1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Authors: wan@google.com (Zhanyong Wan), eefacm@gmail.com (Sean Mcafee)
31 //
32 // The Google C++ Testing Framework (Google Test)
33 //
34 // This header file declares functions and macros used internally by
35 // Google Test. They are subject to change without notice.
36
37 #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
38 #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
39
40 #include "gtest/internal/gtest-port.h"
41
42 #if GTEST_OS_LINUX
43 # include <stdlib.h>
44 # include <sys/types.h>
45 # include <sys/wait.h>
46 # include <unistd.h>
47 #endif // GTEST_OS_LINUX
48
49 #if GTEST_HAS_EXCEPTIONS
50 # include <stdexcept>
51 #endif
52
53 #include <ctype.h>
54 #include <string.h>
55 #include <iomanip>
56 #include <limits>
57 #include <set>
58
59 #include "gtest/gtest-message.h"
60 #include "gtest/internal/gtest-string.h"
61 #include "gtest/internal/gtest-filepath.h"
62 #include "gtest/internal/gtest-type-util.h"
63
64 // Due to C++ preprocessor weirdness, we need double indirection to
65 // concatenate two tokens when one of them is __LINE__. Writing
66 //
67 // foo ## __LINE__
68 //
69 // will result in the token foo__LINE__, instead of foo followed by
70 // the current line number. For more details, see
71 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
72 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
73 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
74
75 class ProtocolMessage;
76 namespace proto2 { class Message; }
77
78 namespace testing {
79
80 // Forward declarations.
81
82 class AssertionResult; // Result of an assertion.
83 class Message; // Represents a failure message.
84 class Test; // Represents a test.
85 class TestInfo; // Information about a test.
86 class TestPartResult; // Result of a test part.
87 class UnitTest; // A collection of test cases.
88
89 template <typename T>
90 ::std::string PrintToString(const T& value);
91
92 namespace internal {
93
94 struct TraceInfo; // Information about a trace point.
95 class ScopedTrace; // Implements scoped trace.
96 class TestInfoImpl; // Opaque implementation of TestInfo
97 class UnitTestImpl; // Opaque implementation of UnitTest
98
99 // How many times InitGoogleTest() has been called.
100 GTEST_API_ extern int g_init_gtest_count;
101
102 // The text used in failure messages to indicate the start of the
103 // stack trace.
104 GTEST_API_ extern const char kStackTraceMarker[];
105
106 // Two overloaded helpers for checking at compile time whether an
107 // expression is a null pointer literal (i.e. NULL or any 0-valued
108 // compile-time integral constant). Their return values have
109 // different sizes, so we can use sizeof() to test which version is
110 // picked by the compiler. These helpers have no implementations, as
111 // we only need their signatures.
112 //
113 // Given IsNullLiteralHelper(x), the compiler will pick the first
114 // version if x can be implicitly converted to Secret*, and pick the
115 // second version otherwise. Since Secret is a secret and incomplete
116 // type, the only expression a user can write that has type Secret* is
117 // a null pointer literal. Therefore, we know that x is a null
118 // pointer literal if and only if the first version is picked by the
119 // compiler.
120 char IsNullLiteralHelper(Secret* p);
121 char (&IsNullLiteralHelper(...))[2]; // NOLINT
122
123 // A compile-time bool constant that is true if and only if x is a
124 // null pointer literal (i.e. NULL or any 0-valued compile-time
125 // integral constant).
126 #ifdef GTEST_ELLIPSIS_NEEDS_POD_
127 // We lose support for NULL detection where the compiler doesn't like
128 // passing non-POD classes through ellipsis (...).
129 # define GTEST_IS_NULL_LITERAL_(x) false
130 #else
131 # define GTEST_IS_NULL_LITERAL_(x) \
132 (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
133 #endif // GTEST_ELLIPSIS_NEEDS_POD_
134
135 // Appends the user-supplied message to the Google-Test-generated message.
136 GTEST_API_ std::string AppendUserMessage(
137 const std::string& gtest_msg, const Message& user_msg);
138
139 #if GTEST_HAS_EXCEPTIONS
140
141 // This exception is thrown by (and only by) a failed Google Test
142 // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
143 // are enabled). We derive it from std::runtime_error, which is for
144 // errors presumably detectable only at run time. Since
145 // std::runtime_error inherits from std::exception, many testing
146 // frameworks know how to extract and print the message inside it.
147 class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
148 public:
149 explicit GoogleTestFailureException(const TestPartResult& failure);
150 };
151
152 #endif // GTEST_HAS_EXCEPTIONS
153
154 // A helper class for creating scoped traces in user programs.
155 class GTEST_API_ ScopedTrace {
156 public:
157 // The c'tor pushes the given source file location and message onto
158 // a trace stack maintained by Google Test.
159 ScopedTrace(const char* file, int line, const Message& message);
160
161 // The d'tor pops the info pushed by the c'tor.
162 //
163 // Note that the d'tor is not virtual in order to be efficient.
164 // Don't inherit from ScopedTrace!
165 ~ScopedTrace();
166
167 private:
168 GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedTrace);
169 } GTEST_ATTRIBUTE_UNUSED_; // A ScopedTrace object does its job in its
170 // c'tor and d'tor. Therefore it doesn't
171 // need to be used otherwise.
172
173 // Constructs and returns the message for an equality assertion
174 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
175 //
176 // The first four parameters are the expressions used in the assertion
177 // and their values, as strings. For example, for ASSERT_EQ(foo, bar)
178 // where foo is 5 and bar is 6, we have:
179 //
180 // expected_expression: "foo"
181 // actual_expression: "bar"
182 // expected_value: "5"
183 // actual_value: "6"
184 //
185 // The ignoring_case parameter is true iff the assertion is a
186 // *_STRCASEEQ*. When it's true, the string " (ignoring case)" will
187 // be inserted into the message.
188 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
189 const char* actual_expression,
190 const std::string& expected_value,
191 const std::string& actual_value,
192 bool ignoring_case);
193
194 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
195 GTEST_API_ std::string GetBoolAssertionFailureMessage(
196 const AssertionResult& assertion_result,
197 const char* expression_text,
198 const char* actual_predicate_value,
199 const char* expected_predicate_value);
200
201 // This template class represents an IEEE floating-point number
202 // (either single-precision or double-precision, depending on the
203 // template parameters).
204 //
205 // The purpose of this class is to do more sophisticated number
206 // comparison. (Due to round-off error, etc, it's very unlikely that
207 // two floating-points will be equal exactly. Hence a naive
208 // comparison by the == operation often doesn't work.)
209 //
210 // Format of IEEE floating-point:
211 //
212 // The most-significant bit being the leftmost, an IEEE
213 // floating-point looks like
214 //
215 // sign_bit exponent_bits fraction_bits
216 //
217 // Here, sign_bit is a single bit that designates the sign of the
218 // number.
219 //
220 // For float, there are 8 exponent bits and 23 fraction bits.
221 //
222 // For double, there are 11 exponent bits and 52 fraction bits.
223 //
224 // More details can be found at
225 // http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
226 //
227 // Template parameter:
228 //
229 // RawType: the raw floating-point type (either float or double)
230 template <typename RawType>
231 class FloatingPoint {
232 public:
233 // Defines the unsigned integer type that has the same size as the
234 // floating point number.
235 typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
236
237 // Constants.
238
239 // # of bits in a number.
240 static const size_t kBitCount = 8*sizeof(RawType);
241
242 // # of fraction bits in a number.
243 static const size_t kFractionBitCount =
244 std::numeric_limits<RawType>::digits - 1;
245
246 // # of exponent bits in a number.
247 static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
248
249 // The mask for the sign bit.
250 static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
251
252 // The mask for the fraction bits.
253 static const Bits kFractionBitMask =
254 ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
255
256 // The mask for the exponent bits.
257 static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
258
259 // How many ULP's (Units in the Last Place) we want to tolerate when
260 // comparing two numbers. The larger the value, the more error we
261 // allow. A 0 value means that two numbers must be exactly the same
262 // to be considered equal.
263 //
264 // The maximum error of a single floating-point operation is 0.5
265 // units in the last place. On Intel CPU's, all floating-point
266 // calculations are done with 80-bit precision, while double has 64
267 // bits. Therefore, 4 should be enough for ordinary use.
268 //
269 // See the following article for more details on ULP:
270 // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
271 static const size_t kMaxUlps = 4;
272
273 // Constructs a FloatingPoint from a raw floating-point number.
274 //
275 // On an Intel CPU, passing a non-normalized NAN (Not a Number)
276 // around may change its bits, although the new value is guaranteed
277 // to be also a NAN. Therefore, don't expect this constructor to
278 // preserve the bits in x when x is a NAN.
FloatingPoint(const RawType & x)279 explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
280
281 // Static methods
282
283 // Reinterprets a bit pattern as a floating-point number.
284 //
285 // This function is needed to test the AlmostEquals() method.
ReinterpretBits(const Bits bits)286 static RawType ReinterpretBits(const Bits bits) {
287 FloatingPoint fp(0);
288 fp.u_.bits_ = bits;
289 return fp.u_.value_;
290 }
291
292 // Returns the floating-point number that represent positive infinity.
Infinity()293 static RawType Infinity() {
294 return ReinterpretBits(kExponentBitMask);
295 }
296
297 // Non-static methods
298
299 // Returns the bits that represents this number.
bits()300 const Bits &bits() const { return u_.bits_; }
301
302 // Returns the exponent bits of this number.
exponent_bits()303 Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
304
305 // Returns the fraction bits of this number.
fraction_bits()306 Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
307
308 // Returns the sign bit of this number.
sign_bit()309 Bits sign_bit() const { return kSignBitMask & u_.bits_; }
310
311 // Returns true iff this is NAN (not a number).
is_nan()312 bool is_nan() const {
313 // It's a NAN if the exponent bits are all ones and the fraction
314 // bits are not entirely zeros.
315 return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
316 }
317
318 // Returns true iff this number is at most kMaxUlps ULP's away from
319 // rhs. In particular, this function:
320 //
321 // - returns false if either number is (or both are) NAN.
322 // - treats really large numbers as almost equal to infinity.
323 // - thinks +0.0 and -0.0 are 0 DLP's apart.
AlmostEquals(const FloatingPoint & rhs)324 bool AlmostEquals(const FloatingPoint& rhs) const {
325 // The IEEE standard says that any comparison operation involving
326 // a NAN must return false.
327 if (is_nan() || rhs.is_nan()) return false;
328
329 return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
330 <= kMaxUlps;
331 }
332
333 private:
334 // The data type used to store the actual floating-point number.
335 union FloatingPointUnion {
336 RawType value_; // The raw floating-point number.
337 Bits bits_; // The bits that represent the number.
338 };
339
340 // Converts an integer from the sign-and-magnitude representation to
341 // the biased representation. More precisely, let N be 2 to the
342 // power of (kBitCount - 1), an integer x is represented by the
343 // unsigned number x + N.
344 //
345 // For instance,
346 //
347 // -N + 1 (the most negative number representable using
348 // sign-and-magnitude) is represented by 1;
349 // 0 is represented by N; and
350 // N - 1 (the biggest number representable using
351 // sign-and-magnitude) is represented by 2N - 1.
352 //
353 // Read http://en.wikipedia.org/wiki/Signed_number_representations
354 // for more details on signed number representations.
SignAndMagnitudeToBiased(const Bits & sam)355 static Bits SignAndMagnitudeToBiased(const Bits &sam) {
356 if (kSignBitMask & sam) {
357 // sam represents a negative number.
358 return ~sam + 1;
359 } else {
360 // sam represents a positive number.
361 return kSignBitMask | sam;
362 }
363 }
364
365 // Given two numbers in the sign-and-magnitude representation,
366 // returns the distance between them as an unsigned number.
DistanceBetweenSignAndMagnitudeNumbers(const Bits & sam1,const Bits & sam2)367 static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
368 const Bits &sam2) {
369 const Bits biased1 = SignAndMagnitudeToBiased(sam1);
370 const Bits biased2 = SignAndMagnitudeToBiased(sam2);
371 return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
372 }
373
374 FloatingPointUnion u_;
375 };
376
377 // Typedefs the instances of the FloatingPoint template class that we
378 // care to use.
379 typedef FloatingPoint<float> Float;
380 typedef FloatingPoint<double> Double;
381
382 // In order to catch the mistake of putting tests that use different
383 // test fixture classes in the same test case, we need to assign
384 // unique IDs to fixture classes and compare them. The TypeId type is
385 // used to hold such IDs. The user should treat TypeId as an opaque
386 // type: the only operation allowed on TypeId values is to compare
387 // them for equality using the == operator.
388 typedef const void* TypeId;
389
390 template <typename T>
391 class TypeIdHelper {
392 public:
393 // dummy_ must not have a const type. Otherwise an overly eager
394 // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
395 // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
396 static bool dummy_;
397 };
398
399 template <typename T>
400 bool TypeIdHelper<T>::dummy_ = false;
401
402 // GetTypeId<T>() returns the ID of type T. Different values will be
403 // returned for different types. Calling the function twice with the
404 // same type argument is guaranteed to return the same ID.
405 template <typename T>
GetTypeId()406 TypeId GetTypeId() {
407 // The compiler is required to allocate a different
408 // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
409 // the template. Therefore, the address of dummy_ is guaranteed to
410 // be unique.
411 return &(TypeIdHelper<T>::dummy_);
412 }
413
414 // Returns the type ID of ::testing::Test. Always call this instead
415 // of GetTypeId< ::testing::Test>() to get the type ID of
416 // ::testing::Test, as the latter may give the wrong result due to a
417 // suspected linker bug when compiling Google Test as a Mac OS X
418 // framework.
419 GTEST_API_ TypeId GetTestTypeId();
420
421 // Defines the abstract factory interface that creates instances
422 // of a Test object.
423 class TestFactoryBase {
424 public:
~TestFactoryBase()425 virtual ~TestFactoryBase() {}
426
427 // Creates a test instance to run. The instance is both created and destroyed
428 // within TestInfoImpl::Run()
429 virtual Test* CreateTest() = 0;
430
431 protected:
TestFactoryBase()432 TestFactoryBase() {}
433
434 private:
435 GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
436 };
437
438 // This class provides implementation of TeastFactoryBase interface.
439 // It is used in TEST and TEST_F macros.
440 template <class TestClass>
441 class TestFactoryImpl : public TestFactoryBase {
442 public:
CreateTest()443 virtual Test* CreateTest() { return new TestClass; }
444 };
445
446 #if GTEST_OS_WINDOWS
447
448 // Predicate-formatters for implementing the HRESULT checking macros
449 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
450 // We pass a long instead of HRESULT to avoid causing an
451 // include dependency for the HRESULT type.
452 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
453 long hr); // NOLINT
454 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
455 long hr); // NOLINT
456
457 #endif // GTEST_OS_WINDOWS
458
459 // Types of SetUpTestCase() and TearDownTestCase() functions.
460 typedef void (*SetUpTestCaseFunc)();
461 typedef void (*TearDownTestCaseFunc)();
462
463 // Creates a new TestInfo object and registers it with Google Test;
464 // returns the created object.
465 //
466 // Arguments:
467 //
468 // test_case_name: name of the test case
469 // name: name of the test
470 // type_param the name of the test's type parameter, or NULL if
471 // this is not a typed or a type-parameterized test.
472 // value_param text representation of the test's value parameter,
473 // or NULL if this is not a type-parameterized test.
474 // fixture_class_id: ID of the test fixture class
475 // set_up_tc: pointer to the function that sets up the test case
476 // tear_down_tc: pointer to the function that tears down the test case
477 // factory: pointer to the factory that creates a test object.
478 // The newly created TestInfo instance will assume
479 // ownership of the factory object.
480 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
481 const char* test_case_name,
482 const char* name,
483 const char* type_param,
484 const char* value_param,
485 TypeId fixture_class_id,
486 SetUpTestCaseFunc set_up_tc,
487 TearDownTestCaseFunc tear_down_tc,
488 TestFactoryBase* factory);
489
490 // If *pstr starts with the given prefix, modifies *pstr to be right
491 // past the prefix and returns true; otherwise leaves *pstr unchanged
492 // and returns false. None of pstr, *pstr, and prefix can be NULL.
493 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
494
495 #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
496
497 // State of the definition of a type-parameterized test case.
498 class GTEST_API_ TypedTestCasePState {
499 public:
TypedTestCasePState()500 TypedTestCasePState() : registered_(false) {}
501
502 // Adds the given test name to defined_test_names_ and return true
503 // if the test case hasn't been registered; otherwise aborts the
504 // program.
AddTestName(const char * file,int line,const char * case_name,const char * test_name)505 bool AddTestName(const char* file, int line, const char* case_name,
506 const char* test_name) {
507 if (registered_) {
508 fprintf(stderr, "%s Test %s must be defined before "
509 "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n",
510 FormatFileLocation(file, line).c_str(), test_name, case_name);
511 fflush(stderr);
512 posix::Abort();
513 }
514 defined_test_names_.insert(test_name);
515 return true;
516 }
517
518 // Verifies that registered_tests match the test names in
519 // defined_test_names_; returns registered_tests if successful, or
520 // aborts the program otherwise.
521 const char* VerifyRegisteredTestNames(
522 const char* file, int line, const char* registered_tests);
523
524 private:
525 bool registered_;
526 ::std::set<const char*> defined_test_names_;
527 };
528
529 // Skips to the first non-space char after the first comma in 'str';
530 // returns NULL if no comma is found in 'str'.
SkipComma(const char * str)531 inline const char* SkipComma(const char* str) {
532 const char* comma = strchr(str, ',');
533 if (comma == NULL) {
534 return NULL;
535 }
536 while (IsSpace(*(++comma))) {}
537 return comma;
538 }
539
540 // Returns the prefix of 'str' before the first comma in it; returns
541 // the entire string if it contains no comma.
GetPrefixUntilComma(const char * str)542 inline std::string GetPrefixUntilComma(const char* str) {
543 const char* comma = strchr(str, ',');
544 return comma == NULL ? str : std::string(str, comma);
545 }
546
547 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
548 // registers a list of type-parameterized tests with Google Test. The
549 // return value is insignificant - we just need to return something
550 // such that we can call this function in a namespace scope.
551 //
552 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
553 // template parameter. It's defined in gtest-type-util.h.
554 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
555 class TypeParameterizedTest {
556 public:
557 // 'index' is the index of the test in the type list 'Types'
558 // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase,
559 // Types). Valid values for 'index' are [0, N - 1] where N is the
560 // length of Types.
Register(const char * prefix,const char * case_name,const char * test_names,int index)561 static bool Register(const char* prefix, const char* case_name,
562 const char* test_names, int index) {
563 typedef typename Types::Head Type;
564 typedef Fixture<Type> FixtureClass;
565 typedef typename GTEST_BIND_(TestSel, Type) TestClass;
566
567 // First, registers the first type-parameterized test in the type
568 // list.
569 MakeAndRegisterTestInfo(
570 (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name + "/"
571 + StreamableToString(index)).c_str(),
572 GetPrefixUntilComma(test_names).c_str(),
573 GetTypeName<Type>().c_str(),
574 NULL, // No value parameter.
575 GetTypeId<FixtureClass>(),
576 TestClass::SetUpTestCase,
577 TestClass::TearDownTestCase,
578 new TestFactoryImpl<TestClass>);
579
580 // Next, recurses (at compile time) with the tail of the type list.
581 return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail>
582 ::Register(prefix, case_name, test_names, index + 1);
583 }
584 };
585
586 // The base case for the compile time recursion.
587 template <GTEST_TEMPLATE_ Fixture, class TestSel>
588 class TypeParameterizedTest<Fixture, TestSel, Types0> {
589 public:
Register(const char *,const char *,const char *,int)590 static bool Register(const char* /*prefix*/, const char* /*case_name*/,
591 const char* /*test_names*/, int /*index*/) {
592 return true;
593 }
594 };
595
596 // TypeParameterizedTestCase<Fixture, Tests, Types>::Register()
597 // registers *all combinations* of 'Tests' and 'Types' with Google
598 // Test. The return value is insignificant - we just need to return
599 // something such that we can call this function in a namespace scope.
600 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
601 class TypeParameterizedTestCase {
602 public:
Register(const char * prefix,const char * case_name,const char * test_names)603 static bool Register(const char* prefix, const char* case_name,
604 const char* test_names) {
605 typedef typename Tests::Head Head;
606
607 // First, register the first test in 'Test' for each type in 'Types'.
608 TypeParameterizedTest<Fixture, Head, Types>::Register(
609 prefix, case_name, test_names, 0);
610
611 // Next, recurses (at compile time) with the tail of the test list.
612 return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types>
613 ::Register(prefix, case_name, SkipComma(test_names));
614 }
615 };
616
617 // The base case for the compile time recursion.
618 template <GTEST_TEMPLATE_ Fixture, typename Types>
619 class TypeParameterizedTestCase<Fixture, Templates0, Types> {
620 public:
Register(const char *,const char *,const char *)621 static bool Register(const char* /*prefix*/, const char* /*case_name*/,
622 const char* /*test_names*/) {
623 return true;
624 }
625 };
626
627 #endif // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
628
629 // Returns the current OS stack trace as an std::string.
630 //
631 // The maximum number of stack frames to be included is specified by
632 // the gtest_stack_trace_depth flag. The skip_count parameter
633 // specifies the number of top frames to be skipped, which doesn't
634 // count against the number of frames to be included.
635 //
636 // For example, if Foo() calls Bar(), which in turn calls
637 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
638 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
639 GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(
640 UnitTest* unit_test, int skip_count);
641
642 // Helpers for suppressing warnings on unreachable code or constant
643 // condition.
644
645 // Always returns true.
646 GTEST_API_ bool AlwaysTrue();
647
648 // Always returns false.
AlwaysFalse()649 inline bool AlwaysFalse() { return !AlwaysTrue(); }
650
651 // Helper for suppressing false warning from Clang on a const char*
652 // variable declared in a conditional expression always being NULL in
653 // the else branch.
654 struct GTEST_API_ ConstCharPtr {
ConstCharPtrConstCharPtr655 ConstCharPtr(const char* str) : value(str) {}
656 operator bool() const { return true; }
657 const char* value;
658 };
659
660 // A simple Linear Congruential Generator for generating random
661 // numbers with a uniform distribution. Unlike rand() and srand(), it
662 // doesn't use global state (and therefore can't interfere with user
663 // code). Unlike rand_r(), it's portable. An LCG isn't very random,
664 // but it's good enough for our purposes.
665 class GTEST_API_ Random {
666 public:
667 static const UInt32 kMaxRange = 1u << 31;
668
Random(UInt32 seed)669 explicit Random(UInt32 seed) : state_(seed) {}
670
Reseed(UInt32 seed)671 void Reseed(UInt32 seed) { state_ = seed; }
672
673 // Generates a random number from [0, range). Crashes if 'range' is
674 // 0 or greater than kMaxRange.
675 UInt32 Generate(UInt32 range);
676
677 private:
678 UInt32 state_;
679 GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
680 };
681
682 // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
683 // compiler error iff T1 and T2 are different types.
684 template <typename T1, typename T2>
685 struct CompileAssertTypesEqual;
686
687 template <typename T>
688 struct CompileAssertTypesEqual<T, T> {
689 };
690
691 // Removes the reference from a type if it is a reference type,
692 // otherwise leaves it unchanged. This is the same as
693 // tr1::remove_reference, which is not widely available yet.
694 template <typename T>
695 struct RemoveReference { typedef T type; }; // NOLINT
696 template <typename T>
697 struct RemoveReference<T&> { typedef T type; }; // NOLINT
698
699 // A handy wrapper around RemoveReference that works when the argument
700 // T depends on template parameters.
701 #define GTEST_REMOVE_REFERENCE_(T) \
702 typename ::testing::internal::RemoveReference<T>::type
703
704 // Removes const from a type if it is a const type, otherwise leaves
705 // it unchanged. This is the same as tr1::remove_const, which is not
706 // widely available yet.
707 template <typename T>
708 struct RemoveConst { typedef T type; }; // NOLINT
709 template <typename T>
710 struct RemoveConst<const T> { typedef T type; }; // NOLINT
711
712 // MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above
713 // definition to fail to remove the const in 'const int[3]' and 'const
714 // char[3][4]'. The following specialization works around the bug.
715 template <typename T, size_t N>
716 struct RemoveConst<const T[N]> {
717 typedef typename RemoveConst<T>::type type[N];
718 };
719
720 #if defined(_MSC_VER) && _MSC_VER < 1400
721 // This is the only specialization that allows VC++ 7.1 to remove const in
722 // 'const int[3] and 'const int[3][4]'. However, it causes trouble with GCC
723 // and thus needs to be conditionally compiled.
724 template <typename T, size_t N>
725 struct RemoveConst<T[N]> {
726 typedef typename RemoveConst<T>::type type[N];
727 };
728 #endif
729
730 // A handy wrapper around RemoveConst that works when the argument
731 // T depends on template parameters.
732 #define GTEST_REMOVE_CONST_(T) \
733 typename ::testing::internal::RemoveConst<T>::type
734
735 // Turns const U&, U&, const U, and U all into U.
736 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
737 GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
738
739 // Adds reference to a type if it is not a reference type,
740 // otherwise leaves it unchanged. This is the same as
741 // tr1::add_reference, which is not widely available yet.
742 template <typename T>
743 struct AddReference { typedef T& type; }; // NOLINT
744 template <typename T>
745 struct AddReference<T&> { typedef T& type; }; // NOLINT
746
747 // A handy wrapper around AddReference that works when the argument T
748 // depends on template parameters.
749 #define GTEST_ADD_REFERENCE_(T) \
750 typename ::testing::internal::AddReference<T>::type
751
752 // Adds a reference to const on top of T as necessary. For example,
753 // it transforms
754 //
755 // char ==> const char&
756 // const char ==> const char&
757 // char& ==> const char&
758 // const char& ==> const char&
759 //
760 // The argument T must depend on some template parameters.
761 #define GTEST_REFERENCE_TO_CONST_(T) \
762 GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T))
763
764 // ImplicitlyConvertible<From, To>::value is a compile-time bool
765 // constant that's true iff type From can be implicitly converted to
766 // type To.
767 template <typename From, typename To>
768 class ImplicitlyConvertible {
769 private:
770 // We need the following helper functions only for their types.
771 // They have no implementations.
772
773 // MakeFrom() is an expression whose type is From. We cannot simply
774 // use From(), as the type From may not have a public default
775 // constructor.
776 static From MakeFrom();
777
778 // These two functions are overloaded. Given an expression
779 // Helper(x), the compiler will pick the first version if x can be
780 // implicitly converted to type To; otherwise it will pick the
781 // second version.
782 //
783 // The first version returns a value of size 1, and the second
784 // version returns a value of size 2. Therefore, by checking the
785 // size of Helper(x), which can be done at compile time, we can tell
786 // which version of Helper() is used, and hence whether x can be
787 // implicitly converted to type To.
788 static char Helper(To);
789 static char (&Helper(...))[2]; // NOLINT
790
791 // We have to put the 'public' section after the 'private' section,
792 // or MSVC refuses to compile the code.
793 public:
794 // MSVC warns about implicitly converting from double to int for
795 // possible loss of data, so we need to temporarily disable the
796 // warning.
797 #ifdef _MSC_VER
798 # pragma warning(push) // Saves the current warning state.
799 # pragma warning(disable:4244) // Temporarily disables warning 4244.
800
801 static const bool value =
802 sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
803 # pragma warning(pop) // Restores the warning state.
804 #elif defined(__BORLANDC__)
805 // C++Builder cannot use member overload resolution during template
806 // instantiation. The simplest workaround is to use its C++0x type traits
807 // functions (C++Builder 2009 and above only).
808 static const bool value = __is_convertible(From, To);
809 #else
810 static const bool value =
811 sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
812 #endif // _MSV_VER
813 };
814 template <typename From, typename To>
815 const bool ImplicitlyConvertible<From, To>::value;
816
817 // IsAProtocolMessage<T>::value is a compile-time bool constant that's
818 // true iff T is type ProtocolMessage, proto2::Message, or a subclass
819 // of those.
820 template <typename T>
821 struct IsAProtocolMessage
822 : public bool_constant<
823 ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
824 ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
825 };
826
827 // When the compiler sees expression IsContainerTest<C>(0), if C is an
828 // STL-style container class, the first overload of IsContainerTest
829 // will be viable (since both C::iterator* and C::const_iterator* are
830 // valid types and NULL can be implicitly converted to them). It will
831 // be picked over the second overload as 'int' is a perfect match for
832 // the type of argument 0. If C::iterator or C::const_iterator is not
833 // a valid type, the first overload is not viable, and the second
834 // overload will be picked. Therefore, we can determine whether C is
835 // a container class by checking the type of IsContainerTest<C>(0).
836 // The value of the expression is insignificant.
837 //
838 // Note that we look for both C::iterator and C::const_iterator. The
839 // reason is that C++ injects the name of a class as a member of the
840 // class itself (e.g. you can refer to class iterator as either
841 // 'iterator' or 'iterator::iterator'). If we look for C::iterator
842 // only, for example, we would mistakenly think that a class named
843 // iterator is an STL container.
844 //
845 // Also note that the simpler approach of overloading
846 // IsContainerTest(typename C::const_iterator*) and
847 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
848 typedef int IsContainer;
849 template <class C>
850 IsContainer IsContainerTest(int /* dummy */,
851 typename C::iterator* /* it */ = NULL,
852 typename C::const_iterator* /* const_it */ = NULL) {
853 return 0;
854 }
855
856 typedef char IsNotContainer;
857 template <class C>
858 IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
859
860 // EnableIf<condition>::type is void when 'Cond' is true, and
861 // undefined when 'Cond' is false. To use SFINAE to make a function
862 // overload only apply when a particular expression is true, add
863 // "typename EnableIf<expression>::type* = 0" as the last parameter.
864 template<bool> struct EnableIf;
865 template<> struct EnableIf<true> { typedef void type; }; // NOLINT
866
867 // Utilities for native arrays.
868
869 // ArrayEq() compares two k-dimensional native arrays using the
870 // elements' operator==, where k can be any integer >= 0. When k is
871 // 0, ArrayEq() degenerates into comparing a single pair of values.
872
873 template <typename T, typename U>
874 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
875
876 // This generic version is used when k is 0.
877 template <typename T, typename U>
878 inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
879
880 // This overload is used when k >= 1.
881 template <typename T, typename U, size_t N>
882 inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
883 return internal::ArrayEq(lhs, N, rhs);
884 }
885
886 // This helper reduces code bloat. If we instead put its logic inside
887 // the previous ArrayEq() function, arrays with different sizes would
888 // lead to different copies of the template code.
889 template <typename T, typename U>
890 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
891 for (size_t i = 0; i != size; i++) {
892 if (!internal::ArrayEq(lhs[i], rhs[i]))
893 return false;
894 }
895 return true;
896 }
897
898 // Finds the first element in the iterator range [begin, end) that
899 // equals elem. Element may be a native array type itself.
900 template <typename Iter, typename Element>
901 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
902 for (Iter it = begin; it != end; ++it) {
903 if (internal::ArrayEq(*it, elem))
904 return it;
905 }
906 return end;
907 }
908
909 // CopyArray() copies a k-dimensional native array using the elements'
910 // operator=, where k can be any integer >= 0. When k is 0,
911 // CopyArray() degenerates into copying a single value.
912
913 template <typename T, typename U>
914 void CopyArray(const T* from, size_t size, U* to);
915
916 // This generic version is used when k is 0.
917 template <typename T, typename U>
918 inline void CopyArray(const T& from, U* to) { *to = from; }
919
920 // This overload is used when k >= 1.
921 template <typename T, typename U, size_t N>
922 inline void CopyArray(const T(&from)[N], U(*to)[N]) {
923 internal::CopyArray(from, N, *to);
924 }
925
926 // This helper reduces code bloat. If we instead put its logic inside
927 // the previous CopyArray() function, arrays with different sizes
928 // would lead to different copies of the template code.
929 template <typename T, typename U>
930 void CopyArray(const T* from, size_t size, U* to) {
931 for (size_t i = 0; i != size; i++) {
932 internal::CopyArray(from[i], to + i);
933 }
934 }
935
936 // The relation between an NativeArray object (see below) and the
937 // native array it represents.
938 enum RelationToSource {
939 kReference, // The NativeArray references the native array.
940 kCopy // The NativeArray makes a copy of the native array and
941 // owns the copy.
942 };
943
944 // Adapts a native array to a read-only STL-style container. Instead
945 // of the complete STL container concept, this adaptor only implements
946 // members useful for Google Mock's container matchers. New members
947 // should be added as needed. To simplify the implementation, we only
948 // support Element being a raw type (i.e. having no top-level const or
949 // reference modifier). It's the client's responsibility to satisfy
950 // this requirement. Element can be an array type itself (hence
951 // multi-dimensional arrays are supported).
952 template <typename Element>
953 class NativeArray {
954 public:
955 // STL-style container typedefs.
956 typedef Element value_type;
957 typedef Element* iterator;
958 typedef const Element* const_iterator;
959
960 // Constructs from a native array.
961 NativeArray(const Element* array, size_t count, RelationToSource relation) {
962 Init(array, count, relation);
963 }
964
965 // Copy constructor.
966 NativeArray(const NativeArray& rhs) {
967 Init(rhs.array_, rhs.size_, rhs.relation_to_source_);
968 }
969
970 ~NativeArray() {
971 // Ensures that the user doesn't instantiate NativeArray with a
972 // const or reference type.
973 static_cast<void>(StaticAssertTypeEqHelper<Element,
974 GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>());
975 if (relation_to_source_ == kCopy)
976 delete[] array_;
977 }
978
979 // STL-style container methods.
980 size_t size() const { return size_; }
981 const_iterator begin() const { return array_; }
982 const_iterator end() const { return array_ + size_; }
983 bool operator==(const NativeArray& rhs) const {
984 return size() == rhs.size() &&
985 ArrayEq(begin(), size(), rhs.begin());
986 }
987
988 private:
989 // Initializes this object; makes a copy of the input array if
990 // 'relation' is kCopy.
991 void Init(const Element* array, size_t a_size, RelationToSource relation) {
992 if (relation == kReference) {
993 array_ = array;
994 } else {
995 Element* const copy = new Element[a_size];
996 CopyArray(array, a_size, copy);
997 array_ = copy;
998 }
999 size_ = a_size;
1000 relation_to_source_ = relation;
1001 }
1002
1003 const Element* array_;
1004 size_t size_;
1005 RelationToSource relation_to_source_;
1006
1007 GTEST_DISALLOW_ASSIGN_(NativeArray);
1008 };
1009
1010 } // namespace internal
1011 } // namespace testing
1012
1013 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
1014 ::testing::internal::AssertHelper(result_type, file, line, message) \
1015 = ::testing::Message()
1016
1017 #define GTEST_MESSAGE_(message, result_type) \
1018 GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1019
1020 #define GTEST_FATAL_FAILURE_(message) \
1021 return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1022
1023 #define GTEST_NONFATAL_FAILURE_(message) \
1024 GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1025
1026 #define GTEST_SUCCESS_(message) \
1027 GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1028
1029 // Suppresses MSVC warnings 4072 (unreachable code) for the code following
1030 // statement if it returns or throws (or doesn't return or throw in some
1031 // situations).
1032 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1033 if (::testing::internal::AlwaysTrue()) { statement; }
1034
1035 #define GTEST_TEST_THROW_(statement, expected_exception, fail) \
1036 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1037 if (::testing::internal::ConstCharPtr gtest_msg = "") { \
1038 bool gtest_caught_expected = false; \
1039 try { \
1040 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1041 } \
1042 catch (expected_exception const&) { \
1043 gtest_caught_expected = true; \
1044 } \
1045 catch (...) { \
1046 gtest_msg.value = \
1047 "Expected: " #statement " throws an exception of type " \
1048 #expected_exception ".\n Actual: it throws a different type."; \
1049 goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1050 } \
1051 if (!gtest_caught_expected) { \
1052 gtest_msg.value = \
1053 "Expected: " #statement " throws an exception of type " \
1054 #expected_exception ".\n Actual: it throws nothing."; \
1055 goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1056 } \
1057 } else \
1058 GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
1059 fail(gtest_msg.value)
1060
1061 #define GTEST_TEST_NO_THROW_(statement, fail) \
1062 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1063 if (::testing::internal::AlwaysTrue()) { \
1064 try { \
1065 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1066 } \
1067 catch (...) { \
1068 goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1069 } \
1070 } else \
1071 GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
1072 fail("Expected: " #statement " doesn't throw an exception.\n" \
1073 " Actual: it throws.")
1074
1075 #define GTEST_TEST_ANY_THROW_(statement, fail) \
1076 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1077 if (::testing::internal::AlwaysTrue()) { \
1078 bool gtest_caught_any = false; \
1079 try { \
1080 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1081 } \
1082 catch (...) { \
1083 gtest_caught_any = true; \
1084 } \
1085 if (!gtest_caught_any) { \
1086 goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1087 } \
1088 } else \
1089 GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
1090 fail("Expected: " #statement " throws an exception.\n" \
1091 " Actual: it doesn't.")
1092
1093
1094 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1095 // either a boolean expression or an AssertionResult. text is a textual
1096 // represenation of expression as it was passed into the EXPECT_TRUE.
1097 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1098 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1099 if (const ::testing::AssertionResult gtest_ar_ = \
1100 ::testing::AssertionResult(expression)) \
1101 ; \
1102 else \
1103 fail(::testing::internal::GetBoolAssertionFailureMessage(\
1104 gtest_ar_, text, #actual, #expected).c_str())
1105
1106 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
1107 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1108 if (::testing::internal::AlwaysTrue()) { \
1109 ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
1110 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1111 if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
1112 goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
1113 } \
1114 } else \
1115 GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
1116 fail("Expected: " #statement " doesn't generate new fatal " \
1117 "failures in the current thread.\n" \
1118 " Actual: it does.")
1119
1120 // Expands to the name of the class that implements the given test.
1121 #define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
1122 test_case_name##_##test_name##_Test
1123
1124 // Helper macro for defining tests.
1125 #define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\
1126 class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\
1127 public:\
1128 GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\
1129 private:\
1130 virtual void TestBody();\
1131 static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\
1132 GTEST_DISALLOW_COPY_AND_ASSIGN_(\
1133 GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\
1134 };\
1135 \
1136 ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\
1137 ::test_info_ =\
1138 ::testing::internal::MakeAndRegisterTestInfo(\
1139 #test_case_name, #test_name, NULL, NULL, \
1140 (parent_id), \
1141 parent_class::SetUpTestCase, \
1142 parent_class::TearDownTestCase, \
1143 new ::testing::internal::TestFactoryImpl<\
1144 GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\
1145 void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody()
1146
1147 #endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
1148