1 /*
2 * Copyright 2004 The WebRTC Project Authors. All rights reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #if defined(WEBRTC_POSIX)
12 #include <sys/types.h>
13 #include <sys/socket.h>
14 #include <netinet/in.h>
15 #ifdef OPENBSD
16 #include <netinet/in_systm.h>
17 #endif
18 #ifndef __native_client__
19 #include <netinet/ip.h>
20 #endif
21 #include <arpa/inet.h>
22 #include <netdb.h>
23 #include <unistd.h>
24 #endif
25
26 #include <stdio.h>
27
28 #include "webrtc/base/ipaddress.h"
29 #include "webrtc/base/byteorder.h"
30 #include "webrtc/base/nethelpers.h"
31 #include "webrtc/base/logging.h"
32 #include "webrtc/base/win32.h"
33
34 namespace rtc {
35
36 // Prefixes used for categorizing IPv6 addresses.
37 static const in6_addr kV4MappedPrefix = {{{0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
38 0xFF, 0xFF, 0}}};
39 static const in6_addr k6To4Prefix = {{{0x20, 0x02, 0}}};
40 static const in6_addr kTeredoPrefix = {{{0x20, 0x01, 0x00, 0x00}}};
41 static const in6_addr kV4CompatibilityPrefix = {{{0}}};
42 static const in6_addr k6BonePrefix = {{{0x3f, 0xfe, 0}}};
43
44 bool IPAddress::strip_sensitive_ = false;
45
46 static bool IsPrivateV4(uint32 ip);
47 static in_addr ExtractMappedAddress(const in6_addr& addr);
48
v4AddressAsHostOrderInteger() const49 uint32 IPAddress::v4AddressAsHostOrderInteger() const {
50 if (family_ == AF_INET) {
51 return NetworkToHost32(u_.ip4.s_addr);
52 } else {
53 return 0;
54 }
55 }
56
Size() const57 size_t IPAddress::Size() const {
58 switch (family_) {
59 case AF_INET:
60 return sizeof(in_addr);
61 case AF_INET6:
62 return sizeof(in6_addr);
63 }
64 return 0;
65 }
66
67
operator ==(const IPAddress & other) const68 bool IPAddress::operator==(const IPAddress &other) const {
69 if (family_ != other.family_) {
70 return false;
71 }
72 if (family_ == AF_INET) {
73 return memcmp(&u_.ip4, &other.u_.ip4, sizeof(u_.ip4)) == 0;
74 }
75 if (family_ == AF_INET6) {
76 return memcmp(&u_.ip6, &other.u_.ip6, sizeof(u_.ip6)) == 0;
77 }
78 return family_ == AF_UNSPEC;
79 }
80
operator !=(const IPAddress & other) const81 bool IPAddress::operator!=(const IPAddress &other) const {
82 return !((*this) == other);
83 }
84
operator >(const IPAddress & other) const85 bool IPAddress::operator >(const IPAddress &other) const {
86 return (*this) != other && !((*this) < other);
87 }
88
operator <(const IPAddress & other) const89 bool IPAddress::operator <(const IPAddress &other) const {
90 // IPv4 is 'less than' IPv6
91 if (family_ != other.family_) {
92 if (family_ == AF_UNSPEC) {
93 return true;
94 }
95 if (family_ == AF_INET && other.family_ == AF_INET6) {
96 return true;
97 }
98 return false;
99 }
100 // Comparing addresses of the same family.
101 switch (family_) {
102 case AF_INET: {
103 return NetworkToHost32(u_.ip4.s_addr) <
104 NetworkToHost32(other.u_.ip4.s_addr);
105 }
106 case AF_INET6: {
107 return memcmp(&u_.ip6.s6_addr, &other.u_.ip6.s6_addr, 16) < 0;
108 }
109 }
110 // Catches AF_UNSPEC and invalid addresses.
111 return false;
112 }
113
operator <<(std::ostream & os,const IPAddress & ip)114 std::ostream& operator<<(std::ostream& os, const IPAddress& ip) {
115 os << ip.ToString();
116 return os;
117 }
118
ipv6_address() const119 in6_addr IPAddress::ipv6_address() const {
120 return u_.ip6;
121 }
122
ipv4_address() const123 in_addr IPAddress::ipv4_address() const {
124 return u_.ip4;
125 }
126
ToString() const127 std::string IPAddress::ToString() const {
128 if (family_ != AF_INET && family_ != AF_INET6) {
129 return std::string();
130 }
131 char buf[INET6_ADDRSTRLEN] = {0};
132 const void* src = &u_.ip4;
133 if (family_ == AF_INET6) {
134 src = &u_.ip6;
135 }
136 if (!rtc::inet_ntop(family_, src, buf, sizeof(buf))) {
137 return std::string();
138 }
139 return std::string(buf);
140 }
141
ToSensitiveString() const142 std::string IPAddress::ToSensitiveString() const {
143 if (!strip_sensitive_)
144 return ToString();
145
146 switch (family_) {
147 case AF_INET: {
148 std::string address = ToString();
149 size_t find_pos = address.rfind('.');
150 if (find_pos == std::string::npos)
151 return std::string();
152 address.resize(find_pos);
153 address += ".x";
154 return address;
155 }
156 case AF_INET6: {
157 // TODO(grunell): Return a string of format 1:2:3:x:x:x:x:x or such
158 // instead of zeroing out.
159 return TruncateIP(*this, 128 - 80).ToString();
160 }
161 }
162 return std::string();
163 }
164
Normalized() const165 IPAddress IPAddress::Normalized() const {
166 if (family_ != AF_INET6) {
167 return *this;
168 }
169 if (!IPIsV4Mapped(*this)) {
170 return *this;
171 }
172 in_addr addr = ExtractMappedAddress(u_.ip6);
173 return IPAddress(addr);
174 }
175
AsIPv6Address() const176 IPAddress IPAddress::AsIPv6Address() const {
177 if (family_ != AF_INET) {
178 return *this;
179 }
180 in6_addr v6addr = kV4MappedPrefix;
181 ::memcpy(&v6addr.s6_addr[12], &u_.ip4.s_addr, sizeof(u_.ip4.s_addr));
182 return IPAddress(v6addr);
183 }
184
set_strip_sensitive(bool enable)185 void IPAddress::set_strip_sensitive(bool enable) {
186 strip_sensitive_ = enable;
187 }
188
operator ==(const InterfaceAddress & other) const189 bool InterfaceAddress::operator==(const InterfaceAddress &other) const {
190 return ipv6_flags_ == other.ipv6_flags() &&
191 static_cast<const IPAddress&>(*this) == other;
192 }
193
operator !=(const InterfaceAddress & other) const194 bool InterfaceAddress::operator!=(const InterfaceAddress &other) const {
195 return !((*this) == other);
196 }
197
operator =(const InterfaceAddress & other)198 const InterfaceAddress& InterfaceAddress::operator=(
199 const InterfaceAddress& other) {
200 ipv6_flags_ = other.ipv6_flags_;
201 static_cast<IPAddress&>(*this) = other;
202 return *this;
203 }
204
operator <<(std::ostream & os,const InterfaceAddress & ip)205 std::ostream& operator<<(std::ostream& os, const InterfaceAddress& ip) {
206 os << static_cast<const IPAddress&>(ip);
207
208 if (ip.family() == AF_INET6)
209 os << "|flags:0x" << std::hex << ip.ipv6_flags();
210
211 return os;
212 }
213
IsPrivateV4(uint32 ip_in_host_order)214 bool IsPrivateV4(uint32 ip_in_host_order) {
215 return ((ip_in_host_order >> 24) == 127) ||
216 ((ip_in_host_order >> 24) == 10) ||
217 ((ip_in_host_order >> 20) == ((172 << 4) | 1)) ||
218 ((ip_in_host_order >> 16) == ((192 << 8) | 168)) ||
219 ((ip_in_host_order >> 16) == ((169 << 8) | 254));
220 }
221
ExtractMappedAddress(const in6_addr & in6)222 in_addr ExtractMappedAddress(const in6_addr& in6) {
223 in_addr ipv4;
224 ::memcpy(&ipv4.s_addr, &in6.s6_addr[12], sizeof(ipv4.s_addr));
225 return ipv4;
226 }
227
IPFromAddrInfo(struct addrinfo * info,IPAddress * out)228 bool IPFromAddrInfo(struct addrinfo* info, IPAddress* out) {
229 if (!info || !info->ai_addr) {
230 return false;
231 }
232 if (info->ai_addr->sa_family == AF_INET) {
233 sockaddr_in* addr = reinterpret_cast<sockaddr_in*>(info->ai_addr);
234 *out = IPAddress(addr->sin_addr);
235 return true;
236 } else if (info->ai_addr->sa_family == AF_INET6) {
237 sockaddr_in6* addr = reinterpret_cast<sockaddr_in6*>(info->ai_addr);
238 *out = IPAddress(addr->sin6_addr);
239 return true;
240 }
241 return false;
242 }
243
IPFromString(const std::string & str,IPAddress * out)244 bool IPFromString(const std::string& str, IPAddress* out) {
245 if (!out) {
246 return false;
247 }
248 in_addr addr;
249 if (rtc::inet_pton(AF_INET, str.c_str(), &addr) == 0) {
250 in6_addr addr6;
251 if (rtc::inet_pton(AF_INET6, str.c_str(), &addr6) == 0) {
252 *out = IPAddress();
253 return false;
254 }
255 *out = IPAddress(addr6);
256 } else {
257 *out = IPAddress(addr);
258 }
259 return true;
260 }
261
IPFromString(const std::string & str,int flags,InterfaceAddress * out)262 bool IPFromString(const std::string& str, int flags,
263 InterfaceAddress* out) {
264 IPAddress ip;
265 if (!IPFromString(str, &ip)) {
266 return false;
267 }
268
269 *out = InterfaceAddress(ip, flags);
270 return true;
271 }
272
IPIsAny(const IPAddress & ip)273 bool IPIsAny(const IPAddress& ip) {
274 switch (ip.family()) {
275 case AF_INET:
276 return ip == IPAddress(INADDR_ANY);
277 case AF_INET6:
278 return ip == IPAddress(in6addr_any);
279 case AF_UNSPEC:
280 return false;
281 }
282 return false;
283 }
284
IPIsLoopback(const IPAddress & ip)285 bool IPIsLoopback(const IPAddress& ip) {
286 switch (ip.family()) {
287 case AF_INET: {
288 return ip == IPAddress(INADDR_LOOPBACK);
289 }
290 case AF_INET6: {
291 return ip == IPAddress(in6addr_loopback);
292 }
293 }
294 return false;
295 }
296
IPIsPrivate(const IPAddress & ip)297 bool IPIsPrivate(const IPAddress& ip) {
298 switch (ip.family()) {
299 case AF_INET: {
300 return IsPrivateV4(ip.v4AddressAsHostOrderInteger());
301 }
302 case AF_INET6: {
303 in6_addr v6 = ip.ipv6_address();
304 return (v6.s6_addr[0] == 0xFE && v6.s6_addr[1] == 0x80) ||
305 IPIsLoopback(ip);
306 }
307 }
308 return false;
309 }
310
IPIsUnspec(const IPAddress & ip)311 bool IPIsUnspec(const IPAddress& ip) {
312 return ip.family() == AF_UNSPEC;
313 }
314
HashIP(const IPAddress & ip)315 size_t HashIP(const IPAddress& ip) {
316 switch (ip.family()) {
317 case AF_INET: {
318 return ip.ipv4_address().s_addr;
319 }
320 case AF_INET6: {
321 in6_addr v6addr = ip.ipv6_address();
322 const uint32* v6_as_ints =
323 reinterpret_cast<const uint32*>(&v6addr.s6_addr);
324 return v6_as_ints[0] ^ v6_as_ints[1] ^ v6_as_ints[2] ^ v6_as_ints[3];
325 }
326 }
327 return 0;
328 }
329
TruncateIP(const IPAddress & ip,int length)330 IPAddress TruncateIP(const IPAddress& ip, int length) {
331 if (length < 0) {
332 return IPAddress();
333 }
334 if (ip.family() == AF_INET) {
335 if (length > 31) {
336 return ip;
337 }
338 if (length == 0) {
339 return IPAddress(INADDR_ANY);
340 }
341 int mask = (0xFFFFFFFF << (32 - length));
342 uint32 host_order_ip = NetworkToHost32(ip.ipv4_address().s_addr);
343 in_addr masked;
344 masked.s_addr = HostToNetwork32(host_order_ip & mask);
345 return IPAddress(masked);
346 } else if (ip.family() == AF_INET6) {
347 if (length > 127) {
348 return ip;
349 }
350 if (length == 0) {
351 return IPAddress(in6addr_any);
352 }
353 in6_addr v6addr = ip.ipv6_address();
354 int position = length / 32;
355 int inner_length = 32 - (length - (position * 32));
356 // Note: 64bit mask constant needed to allow possible 32-bit left shift.
357 uint32 inner_mask = 0xFFFFFFFFLL << inner_length;
358 uint32* v6_as_ints =
359 reinterpret_cast<uint32*>(&v6addr.s6_addr);
360 for (int i = 0; i < 4; ++i) {
361 if (i == position) {
362 uint32 host_order_inner = NetworkToHost32(v6_as_ints[i]);
363 v6_as_ints[i] = HostToNetwork32(host_order_inner & inner_mask);
364 } else if (i > position) {
365 v6_as_ints[i] = 0;
366 }
367 }
368 return IPAddress(v6addr);
369 }
370 return IPAddress();
371 }
372
CountIPMaskBits(IPAddress mask)373 int CountIPMaskBits(IPAddress mask) {
374 uint32 word_to_count = 0;
375 int bits = 0;
376 switch (mask.family()) {
377 case AF_INET: {
378 word_to_count = NetworkToHost32(mask.ipv4_address().s_addr);
379 break;
380 }
381 case AF_INET6: {
382 in6_addr v6addr = mask.ipv6_address();
383 const uint32* v6_as_ints =
384 reinterpret_cast<const uint32*>(&v6addr.s6_addr);
385 int i = 0;
386 for (; i < 4; ++i) {
387 if (v6_as_ints[i] != 0xFFFFFFFF) {
388 break;
389 }
390 }
391 if (i < 4) {
392 word_to_count = NetworkToHost32(v6_as_ints[i]);
393 }
394 bits = (i * 32);
395 break;
396 }
397 default: {
398 return 0;
399 }
400 }
401 if (word_to_count == 0) {
402 return bits;
403 }
404
405 // Public domain bit-twiddling hack from:
406 // http://graphics.stanford.edu/~seander/bithacks.html
407 // Counts the trailing 0s in the word.
408 unsigned int zeroes = 32;
409 word_to_count &= -static_cast<int32>(word_to_count);
410 if (word_to_count) zeroes--;
411 if (word_to_count & 0x0000FFFF) zeroes -= 16;
412 if (word_to_count & 0x00FF00FF) zeroes -= 8;
413 if (word_to_count & 0x0F0F0F0F) zeroes -= 4;
414 if (word_to_count & 0x33333333) zeroes -= 2;
415 if (word_to_count & 0x55555555) zeroes -= 1;
416
417 return bits + (32 - zeroes);
418 }
419
IPIsHelper(const IPAddress & ip,const in6_addr & tomatch,int length)420 bool IPIsHelper(const IPAddress& ip, const in6_addr& tomatch, int length) {
421 // Helper method for checking IP prefix matches (but only on whole byte
422 // lengths). Length is in bits.
423 in6_addr addr = ip.ipv6_address();
424 return ::memcmp(&addr, &tomatch, (length >> 3)) == 0;
425 }
426
IPIs6Bone(const IPAddress & ip)427 bool IPIs6Bone(const IPAddress& ip) {
428 return IPIsHelper(ip, k6BonePrefix, 16);
429 }
430
IPIs6To4(const IPAddress & ip)431 bool IPIs6To4(const IPAddress& ip) {
432 return IPIsHelper(ip, k6To4Prefix, 16);
433 }
434
IPIsSiteLocal(const IPAddress & ip)435 bool IPIsSiteLocal(const IPAddress& ip) {
436 // Can't use the helper because the prefix is 10 bits.
437 in6_addr addr = ip.ipv6_address();
438 return addr.s6_addr[0] == 0xFE && (addr.s6_addr[1] & 0xC0) == 0xC0;
439 }
440
IPIsULA(const IPAddress & ip)441 bool IPIsULA(const IPAddress& ip) {
442 // Can't use the helper because the prefix is 7 bits.
443 in6_addr addr = ip.ipv6_address();
444 return (addr.s6_addr[0] & 0xFE) == 0xFC;
445 }
446
IPIsTeredo(const IPAddress & ip)447 bool IPIsTeredo(const IPAddress& ip) {
448 return IPIsHelper(ip, kTeredoPrefix, 32);
449 }
450
IPIsV4Compatibility(const IPAddress & ip)451 bool IPIsV4Compatibility(const IPAddress& ip) {
452 return IPIsHelper(ip, kV4CompatibilityPrefix, 96);
453 }
454
IPIsV4Mapped(const IPAddress & ip)455 bool IPIsV4Mapped(const IPAddress& ip) {
456 return IPIsHelper(ip, kV4MappedPrefix, 96);
457 }
458
IPAddressPrecedence(const IPAddress & ip)459 int IPAddressPrecedence(const IPAddress& ip) {
460 // Precedence values from RFC 3484-bis. Prefers native v4 over 6to4/Teredo.
461 if (ip.family() == AF_INET) {
462 return 30;
463 } else if (ip.family() == AF_INET6) {
464 if (IPIsLoopback(ip)) {
465 return 60;
466 } else if (IPIsULA(ip)) {
467 return 50;
468 } else if (IPIsV4Mapped(ip)) {
469 return 30;
470 } else if (IPIs6To4(ip)) {
471 return 20;
472 } else if (IPIsTeredo(ip)) {
473 return 10;
474 } else if (IPIsV4Compatibility(ip) || IPIsSiteLocal(ip) || IPIs6Bone(ip)) {
475 return 1;
476 } else {
477 // A 'normal' IPv6 address.
478 return 40;
479 }
480 }
481 return 0;
482 }
483
484 } // Namespace talk base
485