantiation (14.7.2) directive.
7387   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
7388     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
7389       << Name;
7390     return true;
7391   } else if (D.getDeclSpec().getStorageClassSpec()
7392                                                 != DeclSpec::SCS_unspecified) {
7393     // Complain about then remove the storage class specifier.
7394     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
7395       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7396 
7397     D.getMutableDeclSpec().ClearStorageClassSpecs();
7398   }
7399 
7400   // C++0x [temp.explicit]p1:
7401   //   [...] An explicit instantiation of a function template shall not use the
7402   //   inline or constexpr specifiers.
7403   // Presumably, this also applies to member functions of class templates as
7404   // well.
7405   if (D.getDeclSpec().isInlineSpecified())
7406     Diag(D.getDeclSpec().getInlineSpecLoc(),
7407          getLangOpts().CPlusPlus11 ?
7408            diag::err_explicit_instantiation_inline :
7409            diag::warn_explicit_instantiation_inline_0x)
7410       << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7411   if (D.getDeclSpec().isConstexprSpecified() && R->isFunctionType())
7412     // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
7413     // not already specified.
7414     Diag(D.getDeclSpec().getConstexprSpecLoc(),
7415          diag::err_explicit_instantiation_constexpr);
7416 
7417   // C++0x [temp.explicit]p2:
7418   //   There are two forms of explicit instantiation: an explicit instantiation
7419   //   definition and an explicit instantiation declaration. An explicit
7420   //   instantiation declaration begins with the extern keyword. [...]
7421   TemplateSpecializationKind TSK
7422     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7423                            : TSK_ExplicitInstantiationDeclaration;
7424 
7425   LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
7426   LookupParsedName(Previous, S, &D.getCXXScopeSpec());
7427 
7428   if (!R->isFunctionType()) {
7429     // C++ [temp.explicit]p1:
7430     //   A [...] static data member of a class template can be explicitly
7431     //   instantiated from the member definition associated with its class
7432     //   template.
7433     // C++1y [temp.explicit]p1:
7434     //   A [...] variable [...] template specialization can be explicitly
7435     //   instantiated from its template.
7436     if (Previous.isAmbiguous())
7437       return true;
7438 
7439     VarDecl *Prev = Previous.getAsSingle<VarDecl>();
7440     VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
7441 
7442     if (!PrevTemplate) {
7443       if (!Prev || !Prev->isStaticDataMember()) {
7444         // We expect to see a data data member here.
7445         Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
7446             << Name;
7447         for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
7448              P != PEnd; ++P)
7449           Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
7450         return true;
7451       }
7452 
7453       if (!Prev->getInstantiatedFromStaticDataMember()) {
7454         // FIXME: Check for explicit specialization?
7455         Diag(D.getIdentifierLoc(),
7456              diag::err_explicit_instantiation_data_member_not_instantiated)
7457             << Prev;
7458         Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
7459         // FIXME: Can we provide a note showing where this was declared?
7460         return true;
7461       }
7462     } else {
7463       // Explicitly instantiate a variable template.
7464 
7465       // C++1y [dcl.spec.auto]p6:
7466       //   ... A program that uses auto or decltype(auto) in a context not
7467       //   explicitly allowed in this section is ill-formed.
7468       //
7469       // This includes auto-typed variable template instantiations.
7470       if (R->isUndeducedType()) {
7471         Diag(T->getTypeLoc().getLocStart(),
7472              diag::err_auto_not_allowed_var_inst);
7473         return true;
7474       }
7475 
7476       if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
7477         // C++1y [temp.explicit]p3:
7478         //   If the explicit instantiation is for a variable, the unqualified-id
7479         //   in the declaration shall be a template-id.
7480         Diag(D.getIdentifierLoc(),
7481              diag::err_explicit_instantiation_without_template_id)
7482           << PrevTemplate;
7483         Diag(PrevTemplate->getLocation(),
7484              diag::note_explicit_instantiation_here);
7485         return true;
7486       }
7487 
7488       // Translate the parser's template argument list into our AST format.
7489       TemplateArgumentListInfo TemplateArgs =
7490           makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
7491 
7492       DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
7493                                           D.getIdentifierLoc(), TemplateArgs);
7494       if (Res.isInvalid())
7495         return true;
7496 
7497       // Ignore access control bits, we don't need them for redeclaration
7498       // checking.
7499       Prev = cast<VarDecl>(Res.get());
7500     }
7501 
7502     // C++0x [temp.explicit]p2:
7503     //   If the explicit instantiation is for a member function, a member class
7504     //   or a static data member of a class template specialization, the name of
7505     //   the class template specialization in the qualified-id for the member
7506     //   name shall be a simple-template-id.
7507     //
7508     // C++98 has the same restriction, just worded differently.
7509     //
7510     // This does not apply to variable template specializations, where the
7511     // template-id is in the unqualified-id instead.
7512     if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
7513       Diag(D.getIdentifierLoc(),
7514            diag::ext_explicit_instantiation_without_qualified_id)
7515         << Prev << D.getCXXScopeSpec().getRange();
7516 
7517     // Check the scope of this explicit instantiation.
7518     CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
7519 
7520     // Verify that it is okay to explicitly instantiate here.
7521     TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
7522     SourceLocation POI = Prev->getPointOfInstantiation();
7523     bool HasNoEffect = false;
7524     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
7525                                                PrevTSK, POI, HasNoEffect))
7526       return true;
7527 
7528     if (!HasNoEffect) {
7529       // Instantiate static data member or variable template.
7530 
7531       Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
7532       if (PrevTemplate) {
7533         // Merge attributes.
7534         if (AttributeList *Attr = D.getDeclSpec().getAttributes().getList())
7535           ProcessDeclAttributeList(S, Prev, Attr);
7536       }
7537       if (TSK == TSK_ExplicitInstantiationDefinition)
7538         InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
7539     }
7540 
7541     // Check the new variable specialization against the parsed input.
7542     if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) {
7543       Diag(T->getTypeLoc().getLocStart(),
7544            diag::err_invalid_var_template_spec_type)
7545           << 0 << PrevTemplate << R << Prev->getType();
7546       Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
7547           << 2 << PrevTemplate->getDeclName();
7548       return true;
7549     }
7550 
7551     // FIXME: Create an ExplicitInstantiation node?
7552     return (Decl*) nullptr;
7553   }
7554 
7555   // If the declarator is a template-id, translate the parser's template
7556   // argument list into our AST format.
7557   bool HasExplicitTemplateArgs = false;
7558   TemplateArgumentListInfo TemplateArgs;
7559   if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
7560     TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
7561     HasExplicitTemplateArgs = true;
7562   }
7563 
7564   // C++ [temp.explicit]p1:
7565   //   A [...] function [...] can be explicitly instantiated from its template.
7566   //   A member function [...] of a class template can be explicitly
7567   //  instantiated from the member definition associated with its class
7568   //  template.
7569   UnresolvedSet<8> Matches;
7570   TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
7571   for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
7572        P != PEnd; ++P) {
7573     NamedDecl *Prev = *P;
7574     if (!HasExplicitTemplateArgs) {
7575       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
7576         QualType Adjusted = adjustCCAndNoReturn(R, Method->getType());
7577         if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) {
7578           Matches.clear();
7579 
7580           Matches.addDecl(Method, P.getAccess());
7581           if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
7582             break;
7583         }
7584       }
7585     }
7586 
7587     FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
7588     if (!FunTmpl)
7589       continue;
7590 
7591     TemplateDeductionInfo Info(FailedCandidates.getLocation());
7592     FunctionDecl *Specialization = nullptr;
7593     if (TemplateDeductionResult TDK
7594           = DeduceTemplateArguments(FunTmpl,
7595                                (HasExplicitTemplateArgs ? &TemplateArgs
7596                                                         : nullptr),
7597                                     R, Specialization, Info)) {
7598       // Keep track of almost-matches.
7599       FailedCandidates.addCandidate()
7600           .set(FunTmpl->getTemplatedDecl(),
7601                MakeDeductionFailureInfo(Context, TDK, Info));
7602       (void)TDK;
7603       continue;
7604     }
7605 
7606     Matches.addDecl(Specialization, P.getAccess());
7607   }
7608 
7609   // Find the most specialized function template specialization.
7610   UnresolvedSetIterator Result = getMostSpecialized(
7611       Matches.begin(), Matches.end(), FailedCandidates,
7612       D.getIdentifierLoc(),
7613       PDiag(diag::err_explicit_instantiation_not_known) << Name,
7614       PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
7615       PDiag(diag::note_explicit_instantiation_candidate));
7616 
7617   if (Result == Matches.end())
7618     return true;
7619 
7620   // Ignore access control bits, we don't need them for redeclaration checking.
7621   FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
7622 
7623   if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
7624     Diag(D.getIdentifierLoc(),
7625          diag::err_explicit_instantiation_member_function_not_instantiated)
7626       << Specialization
7627       << (Specialization->getTemplateSpecializationKind() ==
7628           TSK_ExplicitSpecialization);
7629     Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
7630     return true;
7631   }
7632 
7633   FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
7634   if (!PrevDecl && Specialization->isThisDeclarationADefinition())
7635     PrevDecl = Specialization;
7636 
7637   if (PrevDecl) {
7638     bool HasNoEffect = false;
7639     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
7640                                                PrevDecl,
7641                                      PrevDecl->getTemplateSpecializationKind(),
7642                                           PrevDecl->getPointOfInstantiation(),
7643                                                HasNoEffect))
7644       return true;
7645 
7646     // FIXME: We may still want to build some representation of this
7647     // explicit specialization.
7648     if (HasNoEffect)
7649       return (Decl*) nullptr;
7650   }
7651 
7652   Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
7653   AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
7654   if (Attr)
7655     ProcessDeclAttributeList(S, Specialization, Attr);
7656 
7657   if (Specialization->isDefined()) {
7658     // Let the ASTConsumer know that this function has been explicitly
7659     // instantiated now, and its linkage might have changed.
7660     Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization));
7661   } else if (TSK == TSK_ExplicitInstantiationDefinition)
7662     InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
7663 
7664   // C++0x [temp.explicit]p2:
7665   //   If the explicit instantiation is for a member function, a member class
7666   //   or a static data member of a class template specialization, the name of
7667   //   the class template specialization in the qualified-id for the member
7668   //   name shall be a simple-template-id.
7669   //
7670   // C++98 has the same restriction, just worded differently.
7671   FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
7672   if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
7673       D.getCXXScopeSpec().isSet() &&
7674       !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
7675     Diag(D.getIdentifierLoc(),
7676          diag::ext_explicit_instantiation_without_qualified_id)
7677     << Specialization << D.getCXXScopeSpec().getRange();
7678 
7679   CheckExplicitInstantiationScope(*this,
7680                    FunTmpl? (NamedDecl *)FunTmpl
7681                           : Specialization->getInstantiatedFromMemberFunction(),
7682                                   D.getIdentifierLoc(),
7683                                   D.getCXXScopeSpec().isSet());
7684 
7685   // FIXME: Create some kind of ExplicitInstantiationDecl here.
7686   return (Decl*) nullptr;
7687 }
7688 
7689 TypeResult
ActOnDependentTag(Scope * S,unsigned TagSpec,TagUseKind TUK,const CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation TagLoc,SourceLocation NameLoc)7690 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7691                         const CXXScopeSpec &SS, IdentifierInfo *Name,
7692                         SourceLocation TagLoc, SourceLocation NameLoc) {
7693   // This has to hold, because SS is expected to be defined.
7694   assert(Name && "Expected a name in a dependent tag");
7695 
7696   NestedNameSpecifier *NNS = SS.getScopeRep();
7697   if (!NNS)
7698     return true;
7699 
7700   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7701 
7702   if (TUK == TUK_Declaration || TUK == TUK_Definition) {
7703     Diag(NameLoc, diag::err_dependent_tag_decl)
7704       << (TUK == TUK_Definition) << Kind << SS.getRange();
7705     return true;
7706   }
7707 
7708   // Create the resulting type.
7709   ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
7710   QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
7711 
7712   // Create type-source location information for this type.
7713   TypeLocBuilder TLB;
7714   DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
7715   TL.setElaboratedKeywordLoc(TagLoc);
7716   TL.setQualifierLoc(SS.getWithLocInContext(Context));
7717   TL.setNameLoc(NameLoc);
7718   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
7719 }
7720 
7721 TypeResult
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,const IdentifierInfo & II,SourceLocation IdLoc)7722 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
7723                         const CXXScopeSpec &SS, const IdentifierInfo &II,
7724                         SourceLocation IdLoc) {
7725   if (SS.isInvalid())
7726     return true;
7727 
7728   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
7729     Diag(TypenameLoc,
7730          getLangOpts().CPlusPlus11 ?
7731            diag::warn_cxx98_compat_typename_outside_of_template :
7732            diag::ext_typename_outside_of_template)
7733       << FixItHint::CreateRemoval(TypenameLoc);
7734 
7735   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7736   QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
7737                                  TypenameLoc, QualifierLoc, II, IdLoc);
7738   if (T.isNull())
7739     return true;
7740 
7741   TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
7742   if (isa<DependentNameType>(T)) {
7743     DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
7744     TL.setElaboratedKeywordLoc(TypenameLoc);
7745     TL.setQualifierLoc(QualifierLoc);
7746     TL.setNameLoc(IdLoc);
7747   } else {
7748     ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
7749     TL.setElaboratedKeywordLoc(TypenameLoc);
7750     TL.setQualifierLoc(QualifierLoc);
7751     TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
7752   }
7753 
7754   return CreateParsedType(T, TSI);
7755 }
7756 
7757 TypeResult
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateIn,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)7758 Sema::ActOnTypenameType(Scope *S,
7759                         SourceLocation TypenameLoc,
7760                         const CXXScopeSpec &SS,
7761                         SourceLocation TemplateKWLoc,
7762                         TemplateTy TemplateIn,
7763                         SourceLocation TemplateNameLoc,
7764                         SourceLocation LAngleLoc,
7765                         ASTTemplateArgsPtr TemplateArgsIn,
7766                         SourceLocation RAngleLoc) {
7767   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
7768     Diag(TypenameLoc,
7769          getLangOpts().CPlusPlus11 ?
7770            diag::warn_cxx98_compat_typename_outside_of_template :
7771            diag::ext_typename_outside_of_template)
7772       << FixItHint::CreateRemoval(TypenameLoc);
7773 
7774   // Translate the parser's template argument list in our AST format.
7775   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
7776   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
7777 
7778   TemplateName Template = TemplateIn.get();
7779   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
7780     // Construct a dependent template specialization type.
7781     assert(DTN && "dependent template has non-dependent name?");
7782     assert(DTN->getQualifier() == SS.getScopeRep());
7783     QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
7784                                                           DTN->getQualifier(),
7785                                                           DTN->getIdentifier(),
7786                                                                 TemplateArgs);
7787 
7788     // Create source-location information for this type.
7789     TypeLocBuilder Builder;
7790     DependentTemplateSpecializationTypeLoc SpecTL
7791     = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
7792     SpecTL.setElaboratedKeywordLoc(TypenameLoc);
7793     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
7794     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
7795     SpecTL.setTemplateNameLoc(TemplateNameLoc);
7796     SpecTL.setLAngleLoc(LAngleLoc);
7797     SpecTL.setRAngleLoc(RAngleLoc);
7798     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7799       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
7800     return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
7801   }
7802 
7803   QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
7804   if (T.isNull())
7805     return true;
7806 
7807   // Provide source-location information for the template specialization type.
7808   TypeLocBuilder Builder;
7809   TemplateSpecializationTypeLoc SpecTL
7810     = Builder.push<TemplateSpecializationTypeLoc>(T);
7811   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
7812   SpecTL.setTemplateNameLoc(TemplateNameLoc);
7813   SpecTL.setLAngleLoc(LAngleLoc);
7814   SpecTL.setRAngleLoc(RAngleLoc);
7815   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7816     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
7817 
7818   T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
7819   ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
7820   TL.setElaboratedKeywordLoc(TypenameLoc);
7821   TL.setQualifierLoc(SS.getWithLocInContext(Context));
7822 
7823   TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
7824   return CreateParsedType(T, TSI);
7825 }
7826 
7827 
7828 /// Determine whether this failed name lookup should be treated as being
7829 /// disabled by a usage of std::enable_if.
isEnableIf(NestedNameSpecifierLoc NNS,const IdentifierInfo & II,SourceRange & CondRange)7830 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
7831                        SourceRange &CondRange) {
7832   // We must be looking for a ::type...
7833   if (!II.isStr("type"))
7834     return false;
7835 
7836   // ... within an explicitly-written template specialization...
7837   if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
7838     return false;
7839   TypeLoc EnableIfTy = NNS.getTypeLoc();
7840   TemplateSpecializationTypeLoc EnableIfTSTLoc =
7841       EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
7842   if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
7843     return false;
7844   const TemplateSpecializationType *EnableIfTST =
7845     cast<TemplateSpecializationType>(EnableIfTSTLoc.getTypePtr());
7846 
7847   // ... which names a complete class template declaration...
7848   const TemplateDecl *EnableIfDecl =
7849     EnableIfTST->getTemplateName().getAsTemplateDecl();
7850   if (!EnableIfDecl || EnableIfTST->isIncompleteType())
7851     return false;
7852 
7853   // ... called "enable_if".
7854   const IdentifierInfo *EnableIfII =
7855     EnableIfDecl->getDeclName().getAsIdentifierInfo();
7856   if (!EnableIfII || !EnableIfII->isStr("enable_if"))
7857     return false;
7858 
7859   // Assume the first template argument is the condition.
7860   CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
7861   return true;
7862 }
7863 
7864 /// \brief Build the type that describes a C++ typename specifier,
7865 /// e.g., "typename T::type".
7866 QualType
CheckTypenameType(ElaboratedTypeKeyword Keyword,SourceLocation KeywordLoc,NestedNameSpecifierLoc QualifierLoc,const IdentifierInfo & II,SourceLocation IILoc)7867 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
7868                         SourceLocation KeywordLoc,
7869                         NestedNameSpecifierLoc QualifierLoc,
7870                         const IdentifierInfo &II,
7871                         SourceLocation IILoc) {
7872   CXXScopeSpec SS;
7873   SS.Adopt(QualifierLoc);
7874 
7875   DeclContext *Ctx = computeDeclContext(SS);
7876   if (!Ctx) {
7877     // If the nested-name-specifier is dependent and couldn't be
7878     // resolved to a type, build a typename type.
7879     assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
7880     return Context.getDependentNameType(Keyword,
7881                                         QualifierLoc.getNestedNameSpecifier(),
7882                                         &II);
7883   }
7884 
7885   // If the nested-name-specifier refers to the current instantiation,
7886   // the "typename" keyword itself is superfluous. In C++03, the
7887   // program is actually ill-formed. However, DR 382 (in C++0x CD1)
7888   // allows such extraneous "typename" keywords, and we retroactively
7889   // apply this DR to C++03 code with only a warning. In any case we continue.
7890 
7891   if (RequireCompleteDeclContext(SS, Ctx))
7892     return QualType();
7893 
7894   DeclarationName Name(&II);
7895   LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
7896   LookupQualifiedName(Result, Ctx);
7897   unsigned DiagID = 0;
7898   Decl *Referenced = nullptr;
7899   switch (Result.getResultKind()) {
7900   case LookupResult::NotFound: {
7901     // If we're looking up 'type' within a template named 'enable_if', produce
7902     // a more specific diagnostic.
7903     SourceRange CondRange;
7904     if (isEnableIf(QualifierLoc, II, CondRange)) {
7905       Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if)
7906         << Ctx << CondRange;
7907       return QualType();
7908     }
7909 
7910     DiagID = diag::err_typename_nested_not_found;
7911     break;
7912   }
7913 
7914   case LookupResult::FoundUnresolvedValue: {
7915     // We found a using declaration that is a value. Most likely, the using
7916     // declaration itself is meant to have the 'typename' keyword.
7917     SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
7918                           IILoc);
7919     Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
7920       << Name << Ctx << FullRange;
7921     if (UnresolvedUsingValueDecl *Using
7922           = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
7923       SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
7924       Diag(Loc, diag::note_using_value_decl_missing_typename)
7925         << FixItHint::CreateInsertion(Loc, "typename ");
7926     }
7927   }
7928   // Fall through to create a dependent typename type, from which we can recover
7929   // better.
7930 
7931   case LookupResult::NotFoundInCurrentInstantiation:
7932     // Okay, it's a member of an unknown instantiation.
7933     return Context.getDependentNameType(Keyword,
7934                                         QualifierLoc.getNestedNameSpecifier(),
7935                                         &II);
7936 
7937   case LookupResult::Found:
7938     if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
7939       // We found a type. Build an ElaboratedType, since the
7940       // typename-specifier was just sugar.
7941       return Context.getElaboratedType(ETK_Typename,
7942                                        QualifierLoc.getNestedNameSpecifier(),
7943                                        Context.getTypeDeclType(Type));
7944     }
7945 
7946     DiagID = diag::err_typename_nested_not_type;
7947     Referenced = Result.getFoundDecl();
7948     break;
7949 
7950   case LookupResult::FoundOverloaded:
7951     DiagID = diag::err_typename_nested_not_type;
7952     Referenced = *Result.begin();
7953     break;
7954 
7955   case LookupResult::Ambiguous:
7956     return QualType();
7957   }
7958 
7959   // If we get here, it's because name lookup did not find a
7960   // type. Emit an appropriate diagnostic and return an error.
7961   SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
7962                         IILoc);
7963   Diag(IILoc, DiagID) << FullRange << Name << Ctx;
7964   if (Referenced)
7965     Diag(Referenced->getLocation(), diag::note_typename_refers_here)
7966       << Name;
7967   return QualType();
7968 }
7969 
7970 namespace {
7971   // See Sema::RebuildTypeInCurrentInstantiation
7972   class CurrentInstantiationRebuilder
7973     : public TreeTransform<CurrentInstantiationRebuilder> {
7974     SourceLocation Loc;
7975     DeclarationName Entity;
7976 
7977   public:
7978     typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
7979 
CurrentInstantiationRebuilder(Sema & SemaRef,SourceLocation Loc,DeclarationName Entity)7980     CurrentInstantiationRebuilder(Sema &SemaRef,
7981                                   SourceLocation Loc,
7982                                   DeclarationName Entity)
7983     : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
7984       Loc(Loc), Entity(Entity) { }
7985 
7986     /// \brief Determine whether the given type \p T has already been
7987     /// transformed.
7988     ///
7989     /// For the purposes of type reconstruction, a type has already been
7990     /// transformed if it is NULL or if it is not dependent.
AlreadyTransformed(QualType T)7991     bool AlreadyTransformed(QualType T) {
7992       return T.isNull() || !T->isDependentType();
7993     }
7994 
7995     /// \brief Returns the location of the entity whose type is being
7996     /// rebuilt.
getBaseLocation()7997     SourceLocation getBaseLocation() { return Loc; }
7998 
7999     /// \brief Returns the name of the entity whose type is being rebuilt.
getBaseEntity()8000     DeclarationName getBaseEntity() { return Entity; }
8001 
8002     /// \brief Sets the "base" location and entity when that
8003     /// information is known based on another transformation.
setBase(SourceLocation Loc,DeclarationName Entity)8004     void setBase(SourceLocation Loc, DeclarationName Entity) {
8005       this->Loc = Loc;
8006       this->Entity = Entity;
8007     }
8008 
TransformLambdaExpr(LambdaExpr * E)8009     ExprResult TransformLambdaExpr(LambdaExpr *E) {
8010       // Lambdas never need to be transformed.
8011       return E;
8012     }
8013   };
8014 }
8015 
8016 /// \brief Rebuilds a type within the context of the current instantiation.
8017 ///
8018 /// The type \p T is part of the type of an out-of-line member definition of
8019 /// a class template (or class template partial specialization) that was parsed
8020 /// and constructed before we entered the scope of the class template (or
8021 /// partial specialization thereof). This routine will rebuild that type now
8022 /// that we have entered the declarator's scope, which may produce different
8023 /// canonical types, e.g.,
8024 ///
8025 /// \code
8026 /// template<typename T>
8027 /// struct X {
8028 ///   typedef T* pointer;
8029 ///   pointer data();
8030 /// };
8031 ///
8032 /// template<typename T>
8033 /// typename X<T>::pointer X<T>::data() { ... }
8034 /// \endcode
8035 ///
8036 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
8037 /// since we do not know that we can look into X<T> when we parsed the type.
8038 /// This function will rebuild the type, performing the lookup of "pointer"
8039 /// in X<T> and returning an ElaboratedType whose canonical type is the same
8040 /// as the canonical type of T*, allowing the return types of the out-of-line
8041 /// definition and the declaration to match.
RebuildTypeInCurrentInstantiation(TypeSourceInfo * T,SourceLocation Loc,DeclarationName Name)8042 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
8043                                                         SourceLocation Loc,
8044                                                         DeclarationName Name) {
8045   if (!T || !T->getType()->isDependentType())
8046     return T;
8047 
8048   CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
8049   return Rebuilder.TransformType(T);
8050 }
8051 
RebuildExprInCurrentInstantiation(Expr * E)8052 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
8053   CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
8054                                           DeclarationName());
8055   return Rebuilder.TransformExpr(E);
8056 }
8057 
RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec & SS)8058 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
8059   if (SS.isInvalid())
8060     return true;
8061 
8062   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
8063   CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
8064                                           DeclarationName());
8065   NestedNameSpecifierLoc Rebuilt
8066     = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
8067   if (!Rebuilt)
8068     return true;
8069 
8070   SS.Adopt(Rebuilt);
8071   return false;
8072 }
8073 
8074 /// \brief Rebuild the template parameters now that we know we're in a current
8075 /// instantiation.
RebuildTemplateParamsInCurrentInstantiation(TemplateParameterList * Params)8076 bool Sema::RebuildTemplateParamsInCurrentInstantiation(
8077                                                TemplateParameterList *Params) {
8078   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
8079     Decl *Param = Params->getParam(I);
8080 
8081     // There is nothing to rebuild in a type parameter.
8082     if (isa<TemplateTypeParmDecl>(Param))
8083       continue;
8084 
8085     // Rebuild the template parameter list of a template template parameter.
8086     if (TemplateTemplateParmDecl *TTP
8087         = dyn_cast<TemplateTemplateParmDecl>(Param)) {
8088       if (RebuildTemplateParamsInCurrentInstantiation(
8089             TTP->getTemplateParameters()))
8090         return true;
8091 
8092       continue;
8093     }
8094 
8095     // Rebuild the type of a non-type template parameter.
8096     NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
8097     TypeSourceInfo *NewTSI
8098       = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
8099                                           NTTP->getLocation(),
8100                                           NTTP->getDeclName());
8101     if (!NewTSI)
8102       return true;
8103 
8104     if (NewTSI != NTTP->getTypeSourceInfo()) {
8105       NTTP->setTypeSourceInfo(NewTSI);
8106       NTTP->setType(NewTSI->getType());
8107     }
8108   }
8109 
8110   return false;
8111 }
8112 
8113 /// \brief Produces a formatted string that describes the binding of
8114 /// template parameters to template arguments.
8115 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgumentList & Args)8116 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
8117                                       const TemplateArgumentList &Args) {
8118   return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
8119 }
8120 
8121 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgument * Args,unsigned NumArgs)8122 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
8123                                       const TemplateArgument *Args,
8124                                       unsigned NumArgs) {
8125   SmallString<128> Str;
8126   llvm::raw_svector_ostream Out(Str);
8127 
8128   if (!Params || Params->size() == 0 || NumArgs == 0)
8129     return std::string();
8130 
8131   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
8132     if (I >= NumArgs)
8133       break;
8134 
8135     if (I == 0)
8136       Out << "[with ";
8137     else
8138       Out << ", ";
8139 
8140     if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
8141       Out << Id->getName();
8142     } else {
8143       Out << '$' << I;
8144     }
8145 
8146     Out << " = ";
8147     Args[I].print(getPrintingPolicy(), Out);
8148   }
8149 
8150   Out << ']';
8151   return Out.str();
8152 }
8153 
MarkAsLateParsedTemplate(FunctionDecl * FD,Decl * FnD,CachedTokens & Toks)8154 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
8155                                     CachedTokens &Toks) {
8156   if (!FD)
8157     return;
8158 
8159   LateParsedTemplate *LPT = new LateParsedTemplate;
8160 
8161   // Take tokens to avoid allocations
8162   LPT->Toks.swap(Toks);
8163   LPT->D = FnD;
8164   LateParsedTemplateMap[FD] = LPT;
8165 
8166   FD->setLateTemplateParsed(true);
8167 }
8168 
UnmarkAsLateParsedTemplate(FunctionDecl * FD)8169 void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
8170   if (!FD)
8171     return;
8172   FD->setLateTemplateParsed(false);
8173 }
8174 
IsInsideALocalClassWithinATemplateFunction()8175 bool Sema::IsInsideALocalClassWithinATemplateFunction() {
8176   DeclContext *DC = CurContext;
8177 
8178   while (DC) {
8179     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
8180       const FunctionDecl *FD = RD->isLocalClass();
8181       return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
8182     } else if (DC->isTranslationUnit() || DC->isNamespace())
8183       return false;
8184 
8185     DC = DC->getParent();
8186   }
8187   return false;
8188 }
8189