1 // Copyright (c) 2011 The LevelDB Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. See the AUTHORS file for names of contributors.
4
5 #include "db/version_set.h"
6
7 #include <algorithm>
8 #include <stdio.h>
9 #include "db/filename.h"
10 #include "db/log_reader.h"
11 #include "db/log_writer.h"
12 #include "db/memtable.h"
13 #include "db/table_cache.h"
14 #include "leveldb/env.h"
15 #include "leveldb/table_builder.h"
16 #include "table/merger.h"
17 #include "table/two_level_iterator.h"
18 #include "util/coding.h"
19 #include "util/logging.h"
20
21 namespace leveldb {
22
23 static const int kTargetFileSize = 2 * 1048576;
24
25 // Maximum bytes of overlaps in grandparent (i.e., level+2) before we
26 // stop building a single file in a level->level+1 compaction.
27 static const int64_t kMaxGrandParentOverlapBytes = 10 * kTargetFileSize;
28
29 // Maximum number of bytes in all compacted files. We avoid expanding
30 // the lower level file set of a compaction if it would make the
31 // total compaction cover more than this many bytes.
32 static const int64_t kExpandedCompactionByteSizeLimit = 25 * kTargetFileSize;
33
MaxBytesForLevel(int level)34 static double MaxBytesForLevel(int level) {
35 // Note: the result for level zero is not really used since we set
36 // the level-0 compaction threshold based on number of files.
37 double result = 10 * 1048576.0; // Result for both level-0 and level-1
38 while (level > 1) {
39 result *= 10;
40 level--;
41 }
42 return result;
43 }
44
MaxFileSizeForLevel(int level)45 static uint64_t MaxFileSizeForLevel(int level) {
46 return kTargetFileSize; // We could vary per level to reduce number of files?
47 }
48
TotalFileSize(const std::vector<FileMetaData * > & files)49 static int64_t TotalFileSize(const std::vector<FileMetaData*>& files) {
50 int64_t sum = 0;
51 for (size_t i = 0; i < files.size(); i++) {
52 sum += files[i]->file_size;
53 }
54 return sum;
55 }
56
~Version()57 Version::~Version() {
58 assert(refs_ == 0);
59
60 // Remove from linked list
61 prev_->next_ = next_;
62 next_->prev_ = prev_;
63
64 // Drop references to files
65 for (int level = 0; level < config::kNumLevels; level++) {
66 for (size_t i = 0; i < files_[level].size(); i++) {
67 FileMetaData* f = files_[level][i];
68 assert(f->refs > 0);
69 f->refs--;
70 if (f->refs <= 0) {
71 delete f;
72 }
73 }
74 }
75 }
76
FindFile(const InternalKeyComparator & icmp,const std::vector<FileMetaData * > & files,const Slice & key)77 int FindFile(const InternalKeyComparator& icmp,
78 const std::vector<FileMetaData*>& files,
79 const Slice& key) {
80 uint32_t left = 0;
81 uint32_t right = files.size();
82 while (left < right) {
83 uint32_t mid = (left + right) / 2;
84 const FileMetaData* f = files[mid];
85 if (icmp.InternalKeyComparator::Compare(f->largest.Encode(), key) < 0) {
86 // Key at "mid.largest" is < "target". Therefore all
87 // files at or before "mid" are uninteresting.
88 left = mid + 1;
89 } else {
90 // Key at "mid.largest" is >= "target". Therefore all files
91 // after "mid" are uninteresting.
92 right = mid;
93 }
94 }
95 return right;
96 }
97
AfterFile(const Comparator * ucmp,const Slice * user_key,const FileMetaData * f)98 static bool AfterFile(const Comparator* ucmp,
99 const Slice* user_key, const FileMetaData* f) {
100 // NULL user_key occurs before all keys and is therefore never after *f
101 return (user_key != NULL &&
102 ucmp->Compare(*user_key, f->largest.user_key()) > 0);
103 }
104
BeforeFile(const Comparator * ucmp,const Slice * user_key,const FileMetaData * f)105 static bool BeforeFile(const Comparator* ucmp,
106 const Slice* user_key, const FileMetaData* f) {
107 // NULL user_key occurs after all keys and is therefore never before *f
108 return (user_key != NULL &&
109 ucmp->Compare(*user_key, f->smallest.user_key()) < 0);
110 }
111
SomeFileOverlapsRange(const InternalKeyComparator & icmp,bool disjoint_sorted_files,const std::vector<FileMetaData * > & files,const Slice * smallest_user_key,const Slice * largest_user_key)112 bool SomeFileOverlapsRange(
113 const InternalKeyComparator& icmp,
114 bool disjoint_sorted_files,
115 const std::vector<FileMetaData*>& files,
116 const Slice* smallest_user_key,
117 const Slice* largest_user_key) {
118 const Comparator* ucmp = icmp.user_comparator();
119 if (!disjoint_sorted_files) {
120 // Need to check against all files
121 for (size_t i = 0; i < files.size(); i++) {
122 const FileMetaData* f = files[i];
123 if (AfterFile(ucmp, smallest_user_key, f) ||
124 BeforeFile(ucmp, largest_user_key, f)) {
125 // No overlap
126 } else {
127 return true; // Overlap
128 }
129 }
130 return false;
131 }
132
133 // Binary search over file list
134 uint32_t index = 0;
135 if (smallest_user_key != NULL) {
136 // Find the earliest possible internal key for smallest_user_key
137 InternalKey small(*smallest_user_key, kMaxSequenceNumber,kValueTypeForSeek);
138 index = FindFile(icmp, files, small.Encode());
139 }
140
141 if (index >= files.size()) {
142 // beginning of range is after all files, so no overlap.
143 return false;
144 }
145
146 return !BeforeFile(ucmp, largest_user_key, files[index]);
147 }
148
149 // An internal iterator. For a given version/level pair, yields
150 // information about the files in the level. For a given entry, key()
151 // is the largest key that occurs in the file, and value() is an
152 // 16-byte value containing the file number and file size, both
153 // encoded using EncodeFixed64.
154 class Version::LevelFileNumIterator : public Iterator {
155 public:
LevelFileNumIterator(const InternalKeyComparator & icmp,const std::vector<FileMetaData * > * flist)156 LevelFileNumIterator(const InternalKeyComparator& icmp,
157 const std::vector<FileMetaData*>* flist)
158 : icmp_(icmp),
159 flist_(flist),
160 index_(flist->size()) { // Marks as invalid
161 }
Valid() const162 virtual bool Valid() const {
163 return index_ < flist_->size();
164 }
Seek(const Slice & target)165 virtual void Seek(const Slice& target) {
166 index_ = FindFile(icmp_, *flist_, target);
167 }
SeekToFirst()168 virtual void SeekToFirst() { index_ = 0; }
SeekToLast()169 virtual void SeekToLast() {
170 index_ = flist_->empty() ? 0 : flist_->size() - 1;
171 }
Next()172 virtual void Next() {
173 assert(Valid());
174 index_++;
175 }
Prev()176 virtual void Prev() {
177 assert(Valid());
178 if (index_ == 0) {
179 index_ = flist_->size(); // Marks as invalid
180 } else {
181 index_--;
182 }
183 }
key() const184 Slice key() const {
185 assert(Valid());
186 return (*flist_)[index_]->largest.Encode();
187 }
value() const188 Slice value() const {
189 assert(Valid());
190 EncodeFixed64(value_buf_, (*flist_)[index_]->number);
191 EncodeFixed64(value_buf_+8, (*flist_)[index_]->file_size);
192 return Slice(value_buf_, sizeof(value_buf_));
193 }
status() const194 virtual Status status() const { return Status::OK(); }
195 private:
196 const InternalKeyComparator icmp_;
197 const std::vector<FileMetaData*>* const flist_;
198 uint32_t index_;
199
200 // Backing store for value(). Holds the file number and size.
201 mutable char value_buf_[16];
202 };
203
GetFileIterator(void * arg,const ReadOptions & options,const Slice & file_value)204 static Iterator* GetFileIterator(void* arg,
205 const ReadOptions& options,
206 const Slice& file_value) {
207 TableCache* cache = reinterpret_cast<TableCache*>(arg);
208 if (file_value.size() != 16) {
209 return NewErrorIterator(
210 Status::Corruption("FileReader invoked with unexpected value"));
211 } else {
212 return cache->NewIterator(options,
213 DecodeFixed64(file_value.data()),
214 DecodeFixed64(file_value.data() + 8));
215 }
216 }
217
NewConcatenatingIterator(const ReadOptions & options,int level) const218 Iterator* Version::NewConcatenatingIterator(const ReadOptions& options,
219 int level) const {
220 return NewTwoLevelIterator(
221 new LevelFileNumIterator(vset_->icmp_, &files_[level]),
222 &GetFileIterator, vset_->table_cache_, options);
223 }
224
AddIterators(const ReadOptions & options,std::vector<Iterator * > * iters)225 void Version::AddIterators(const ReadOptions& options,
226 std::vector<Iterator*>* iters) {
227 // Merge all level zero files together since they may overlap
228 for (size_t i = 0; i < files_[0].size(); i++) {
229 iters->push_back(
230 vset_->table_cache_->NewIterator(
231 options, files_[0][i]->number, files_[0][i]->file_size));
232 }
233
234 // For levels > 0, we can use a concatenating iterator that sequentially
235 // walks through the non-overlapping files in the level, opening them
236 // lazily.
237 for (int level = 1; level < config::kNumLevels; level++) {
238 if (!files_[level].empty()) {
239 iters->push_back(NewConcatenatingIterator(options, level));
240 }
241 }
242 }
243
244 // Callback from TableCache::Get()
245 namespace {
246 enum SaverState {
247 kNotFound,
248 kFound,
249 kDeleted,
250 kCorrupt,
251 };
252 struct Saver {
253 SaverState state;
254 const Comparator* ucmp;
255 Slice user_key;
256 std::string* value;
257 };
258 }
SaveValue(void * arg,const Slice & ikey,const Slice & v)259 static void SaveValue(void* arg, const Slice& ikey, const Slice& v) {
260 Saver* s = reinterpret_cast<Saver*>(arg);
261 ParsedInternalKey parsed_key;
262 if (!ParseInternalKey(ikey, &parsed_key)) {
263 s->state = kCorrupt;
264 } else {
265 if (s->ucmp->Compare(parsed_key.user_key, s->user_key) == 0) {
266 s->state = (parsed_key.type == kTypeValue) ? kFound : kDeleted;
267 if (s->state == kFound) {
268 s->value->assign(v.data(), v.size());
269 }
270 }
271 }
272 }
273
NewestFirst(FileMetaData * a,FileMetaData * b)274 static bool NewestFirst(FileMetaData* a, FileMetaData* b) {
275 return a->number > b->number;
276 }
277
ForEachOverlapping(Slice user_key,Slice internal_key,void * arg,bool (* func)(void *,int,FileMetaData *))278 void Version::ForEachOverlapping(Slice user_key, Slice internal_key,
279 void* arg,
280 bool (*func)(void*, int, FileMetaData*)) {
281 // TODO(sanjay): Change Version::Get() to use this function.
282 const Comparator* ucmp = vset_->icmp_.user_comparator();
283
284 // Search level-0 in order from newest to oldest.
285 std::vector<FileMetaData*> tmp;
286 tmp.reserve(files_[0].size());
287 for (uint32_t i = 0; i < files_[0].size(); i++) {
288 FileMetaData* f = files_[0][i];
289 if (ucmp->Compare(user_key, f->smallest.user_key()) >= 0 &&
290 ucmp->Compare(user_key, f->largest.user_key()) <= 0) {
291 tmp.push_back(f);
292 }
293 }
294 if (!tmp.empty()) {
295 std::sort(tmp.begin(), tmp.end(), NewestFirst);
296 for (uint32_t i = 0; i < tmp.size(); i++) {
297 if (!(*func)(arg, 0, tmp[i])) {
298 return;
299 }
300 }
301 }
302
303 // Search other levels.
304 for (int level = 1; level < config::kNumLevels; level++) {
305 size_t num_files = files_[level].size();
306 if (num_files == 0) continue;
307
308 // Binary search to find earliest index whose largest key >= internal_key.
309 uint32_t index = FindFile(vset_->icmp_, files_[level], internal_key);
310 if (index < num_files) {
311 FileMetaData* f = files_[level][index];
312 if (ucmp->Compare(user_key, f->smallest.user_key()) < 0) {
313 // All of "f" is past any data for user_key
314 } else {
315 if (!(*func)(arg, level, f)) {
316 return;
317 }
318 }
319 }
320 }
321 }
322
Get(const ReadOptions & options,const LookupKey & k,std::string * value,GetStats * stats)323 Status Version::Get(const ReadOptions& options,
324 const LookupKey& k,
325 std::string* value,
326 GetStats* stats) {
327 Slice ikey = k.internal_key();
328 Slice user_key = k.user_key();
329 const Comparator* ucmp = vset_->icmp_.user_comparator();
330 Status s;
331
332 stats->seek_file = NULL;
333 stats->seek_file_level = -1;
334 FileMetaData* last_file_read = NULL;
335 int last_file_read_level = -1;
336
337 // We can search level-by-level since entries never hop across
338 // levels. Therefore we are guaranteed that if we find data
339 // in an smaller level, later levels are irrelevant.
340 std::vector<FileMetaData*> tmp;
341 FileMetaData* tmp2;
342 for (int level = 0; level < config::kNumLevels; level++) {
343 size_t num_files = files_[level].size();
344 if (num_files == 0) continue;
345
346 // Get the list of files to search in this level
347 FileMetaData* const* files = &files_[level][0];
348 if (level == 0) {
349 // Level-0 files may overlap each other. Find all files that
350 // overlap user_key and process them in order from newest to oldest.
351 tmp.reserve(num_files);
352 for (uint32_t i = 0; i < num_files; i++) {
353 FileMetaData* f = files[i];
354 if (ucmp->Compare(user_key, f->smallest.user_key()) >= 0 &&
355 ucmp->Compare(user_key, f->largest.user_key()) <= 0) {
356 tmp.push_back(f);
357 }
358 }
359 if (tmp.empty()) continue;
360
361 std::sort(tmp.begin(), tmp.end(), NewestFirst);
362 files = &tmp[0];
363 num_files = tmp.size();
364 } else {
365 // Binary search to find earliest index whose largest key >= ikey.
366 uint32_t index = FindFile(vset_->icmp_, files_[level], ikey);
367 if (index >= num_files) {
368 files = NULL;
369 num_files = 0;
370 } else {
371 tmp2 = files[index];
372 if (ucmp->Compare(user_key, tmp2->smallest.user_key()) < 0) {
373 // All of "tmp2" is past any data for user_key
374 files = NULL;
375 num_files = 0;
376 } else {
377 files = &tmp2;
378 num_files = 1;
379 }
380 }
381 }
382
383 for (uint32_t i = 0; i < num_files; ++i) {
384 if (last_file_read != NULL && stats->seek_file == NULL) {
385 // We have had more than one seek for this read. Charge the 1st file.
386 stats->seek_file = last_file_read;
387 stats->seek_file_level = last_file_read_level;
388 }
389
390 FileMetaData* f = files[i];
391 last_file_read = f;
392 last_file_read_level = level;
393
394 Saver saver;
395 saver.state = kNotFound;
396 saver.ucmp = ucmp;
397 saver.user_key = user_key;
398 saver.value = value;
399 s = vset_->table_cache_->Get(options, f->number, f->file_size,
400 ikey, &saver, SaveValue);
401 if (!s.ok()) {
402 return s;
403 }
404 switch (saver.state) {
405 case kNotFound:
406 break; // Keep searching in other files
407 case kFound:
408 return s;
409 case kDeleted:
410 s = Status::NotFound(Slice()); // Use empty error message for speed
411 return s;
412 case kCorrupt:
413 s = Status::Corruption("corrupted key for ", user_key);
414 return s;
415 }
416 }
417 }
418
419 return Status::NotFound(Slice()); // Use an empty error message for speed
420 }
421
UpdateStats(const GetStats & stats)422 bool Version::UpdateStats(const GetStats& stats) {
423 FileMetaData* f = stats.seek_file;
424 if (f != NULL) {
425 f->allowed_seeks--;
426 if (f->allowed_seeks <= 0 && file_to_compact_ == NULL) {
427 file_to_compact_ = f;
428 file_to_compact_level_ = stats.seek_file_level;
429 return true;
430 }
431 }
432 return false;
433 }
434
RecordReadSample(Slice internal_key)435 bool Version::RecordReadSample(Slice internal_key) {
436 ParsedInternalKey ikey;
437 if (!ParseInternalKey(internal_key, &ikey)) {
438 return false;
439 }
440
441 struct State {
442 GetStats stats; // Holds first matching file
443 int matches;
444
445 static bool Match(void* arg, int level, FileMetaData* f) {
446 State* state = reinterpret_cast<State*>(arg);
447 state->matches++;
448 if (state->matches == 1) {
449 // Remember first match.
450 state->stats.seek_file = f;
451 state->stats.seek_file_level = level;
452 }
453 // We can stop iterating once we have a second match.
454 return state->matches < 2;
455 }
456 };
457
458 State state;
459 state.matches = 0;
460 ForEachOverlapping(ikey.user_key, internal_key, &state, &State::Match);
461
462 // Must have at least two matches since we want to merge across
463 // files. But what if we have a single file that contains many
464 // overwrites and deletions? Should we have another mechanism for
465 // finding such files?
466 if (state.matches >= 2) {
467 // 1MB cost is about 1 seek (see comment in Builder::Apply).
468 return UpdateStats(state.stats);
469 }
470 return false;
471 }
472
Ref()473 void Version::Ref() {
474 ++refs_;
475 }
476
Unref()477 void Version::Unref() {
478 assert(this != &vset_->dummy_versions_);
479 assert(refs_ >= 1);
480 --refs_;
481 if (refs_ == 0) {
482 delete this;
483 }
484 }
485
OverlapInLevel(int level,const Slice * smallest_user_key,const Slice * largest_user_key)486 bool Version::OverlapInLevel(int level,
487 const Slice* smallest_user_key,
488 const Slice* largest_user_key) {
489 return SomeFileOverlapsRange(vset_->icmp_, (level > 0), files_[level],
490 smallest_user_key, largest_user_key);
491 }
492
PickLevelForMemTableOutput(const Slice & smallest_user_key,const Slice & largest_user_key)493 int Version::PickLevelForMemTableOutput(
494 const Slice& smallest_user_key,
495 const Slice& largest_user_key) {
496 int level = 0;
497 if (!OverlapInLevel(0, &smallest_user_key, &largest_user_key)) {
498 // Push to next level if there is no overlap in next level,
499 // and the #bytes overlapping in the level after that are limited.
500 InternalKey start(smallest_user_key, kMaxSequenceNumber, kValueTypeForSeek);
501 InternalKey limit(largest_user_key, 0, static_cast<ValueType>(0));
502 std::vector<FileMetaData*> overlaps;
503 while (level < config::kMaxMemCompactLevel) {
504 if (OverlapInLevel(level + 1, &smallest_user_key, &largest_user_key)) {
505 break;
506 }
507 if (level + 2 < config::kNumLevels) {
508 // Check that file does not overlap too many grandparent bytes.
509 GetOverlappingInputs(level + 2, &start, &limit, &overlaps);
510 const int64_t sum = TotalFileSize(overlaps);
511 if (sum > kMaxGrandParentOverlapBytes) {
512 break;
513 }
514 }
515 level++;
516 }
517 }
518 return level;
519 }
520
521 // Store in "*inputs" all files in "level" that overlap [begin,end]
GetOverlappingInputs(int level,const InternalKey * begin,const InternalKey * end,std::vector<FileMetaData * > * inputs)522 void Version::GetOverlappingInputs(
523 int level,
524 const InternalKey* begin,
525 const InternalKey* end,
526 std::vector<FileMetaData*>* inputs) {
527 assert(level >= 0);
528 assert(level < config::kNumLevels);
529 inputs->clear();
530 Slice user_begin, user_end;
531 if (begin != NULL) {
532 user_begin = begin->user_key();
533 }
534 if (end != NULL) {
535 user_end = end->user_key();
536 }
537 const Comparator* user_cmp = vset_->icmp_.user_comparator();
538 for (size_t i = 0; i < files_[level].size(); ) {
539 FileMetaData* f = files_[level][i++];
540 const Slice file_start = f->smallest.user_key();
541 const Slice file_limit = f->largest.user_key();
542 if (begin != NULL && user_cmp->Compare(file_limit, user_begin) < 0) {
543 // "f" is completely before specified range; skip it
544 } else if (end != NULL && user_cmp->Compare(file_start, user_end) > 0) {
545 // "f" is completely after specified range; skip it
546 } else {
547 inputs->push_back(f);
548 if (level == 0) {
549 // Level-0 files may overlap each other. So check if the newly
550 // added file has expanded the range. If so, restart search.
551 if (begin != NULL && user_cmp->Compare(file_start, user_begin) < 0) {
552 user_begin = file_start;
553 inputs->clear();
554 i = 0;
555 } else if (end != NULL && user_cmp->Compare(file_limit, user_end) > 0) {
556 user_end = file_limit;
557 inputs->clear();
558 i = 0;
559 }
560 }
561 }
562 }
563 }
564
DebugString() const565 std::string Version::DebugString() const {
566 std::string r;
567 for (int level = 0; level < config::kNumLevels; level++) {
568 // E.g.,
569 // --- level 1 ---
570 // 17:123['a' .. 'd']
571 // 20:43['e' .. 'g']
572 r.append("--- level ");
573 AppendNumberTo(&r, level);
574 r.append(" ---\n");
575 const std::vector<FileMetaData*>& files = files_[level];
576 for (size_t i = 0; i < files.size(); i++) {
577 r.push_back(' ');
578 AppendNumberTo(&r, files[i]->number);
579 r.push_back(':');
580 AppendNumberTo(&r, files[i]->file_size);
581 r.append("[");
582 r.append(files[i]->smallest.DebugString());
583 r.append(" .. ");
584 r.append(files[i]->largest.DebugString());
585 r.append("]\n");
586 }
587 }
588 return r;
589 }
590
591 // A helper class so we can efficiently apply a whole sequence
592 // of edits to a particular state without creating intermediate
593 // Versions that contain full copies of the intermediate state.
594 class VersionSet::Builder {
595 private:
596 // Helper to sort by v->files_[file_number].smallest
597 struct BySmallestKey {
598 const InternalKeyComparator* internal_comparator;
599
operator ()leveldb::VersionSet::Builder::BySmallestKey600 bool operator()(FileMetaData* f1, FileMetaData* f2) const {
601 int r = internal_comparator->Compare(f1->smallest, f2->smallest);
602 if (r != 0) {
603 return (r < 0);
604 } else {
605 // Break ties by file number
606 return (f1->number < f2->number);
607 }
608 }
609 };
610
611 typedef std::set<FileMetaData*, BySmallestKey> FileSet;
612 struct LevelState {
613 std::set<uint64_t> deleted_files;
614 FileSet* added_files;
615 };
616
617 VersionSet* vset_;
618 Version* base_;
619 LevelState levels_[config::kNumLevels];
620
621 public:
622 // Initialize a builder with the files from *base and other info from *vset
Builder(VersionSet * vset,Version * base)623 Builder(VersionSet* vset, Version* base)
624 : vset_(vset),
625 base_(base) {
626 base_->Ref();
627 BySmallestKey cmp;
628 cmp.internal_comparator = &vset_->icmp_;
629 for (int level = 0; level < config::kNumLevels; level++) {
630 levels_[level].added_files = new FileSet(cmp);
631 }
632 }
633
~Builder()634 ~Builder() {
635 for (int level = 0; level < config::kNumLevels; level++) {
636 const FileSet* added = levels_[level].added_files;
637 std::vector<FileMetaData*> to_unref;
638 to_unref.reserve(added->size());
639 for (FileSet::const_iterator it = added->begin();
640 it != added->end(); ++it) {
641 to_unref.push_back(*it);
642 }
643 delete added;
644 for (uint32_t i = 0; i < to_unref.size(); i++) {
645 FileMetaData* f = to_unref[i];
646 f->refs--;
647 if (f->refs <= 0) {
648 delete f;
649 }
650 }
651 }
652 base_->Unref();
653 }
654
655 // Apply all of the edits in *edit to the current state.
Apply(VersionEdit * edit)656 void Apply(VersionEdit* edit) {
657 // Update compaction pointers
658 for (size_t i = 0; i < edit->compact_pointers_.size(); i++) {
659 const int level = edit->compact_pointers_[i].first;
660 vset_->compact_pointer_[level] =
661 edit->compact_pointers_[i].second.Encode().ToString();
662 }
663
664 // Delete files
665 const VersionEdit::DeletedFileSet& del = edit->deleted_files_;
666 for (VersionEdit::DeletedFileSet::const_iterator iter = del.begin();
667 iter != del.end();
668 ++iter) {
669 const int level = iter->first;
670 const uint64_t number = iter->second;
671 levels_[level].deleted_files.insert(number);
672 }
673
674 // Add new files
675 for (size_t i = 0; i < edit->new_files_.size(); i++) {
676 const int level = edit->new_files_[i].first;
677 FileMetaData* f = new FileMetaData(edit->new_files_[i].second);
678 f->refs = 1;
679
680 // We arrange to automatically compact this file after
681 // a certain number of seeks. Let's assume:
682 // (1) One seek costs 10ms
683 // (2) Writing or reading 1MB costs 10ms (100MB/s)
684 // (3) A compaction of 1MB does 25MB of IO:
685 // 1MB read from this level
686 // 10-12MB read from next level (boundaries may be misaligned)
687 // 10-12MB written to next level
688 // This implies that 25 seeks cost the same as the compaction
689 // of 1MB of data. I.e., one seek costs approximately the
690 // same as the compaction of 40KB of data. We are a little
691 // conservative and allow approximately one seek for every 16KB
692 // of data before triggering a compaction.
693 f->allowed_seeks = (f->file_size / 16384);
694 if (f->allowed_seeks < 100) f->allowed_seeks = 100;
695
696 levels_[level].deleted_files.erase(f->number);
697 levels_[level].added_files->insert(f);
698 }
699 }
700
701 // Save the current state in *v.
SaveTo(Version * v)702 void SaveTo(Version* v) {
703 BySmallestKey cmp;
704 cmp.internal_comparator = &vset_->icmp_;
705 for (int level = 0; level < config::kNumLevels; level++) {
706 // Merge the set of added files with the set of pre-existing files.
707 // Drop any deleted files. Store the result in *v.
708 const std::vector<FileMetaData*>& base_files = base_->files_[level];
709 std::vector<FileMetaData*>::const_iterator base_iter = base_files.begin();
710 std::vector<FileMetaData*>::const_iterator base_end = base_files.end();
711 const FileSet* added = levels_[level].added_files;
712 v->files_[level].reserve(base_files.size() + added->size());
713 for (FileSet::const_iterator added_iter = added->begin();
714 added_iter != added->end();
715 ++added_iter) {
716 // Add all smaller files listed in base_
717 for (std::vector<FileMetaData*>::const_iterator bpos
718 = std::upper_bound(base_iter, base_end, *added_iter, cmp);
719 base_iter != bpos;
720 ++base_iter) {
721 MaybeAddFile(v, level, *base_iter);
722 }
723
724 MaybeAddFile(v, level, *added_iter);
725 }
726
727 // Add remaining base files
728 for (; base_iter != base_end; ++base_iter) {
729 MaybeAddFile(v, level, *base_iter);
730 }
731
732 #ifndef NDEBUG
733 // Make sure there is no overlap in levels > 0
734 if (level > 0) {
735 for (uint32_t i = 1; i < v->files_[level].size(); i++) {
736 const InternalKey& prev_end = v->files_[level][i-1]->largest;
737 const InternalKey& this_begin = v->files_[level][i]->smallest;
738 if (vset_->icmp_.Compare(prev_end, this_begin) >= 0) {
739 fprintf(stderr, "overlapping ranges in same level %s vs. %s\n",
740 prev_end.DebugString().c_str(),
741 this_begin.DebugString().c_str());
742 abort();
743 }
744 }
745 }
746 #endif
747 }
748 }
749
MaybeAddFile(Version * v,int level,FileMetaData * f)750 void MaybeAddFile(Version* v, int level, FileMetaData* f) {
751 if (levels_[level].deleted_files.count(f->number) > 0) {
752 // File is deleted: do nothing
753 } else {
754 std::vector<FileMetaData*>* files = &v->files_[level];
755 if (level > 0 && !files->empty()) {
756 // Must not overlap
757 assert(vset_->icmp_.Compare((*files)[files->size()-1]->largest,
758 f->smallest) < 0);
759 }
760 f->refs++;
761 files->push_back(f);
762 }
763 }
764 };
765
VersionSet(const std::string & dbname,const Options * options,TableCache * table_cache,const InternalKeyComparator * cmp)766 VersionSet::VersionSet(const std::string& dbname,
767 const Options* options,
768 TableCache* table_cache,
769 const InternalKeyComparator* cmp)
770 : env_(options->env),
771 dbname_(dbname),
772 options_(options),
773 table_cache_(table_cache),
774 icmp_(*cmp),
775 next_file_number_(2),
776 manifest_file_number_(0), // Filled by Recover()
777 last_sequence_(0),
778 log_number_(0),
779 prev_log_number_(0),
780 descriptor_file_(NULL),
781 descriptor_log_(NULL),
782 dummy_versions_(this),
783 current_(NULL) {
784 AppendVersion(new Version(this));
785 }
786
~VersionSet()787 VersionSet::~VersionSet() {
788 current_->Unref();
789 assert(dummy_versions_.next_ == &dummy_versions_); // List must be empty
790 delete descriptor_log_;
791 delete descriptor_file_;
792 }
793
AppendVersion(Version * v)794 void VersionSet::AppendVersion(Version* v) {
795 // Make "v" current
796 assert(v->refs_ == 0);
797 assert(v != current_);
798 if (current_ != NULL) {
799 current_->Unref();
800 }
801 current_ = v;
802 v->Ref();
803
804 // Append to linked list
805 v->prev_ = dummy_versions_.prev_;
806 v->next_ = &dummy_versions_;
807 v->prev_->next_ = v;
808 v->next_->prev_ = v;
809 }
810
LogAndApply(VersionEdit * edit,port::Mutex * mu)811 Status VersionSet::LogAndApply(VersionEdit* edit, port::Mutex* mu) {
812 if (edit->has_log_number_) {
813 assert(edit->log_number_ >= log_number_);
814 assert(edit->log_number_ < next_file_number_);
815 } else {
816 edit->SetLogNumber(log_number_);
817 }
818
819 if (!edit->has_prev_log_number_) {
820 edit->SetPrevLogNumber(prev_log_number_);
821 }
822
823 edit->SetNextFile(next_file_number_);
824 edit->SetLastSequence(last_sequence_);
825
826 Version* v = new Version(this);
827 {
828 Builder builder(this, current_);
829 builder.Apply(edit);
830 builder.SaveTo(v);
831 }
832 Finalize(v);
833
834 // Initialize new descriptor log file if necessary by creating
835 // a temporary file that contains a snapshot of the current version.
836 std::string new_manifest_file;
837 Status s;
838 if (descriptor_log_ == NULL) {
839 // No reason to unlock *mu here since we only hit this path in the
840 // first call to LogAndApply (when opening the database).
841 assert(descriptor_file_ == NULL);
842 new_manifest_file = DescriptorFileName(dbname_, manifest_file_number_);
843 edit->SetNextFile(next_file_number_);
844 s = env_->NewWritableFile(new_manifest_file, &descriptor_file_);
845 if (s.ok()) {
846 descriptor_log_ = new log::Writer(descriptor_file_);
847 s = WriteSnapshot(descriptor_log_);
848 }
849 }
850
851 // Unlock during expensive MANIFEST log write
852 {
853 mu->Unlock();
854
855 // Write new record to MANIFEST log
856 if (s.ok()) {
857 std::string record;
858 edit->EncodeTo(&record);
859 s = descriptor_log_->AddRecord(record);
860 if (s.ok()) {
861 s = descriptor_file_->Sync();
862 }
863 if (!s.ok()) {
864 Log(options_->info_log, "MANIFEST write: %s\n", s.ToString().c_str());
865 }
866 }
867
868 // If we just created a new descriptor file, install it by writing a
869 // new CURRENT file that points to it.
870 if (s.ok() && !new_manifest_file.empty()) {
871 s = SetCurrentFile(env_, dbname_, manifest_file_number_);
872 }
873
874 mu->Lock();
875 }
876
877 // Install the new version
878 if (s.ok()) {
879 AppendVersion(v);
880 log_number_ = edit->log_number_;
881 prev_log_number_ = edit->prev_log_number_;
882 } else {
883 delete v;
884 if (!new_manifest_file.empty()) {
885 delete descriptor_log_;
886 delete descriptor_file_;
887 descriptor_log_ = NULL;
888 descriptor_file_ = NULL;
889 env_->DeleteFile(new_manifest_file);
890 }
891 }
892
893 return s;
894 }
895
Recover()896 Status VersionSet::Recover() {
897 struct LogReporter : public log::Reader::Reporter {
898 Status* status;
899 virtual void Corruption(size_t bytes, const Status& s) {
900 if (this->status->ok()) *this->status = s;
901 }
902 };
903
904 // Read "CURRENT" file, which contains a pointer to the current manifest file
905 std::string current;
906 Status s = ReadFileToString(env_, CurrentFileName(dbname_), ¤t);
907 if (!s.ok()) {
908 return s;
909 }
910 if (current.empty() || current[current.size()-1] != '\n') {
911 return Status::Corruption("CURRENT file does not end with newline");
912 }
913 current.resize(current.size() - 1);
914
915 std::string dscname = dbname_ + "/" + current;
916 SequentialFile* file;
917 s = env_->NewSequentialFile(dscname, &file);
918 if (!s.ok()) {
919 return s;
920 }
921
922 bool have_log_number = false;
923 bool have_prev_log_number = false;
924 bool have_next_file = false;
925 bool have_last_sequence = false;
926 uint64_t next_file = 0;
927 uint64_t last_sequence = 0;
928 uint64_t log_number = 0;
929 uint64_t prev_log_number = 0;
930 Builder builder(this, current_);
931
932 {
933 LogReporter reporter;
934 reporter.status = &s;
935 log::Reader reader(file, &reporter, true/*checksum*/, 0/*initial_offset*/);
936 Slice record;
937 std::string scratch;
938 while (reader.ReadRecord(&record, &scratch) && s.ok()) {
939 VersionEdit edit;
940 s = edit.DecodeFrom(record);
941 if (s.ok()) {
942 if (edit.has_comparator_ &&
943 edit.comparator_ != icmp_.user_comparator()->Name()) {
944 s = Status::InvalidArgument(
945 edit.comparator_ + " does not match existing comparator ",
946 icmp_.user_comparator()->Name());
947 }
948 }
949
950 if (s.ok()) {
951 builder.Apply(&edit);
952 }
953
954 if (edit.has_log_number_) {
955 log_number = edit.log_number_;
956 have_log_number = true;
957 }
958
959 if (edit.has_prev_log_number_) {
960 prev_log_number = edit.prev_log_number_;
961 have_prev_log_number = true;
962 }
963
964 if (edit.has_next_file_number_) {
965 next_file = edit.next_file_number_;
966 have_next_file = true;
967 }
968
969 if (edit.has_last_sequence_) {
970 last_sequence = edit.last_sequence_;
971 have_last_sequence = true;
972 }
973 }
974 }
975 delete file;
976 file = NULL;
977
978 if (s.ok()) {
979 if (!have_next_file) {
980 s = Status::Corruption("no meta-nextfile entry in descriptor");
981 } else if (!have_log_number) {
982 s = Status::Corruption("no meta-lognumber entry in descriptor");
983 } else if (!have_last_sequence) {
984 s = Status::Corruption("no last-sequence-number entry in descriptor");
985 }
986
987 if (!have_prev_log_number) {
988 prev_log_number = 0;
989 }
990
991 MarkFileNumberUsed(prev_log_number);
992 MarkFileNumberUsed(log_number);
993 }
994
995 if (s.ok()) {
996 Version* v = new Version(this);
997 builder.SaveTo(v);
998 // Install recovered version
999 Finalize(v);
1000 AppendVersion(v);
1001 manifest_file_number_ = next_file;
1002 next_file_number_ = next_file + 1;
1003 last_sequence_ = last_sequence;
1004 log_number_ = log_number;
1005 prev_log_number_ = prev_log_number;
1006 }
1007
1008 return s;
1009 }
1010
MarkFileNumberUsed(uint64_t number)1011 void VersionSet::MarkFileNumberUsed(uint64_t number) {
1012 if (next_file_number_ <= number) {
1013 next_file_number_ = number + 1;
1014 }
1015 }
1016
Finalize(Version * v)1017 void VersionSet::Finalize(Version* v) {
1018 // Precomputed best level for next compaction
1019 int best_level = -1;
1020 double best_score = -1;
1021
1022 for (int level = 0; level < config::kNumLevels-1; level++) {
1023 double score;
1024 if (level == 0) {
1025 // We treat level-0 specially by bounding the number of files
1026 // instead of number of bytes for two reasons:
1027 //
1028 // (1) With larger write-buffer sizes, it is nice not to do too
1029 // many level-0 compactions.
1030 //
1031 // (2) The files in level-0 are merged on every read and
1032 // therefore we wish to avoid too many files when the individual
1033 // file size is small (perhaps because of a small write-buffer
1034 // setting, or very high compression ratios, or lots of
1035 // overwrites/deletions).
1036 score = v->files_[level].size() /
1037 static_cast<double>(config::kL0_CompactionTrigger);
1038 } else {
1039 // Compute the ratio of current size to size limit.
1040 const uint64_t level_bytes = TotalFileSize(v->files_[level]);
1041 score = static_cast<double>(level_bytes) / MaxBytesForLevel(level);
1042 }
1043
1044 if (score > best_score) {
1045 best_level = level;
1046 best_score = score;
1047 }
1048 }
1049
1050 v->compaction_level_ = best_level;
1051 v->compaction_score_ = best_score;
1052 }
1053
WriteSnapshot(log::Writer * log)1054 Status VersionSet::WriteSnapshot(log::Writer* log) {
1055 // TODO: Break up into multiple records to reduce memory usage on recovery?
1056
1057 // Save metadata
1058 VersionEdit edit;
1059 edit.SetComparatorName(icmp_.user_comparator()->Name());
1060
1061 // Save compaction pointers
1062 for (int level = 0; level < config::kNumLevels; level++) {
1063 if (!compact_pointer_[level].empty()) {
1064 InternalKey key;
1065 key.DecodeFrom(compact_pointer_[level]);
1066 edit.SetCompactPointer(level, key);
1067 }
1068 }
1069
1070 // Save files
1071 for (int level = 0; level < config::kNumLevels; level++) {
1072 const std::vector<FileMetaData*>& files = current_->files_[level];
1073 for (size_t i = 0; i < files.size(); i++) {
1074 const FileMetaData* f = files[i];
1075 edit.AddFile(level, f->number, f->file_size, f->smallest, f->largest);
1076 }
1077 }
1078
1079 std::string record;
1080 edit.EncodeTo(&record);
1081 return log->AddRecord(record);
1082 }
1083
NumLevelFiles(int level) const1084 int VersionSet::NumLevelFiles(int level) const {
1085 assert(level >= 0);
1086 assert(level < config::kNumLevels);
1087 return current_->files_[level].size();
1088 }
1089
LevelSummary(LevelSummaryStorage * scratch) const1090 const char* VersionSet::LevelSummary(LevelSummaryStorage* scratch) const {
1091 // Update code if kNumLevels changes
1092 assert(config::kNumLevels == 7);
1093 snprintf(scratch->buffer, sizeof(scratch->buffer),
1094 "files[ %d %d %d %d %d %d %d ]",
1095 int(current_->files_[0].size()),
1096 int(current_->files_[1].size()),
1097 int(current_->files_[2].size()),
1098 int(current_->files_[3].size()),
1099 int(current_->files_[4].size()),
1100 int(current_->files_[5].size()),
1101 int(current_->files_[6].size()));
1102 return scratch->buffer;
1103 }
1104
ApproximateOffsetOf(Version * v,const InternalKey & ikey)1105 uint64_t VersionSet::ApproximateOffsetOf(Version* v, const InternalKey& ikey) {
1106 uint64_t result = 0;
1107 for (int level = 0; level < config::kNumLevels; level++) {
1108 const std::vector<FileMetaData*>& files = v->files_[level];
1109 for (size_t i = 0; i < files.size(); i++) {
1110 if (icmp_.Compare(files[i]->largest, ikey) <= 0) {
1111 // Entire file is before "ikey", so just add the file size
1112 result += files[i]->file_size;
1113 } else if (icmp_.Compare(files[i]->smallest, ikey) > 0) {
1114 // Entire file is after "ikey", so ignore
1115 if (level > 0) {
1116 // Files other than level 0 are sorted by meta->smallest, so
1117 // no further files in this level will contain data for
1118 // "ikey".
1119 break;
1120 }
1121 } else {
1122 // "ikey" falls in the range for this table. Add the
1123 // approximate offset of "ikey" within the table.
1124 Table* tableptr;
1125 Iterator* iter = table_cache_->NewIterator(
1126 ReadOptions(), files[i]->number, files[i]->file_size, &tableptr);
1127 if (tableptr != NULL) {
1128 result += tableptr->ApproximateOffsetOf(ikey.Encode());
1129 }
1130 delete iter;
1131 }
1132 }
1133 }
1134 return result;
1135 }
1136
AddLiveFiles(std::set<uint64_t> * live)1137 void VersionSet::AddLiveFiles(std::set<uint64_t>* live) {
1138 for (Version* v = dummy_versions_.next_;
1139 v != &dummy_versions_;
1140 v = v->next_) {
1141 for (int level = 0; level < config::kNumLevels; level++) {
1142 const std::vector<FileMetaData*>& files = v->files_[level];
1143 for (size_t i = 0; i < files.size(); i++) {
1144 live->insert(files[i]->number);
1145 }
1146 }
1147 }
1148 }
1149
NumLevelBytes(int level) const1150 int64_t VersionSet::NumLevelBytes(int level) const {
1151 assert(level >= 0);
1152 assert(level < config::kNumLevels);
1153 return TotalFileSize(current_->files_[level]);
1154 }
1155
MaxNextLevelOverlappingBytes()1156 int64_t VersionSet::MaxNextLevelOverlappingBytes() {
1157 int64_t result = 0;
1158 std::vector<FileMetaData*> overlaps;
1159 for (int level = 1; level < config::kNumLevels - 1; level++) {
1160 for (size_t i = 0; i < current_->files_[level].size(); i++) {
1161 const FileMetaData* f = current_->files_[level][i];
1162 current_->GetOverlappingInputs(level+1, &f->smallest, &f->largest,
1163 &overlaps);
1164 const int64_t sum = TotalFileSize(overlaps);
1165 if (sum > result) {
1166 result = sum;
1167 }
1168 }
1169 }
1170 return result;
1171 }
1172
1173 // Stores the minimal range that covers all entries in inputs in
1174 // *smallest, *largest.
1175 // REQUIRES: inputs is not empty
GetRange(const std::vector<FileMetaData * > & inputs,InternalKey * smallest,InternalKey * largest)1176 void VersionSet::GetRange(const std::vector<FileMetaData*>& inputs,
1177 InternalKey* smallest,
1178 InternalKey* largest) {
1179 assert(!inputs.empty());
1180 smallest->Clear();
1181 largest->Clear();
1182 for (size_t i = 0; i < inputs.size(); i++) {
1183 FileMetaData* f = inputs[i];
1184 if (i == 0) {
1185 *smallest = f->smallest;
1186 *largest = f->largest;
1187 } else {
1188 if (icmp_.Compare(f->smallest, *smallest) < 0) {
1189 *smallest = f->smallest;
1190 }
1191 if (icmp_.Compare(f->largest, *largest) > 0) {
1192 *largest = f->largest;
1193 }
1194 }
1195 }
1196 }
1197
1198 // Stores the minimal range that covers all entries in inputs1 and inputs2
1199 // in *smallest, *largest.
1200 // REQUIRES: inputs is not empty
GetRange2(const std::vector<FileMetaData * > & inputs1,const std::vector<FileMetaData * > & inputs2,InternalKey * smallest,InternalKey * largest)1201 void VersionSet::GetRange2(const std::vector<FileMetaData*>& inputs1,
1202 const std::vector<FileMetaData*>& inputs2,
1203 InternalKey* smallest,
1204 InternalKey* largest) {
1205 std::vector<FileMetaData*> all = inputs1;
1206 all.insert(all.end(), inputs2.begin(), inputs2.end());
1207 GetRange(all, smallest, largest);
1208 }
1209
MakeInputIterator(Compaction * c)1210 Iterator* VersionSet::MakeInputIterator(Compaction* c) {
1211 ReadOptions options;
1212 options.verify_checksums = options_->paranoid_checks;
1213 options.fill_cache = false;
1214
1215 // Level-0 files have to be merged together. For other levels,
1216 // we will make a concatenating iterator per level.
1217 // TODO(opt): use concatenating iterator for level-0 if there is no overlap
1218 const int space = (c->level() == 0 ? c->inputs_[0].size() + 1 : 2);
1219 Iterator** list = new Iterator*[space];
1220 int num = 0;
1221 for (int which = 0; which < 2; which++) {
1222 if (!c->inputs_[which].empty()) {
1223 if (c->level() + which == 0) {
1224 const std::vector<FileMetaData*>& files = c->inputs_[which];
1225 for (size_t i = 0; i < files.size(); i++) {
1226 list[num++] = table_cache_->NewIterator(
1227 options, files[i]->number, files[i]->file_size);
1228 }
1229 } else {
1230 // Create concatenating iterator for the files from this level
1231 list[num++] = NewTwoLevelIterator(
1232 new Version::LevelFileNumIterator(icmp_, &c->inputs_[which]),
1233 &GetFileIterator, table_cache_, options);
1234 }
1235 }
1236 }
1237 assert(num <= space);
1238 Iterator* result = NewMergingIterator(&icmp_, list, num);
1239 delete[] list;
1240 return result;
1241 }
1242
PickCompaction()1243 Compaction* VersionSet::PickCompaction() {
1244 Compaction* c;
1245 int level;
1246
1247 // We prefer compactions triggered by too much data in a level over
1248 // the compactions triggered by seeks.
1249 const bool size_compaction = (current_->compaction_score_ >= 1);
1250 const bool seek_compaction = (current_->file_to_compact_ != NULL);
1251 if (size_compaction) {
1252 level = current_->compaction_level_;
1253 assert(level >= 0);
1254 assert(level+1 < config::kNumLevels);
1255 c = new Compaction(level);
1256
1257 // Pick the first file that comes after compact_pointer_[level]
1258 for (size_t i = 0; i < current_->files_[level].size(); i++) {
1259 FileMetaData* f = current_->files_[level][i];
1260 if (compact_pointer_[level].empty() ||
1261 icmp_.Compare(f->largest.Encode(), compact_pointer_[level]) > 0) {
1262 c->inputs_[0].push_back(f);
1263 break;
1264 }
1265 }
1266 if (c->inputs_[0].empty()) {
1267 // Wrap-around to the beginning of the key space
1268 c->inputs_[0].push_back(current_->files_[level][0]);
1269 }
1270 } else if (seek_compaction) {
1271 level = current_->file_to_compact_level_;
1272 c = new Compaction(level);
1273 c->inputs_[0].push_back(current_->file_to_compact_);
1274 } else {
1275 return NULL;
1276 }
1277
1278 c->input_version_ = current_;
1279 c->input_version_->Ref();
1280
1281 // Files in level 0 may overlap each other, so pick up all overlapping ones
1282 if (level == 0) {
1283 InternalKey smallest, largest;
1284 GetRange(c->inputs_[0], &smallest, &largest);
1285 // Note that the next call will discard the file we placed in
1286 // c->inputs_[0] earlier and replace it with an overlapping set
1287 // which will include the picked file.
1288 current_->GetOverlappingInputs(0, &smallest, &largest, &c->inputs_[0]);
1289 assert(!c->inputs_[0].empty());
1290 }
1291
1292 SetupOtherInputs(c);
1293
1294 return c;
1295 }
1296
SetupOtherInputs(Compaction * c)1297 void VersionSet::SetupOtherInputs(Compaction* c) {
1298 const int level = c->level();
1299 InternalKey smallest, largest;
1300 GetRange(c->inputs_[0], &smallest, &largest);
1301
1302 current_->GetOverlappingInputs(level+1, &smallest, &largest, &c->inputs_[1]);
1303
1304 // Get entire range covered by compaction
1305 InternalKey all_start, all_limit;
1306 GetRange2(c->inputs_[0], c->inputs_[1], &all_start, &all_limit);
1307
1308 // See if we can grow the number of inputs in "level" without
1309 // changing the number of "level+1" files we pick up.
1310 if (!c->inputs_[1].empty()) {
1311 std::vector<FileMetaData*> expanded0;
1312 current_->GetOverlappingInputs(level, &all_start, &all_limit, &expanded0);
1313 const int64_t inputs0_size = TotalFileSize(c->inputs_[0]);
1314 const int64_t inputs1_size = TotalFileSize(c->inputs_[1]);
1315 const int64_t expanded0_size = TotalFileSize(expanded0);
1316 if (expanded0.size() > c->inputs_[0].size() &&
1317 inputs1_size + expanded0_size < kExpandedCompactionByteSizeLimit) {
1318 InternalKey new_start, new_limit;
1319 GetRange(expanded0, &new_start, &new_limit);
1320 std::vector<FileMetaData*> expanded1;
1321 current_->GetOverlappingInputs(level+1, &new_start, &new_limit,
1322 &expanded1);
1323 if (expanded1.size() == c->inputs_[1].size()) {
1324 Log(options_->info_log,
1325 "Expanding@%d %d+%d (%ld+%ld bytes) to %d+%d (%ld+%ld bytes)\n",
1326 level,
1327 int(c->inputs_[0].size()),
1328 int(c->inputs_[1].size()),
1329 long(inputs0_size), long(inputs1_size),
1330 int(expanded0.size()),
1331 int(expanded1.size()),
1332 long(expanded0_size), long(inputs1_size));
1333 smallest = new_start;
1334 largest = new_limit;
1335 c->inputs_[0] = expanded0;
1336 c->inputs_[1] = expanded1;
1337 GetRange2(c->inputs_[0], c->inputs_[1], &all_start, &all_limit);
1338 }
1339 }
1340 }
1341
1342 // Compute the set of grandparent files that overlap this compaction
1343 // (parent == level+1; grandparent == level+2)
1344 if (level + 2 < config::kNumLevels) {
1345 current_->GetOverlappingInputs(level + 2, &all_start, &all_limit,
1346 &c->grandparents_);
1347 }
1348
1349 if (false) {
1350 Log(options_->info_log, "Compacting %d '%s' .. '%s'",
1351 level,
1352 smallest.DebugString().c_str(),
1353 largest.DebugString().c_str());
1354 }
1355
1356 // Update the place where we will do the next compaction for this level.
1357 // We update this immediately instead of waiting for the VersionEdit
1358 // to be applied so that if the compaction fails, we will try a different
1359 // key range next time.
1360 compact_pointer_[level] = largest.Encode().ToString();
1361 c->edit_.SetCompactPointer(level, largest);
1362 }
1363
CompactRange(int level,const InternalKey * begin,const InternalKey * end)1364 Compaction* VersionSet::CompactRange(
1365 int level,
1366 const InternalKey* begin,
1367 const InternalKey* end) {
1368 std::vector<FileMetaData*> inputs;
1369 current_->GetOverlappingInputs(level, begin, end, &inputs);
1370 if (inputs.empty()) {
1371 return NULL;
1372 }
1373
1374 // Avoid compacting too much in one shot in case the range is large.
1375 // But we cannot do this for level-0 since level-0 files can overlap
1376 // and we must not pick one file and drop another older file if the
1377 // two files overlap.
1378 if (level > 0) {
1379 const uint64_t limit = MaxFileSizeForLevel(level);
1380 uint64_t total = 0;
1381 for (size_t i = 0; i < inputs.size(); i++) {
1382 uint64_t s = inputs[i]->file_size;
1383 total += s;
1384 if (total >= limit) {
1385 inputs.resize(i + 1);
1386 break;
1387 }
1388 }
1389 }
1390
1391 Compaction* c = new Compaction(level);
1392 c->input_version_ = current_;
1393 c->input_version_->Ref();
1394 c->inputs_[0] = inputs;
1395 SetupOtherInputs(c);
1396 return c;
1397 }
1398
Compaction(int level)1399 Compaction::Compaction(int level)
1400 : level_(level),
1401 max_output_file_size_(MaxFileSizeForLevel(level)),
1402 input_version_(NULL),
1403 grandparent_index_(0),
1404 seen_key_(false),
1405 overlapped_bytes_(0) {
1406 for (int i = 0; i < config::kNumLevels; i++) {
1407 level_ptrs_[i] = 0;
1408 }
1409 }
1410
~Compaction()1411 Compaction::~Compaction() {
1412 if (input_version_ != NULL) {
1413 input_version_->Unref();
1414 }
1415 }
1416
IsTrivialMove() const1417 bool Compaction::IsTrivialMove() const {
1418 // Avoid a move if there is lots of overlapping grandparent data.
1419 // Otherwise, the move could create a parent file that will require
1420 // a very expensive merge later on.
1421 return (num_input_files(0) == 1 &&
1422 num_input_files(1) == 0 &&
1423 TotalFileSize(grandparents_) <= kMaxGrandParentOverlapBytes);
1424 }
1425
AddInputDeletions(VersionEdit * edit)1426 void Compaction::AddInputDeletions(VersionEdit* edit) {
1427 for (int which = 0; which < 2; which++) {
1428 for (size_t i = 0; i < inputs_[which].size(); i++) {
1429 edit->DeleteFile(level_ + which, inputs_[which][i]->number);
1430 }
1431 }
1432 }
1433
IsBaseLevelForKey(const Slice & user_key)1434 bool Compaction::IsBaseLevelForKey(const Slice& user_key) {
1435 // Maybe use binary search to find right entry instead of linear search?
1436 const Comparator* user_cmp = input_version_->vset_->icmp_.user_comparator();
1437 for (int lvl = level_ + 2; lvl < config::kNumLevels; lvl++) {
1438 const std::vector<FileMetaData*>& files = input_version_->files_[lvl];
1439 for (; level_ptrs_[lvl] < files.size(); ) {
1440 FileMetaData* f = files[level_ptrs_[lvl]];
1441 if (user_cmp->Compare(user_key, f->largest.user_key()) <= 0) {
1442 // We've advanced far enough
1443 if (user_cmp->Compare(user_key, f->smallest.user_key()) >= 0) {
1444 // Key falls in this file's range, so definitely not base level
1445 return false;
1446 }
1447 break;
1448 }
1449 level_ptrs_[lvl]++;
1450 }
1451 }
1452 return true;
1453 }
1454
ShouldStopBefore(const Slice & internal_key)1455 bool Compaction::ShouldStopBefore(const Slice& internal_key) {
1456 // Scan to find earliest grandparent file that contains key.
1457 const InternalKeyComparator* icmp = &input_version_->vset_->icmp_;
1458 while (grandparent_index_ < grandparents_.size() &&
1459 icmp->Compare(internal_key,
1460 grandparents_[grandparent_index_]->largest.Encode()) > 0) {
1461 if (seen_key_) {
1462 overlapped_bytes_ += grandparents_[grandparent_index_]->file_size;
1463 }
1464 grandparent_index_++;
1465 }
1466 seen_key_ = true;
1467
1468 if (overlapped_bytes_ > kMaxGrandParentOverlapBytes) {
1469 // Too much overlap for current output; start new output
1470 overlapped_bytes_ = 0;
1471 return true;
1472 } else {
1473 return false;
1474 }
1475 }
1476
ReleaseInputs()1477 void Compaction::ReleaseInputs() {
1478 if (input_version_ != NULL) {
1479 input_version_->Unref();
1480 input_version_ = NULL;
1481 }
1482 }
1483
1484 } // namespace leveldb
1485