1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief Implements semantic analysis for C++ expressions.
12 ///
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/Sema/SemaInternal.h"
16 #include "TypeLocBuilder.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/ASTLambda.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/RecursiveASTVisitor.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/Basic/PartialDiagnostic.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Lex/Preprocessor.h"
30 #include "clang/Sema/DeclSpec.h"
31 #include "clang/Sema/Initialization.h"
32 #include "clang/Sema/Lookup.h"
33 #include "clang/Sema/ParsedTemplate.h"
34 #include "clang/Sema/Scope.h"
35 #include "clang/Sema/ScopeInfo.h"
36 #include "clang/Sema/SemaLambda.h"
37 #include "clang/Sema/TemplateDeduction.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/STLExtras.h"
40 #include "llvm/Support/ErrorHandling.h"
41 using namespace clang;
42 using namespace sema;
43
44 /// \brief Handle the result of the special case name lookup for inheriting
45 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
46 /// constructor names in member using declarations, even if 'X' is not the
47 /// name of the corresponding type.
getInheritingConstructorName(CXXScopeSpec & SS,SourceLocation NameLoc,IdentifierInfo & Name)48 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
49 SourceLocation NameLoc,
50 IdentifierInfo &Name) {
51 NestedNameSpecifier *NNS = SS.getScopeRep();
52
53 // Convert the nested-name-specifier into a type.
54 QualType Type;
55 switch (NNS->getKind()) {
56 case NestedNameSpecifier::TypeSpec:
57 case NestedNameSpecifier::TypeSpecWithTemplate:
58 Type = QualType(NNS->getAsType(), 0);
59 break;
60
61 case NestedNameSpecifier::Identifier:
62 // Strip off the last layer of the nested-name-specifier and build a
63 // typename type for it.
64 assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
65 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
66 NNS->getAsIdentifier());
67 break;
68
69 case NestedNameSpecifier::Global:
70 case NestedNameSpecifier::Namespace:
71 case NestedNameSpecifier::NamespaceAlias:
72 llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
73 }
74
75 // This reference to the type is located entirely at the location of the
76 // final identifier in the qualified-id.
77 return CreateParsedType(Type,
78 Context.getTrivialTypeSourceInfo(Type, NameLoc));
79 }
80
getDestructorName(SourceLocation TildeLoc,IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec & SS,ParsedType ObjectTypePtr,bool EnteringContext)81 ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
82 IdentifierInfo &II,
83 SourceLocation NameLoc,
84 Scope *S, CXXScopeSpec &SS,
85 ParsedType ObjectTypePtr,
86 bool EnteringContext) {
87 // Determine where to perform name lookup.
88
89 // FIXME: This area of the standard is very messy, and the current
90 // wording is rather unclear about which scopes we search for the
91 // destructor name; see core issues 399 and 555. Issue 399 in
92 // particular shows where the current description of destructor name
93 // lookup is completely out of line with existing practice, e.g.,
94 // this appears to be ill-formed:
95 //
96 // namespace N {
97 // template <typename T> struct S {
98 // ~S();
99 // };
100 // }
101 //
102 // void f(N::S<int>* s) {
103 // s->N::S<int>::~S();
104 // }
105 //
106 // See also PR6358 and PR6359.
107 // For this reason, we're currently only doing the C++03 version of this
108 // code; the C++0x version has to wait until we get a proper spec.
109 QualType SearchType;
110 DeclContext *LookupCtx = nullptr;
111 bool isDependent = false;
112 bool LookInScope = false;
113
114 // If we have an object type, it's because we are in a
115 // pseudo-destructor-expression or a member access expression, and
116 // we know what type we're looking for.
117 if (ObjectTypePtr)
118 SearchType = GetTypeFromParser(ObjectTypePtr);
119
120 if (SS.isSet()) {
121 NestedNameSpecifier *NNS = SS.getScopeRep();
122
123 bool AlreadySearched = false;
124 bool LookAtPrefix = true;
125 // C++11 [basic.lookup.qual]p6:
126 // If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
127 // the type-names are looked up as types in the scope designated by the
128 // nested-name-specifier. Similarly, in a qualified-id of the form:
129 //
130 // nested-name-specifier[opt] class-name :: ~ class-name
131 //
132 // the second class-name is looked up in the same scope as the first.
133 //
134 // Here, we determine whether the code below is permitted to look at the
135 // prefix of the nested-name-specifier.
136 DeclContext *DC = computeDeclContext(SS, EnteringContext);
137 if (DC && DC->isFileContext()) {
138 AlreadySearched = true;
139 LookupCtx = DC;
140 isDependent = false;
141 } else if (DC && isa<CXXRecordDecl>(DC)) {
142 LookAtPrefix = false;
143 LookInScope = true;
144 }
145
146 // The second case from the C++03 rules quoted further above.
147 NestedNameSpecifier *Prefix = nullptr;
148 if (AlreadySearched) {
149 // Nothing left to do.
150 } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
151 CXXScopeSpec PrefixSS;
152 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
153 LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
154 isDependent = isDependentScopeSpecifier(PrefixSS);
155 } else if (ObjectTypePtr) {
156 LookupCtx = computeDeclContext(SearchType);
157 isDependent = SearchType->isDependentType();
158 } else {
159 LookupCtx = computeDeclContext(SS, EnteringContext);
160 isDependent = LookupCtx && LookupCtx->isDependentContext();
161 }
162 } else if (ObjectTypePtr) {
163 // C++ [basic.lookup.classref]p3:
164 // If the unqualified-id is ~type-name, the type-name is looked up
165 // in the context of the entire postfix-expression. If the type T
166 // of the object expression is of a class type C, the type-name is
167 // also looked up in the scope of class C. At least one of the
168 // lookups shall find a name that refers to (possibly
169 // cv-qualified) T.
170 LookupCtx = computeDeclContext(SearchType);
171 isDependent = SearchType->isDependentType();
172 assert((isDependent || !SearchType->isIncompleteType()) &&
173 "Caller should have completed object type");
174
175 LookInScope = true;
176 } else {
177 // Perform lookup into the current scope (only).
178 LookInScope = true;
179 }
180
181 TypeDecl *NonMatchingTypeDecl = nullptr;
182 LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
183 for (unsigned Step = 0; Step != 2; ++Step) {
184 // Look for the name first in the computed lookup context (if we
185 // have one) and, if that fails to find a match, in the scope (if
186 // we're allowed to look there).
187 Found.clear();
188 if (Step == 0 && LookupCtx)
189 LookupQualifiedName(Found, LookupCtx);
190 else if (Step == 1 && LookInScope && S)
191 LookupName(Found, S);
192 else
193 continue;
194
195 // FIXME: Should we be suppressing ambiguities here?
196 if (Found.isAmbiguous())
197 return ParsedType();
198
199 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
200 QualType T = Context.getTypeDeclType(Type);
201
202 if (SearchType.isNull() || SearchType->isDependentType() ||
203 Context.hasSameUnqualifiedType(T, SearchType)) {
204 // We found our type!
205
206 return CreateParsedType(T,
207 Context.getTrivialTypeSourceInfo(T, NameLoc));
208 }
209
210 if (!SearchType.isNull())
211 NonMatchingTypeDecl = Type;
212 }
213
214 // If the name that we found is a class template name, and it is
215 // the same name as the template name in the last part of the
216 // nested-name-specifier (if present) or the object type, then
217 // this is the destructor for that class.
218 // FIXME: This is a workaround until we get real drafting for core
219 // issue 399, for which there isn't even an obvious direction.
220 if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
221 QualType MemberOfType;
222 if (SS.isSet()) {
223 if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
224 // Figure out the type of the context, if it has one.
225 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
226 MemberOfType = Context.getTypeDeclType(Record);
227 }
228 }
229 if (MemberOfType.isNull())
230 MemberOfType = SearchType;
231
232 if (MemberOfType.isNull())
233 continue;
234
235 // We're referring into a class template specialization. If the
236 // class template we found is the same as the template being
237 // specialized, we found what we are looking for.
238 if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
239 if (ClassTemplateSpecializationDecl *Spec
240 = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
241 if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
242 Template->getCanonicalDecl())
243 return CreateParsedType(
244 MemberOfType,
245 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
246 }
247
248 continue;
249 }
250
251 // We're referring to an unresolved class template
252 // specialization. Determine whether we class template we found
253 // is the same as the template being specialized or, if we don't
254 // know which template is being specialized, that it at least
255 // has the same name.
256 if (const TemplateSpecializationType *SpecType
257 = MemberOfType->getAs<TemplateSpecializationType>()) {
258 TemplateName SpecName = SpecType->getTemplateName();
259
260 // The class template we found is the same template being
261 // specialized.
262 if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
263 if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
264 return CreateParsedType(
265 MemberOfType,
266 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
267
268 continue;
269 }
270
271 // The class template we found has the same name as the
272 // (dependent) template name being specialized.
273 if (DependentTemplateName *DepTemplate
274 = SpecName.getAsDependentTemplateName()) {
275 if (DepTemplate->isIdentifier() &&
276 DepTemplate->getIdentifier() == Template->getIdentifier())
277 return CreateParsedType(
278 MemberOfType,
279 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
280
281 continue;
282 }
283 }
284 }
285 }
286
287 if (isDependent) {
288 // We didn't find our type, but that's okay: it's dependent
289 // anyway.
290
291 // FIXME: What if we have no nested-name-specifier?
292 QualType T = CheckTypenameType(ETK_None, SourceLocation(),
293 SS.getWithLocInContext(Context),
294 II, NameLoc);
295 return ParsedType::make(T);
296 }
297
298 if (NonMatchingTypeDecl) {
299 QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
300 Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
301 << T << SearchType;
302 Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
303 << T;
304 } else if (ObjectTypePtr)
305 Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
306 << &II;
307 else {
308 SemaDiagnosticBuilder DtorDiag = Diag(NameLoc,
309 diag::err_destructor_class_name);
310 if (S) {
311 const DeclContext *Ctx = S->getEntity();
312 if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx))
313 DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc),
314 Class->getNameAsString());
315 }
316 }
317
318 return ParsedType();
319 }
320
getDestructorType(const DeclSpec & DS,ParsedType ObjectType)321 ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
322 if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
323 return ParsedType();
324 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
325 && "only get destructor types from declspecs");
326 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
327 QualType SearchType = GetTypeFromParser(ObjectType);
328 if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
329 return ParsedType::make(T);
330 }
331
332 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
333 << T << SearchType;
334 return ParsedType();
335 }
336
checkLiteralOperatorId(const CXXScopeSpec & SS,const UnqualifiedId & Name)337 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
338 const UnqualifiedId &Name) {
339 assert(Name.getKind() == UnqualifiedId::IK_LiteralOperatorId);
340
341 if (!SS.isValid())
342 return false;
343
344 switch (SS.getScopeRep()->getKind()) {
345 case NestedNameSpecifier::Identifier:
346 case NestedNameSpecifier::TypeSpec:
347 case NestedNameSpecifier::TypeSpecWithTemplate:
348 // Per C++11 [over.literal]p2, literal operators can only be declared at
349 // namespace scope. Therefore, this unqualified-id cannot name anything.
350 // Reject it early, because we have no AST representation for this in the
351 // case where the scope is dependent.
352 Diag(Name.getLocStart(), diag::err_literal_operator_id_outside_namespace)
353 << SS.getScopeRep();
354 return true;
355
356 case NestedNameSpecifier::Global:
357 case NestedNameSpecifier::Namespace:
358 case NestedNameSpecifier::NamespaceAlias:
359 return false;
360 }
361
362 llvm_unreachable("unknown nested name specifier kind");
363 }
364
365 /// \brief Build a C++ typeid expression with a type operand.
BuildCXXTypeId(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)366 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
367 SourceLocation TypeidLoc,
368 TypeSourceInfo *Operand,
369 SourceLocation RParenLoc) {
370 // C++ [expr.typeid]p4:
371 // The top-level cv-qualifiers of the lvalue expression or the type-id
372 // that is the operand of typeid are always ignored.
373 // If the type of the type-id is a class type or a reference to a class
374 // type, the class shall be completely-defined.
375 Qualifiers Quals;
376 QualType T
377 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
378 Quals);
379 if (T->getAs<RecordType>() &&
380 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
381 return ExprError();
382
383 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
384 SourceRange(TypeidLoc, RParenLoc));
385 }
386
387 /// \brief Build a C++ typeid expression with an expression operand.
BuildCXXTypeId(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * E,SourceLocation RParenLoc)388 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
389 SourceLocation TypeidLoc,
390 Expr *E,
391 SourceLocation RParenLoc) {
392 if (E && !E->isTypeDependent()) {
393 if (E->getType()->isPlaceholderType()) {
394 ExprResult result = CheckPlaceholderExpr(E);
395 if (result.isInvalid()) return ExprError();
396 E = result.get();
397 }
398
399 QualType T = E->getType();
400 if (const RecordType *RecordT = T->getAs<RecordType>()) {
401 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
402 // C++ [expr.typeid]p3:
403 // [...] If the type of the expression is a class type, the class
404 // shall be completely-defined.
405 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
406 return ExprError();
407
408 // C++ [expr.typeid]p3:
409 // When typeid is applied to an expression other than an glvalue of a
410 // polymorphic class type [...] [the] expression is an unevaluated
411 // operand. [...]
412 if (RecordD->isPolymorphic() && E->isGLValue()) {
413 // The subexpression is potentially evaluated; switch the context
414 // and recheck the subexpression.
415 ExprResult Result = TransformToPotentiallyEvaluated(E);
416 if (Result.isInvalid()) return ExprError();
417 E = Result.get();
418
419 // We require a vtable to query the type at run time.
420 MarkVTableUsed(TypeidLoc, RecordD);
421 }
422 }
423
424 // C++ [expr.typeid]p4:
425 // [...] If the type of the type-id is a reference to a possibly
426 // cv-qualified type, the result of the typeid expression refers to a
427 // std::type_info object representing the cv-unqualified referenced
428 // type.
429 Qualifiers Quals;
430 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
431 if (!Context.hasSameType(T, UnqualT)) {
432 T = UnqualT;
433 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
434 }
435 }
436
437 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
438 SourceRange(TypeidLoc, RParenLoc));
439 }
440
441 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
442 ExprResult
ActOnCXXTypeid(SourceLocation OpLoc,SourceLocation LParenLoc,bool isType,void * TyOrExpr,SourceLocation RParenLoc)443 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
444 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
445 // Find the std::type_info type.
446 if (!getStdNamespace())
447 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
448
449 if (!CXXTypeInfoDecl) {
450 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
451 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
452 LookupQualifiedName(R, getStdNamespace());
453 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
454 // Microsoft's typeinfo doesn't have type_info in std but in the global
455 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
456 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
457 LookupQualifiedName(R, Context.getTranslationUnitDecl());
458 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
459 }
460 if (!CXXTypeInfoDecl)
461 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
462 }
463
464 if (!getLangOpts().RTTI) {
465 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
466 }
467
468 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
469
470 if (isType) {
471 // The operand is a type; handle it as such.
472 TypeSourceInfo *TInfo = nullptr;
473 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
474 &TInfo);
475 if (T.isNull())
476 return ExprError();
477
478 if (!TInfo)
479 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
480
481 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
482 }
483
484 // The operand is an expression.
485 return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
486 }
487
488 /// \brief Build a Microsoft __uuidof expression with a type operand.
BuildCXXUuidof(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)489 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
490 SourceLocation TypeidLoc,
491 TypeSourceInfo *Operand,
492 SourceLocation RParenLoc) {
493 if (!Operand->getType()->isDependentType()) {
494 bool HasMultipleGUIDs = false;
495 if (!CXXUuidofExpr::GetUuidAttrOfType(Operand->getType(),
496 &HasMultipleGUIDs)) {
497 if (HasMultipleGUIDs)
498 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
499 else
500 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
501 }
502 }
503
504 return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), Operand,
505 SourceRange(TypeidLoc, RParenLoc));
506 }
507
508 /// \brief Build a Microsoft __uuidof expression with an expression operand.
BuildCXXUuidof(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * E,SourceLocation RParenLoc)509 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
510 SourceLocation TypeidLoc,
511 Expr *E,
512 SourceLocation RParenLoc) {
513 if (!E->getType()->isDependentType()) {
514 bool HasMultipleGUIDs = false;
515 if (!CXXUuidofExpr::GetUuidAttrOfType(E->getType(), &HasMultipleGUIDs) &&
516 !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
517 if (HasMultipleGUIDs)
518 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
519 else
520 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
521 }
522 }
523
524 return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), E,
525 SourceRange(TypeidLoc, RParenLoc));
526 }
527
528 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
529 ExprResult
ActOnCXXUuidof(SourceLocation OpLoc,SourceLocation LParenLoc,bool isType,void * TyOrExpr,SourceLocation RParenLoc)530 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
531 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
532 // If MSVCGuidDecl has not been cached, do the lookup.
533 if (!MSVCGuidDecl) {
534 IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
535 LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
536 LookupQualifiedName(R, Context.getTranslationUnitDecl());
537 MSVCGuidDecl = R.getAsSingle<RecordDecl>();
538 if (!MSVCGuidDecl)
539 return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
540 }
541
542 QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
543
544 if (isType) {
545 // The operand is a type; handle it as such.
546 TypeSourceInfo *TInfo = nullptr;
547 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
548 &TInfo);
549 if (T.isNull())
550 return ExprError();
551
552 if (!TInfo)
553 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
554
555 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
556 }
557
558 // The operand is an expression.
559 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
560 }
561
562 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
563 ExprResult
ActOnCXXBoolLiteral(SourceLocation OpLoc,tok::TokenKind Kind)564 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
565 assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
566 "Unknown C++ Boolean value!");
567 return new (Context)
568 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
569 }
570
571 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
572 ExprResult
ActOnCXXNullPtrLiteral(SourceLocation Loc)573 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
574 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
575 }
576
577 /// ActOnCXXThrow - Parse throw expressions.
578 ExprResult
ActOnCXXThrow(Scope * S,SourceLocation OpLoc,Expr * Ex)579 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
580 bool IsThrownVarInScope = false;
581 if (Ex) {
582 // C++0x [class.copymove]p31:
583 // When certain criteria are met, an implementation is allowed to omit the
584 // copy/move construction of a class object [...]
585 //
586 // - in a throw-expression, when the operand is the name of a
587 // non-volatile automatic object (other than a function or catch-
588 // clause parameter) whose scope does not extend beyond the end of the
589 // innermost enclosing try-block (if there is one), the copy/move
590 // operation from the operand to the exception object (15.1) can be
591 // omitted by constructing the automatic object directly into the
592 // exception object
593 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
594 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
595 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
596 for( ; S; S = S->getParent()) {
597 if (S->isDeclScope(Var)) {
598 IsThrownVarInScope = true;
599 break;
600 }
601
602 if (S->getFlags() &
603 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
604 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
605 Scope::TryScope))
606 break;
607 }
608 }
609 }
610 }
611
612 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
613 }
614
BuildCXXThrow(SourceLocation OpLoc,Expr * Ex,bool IsThrownVarInScope)615 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
616 bool IsThrownVarInScope) {
617 // Don't report an error if 'throw' is used in system headers.
618 if (!getLangOpts().CXXExceptions &&
619 !getSourceManager().isInSystemHeader(OpLoc))
620 Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
621
622 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
623 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
624
625 if (Ex && !Ex->isTypeDependent()) {
626 ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
627 if (ExRes.isInvalid())
628 return ExprError();
629 Ex = ExRes.get();
630 }
631
632 return new (Context)
633 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
634 }
635
636 /// CheckCXXThrowOperand - Validate the operand of a throw.
CheckCXXThrowOperand(SourceLocation ThrowLoc,Expr * E,bool IsThrownVarInScope)637 ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
638 bool IsThrownVarInScope) {
639 // C++ [except.throw]p3:
640 // A throw-expression initializes a temporary object, called the exception
641 // object, the type of which is determined by removing any top-level
642 // cv-qualifiers from the static type of the operand of throw and adjusting
643 // the type from "array of T" or "function returning T" to "pointer to T"
644 // or "pointer to function returning T", [...]
645 if (E->getType().hasQualifiers())
646 E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
647 E->getValueKind()).get();
648
649 ExprResult Res = DefaultFunctionArrayConversion(E);
650 if (Res.isInvalid())
651 return ExprError();
652 E = Res.get();
653
654 // If the type of the exception would be an incomplete type or a pointer
655 // to an incomplete type other than (cv) void the program is ill-formed.
656 QualType Ty = E->getType();
657 bool isPointer = false;
658 if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
659 Ty = Ptr->getPointeeType();
660 isPointer = true;
661 }
662 if (!isPointer || !Ty->isVoidType()) {
663 if (RequireCompleteType(ThrowLoc, Ty,
664 isPointer? diag::err_throw_incomplete_ptr
665 : diag::err_throw_incomplete,
666 E->getSourceRange()))
667 return ExprError();
668
669 if (RequireNonAbstractType(ThrowLoc, E->getType(),
670 diag::err_throw_abstract_type, E))
671 return ExprError();
672 }
673
674 // Initialize the exception result. This implicitly weeds out
675 // abstract types or types with inaccessible copy constructors.
676
677 // C++0x [class.copymove]p31:
678 // When certain criteria are met, an implementation is allowed to omit the
679 // copy/move construction of a class object [...]
680 //
681 // - in a throw-expression, when the operand is the name of a
682 // non-volatile automatic object (other than a function or catch-clause
683 // parameter) whose scope does not extend beyond the end of the
684 // innermost enclosing try-block (if there is one), the copy/move
685 // operation from the operand to the exception object (15.1) can be
686 // omitted by constructing the automatic object directly into the
687 // exception object
688 const VarDecl *NRVOVariable = nullptr;
689 if (IsThrownVarInScope)
690 NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
691
692 InitializedEntity Entity =
693 InitializedEntity::InitializeException(ThrowLoc, E->getType(),
694 /*NRVO=*/NRVOVariable != nullptr);
695 Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
696 QualType(), E,
697 IsThrownVarInScope);
698 if (Res.isInvalid())
699 return ExprError();
700 E = Res.get();
701
702 // If the exception has class type, we need additional handling.
703 const RecordType *RecordTy = Ty->getAs<RecordType>();
704 if (!RecordTy)
705 return E;
706 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
707
708 // If we are throwing a polymorphic class type or pointer thereof,
709 // exception handling will make use of the vtable.
710 MarkVTableUsed(ThrowLoc, RD);
711
712 // If a pointer is thrown, the referenced object will not be destroyed.
713 if (isPointer)
714 return E;
715
716 // If the class has a destructor, we must be able to call it.
717 if (RD->hasIrrelevantDestructor())
718 return E;
719
720 CXXDestructorDecl *Destructor = LookupDestructor(RD);
721 if (!Destructor)
722 return E;
723
724 MarkFunctionReferenced(E->getExprLoc(), Destructor);
725 CheckDestructorAccess(E->getExprLoc(), Destructor,
726 PDiag(diag::err_access_dtor_exception) << Ty);
727 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
728 return ExprError();
729 return E;
730 }
731
getCurrentThisType()732 QualType Sema::getCurrentThisType() {
733 DeclContext *DC = getFunctionLevelDeclContext();
734 QualType ThisTy = CXXThisTypeOverride;
735 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
736 if (method && method->isInstance())
737 ThisTy = method->getThisType(Context);
738 }
739 if (ThisTy.isNull()) {
740 if (isGenericLambdaCallOperatorSpecialization(CurContext) &&
741 CurContext->getParent()->getParent()->isRecord()) {
742 // This is a generic lambda call operator that is being instantiated
743 // within a default initializer - so use the enclosing class as 'this'.
744 // There is no enclosing member function to retrieve the 'this' pointer
745 // from.
746 QualType ClassTy = Context.getTypeDeclType(
747 cast<CXXRecordDecl>(CurContext->getParent()->getParent()));
748 // There are no cv-qualifiers for 'this' within default initializers,
749 // per [expr.prim.general]p4.
750 return Context.getPointerType(ClassTy);
751 }
752 }
753 return ThisTy;
754 }
755
CXXThisScopeRAII(Sema & S,Decl * ContextDecl,unsigned CXXThisTypeQuals,bool Enabled)756 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
757 Decl *ContextDecl,
758 unsigned CXXThisTypeQuals,
759 bool Enabled)
760 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
761 {
762 if (!Enabled || !ContextDecl)
763 return;
764
765 CXXRecordDecl *Record = nullptr;
766 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
767 Record = Template->getTemplatedDecl();
768 else
769 Record = cast<CXXRecordDecl>(ContextDecl);
770
771 S.CXXThisTypeOverride
772 = S.Context.getPointerType(
773 S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
774
775 this->Enabled = true;
776 }
777
778
~CXXThisScopeRAII()779 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
780 if (Enabled) {
781 S.CXXThisTypeOverride = OldCXXThisTypeOverride;
782 }
783 }
784
captureThis(ASTContext & Context,RecordDecl * RD,QualType ThisTy,SourceLocation Loc)785 static Expr *captureThis(ASTContext &Context, RecordDecl *RD,
786 QualType ThisTy, SourceLocation Loc) {
787 FieldDecl *Field
788 = FieldDecl::Create(Context, RD, Loc, Loc, nullptr, ThisTy,
789 Context.getTrivialTypeSourceInfo(ThisTy, Loc),
790 nullptr, false, ICIS_NoInit);
791 Field->setImplicit(true);
792 Field->setAccess(AS_private);
793 RD->addDecl(Field);
794 return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit*/true);
795 }
796
CheckCXXThisCapture(SourceLocation Loc,bool Explicit,bool BuildAndDiagnose,const unsigned * const FunctionScopeIndexToStopAt)797 bool Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit,
798 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt) {
799 // We don't need to capture this in an unevaluated context.
800 if (isUnevaluatedContext() && !Explicit)
801 return true;
802
803 const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt ?
804 *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
805 // Otherwise, check that we can capture 'this'.
806 unsigned NumClosures = 0;
807 for (unsigned idx = MaxFunctionScopesIndex; idx != 0; idx--) {
808 if (CapturingScopeInfo *CSI =
809 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
810 if (CSI->CXXThisCaptureIndex != 0) {
811 // 'this' is already being captured; there isn't anything more to do.
812 break;
813 }
814 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
815 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
816 // This context can't implicitly capture 'this'; fail out.
817 if (BuildAndDiagnose)
818 Diag(Loc, diag::err_this_capture) << Explicit;
819 return true;
820 }
821 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
822 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
823 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
824 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
825 Explicit) {
826 // This closure can capture 'this'; continue looking upwards.
827 NumClosures++;
828 Explicit = false;
829 continue;
830 }
831 // This context can't implicitly capture 'this'; fail out.
832 if (BuildAndDiagnose)
833 Diag(Loc, diag::err_this_capture) << Explicit;
834 return true;
835 }
836 break;
837 }
838 if (!BuildAndDiagnose) return false;
839 // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
840 // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
841 // contexts.
842 for (unsigned idx = MaxFunctionScopesIndex; NumClosures;
843 --idx, --NumClosures) {
844 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
845 Expr *ThisExpr = nullptr;
846 QualType ThisTy = getCurrentThisType();
847 if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI))
848 // For lambda expressions, build a field and an initializing expression.
849 ThisExpr = captureThis(Context, LSI->Lambda, ThisTy, Loc);
850 else if (CapturedRegionScopeInfo *RSI
851 = dyn_cast<CapturedRegionScopeInfo>(FunctionScopes[idx]))
852 ThisExpr = captureThis(Context, RSI->TheRecordDecl, ThisTy, Loc);
853
854 bool isNested = NumClosures > 1;
855 CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
856 }
857 return false;
858 }
859
ActOnCXXThis(SourceLocation Loc)860 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
861 /// C++ 9.3.2: In the body of a non-static member function, the keyword this
862 /// is a non-lvalue expression whose value is the address of the object for
863 /// which the function is called.
864
865 QualType ThisTy = getCurrentThisType();
866 if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
867
868 CheckCXXThisCapture(Loc);
869 return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false);
870 }
871
isThisOutsideMemberFunctionBody(QualType BaseType)872 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
873 // If we're outside the body of a member function, then we'll have a specified
874 // type for 'this'.
875 if (CXXThisTypeOverride.isNull())
876 return false;
877
878 // Determine whether we're looking into a class that's currently being
879 // defined.
880 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
881 return Class && Class->isBeingDefined();
882 }
883
884 ExprResult
ActOnCXXTypeConstructExpr(ParsedType TypeRep,SourceLocation LParenLoc,MultiExprArg exprs,SourceLocation RParenLoc)885 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
886 SourceLocation LParenLoc,
887 MultiExprArg exprs,
888 SourceLocation RParenLoc) {
889 if (!TypeRep)
890 return ExprError();
891
892 TypeSourceInfo *TInfo;
893 QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
894 if (!TInfo)
895 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
896
897 return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
898 }
899
900 /// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
901 /// Can be interpreted either as function-style casting ("int(x)")
902 /// or class type construction ("ClassType(x,y,z)")
903 /// or creation of a value-initialized type ("int()").
904 ExprResult
BuildCXXTypeConstructExpr(TypeSourceInfo * TInfo,SourceLocation LParenLoc,MultiExprArg Exprs,SourceLocation RParenLoc)905 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
906 SourceLocation LParenLoc,
907 MultiExprArg Exprs,
908 SourceLocation RParenLoc) {
909 QualType Ty = TInfo->getType();
910 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
911
912 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
913 return CXXUnresolvedConstructExpr::Create(Context, TInfo, LParenLoc, Exprs,
914 RParenLoc);
915 }
916
917 bool ListInitialization = LParenLoc.isInvalid();
918 assert((!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0])))
919 && "List initialization must have initializer list as expression.");
920 SourceRange FullRange = SourceRange(TyBeginLoc,
921 ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
922
923 // C++ [expr.type.conv]p1:
924 // If the expression list is a single expression, the type conversion
925 // expression is equivalent (in definedness, and if defined in meaning) to the
926 // corresponding cast expression.
927 if (Exprs.size() == 1 && !ListInitialization) {
928 Expr *Arg = Exprs[0];
929 return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
930 }
931
932 QualType ElemTy = Ty;
933 if (Ty->isArrayType()) {
934 if (!ListInitialization)
935 return ExprError(Diag(TyBeginLoc,
936 diag::err_value_init_for_array_type) << FullRange);
937 ElemTy = Context.getBaseElementType(Ty);
938 }
939
940 if (!Ty->isVoidType() &&
941 RequireCompleteType(TyBeginLoc, ElemTy,
942 diag::err_invalid_incomplete_type_use, FullRange))
943 return ExprError();
944
945 if (RequireNonAbstractType(TyBeginLoc, Ty,
946 diag::err_allocation_of_abstract_type))
947 return ExprError();
948
949 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
950 InitializationKind Kind =
951 Exprs.size() ? ListInitialization
952 ? InitializationKind::CreateDirectList(TyBeginLoc)
953 : InitializationKind::CreateDirect(TyBeginLoc, LParenLoc, RParenLoc)
954 : InitializationKind::CreateValue(TyBeginLoc, LParenLoc, RParenLoc);
955 InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
956 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
957
958 if (Result.isInvalid() || !ListInitialization)
959 return Result;
960
961 Expr *Inner = Result.get();
962 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
963 Inner = BTE->getSubExpr();
964 if (isa<InitListExpr>(Inner)) {
965 // If the list-initialization doesn't involve a constructor call, we'll get
966 // the initializer-list (with corrected type) back, but that's not what we
967 // want, since it will be treated as an initializer list in further
968 // processing. Explicitly insert a cast here.
969 QualType ResultType = Result.get()->getType();
970 Result = CXXFunctionalCastExpr::Create(
971 Context, ResultType, Expr::getValueKindForType(TInfo->getType()), TInfo,
972 CK_NoOp, Result.get(), /*Path=*/nullptr, LParenLoc, RParenLoc);
973 }
974
975 // FIXME: Improve AST representation?
976 return Result;
977 }
978
979 /// doesUsualArrayDeleteWantSize - Answers whether the usual
980 /// operator delete[] for the given type has a size_t parameter.
doesUsualArrayDeleteWantSize(Sema & S,SourceLocation loc,QualType allocType)981 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
982 QualType allocType) {
983 const RecordType *record =
984 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
985 if (!record) return false;
986
987 // Try to find an operator delete[] in class scope.
988
989 DeclarationName deleteName =
990 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
991 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
992 S.LookupQualifiedName(ops, record->getDecl());
993
994 // We're just doing this for information.
995 ops.suppressDiagnostics();
996
997 // Very likely: there's no operator delete[].
998 if (ops.empty()) return false;
999
1000 // If it's ambiguous, it should be illegal to call operator delete[]
1001 // on this thing, so it doesn't matter if we allocate extra space or not.
1002 if (ops.isAmbiguous()) return false;
1003
1004 LookupResult::Filter filter = ops.makeFilter();
1005 while (filter.hasNext()) {
1006 NamedDecl *del = filter.next()->getUnderlyingDecl();
1007
1008 // C++0x [basic.stc.dynamic.deallocation]p2:
1009 // A template instance is never a usual deallocation function,
1010 // regardless of its signature.
1011 if (isa<FunctionTemplateDecl>(del)) {
1012 filter.erase();
1013 continue;
1014 }
1015
1016 // C++0x [basic.stc.dynamic.deallocation]p2:
1017 // If class T does not declare [an operator delete[] with one
1018 // parameter] but does declare a member deallocation function
1019 // named operator delete[] with exactly two parameters, the
1020 // second of which has type std::size_t, then this function
1021 // is a usual deallocation function.
1022 if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
1023 filter.erase();
1024 continue;
1025 }
1026 }
1027 filter.done();
1028
1029 if (!ops.isSingleResult()) return false;
1030
1031 const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
1032 return (del->getNumParams() == 2);
1033 }
1034
1035 /// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
1036 ///
1037 /// E.g.:
1038 /// @code new (memory) int[size][4] @endcode
1039 /// or
1040 /// @code ::new Foo(23, "hello") @endcode
1041 ///
1042 /// \param StartLoc The first location of the expression.
1043 /// \param UseGlobal True if 'new' was prefixed with '::'.
1044 /// \param PlacementLParen Opening paren of the placement arguments.
1045 /// \param PlacementArgs Placement new arguments.
1046 /// \param PlacementRParen Closing paren of the placement arguments.
1047 /// \param TypeIdParens If the type is in parens, the source range.
1048 /// \param D The type to be allocated, as well as array dimensions.
1049 /// \param Initializer The initializing expression or initializer-list, or null
1050 /// if there is none.
1051 ExprResult
ActOnCXXNew(SourceLocation StartLoc,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,Declarator & D,Expr * Initializer)1052 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1053 SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1054 SourceLocation PlacementRParen, SourceRange TypeIdParens,
1055 Declarator &D, Expr *Initializer) {
1056 bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType();
1057
1058 Expr *ArraySize = nullptr;
1059 // If the specified type is an array, unwrap it and save the expression.
1060 if (D.getNumTypeObjects() > 0 &&
1061 D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1062 DeclaratorChunk &Chunk = D.getTypeObject(0);
1063 if (TypeContainsAuto)
1064 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1065 << D.getSourceRange());
1066 if (Chunk.Arr.hasStatic)
1067 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1068 << D.getSourceRange());
1069 if (!Chunk.Arr.NumElts)
1070 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1071 << D.getSourceRange());
1072
1073 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1074 D.DropFirstTypeObject();
1075 }
1076
1077 // Every dimension shall be of constant size.
1078 if (ArraySize) {
1079 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1080 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1081 break;
1082
1083 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1084 if (Expr *NumElts = (Expr *)Array.NumElts) {
1085 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1086 if (getLangOpts().CPlusPlus1y) {
1087 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1088 // shall be a converted constant expression (5.19) of type std::size_t
1089 // and shall evaluate to a strictly positive value.
1090 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
1091 assert(IntWidth && "Builtin type of size 0?");
1092 llvm::APSInt Value(IntWidth);
1093 Array.NumElts
1094 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1095 CCEK_NewExpr)
1096 .get();
1097 } else {
1098 Array.NumElts
1099 = VerifyIntegerConstantExpression(NumElts, nullptr,
1100 diag::err_new_array_nonconst)
1101 .get();
1102 }
1103 if (!Array.NumElts)
1104 return ExprError();
1105 }
1106 }
1107 }
1108 }
1109
1110 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1111 QualType AllocType = TInfo->getType();
1112 if (D.isInvalidType())
1113 return ExprError();
1114
1115 SourceRange DirectInitRange;
1116 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1117 DirectInitRange = List->getSourceRange();
1118
1119 return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal,
1120 PlacementLParen,
1121 PlacementArgs,
1122 PlacementRParen,
1123 TypeIdParens,
1124 AllocType,
1125 TInfo,
1126 ArraySize,
1127 DirectInitRange,
1128 Initializer,
1129 TypeContainsAuto);
1130 }
1131
isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,Expr * Init)1132 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1133 Expr *Init) {
1134 if (!Init)
1135 return true;
1136 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1137 return PLE->getNumExprs() == 0;
1138 if (isa<ImplicitValueInitExpr>(Init))
1139 return true;
1140 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1141 return !CCE->isListInitialization() &&
1142 CCE->getConstructor()->isDefaultConstructor();
1143 else if (Style == CXXNewExpr::ListInit) {
1144 assert(isa<InitListExpr>(Init) &&
1145 "Shouldn't create list CXXConstructExprs for arrays.");
1146 return true;
1147 }
1148 return false;
1149 }
1150
1151 ExprResult
BuildCXXNew(SourceRange Range,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,QualType AllocType,TypeSourceInfo * AllocTypeInfo,Expr * ArraySize,SourceRange DirectInitRange,Expr * Initializer,bool TypeMayContainAuto)1152 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1153 SourceLocation PlacementLParen,
1154 MultiExprArg PlacementArgs,
1155 SourceLocation PlacementRParen,
1156 SourceRange TypeIdParens,
1157 QualType AllocType,
1158 TypeSourceInfo *AllocTypeInfo,
1159 Expr *ArraySize,
1160 SourceRange DirectInitRange,
1161 Expr *Initializer,
1162 bool TypeMayContainAuto) {
1163 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1164 SourceLocation StartLoc = Range.getBegin();
1165
1166 CXXNewExpr::InitializationStyle initStyle;
1167 if (DirectInitRange.isValid()) {
1168 assert(Initializer && "Have parens but no initializer.");
1169 initStyle = CXXNewExpr::CallInit;
1170 } else if (Initializer && isa<InitListExpr>(Initializer))
1171 initStyle = CXXNewExpr::ListInit;
1172 else {
1173 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1174 isa<CXXConstructExpr>(Initializer)) &&
1175 "Initializer expression that cannot have been implicitly created.");
1176 initStyle = CXXNewExpr::NoInit;
1177 }
1178
1179 Expr **Inits = &Initializer;
1180 unsigned NumInits = Initializer ? 1 : 0;
1181 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1182 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
1183 Inits = List->getExprs();
1184 NumInits = List->getNumExprs();
1185 }
1186
1187 // Determine whether we've already built the initializer.
1188 bool HaveCompleteInit = false;
1189 if (Initializer && isa<CXXConstructExpr>(Initializer) &&
1190 !isa<CXXTemporaryObjectExpr>(Initializer))
1191 HaveCompleteInit = true;
1192 else if (Initializer && isa<ImplicitValueInitExpr>(Initializer))
1193 HaveCompleteInit = true;
1194
1195 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1196 if (TypeMayContainAuto && AllocType->isUndeducedType()) {
1197 if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1198 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1199 << AllocType << TypeRange);
1200 if (initStyle == CXXNewExpr::ListInit ||
1201 (NumInits == 1 && isa<InitListExpr>(Inits[0])))
1202 return ExprError(Diag(Inits[0]->getLocStart(),
1203 diag::err_auto_new_list_init)
1204 << AllocType << TypeRange);
1205 if (NumInits > 1) {
1206 Expr *FirstBad = Inits[1];
1207 return ExprError(Diag(FirstBad->getLocStart(),
1208 diag::err_auto_new_ctor_multiple_expressions)
1209 << AllocType << TypeRange);
1210 }
1211 Expr *Deduce = Inits[0];
1212 QualType DeducedType;
1213 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
1214 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1215 << AllocType << Deduce->getType()
1216 << TypeRange << Deduce->getSourceRange());
1217 if (DeducedType.isNull())
1218 return ExprError();
1219 AllocType = DeducedType;
1220 }
1221
1222 // Per C++0x [expr.new]p5, the type being constructed may be a
1223 // typedef of an array type.
1224 if (!ArraySize) {
1225 if (const ConstantArrayType *Array
1226 = Context.getAsConstantArrayType(AllocType)) {
1227 ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1228 Context.getSizeType(),
1229 TypeRange.getEnd());
1230 AllocType = Array->getElementType();
1231 }
1232 }
1233
1234 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1235 return ExprError();
1236
1237 if (initStyle == CXXNewExpr::ListInit &&
1238 isStdInitializerList(AllocType, nullptr)) {
1239 Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
1240 diag::warn_dangling_std_initializer_list)
1241 << /*at end of FE*/0 << Inits[0]->getSourceRange();
1242 }
1243
1244 // In ARC, infer 'retaining' for the allocated
1245 if (getLangOpts().ObjCAutoRefCount &&
1246 AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1247 AllocType->isObjCLifetimeType()) {
1248 AllocType = Context.getLifetimeQualifiedType(AllocType,
1249 AllocType->getObjCARCImplicitLifetime());
1250 }
1251
1252 QualType ResultType = Context.getPointerType(AllocType);
1253
1254 if (ArraySize && ArraySize->getType()->isNonOverloadPlaceholderType()) {
1255 ExprResult result = CheckPlaceholderExpr(ArraySize);
1256 if (result.isInvalid()) return ExprError();
1257 ArraySize = result.get();
1258 }
1259 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1260 // integral or enumeration type with a non-negative value."
1261 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1262 // enumeration type, or a class type for which a single non-explicit
1263 // conversion function to integral or unscoped enumeration type exists.
1264 // C++1y [expr.new]p6: The expression [...] is implicitly converted to
1265 // std::size_t.
1266 if (ArraySize && !ArraySize->isTypeDependent()) {
1267 ExprResult ConvertedSize;
1268 if (getLangOpts().CPlusPlus1y) {
1269 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
1270
1271 ConvertedSize = PerformImplicitConversion(ArraySize, Context.getSizeType(),
1272 AA_Converting);
1273
1274 if (!ConvertedSize.isInvalid() &&
1275 ArraySize->getType()->getAs<RecordType>())
1276 // Diagnose the compatibility of this conversion.
1277 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
1278 << ArraySize->getType() << 0 << "'size_t'";
1279 } else {
1280 class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1281 protected:
1282 Expr *ArraySize;
1283
1284 public:
1285 SizeConvertDiagnoser(Expr *ArraySize)
1286 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
1287 ArraySize(ArraySize) {}
1288
1289 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1290 QualType T) override {
1291 return S.Diag(Loc, diag::err_array_size_not_integral)
1292 << S.getLangOpts().CPlusPlus11 << T;
1293 }
1294
1295 SemaDiagnosticBuilder diagnoseIncomplete(
1296 Sema &S, SourceLocation Loc, QualType T) override {
1297 return S.Diag(Loc, diag::err_array_size_incomplete_type)
1298 << T << ArraySize->getSourceRange();
1299 }
1300
1301 SemaDiagnosticBuilder diagnoseExplicitConv(
1302 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1303 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1304 }
1305
1306 SemaDiagnosticBuilder noteExplicitConv(
1307 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1308 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1309 << ConvTy->isEnumeralType() << ConvTy;
1310 }
1311
1312 SemaDiagnosticBuilder diagnoseAmbiguous(
1313 Sema &S, SourceLocation Loc, QualType T) override {
1314 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1315 }
1316
1317 SemaDiagnosticBuilder noteAmbiguous(
1318 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1319 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1320 << ConvTy->isEnumeralType() << ConvTy;
1321 }
1322
1323 virtual SemaDiagnosticBuilder diagnoseConversion(
1324 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1325 return S.Diag(Loc,
1326 S.getLangOpts().CPlusPlus11
1327 ? diag::warn_cxx98_compat_array_size_conversion
1328 : diag::ext_array_size_conversion)
1329 << T << ConvTy->isEnumeralType() << ConvTy;
1330 }
1331 } SizeDiagnoser(ArraySize);
1332
1333 ConvertedSize = PerformContextualImplicitConversion(StartLoc, ArraySize,
1334 SizeDiagnoser);
1335 }
1336 if (ConvertedSize.isInvalid())
1337 return ExprError();
1338
1339 ArraySize = ConvertedSize.get();
1340 QualType SizeType = ArraySize->getType();
1341
1342 if (!SizeType->isIntegralOrUnscopedEnumerationType())
1343 return ExprError();
1344
1345 // C++98 [expr.new]p7:
1346 // The expression in a direct-new-declarator shall have integral type
1347 // with a non-negative value.
1348 //
1349 // Let's see if this is a constant < 0. If so, we reject it out of
1350 // hand. Otherwise, if it's not a constant, we must have an unparenthesized
1351 // array type.
1352 //
1353 // Note: such a construct has well-defined semantics in C++11: it throws
1354 // std::bad_array_new_length.
1355 if (!ArraySize->isValueDependent()) {
1356 llvm::APSInt Value;
1357 // We've already performed any required implicit conversion to integer or
1358 // unscoped enumeration type.
1359 if (ArraySize->isIntegerConstantExpr(Value, Context)) {
1360 if (Value < llvm::APSInt(
1361 llvm::APInt::getNullValue(Value.getBitWidth()),
1362 Value.isUnsigned())) {
1363 if (getLangOpts().CPlusPlus11)
1364 Diag(ArraySize->getLocStart(),
1365 diag::warn_typecheck_negative_array_new_size)
1366 << ArraySize->getSourceRange();
1367 else
1368 return ExprError(Diag(ArraySize->getLocStart(),
1369 diag::err_typecheck_negative_array_size)
1370 << ArraySize->getSourceRange());
1371 } else if (!AllocType->isDependentType()) {
1372 unsigned ActiveSizeBits =
1373 ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
1374 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1375 if (getLangOpts().CPlusPlus11)
1376 Diag(ArraySize->getLocStart(),
1377 diag::warn_array_new_too_large)
1378 << Value.toString(10)
1379 << ArraySize->getSourceRange();
1380 else
1381 return ExprError(Diag(ArraySize->getLocStart(),
1382 diag::err_array_too_large)
1383 << Value.toString(10)
1384 << ArraySize->getSourceRange());
1385 }
1386 }
1387 } else if (TypeIdParens.isValid()) {
1388 // Can't have dynamic array size when the type-id is in parentheses.
1389 Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
1390 << ArraySize->getSourceRange()
1391 << FixItHint::CreateRemoval(TypeIdParens.getBegin())
1392 << FixItHint::CreateRemoval(TypeIdParens.getEnd());
1393
1394 TypeIdParens = SourceRange();
1395 }
1396 }
1397
1398 // Note that we do *not* convert the argument in any way. It can
1399 // be signed, larger than size_t, whatever.
1400 }
1401
1402 FunctionDecl *OperatorNew = nullptr;
1403 FunctionDecl *OperatorDelete = nullptr;
1404
1405 if (!AllocType->isDependentType() &&
1406 !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
1407 FindAllocationFunctions(StartLoc,
1408 SourceRange(PlacementLParen, PlacementRParen),
1409 UseGlobal, AllocType, ArraySize, PlacementArgs,
1410 OperatorNew, OperatorDelete))
1411 return ExprError();
1412
1413 // If this is an array allocation, compute whether the usual array
1414 // deallocation function for the type has a size_t parameter.
1415 bool UsualArrayDeleteWantsSize = false;
1416 if (ArraySize && !AllocType->isDependentType())
1417 UsualArrayDeleteWantsSize
1418 = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
1419
1420 SmallVector<Expr *, 8> AllPlaceArgs;
1421 if (OperatorNew) {
1422 const FunctionProtoType *Proto =
1423 OperatorNew->getType()->getAs<FunctionProtoType>();
1424 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
1425 : VariadicDoesNotApply;
1426
1427 // We've already converted the placement args, just fill in any default
1428 // arguments. Skip the first parameter because we don't have a corresponding
1429 // argument.
1430 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 1,
1431 PlacementArgs, AllPlaceArgs, CallType))
1432 return ExprError();
1433
1434 if (!AllPlaceArgs.empty())
1435 PlacementArgs = AllPlaceArgs;
1436
1437 // FIXME: This is wrong: PlacementArgs misses out the first (size) argument.
1438 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs);
1439
1440 // FIXME: Missing call to CheckFunctionCall or equivalent
1441 }
1442
1443 // Warn if the type is over-aligned and is being allocated by global operator
1444 // new.
1445 if (PlacementArgs.empty() && OperatorNew &&
1446 (OperatorNew->isImplicit() ||
1447 getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
1448 if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
1449 unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
1450 if (Align > SuitableAlign)
1451 Diag(StartLoc, diag::warn_overaligned_type)
1452 << AllocType
1453 << unsigned(Align / Context.getCharWidth())
1454 << unsigned(SuitableAlign / Context.getCharWidth());
1455 }
1456 }
1457
1458 QualType InitType = AllocType;
1459 // Array 'new' can't have any initializers except empty parentheses.
1460 // Initializer lists are also allowed, in C++11. Rely on the parser for the
1461 // dialect distinction.
1462 if (ResultType->isArrayType() || ArraySize) {
1463 if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
1464 SourceRange InitRange(Inits[0]->getLocStart(),
1465 Inits[NumInits - 1]->getLocEnd());
1466 Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
1467 return ExprError();
1468 }
1469 if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
1470 // We do the initialization typechecking against the array type
1471 // corresponding to the number of initializers + 1 (to also check
1472 // default-initialization).
1473 unsigned NumElements = ILE->getNumInits() + 1;
1474 InitType = Context.getConstantArrayType(AllocType,
1475 llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
1476 ArrayType::Normal, 0);
1477 }
1478 }
1479
1480 // If we can perform the initialization, and we've not already done so,
1481 // do it now.
1482 if (!AllocType->isDependentType() &&
1483 !Expr::hasAnyTypeDependentArguments(
1484 llvm::makeArrayRef(Inits, NumInits)) &&
1485 !HaveCompleteInit) {
1486 // C++11 [expr.new]p15:
1487 // A new-expression that creates an object of type T initializes that
1488 // object as follows:
1489 InitializationKind Kind
1490 // - If the new-initializer is omitted, the object is default-
1491 // initialized (8.5); if no initialization is performed,
1492 // the object has indeterminate value
1493 = initStyle == CXXNewExpr::NoInit
1494 ? InitializationKind::CreateDefault(TypeRange.getBegin())
1495 // - Otherwise, the new-initializer is interpreted according to the
1496 // initialization rules of 8.5 for direct-initialization.
1497 : initStyle == CXXNewExpr::ListInit
1498 ? InitializationKind::CreateDirectList(TypeRange.getBegin())
1499 : InitializationKind::CreateDirect(TypeRange.getBegin(),
1500 DirectInitRange.getBegin(),
1501 DirectInitRange.getEnd());
1502
1503 InitializedEntity Entity
1504 = InitializedEntity::InitializeNew(StartLoc, InitType);
1505 InitializationSequence InitSeq(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1506 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1507 MultiExprArg(Inits, NumInits));
1508 if (FullInit.isInvalid())
1509 return ExprError();
1510
1511 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
1512 // we don't want the initialized object to be destructed.
1513 if (CXXBindTemporaryExpr *Binder =
1514 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
1515 FullInit = Binder->getSubExpr();
1516
1517 Initializer = FullInit.get();
1518 }
1519
1520 // Mark the new and delete operators as referenced.
1521 if (OperatorNew) {
1522 if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
1523 return ExprError();
1524 MarkFunctionReferenced(StartLoc, OperatorNew);
1525 }
1526 if (OperatorDelete) {
1527 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
1528 return ExprError();
1529 MarkFunctionReferenced(StartLoc, OperatorDelete);
1530 }
1531
1532 // C++0x [expr.new]p17:
1533 // If the new expression creates an array of objects of class type,
1534 // access and ambiguity control are done for the destructor.
1535 QualType BaseAllocType = Context.getBaseElementType(AllocType);
1536 if (ArraySize && !BaseAllocType->isDependentType()) {
1537 if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
1538 if (CXXDestructorDecl *dtor = LookupDestructor(
1539 cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
1540 MarkFunctionReferenced(StartLoc, dtor);
1541 CheckDestructorAccess(StartLoc, dtor,
1542 PDiag(diag::err_access_dtor)
1543 << BaseAllocType);
1544 if (DiagnoseUseOfDecl(dtor, StartLoc))
1545 return ExprError();
1546 }
1547 }
1548 }
1549
1550 return new (Context)
1551 CXXNewExpr(Context, UseGlobal, OperatorNew, OperatorDelete,
1552 UsualArrayDeleteWantsSize, PlacementArgs, TypeIdParens,
1553 ArraySize, initStyle, Initializer, ResultType, AllocTypeInfo,
1554 Range, DirectInitRange);
1555 }
1556
1557 /// \brief Checks that a type is suitable as the allocated type
1558 /// in a new-expression.
CheckAllocatedType(QualType AllocType,SourceLocation Loc,SourceRange R)1559 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1560 SourceRange R) {
1561 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1562 // abstract class type or array thereof.
1563 if (AllocType->isFunctionType())
1564 return Diag(Loc, diag::err_bad_new_type)
1565 << AllocType << 0 << R;
1566 else if (AllocType->isReferenceType())
1567 return Diag(Loc, diag::err_bad_new_type)
1568 << AllocType << 1 << R;
1569 else if (!AllocType->isDependentType() &&
1570 RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
1571 return true;
1572 else if (RequireNonAbstractType(Loc, AllocType,
1573 diag::err_allocation_of_abstract_type))
1574 return true;
1575 else if (AllocType->isVariablyModifiedType())
1576 return Diag(Loc, diag::err_variably_modified_new_type)
1577 << AllocType;
1578 else if (unsigned AddressSpace = AllocType.getAddressSpace())
1579 return Diag(Loc, diag::err_address_space_qualified_new)
1580 << AllocType.getUnqualifiedType() << AddressSpace;
1581 else if (getLangOpts().ObjCAutoRefCount) {
1582 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
1583 QualType BaseAllocType = Context.getBaseElementType(AT);
1584 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1585 BaseAllocType->isObjCLifetimeType())
1586 return Diag(Loc, diag::err_arc_new_array_without_ownership)
1587 << BaseAllocType;
1588 }
1589 }
1590
1591 return false;
1592 }
1593
1594 /// \brief Determine whether the given function is a non-placement
1595 /// deallocation function.
isNonPlacementDeallocationFunction(Sema & S,FunctionDecl * FD)1596 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1597 if (FD->isInvalidDecl())
1598 return false;
1599
1600 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1601 return Method->isUsualDeallocationFunction();
1602
1603 if (FD->getOverloadedOperator() != OO_Delete &&
1604 FD->getOverloadedOperator() != OO_Array_Delete)
1605 return false;
1606
1607 if (FD->getNumParams() == 1)
1608 return true;
1609
1610 return S.getLangOpts().SizedDeallocation && FD->getNumParams() == 2 &&
1611 S.Context.hasSameUnqualifiedType(FD->getParamDecl(1)->getType(),
1612 S.Context.getSizeType());
1613 }
1614
1615 /// FindAllocationFunctions - Finds the overloads of operator new and delete
1616 /// that are appropriate for the allocation.
FindAllocationFunctions(SourceLocation StartLoc,SourceRange Range,bool UseGlobal,QualType AllocType,bool IsArray,MultiExprArg PlaceArgs,FunctionDecl * & OperatorNew,FunctionDecl * & OperatorDelete)1617 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1618 bool UseGlobal, QualType AllocType,
1619 bool IsArray, MultiExprArg PlaceArgs,
1620 FunctionDecl *&OperatorNew,
1621 FunctionDecl *&OperatorDelete) {
1622 // --- Choosing an allocation function ---
1623 // C++ 5.3.4p8 - 14 & 18
1624 // 1) If UseGlobal is true, only look in the global scope. Else, also look
1625 // in the scope of the allocated class.
1626 // 2) If an array size is given, look for operator new[], else look for
1627 // operator new.
1628 // 3) The first argument is always size_t. Append the arguments from the
1629 // placement form.
1630
1631 SmallVector<Expr*, 8> AllocArgs(1 + PlaceArgs.size());
1632 // We don't care about the actual value of this argument.
1633 // FIXME: Should the Sema create the expression and embed it in the syntax
1634 // tree? Or should the consumer just recalculate the value?
1635 IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1636 Context.getTargetInfo().getPointerWidth(0)),
1637 Context.getSizeType(),
1638 SourceLocation());
1639 AllocArgs[0] = &Size;
1640 std::copy(PlaceArgs.begin(), PlaceArgs.end(), AllocArgs.begin() + 1);
1641
1642 // C++ [expr.new]p8:
1643 // If the allocated type is a non-array type, the allocation
1644 // function's name is operator new and the deallocation function's
1645 // name is operator delete. If the allocated type is an array
1646 // type, the allocation function's name is operator new[] and the
1647 // deallocation function's name is operator delete[].
1648 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1649 IsArray ? OO_Array_New : OO_New);
1650 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1651 IsArray ? OO_Array_Delete : OO_Delete);
1652
1653 QualType AllocElemType = Context.getBaseElementType(AllocType);
1654
1655 if (AllocElemType->isRecordType() && !UseGlobal) {
1656 CXXRecordDecl *Record
1657 = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1658 if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, Record,
1659 /*AllowMissing=*/true, OperatorNew))
1660 return true;
1661 }
1662
1663 if (!OperatorNew) {
1664 // Didn't find a member overload. Look for a global one.
1665 DeclareGlobalNewDelete();
1666 DeclContext *TUDecl = Context.getTranslationUnitDecl();
1667 bool FallbackEnabled = IsArray && Context.getLangOpts().MSVCCompat;
1668 if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
1669 /*AllowMissing=*/FallbackEnabled, OperatorNew,
1670 /*Diagnose=*/!FallbackEnabled)) {
1671 if (!FallbackEnabled)
1672 return true;
1673
1674 // MSVC will fall back on trying to find a matching global operator new
1675 // if operator new[] cannot be found. Also, MSVC will leak by not
1676 // generating a call to operator delete or operator delete[], but we
1677 // will not replicate that bug.
1678 NewName = Context.DeclarationNames.getCXXOperatorName(OO_New);
1679 DeleteName = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
1680 if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
1681 /*AllowMissing=*/false, OperatorNew))
1682 return true;
1683 }
1684 }
1685
1686 // We don't need an operator delete if we're running under
1687 // -fno-exceptions.
1688 if (!getLangOpts().Exceptions) {
1689 OperatorDelete = nullptr;
1690 return false;
1691 }
1692
1693 // C++ [expr.new]p19:
1694 //
1695 // If the new-expression begins with a unary :: operator, the
1696 // deallocation function's name is looked up in the global
1697 // scope. Otherwise, if the allocated type is a class type T or an
1698 // array thereof, the deallocation function's name is looked up in
1699 // the scope of T. If this lookup fails to find the name, or if
1700 // the allocated type is not a class type or array thereof, the
1701 // deallocation function's name is looked up in the global scope.
1702 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1703 if (AllocElemType->isRecordType() && !UseGlobal) {
1704 CXXRecordDecl *RD
1705 = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1706 LookupQualifiedName(FoundDelete, RD);
1707 }
1708 if (FoundDelete.isAmbiguous())
1709 return true; // FIXME: clean up expressions?
1710
1711 if (FoundDelete.empty()) {
1712 DeclareGlobalNewDelete();
1713 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1714 }
1715
1716 FoundDelete.suppressDiagnostics();
1717
1718 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1719
1720 // Whether we're looking for a placement operator delete is dictated
1721 // by whether we selected a placement operator new, not by whether
1722 // we had explicit placement arguments. This matters for things like
1723 // struct A { void *operator new(size_t, int = 0); ... };
1724 // A *a = new A()
1725 bool isPlacementNew = (!PlaceArgs.empty() || OperatorNew->param_size() != 1);
1726
1727 if (isPlacementNew) {
1728 // C++ [expr.new]p20:
1729 // A declaration of a placement deallocation function matches the
1730 // declaration of a placement allocation function if it has the
1731 // same number of parameters and, after parameter transformations
1732 // (8.3.5), all parameter types except the first are
1733 // identical. [...]
1734 //
1735 // To perform this comparison, we compute the function type that
1736 // the deallocation function should have, and use that type both
1737 // for template argument deduction and for comparison purposes.
1738 //
1739 // FIXME: this comparison should ignore CC and the like.
1740 QualType ExpectedFunctionType;
1741 {
1742 const FunctionProtoType *Proto
1743 = OperatorNew->getType()->getAs<FunctionProtoType>();
1744
1745 SmallVector<QualType, 4> ArgTypes;
1746 ArgTypes.push_back(Context.VoidPtrTy);
1747 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
1748 ArgTypes.push_back(Proto->getParamType(I));
1749
1750 FunctionProtoType::ExtProtoInfo EPI;
1751 EPI.Variadic = Proto->isVariadic();
1752
1753 ExpectedFunctionType
1754 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
1755 }
1756
1757 for (LookupResult::iterator D = FoundDelete.begin(),
1758 DEnd = FoundDelete.end();
1759 D != DEnd; ++D) {
1760 FunctionDecl *Fn = nullptr;
1761 if (FunctionTemplateDecl *FnTmpl
1762 = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1763 // Perform template argument deduction to try to match the
1764 // expected function type.
1765 TemplateDeductionInfo Info(StartLoc);
1766 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
1767 Info))
1768 continue;
1769 } else
1770 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1771
1772 if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1773 Matches.push_back(std::make_pair(D.getPair(), Fn));
1774 }
1775 } else {
1776 // C++ [expr.new]p20:
1777 // [...] Any non-placement deallocation function matches a
1778 // non-placement allocation function. [...]
1779 for (LookupResult::iterator D = FoundDelete.begin(),
1780 DEnd = FoundDelete.end();
1781 D != DEnd; ++D) {
1782 if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1783 if (isNonPlacementDeallocationFunction(*this, Fn))
1784 Matches.push_back(std::make_pair(D.getPair(), Fn));
1785 }
1786
1787 // C++1y [expr.new]p22:
1788 // For a non-placement allocation function, the normal deallocation
1789 // function lookup is used
1790 // C++1y [expr.delete]p?:
1791 // If [...] deallocation function lookup finds both a usual deallocation
1792 // function with only a pointer parameter and a usual deallocation
1793 // function with both a pointer parameter and a size parameter, then the
1794 // selected deallocation function shall be the one with two parameters.
1795 // Otherwise, the selected deallocation function shall be the function
1796 // with one parameter.
1797 if (getLangOpts().SizedDeallocation && Matches.size() == 2) {
1798 if (Matches[0].second->getNumParams() == 1)
1799 Matches.erase(Matches.begin());
1800 else
1801 Matches.erase(Matches.begin() + 1);
1802 assert(Matches[0].second->getNumParams() == 2 &&
1803 "found an unexpected usual deallocation function");
1804 }
1805 }
1806
1807 // C++ [expr.new]p20:
1808 // [...] If the lookup finds a single matching deallocation
1809 // function, that function will be called; otherwise, no
1810 // deallocation function will be called.
1811 if (Matches.size() == 1) {
1812 OperatorDelete = Matches[0].second;
1813
1814 // C++0x [expr.new]p20:
1815 // If the lookup finds the two-parameter form of a usual
1816 // deallocation function (3.7.4.2) and that function, considered
1817 // as a placement deallocation function, would have been
1818 // selected as a match for the allocation function, the program
1819 // is ill-formed.
1820 if (!PlaceArgs.empty() && getLangOpts().CPlusPlus11 &&
1821 isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
1822 Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1823 << SourceRange(PlaceArgs.front()->getLocStart(),
1824 PlaceArgs.back()->getLocEnd());
1825 if (!OperatorDelete->isImplicit())
1826 Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1827 << DeleteName;
1828 } else {
1829 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1830 Matches[0].first);
1831 }
1832 }
1833
1834 return false;
1835 }
1836
1837 /// \brief Find an fitting overload for the allocation function
1838 /// in the specified scope.
1839 ///
1840 /// \param StartLoc The location of the 'new' token.
1841 /// \param Range The range of the placement arguments.
1842 /// \param Name The name of the function ('operator new' or 'operator new[]').
1843 /// \param Args The placement arguments specified.
1844 /// \param Ctx The scope in which we should search; either a class scope or the
1845 /// translation unit.
1846 /// \param AllowMissing If \c true, report an error if we can't find any
1847 /// allocation functions. Otherwise, succeed but don't fill in \p
1848 /// Operator.
1849 /// \param Operator Filled in with the found allocation function. Unchanged if
1850 /// no allocation function was found.
1851 /// \param Diagnose If \c true, issue errors if the allocation function is not
1852 /// usable.
FindAllocationOverload(SourceLocation StartLoc,SourceRange Range,DeclarationName Name,MultiExprArg Args,DeclContext * Ctx,bool AllowMissing,FunctionDecl * & Operator,bool Diagnose)1853 bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1854 DeclarationName Name, MultiExprArg Args,
1855 DeclContext *Ctx,
1856 bool AllowMissing, FunctionDecl *&Operator,
1857 bool Diagnose) {
1858 LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1859 LookupQualifiedName(R, Ctx);
1860 if (R.empty()) {
1861 if (AllowMissing || !Diagnose)
1862 return false;
1863 return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1864 << Name << Range;
1865 }
1866
1867 if (R.isAmbiguous())
1868 return true;
1869
1870 R.suppressDiagnostics();
1871
1872 OverloadCandidateSet Candidates(StartLoc, OverloadCandidateSet::CSK_Normal);
1873 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1874 Alloc != AllocEnd; ++Alloc) {
1875 // Even member operator new/delete are implicitly treated as
1876 // static, so don't use AddMemberCandidate.
1877 NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1878
1879 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1880 AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1881 /*ExplicitTemplateArgs=*/nullptr,
1882 Args, Candidates,
1883 /*SuppressUserConversions=*/false);
1884 continue;
1885 }
1886
1887 FunctionDecl *Fn = cast<FunctionDecl>(D);
1888 AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
1889 /*SuppressUserConversions=*/false);
1890 }
1891
1892 // Do the resolution.
1893 OverloadCandidateSet::iterator Best;
1894 switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1895 case OR_Success: {
1896 // Got one!
1897 FunctionDecl *FnDecl = Best->Function;
1898 if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
1899 Best->FoundDecl, Diagnose) == AR_inaccessible)
1900 return true;
1901
1902 Operator = FnDecl;
1903 return false;
1904 }
1905
1906 case OR_No_Viable_Function:
1907 if (Diagnose) {
1908 Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1909 << Name << Range;
1910 Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
1911 }
1912 return true;
1913
1914 case OR_Ambiguous:
1915 if (Diagnose) {
1916 Diag(StartLoc, diag::err_ovl_ambiguous_call)
1917 << Name << Range;
1918 Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args);
1919 }
1920 return true;
1921
1922 case OR_Deleted: {
1923 if (Diagnose) {
1924 Diag(StartLoc, diag::err_ovl_deleted_call)
1925 << Best->Function->isDeleted()
1926 << Name
1927 << getDeletedOrUnavailableSuffix(Best->Function)
1928 << Range;
1929 Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
1930 }
1931 return true;
1932 }
1933 }
1934 llvm_unreachable("Unreachable, bad result from BestViableFunction");
1935 }
1936
1937
1938 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
1939 /// delete. These are:
1940 /// @code
1941 /// // C++03:
1942 /// void* operator new(std::size_t) throw(std::bad_alloc);
1943 /// void* operator new[](std::size_t) throw(std::bad_alloc);
1944 /// void operator delete(void *) throw();
1945 /// void operator delete[](void *) throw();
1946 /// // C++11:
1947 /// void* operator new(std::size_t);
1948 /// void* operator new[](std::size_t);
1949 /// void operator delete(void *) noexcept;
1950 /// void operator delete[](void *) noexcept;
1951 /// // C++1y:
1952 /// void* operator new(std::size_t);
1953 /// void* operator new[](std::size_t);
1954 /// void operator delete(void *) noexcept;
1955 /// void operator delete[](void *) noexcept;
1956 /// void operator delete(void *, std::size_t) noexcept;
1957 /// void operator delete[](void *, std::size_t) noexcept;
1958 /// @endcode
1959 /// Note that the placement and nothrow forms of new are *not* implicitly
1960 /// declared. Their use requires including \<new\>.
DeclareGlobalNewDelete()1961 void Sema::DeclareGlobalNewDelete() {
1962 if (GlobalNewDeleteDeclared)
1963 return;
1964
1965 // C++ [basic.std.dynamic]p2:
1966 // [...] The following allocation and deallocation functions (18.4) are
1967 // implicitly declared in global scope in each translation unit of a
1968 // program
1969 //
1970 // C++03:
1971 // void* operator new(std::size_t) throw(std::bad_alloc);
1972 // void* operator new[](std::size_t) throw(std::bad_alloc);
1973 // void operator delete(void*) throw();
1974 // void operator delete[](void*) throw();
1975 // C++11:
1976 // void* operator new(std::size_t);
1977 // void* operator new[](std::size_t);
1978 // void operator delete(void*) noexcept;
1979 // void operator delete[](void*) noexcept;
1980 // C++1y:
1981 // void* operator new(std::size_t);
1982 // void* operator new[](std::size_t);
1983 // void operator delete(void*) noexcept;
1984 // void operator delete[](void*) noexcept;
1985 // void operator delete(void*, std::size_t) noexcept;
1986 // void operator delete[](void*, std::size_t) noexcept;
1987 //
1988 // These implicit declarations introduce only the function names operator
1989 // new, operator new[], operator delete, operator delete[].
1990 //
1991 // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1992 // "std" or "bad_alloc" as necessary to form the exception specification.
1993 // However, we do not make these implicit declarations visible to name
1994 // lookup.
1995 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
1996 // The "std::bad_alloc" class has not yet been declared, so build it
1997 // implicitly.
1998 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1999 getOrCreateStdNamespace(),
2000 SourceLocation(), SourceLocation(),
2001 &PP.getIdentifierTable().get("bad_alloc"),
2002 nullptr);
2003 getStdBadAlloc()->setImplicit(true);
2004 }
2005
2006 GlobalNewDeleteDeclared = true;
2007
2008 QualType VoidPtr = Context.getPointerType(Context.VoidTy);
2009 QualType SizeT = Context.getSizeType();
2010 bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
2011
2012 DeclareGlobalAllocationFunction(
2013 Context.DeclarationNames.getCXXOperatorName(OO_New),
2014 VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew);
2015 DeclareGlobalAllocationFunction(
2016 Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
2017 VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew);
2018 DeclareGlobalAllocationFunction(
2019 Context.DeclarationNames.getCXXOperatorName(OO_Delete),
2020 Context.VoidTy, VoidPtr);
2021 DeclareGlobalAllocationFunction(
2022 Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
2023 Context.VoidTy, VoidPtr);
2024 if (getLangOpts().SizedDeallocation) {
2025 DeclareGlobalAllocationFunction(
2026 Context.DeclarationNames.getCXXOperatorName(OO_Delete),
2027 Context.VoidTy, VoidPtr, Context.getSizeType());
2028 DeclareGlobalAllocationFunction(
2029 Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
2030 Context.VoidTy, VoidPtr, Context.getSizeType());
2031 }
2032 }
2033
2034 /// DeclareGlobalAllocationFunction - Declares a single implicit global
2035 /// allocation function if it doesn't already exist.
DeclareGlobalAllocationFunction(DeclarationName Name,QualType Return,QualType Param1,QualType Param2,bool AddMallocAttr)2036 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
2037 QualType Return,
2038 QualType Param1, QualType Param2,
2039 bool AddMallocAttr) {
2040 DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
2041 unsigned NumParams = Param2.isNull() ? 1 : 2;
2042
2043 // Check if this function is already declared.
2044 DeclContext::lookup_result R = GlobalCtx->lookup(Name);
2045 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
2046 Alloc != AllocEnd; ++Alloc) {
2047 // Only look at non-template functions, as it is the predefined,
2048 // non-templated allocation function we are trying to declare here.
2049 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
2050 if (Func->getNumParams() == NumParams) {
2051 QualType InitialParam1Type =
2052 Context.getCanonicalType(Func->getParamDecl(0)
2053 ->getType().getUnqualifiedType());
2054 QualType InitialParam2Type =
2055 NumParams == 2
2056 ? Context.getCanonicalType(Func->getParamDecl(1)
2057 ->getType().getUnqualifiedType())
2058 : QualType();
2059 // FIXME: Do we need to check for default arguments here?
2060 if (InitialParam1Type == Param1 &&
2061 (NumParams == 1 || InitialParam2Type == Param2)) {
2062 if (AddMallocAttr && !Func->hasAttr<MallocAttr>())
2063 Func->addAttr(MallocAttr::CreateImplicit(Context));
2064 // Make the function visible to name lookup, even if we found it in
2065 // an unimported module. It either is an implicitly-declared global
2066 // allocation function, or is suppressing that function.
2067 Func->setHidden(false);
2068 return;
2069 }
2070 }
2071 }
2072 }
2073
2074 FunctionProtoType::ExtProtoInfo EPI;
2075
2076 QualType BadAllocType;
2077 bool HasBadAllocExceptionSpec
2078 = (Name.getCXXOverloadedOperator() == OO_New ||
2079 Name.getCXXOverloadedOperator() == OO_Array_New);
2080 if (HasBadAllocExceptionSpec) {
2081 if (!getLangOpts().CPlusPlus11) {
2082 BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
2083 assert(StdBadAlloc && "Must have std::bad_alloc declared");
2084 EPI.ExceptionSpecType = EST_Dynamic;
2085 EPI.NumExceptions = 1;
2086 EPI.Exceptions = &BadAllocType;
2087 }
2088 } else {
2089 EPI.ExceptionSpecType = getLangOpts().CPlusPlus11 ?
2090 EST_BasicNoexcept : EST_DynamicNone;
2091 }
2092
2093 QualType Params[] = { Param1, Param2 };
2094
2095 QualType FnType = Context.getFunctionType(
2096 Return, ArrayRef<QualType>(Params, NumParams), EPI);
2097 FunctionDecl *Alloc =
2098 FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
2099 SourceLocation(), Name,
2100 FnType, /*TInfo=*/nullptr, SC_None, false, true);
2101 Alloc->setImplicit();
2102
2103 if (AddMallocAttr)
2104 Alloc->addAttr(MallocAttr::CreateImplicit(Context));
2105
2106 ParmVarDecl *ParamDecls[2];
2107 for (unsigned I = 0; I != NumParams; ++I) {
2108 ParamDecls[I] = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
2109 SourceLocation(), nullptr,
2110 Params[I], /*TInfo=*/nullptr,
2111 SC_None, nullptr);
2112 ParamDecls[I]->setImplicit();
2113 }
2114 Alloc->setParams(ArrayRef<ParmVarDecl*>(ParamDecls, NumParams));
2115
2116 Context.getTranslationUnitDecl()->addDecl(Alloc);
2117 IdResolver.tryAddTopLevelDecl(Alloc, Name);
2118 }
2119
FindUsualDeallocationFunction(SourceLocation StartLoc,bool CanProvideSize,DeclarationName Name)2120 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
2121 bool CanProvideSize,
2122 DeclarationName Name) {
2123 DeclareGlobalNewDelete();
2124
2125 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
2126 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2127
2128 // C++ [expr.new]p20:
2129 // [...] Any non-placement deallocation function matches a
2130 // non-placement allocation function. [...]
2131 llvm::SmallVector<FunctionDecl*, 2> Matches;
2132 for (LookupResult::iterator D = FoundDelete.begin(),
2133 DEnd = FoundDelete.end();
2134 D != DEnd; ++D) {
2135 if (FunctionDecl *Fn = dyn_cast<FunctionDecl>(*D))
2136 if (isNonPlacementDeallocationFunction(*this, Fn))
2137 Matches.push_back(Fn);
2138 }
2139
2140 // C++1y [expr.delete]p?:
2141 // If the type is complete and deallocation function lookup finds both a
2142 // usual deallocation function with only a pointer parameter and a usual
2143 // deallocation function with both a pointer parameter and a size
2144 // parameter, then the selected deallocation function shall be the one
2145 // with two parameters. Otherwise, the selected deallocation function
2146 // shall be the function with one parameter.
2147 if (getLangOpts().SizedDeallocation && Matches.size() == 2) {
2148 unsigned NumArgs = CanProvideSize ? 2 : 1;
2149 if (Matches[0]->getNumParams() != NumArgs)
2150 Matches.erase(Matches.begin());
2151 else
2152 Matches.erase(Matches.begin() + 1);
2153 assert(Matches[0]->getNumParams() == NumArgs &&
2154 "found an unexpected usual deallocation function");
2155 }
2156
2157 assert(Matches.size() == 1 &&
2158 "unexpectedly have multiple usual deallocation functions");
2159 return Matches.front();
2160 }
2161
FindDeallocationFunction(SourceLocation StartLoc,CXXRecordDecl * RD,DeclarationName Name,FunctionDecl * & Operator,bool Diagnose)2162 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
2163 DeclarationName Name,
2164 FunctionDecl* &Operator, bool Diagnose) {
2165 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
2166 // Try to find operator delete/operator delete[] in class scope.
2167 LookupQualifiedName(Found, RD);
2168
2169 if (Found.isAmbiguous())
2170 return true;
2171
2172 Found.suppressDiagnostics();
2173
2174 SmallVector<DeclAccessPair,4> Matches;
2175 for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
2176 F != FEnd; ++F) {
2177 NamedDecl *ND = (*F)->getUnderlyingDecl();
2178
2179 // Ignore template operator delete members from the check for a usual
2180 // deallocation function.
2181 if (isa<FunctionTemplateDecl>(ND))
2182 continue;
2183
2184 if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
2185 Matches.push_back(F.getPair());
2186 }
2187
2188 // There's exactly one suitable operator; pick it.
2189 if (Matches.size() == 1) {
2190 Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
2191
2192 if (Operator->isDeleted()) {
2193 if (Diagnose) {
2194 Diag(StartLoc, diag::err_deleted_function_use);
2195 NoteDeletedFunction(Operator);
2196 }
2197 return true;
2198 }
2199
2200 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
2201 Matches[0], Diagnose) == AR_inaccessible)
2202 return true;
2203
2204 return false;
2205
2206 // We found multiple suitable operators; complain about the ambiguity.
2207 } else if (!Matches.empty()) {
2208 if (Diagnose) {
2209 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
2210 << Name << RD;
2211
2212 for (SmallVectorImpl<DeclAccessPair>::iterator
2213 F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
2214 Diag((*F)->getUnderlyingDecl()->getLocation(),
2215 diag::note_member_declared_here) << Name;
2216 }
2217 return true;
2218 }
2219
2220 // We did find operator delete/operator delete[] declarations, but
2221 // none of them were suitable.
2222 if (!Found.empty()) {
2223 if (Diagnose) {
2224 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
2225 << Name << RD;
2226
2227 for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
2228 F != FEnd; ++F)
2229 Diag((*F)->getUnderlyingDecl()->getLocation(),
2230 diag::note_member_declared_here) << Name;
2231 }
2232 return true;
2233 }
2234
2235 Operator = nullptr;
2236 return false;
2237 }
2238
2239 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
2240 /// @code ::delete ptr; @endcode
2241 /// or
2242 /// @code delete [] ptr; @endcode
2243 ExprResult
ActOnCXXDelete(SourceLocation StartLoc,bool UseGlobal,bool ArrayForm,Expr * ExE)2244 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
2245 bool ArrayForm, Expr *ExE) {
2246 // C++ [expr.delete]p1:
2247 // The operand shall have a pointer type, or a class type having a single
2248 // non-explicit conversion function to a pointer type. The result has type
2249 // void.
2250 //
2251 // DR599 amends "pointer type" to "pointer to object type" in both cases.
2252
2253 ExprResult Ex = ExE;
2254 FunctionDecl *OperatorDelete = nullptr;
2255 bool ArrayFormAsWritten = ArrayForm;
2256 bool UsualArrayDeleteWantsSize = false;
2257
2258 if (!Ex.get()->isTypeDependent()) {
2259 // Perform lvalue-to-rvalue cast, if needed.
2260 Ex = DefaultLvalueConversion(Ex.get());
2261 if (Ex.isInvalid())
2262 return ExprError();
2263
2264 QualType Type = Ex.get()->getType();
2265
2266 class DeleteConverter : public ContextualImplicitConverter {
2267 public:
2268 DeleteConverter() : ContextualImplicitConverter(false, true) {}
2269
2270 bool match(QualType ConvType) override {
2271 // FIXME: If we have an operator T* and an operator void*, we must pick
2272 // the operator T*.
2273 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
2274 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
2275 return true;
2276 return false;
2277 }
2278
2279 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
2280 QualType T) override {
2281 return S.Diag(Loc, diag::err_delete_operand) << T;
2282 }
2283
2284 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
2285 QualType T) override {
2286 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
2287 }
2288
2289 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
2290 QualType T,
2291 QualType ConvTy) override {
2292 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
2293 }
2294
2295 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
2296 QualType ConvTy) override {
2297 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
2298 << ConvTy;
2299 }
2300
2301 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
2302 QualType T) override {
2303 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
2304 }
2305
2306 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
2307 QualType ConvTy) override {
2308 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
2309 << ConvTy;
2310 }
2311
2312 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2313 QualType T,
2314 QualType ConvTy) override {
2315 llvm_unreachable("conversion functions are permitted");
2316 }
2317 } Converter;
2318
2319 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
2320 if (Ex.isInvalid())
2321 return ExprError();
2322 Type = Ex.get()->getType();
2323 if (!Converter.match(Type))
2324 // FIXME: PerformContextualImplicitConversion should return ExprError
2325 // itself in this case.
2326 return ExprError();
2327
2328 QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
2329 QualType PointeeElem = Context.getBaseElementType(Pointee);
2330
2331 if (unsigned AddressSpace = Pointee.getAddressSpace())
2332 return Diag(Ex.get()->getLocStart(),
2333 diag::err_address_space_qualified_delete)
2334 << Pointee.getUnqualifiedType() << AddressSpace;
2335
2336 CXXRecordDecl *PointeeRD = nullptr;
2337 if (Pointee->isVoidType() && !isSFINAEContext()) {
2338 // The C++ standard bans deleting a pointer to a non-object type, which
2339 // effectively bans deletion of "void*". However, most compilers support
2340 // this, so we treat it as a warning unless we're in a SFINAE context.
2341 Diag(StartLoc, diag::ext_delete_void_ptr_operand)
2342 << Type << Ex.get()->getSourceRange();
2343 } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
2344 return ExprError(Diag(StartLoc, diag::err_delete_operand)
2345 << Type << Ex.get()->getSourceRange());
2346 } else if (!Pointee->isDependentType()) {
2347 if (!RequireCompleteType(StartLoc, Pointee,
2348 diag::warn_delete_incomplete, Ex.get())) {
2349 if (const RecordType *RT = PointeeElem->getAs<RecordType>())
2350 PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
2351 }
2352 }
2353
2354 // C++ [expr.delete]p2:
2355 // [Note: a pointer to a const type can be the operand of a
2356 // delete-expression; it is not necessary to cast away the constness
2357 // (5.2.11) of the pointer expression before it is used as the operand
2358 // of the delete-expression. ]
2359
2360 if (Pointee->isArrayType() && !ArrayForm) {
2361 Diag(StartLoc, diag::warn_delete_array_type)
2362 << Type << Ex.get()->getSourceRange()
2363 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
2364 ArrayForm = true;
2365 }
2366
2367 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2368 ArrayForm ? OO_Array_Delete : OO_Delete);
2369
2370 if (PointeeRD) {
2371 if (!UseGlobal &&
2372 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
2373 OperatorDelete))
2374 return ExprError();
2375
2376 // If we're allocating an array of records, check whether the
2377 // usual operator delete[] has a size_t parameter.
2378 if (ArrayForm) {
2379 // If the user specifically asked to use the global allocator,
2380 // we'll need to do the lookup into the class.
2381 if (UseGlobal)
2382 UsualArrayDeleteWantsSize =
2383 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
2384
2385 // Otherwise, the usual operator delete[] should be the
2386 // function we just found.
2387 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
2388 UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
2389 }
2390
2391 if (!PointeeRD->hasIrrelevantDestructor())
2392 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2393 MarkFunctionReferenced(StartLoc,
2394 const_cast<CXXDestructorDecl*>(Dtor));
2395 if (DiagnoseUseOfDecl(Dtor, StartLoc))
2396 return ExprError();
2397 }
2398
2399 // C++ [expr.delete]p3:
2400 // In the first alternative (delete object), if the static type of the
2401 // object to be deleted is different from its dynamic type, the static
2402 // type shall be a base class of the dynamic type of the object to be
2403 // deleted and the static type shall have a virtual destructor or the
2404 // behavior is undefined.
2405 //
2406 // Note: a final class cannot be derived from, no issue there
2407 if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
2408 CXXDestructorDecl *dtor = PointeeRD->getDestructor();
2409 if (dtor && !dtor->isVirtual()) {
2410 if (PointeeRD->isAbstract()) {
2411 // If the class is abstract, we warn by default, because we're
2412 // sure the code has undefined behavior.
2413 Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
2414 << PointeeElem;
2415 } else if (!ArrayForm) {
2416 // Otherwise, if this is not an array delete, it's a bit suspect,
2417 // but not necessarily wrong.
2418 Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
2419 }
2420 }
2421 }
2422
2423 }
2424
2425 if (!OperatorDelete)
2426 // Look for a global declaration.
2427 OperatorDelete = FindUsualDeallocationFunction(
2428 StartLoc, !RequireCompleteType(StartLoc, Pointee, 0) &&
2429 (!ArrayForm || UsualArrayDeleteWantsSize ||
2430 Pointee.isDestructedType()),
2431 DeleteName);
2432
2433 MarkFunctionReferenced(StartLoc, OperatorDelete);
2434
2435 // Check access and ambiguity of operator delete and destructor.
2436 if (PointeeRD) {
2437 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2438 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
2439 PDiag(diag::err_access_dtor) << PointeeElem);
2440 }
2441 }
2442 }
2443
2444 return new (Context) CXXDeleteExpr(
2445 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
2446 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
2447 }
2448
2449 /// \brief Check the use of the given variable as a C++ condition in an if,
2450 /// while, do-while, or switch statement.
CheckConditionVariable(VarDecl * ConditionVar,SourceLocation StmtLoc,bool ConvertToBoolean)2451 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
2452 SourceLocation StmtLoc,
2453 bool ConvertToBoolean) {
2454 if (ConditionVar->isInvalidDecl())
2455 return ExprError();
2456
2457 QualType T = ConditionVar->getType();
2458
2459 // C++ [stmt.select]p2:
2460 // The declarator shall not specify a function or an array.
2461 if (T->isFunctionType())
2462 return ExprError(Diag(ConditionVar->getLocation(),
2463 diag::err_invalid_use_of_function_type)
2464 << ConditionVar->getSourceRange());
2465 else if (T->isArrayType())
2466 return ExprError(Diag(ConditionVar->getLocation(),
2467 diag::err_invalid_use_of_array_type)
2468 << ConditionVar->getSourceRange());
2469
2470 ExprResult Condition = DeclRefExpr::Create(
2471 Context, NestedNameSpecifierLoc(), SourceLocation(), ConditionVar,
2472 /*enclosing*/ false, ConditionVar->getLocation(),
2473 ConditionVar->getType().getNonReferenceType(), VK_LValue);
2474
2475 MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
2476
2477 if (ConvertToBoolean) {
2478 Condition = CheckBooleanCondition(Condition.get(), StmtLoc);
2479 if (Condition.isInvalid())
2480 return ExprError();
2481 }
2482
2483 return Condition;
2484 }
2485
2486 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
CheckCXXBooleanCondition(Expr * CondExpr)2487 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
2488 // C++ 6.4p4:
2489 // The value of a condition that is an initialized declaration in a statement
2490 // other than a switch statement is the value of the declared variable
2491 // implicitly converted to type bool. If that conversion is ill-formed, the
2492 // program is ill-formed.
2493 // The value of a condition that is an expression is the value of the
2494 // expression, implicitly converted to bool.
2495 //
2496 return PerformContextuallyConvertToBool(CondExpr);
2497 }
2498
2499 /// Helper function to determine whether this is the (deprecated) C++
2500 /// conversion from a string literal to a pointer to non-const char or
2501 /// non-const wchar_t (for narrow and wide string literals,
2502 /// respectively).
2503 bool
IsStringLiteralToNonConstPointerConversion(Expr * From,QualType ToType)2504 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
2505 // Look inside the implicit cast, if it exists.
2506 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
2507 From = Cast->getSubExpr();
2508
2509 // A string literal (2.13.4) that is not a wide string literal can
2510 // be converted to an rvalue of type "pointer to char"; a wide
2511 // string literal can be converted to an rvalue of type "pointer
2512 // to wchar_t" (C++ 4.2p2).
2513 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
2514 if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
2515 if (const BuiltinType *ToPointeeType
2516 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
2517 // This conversion is considered only when there is an
2518 // explicit appropriate pointer target type (C++ 4.2p2).
2519 if (!ToPtrType->getPointeeType().hasQualifiers()) {
2520 switch (StrLit->getKind()) {
2521 case StringLiteral::UTF8:
2522 case StringLiteral::UTF16:
2523 case StringLiteral::UTF32:
2524 // We don't allow UTF literals to be implicitly converted
2525 break;
2526 case StringLiteral::Ascii:
2527 return (ToPointeeType->getKind() == BuiltinType::Char_U ||
2528 ToPointeeType->getKind() == BuiltinType::Char_S);
2529 case StringLiteral::Wide:
2530 return ToPointeeType->isWideCharType();
2531 }
2532 }
2533 }
2534
2535 return false;
2536 }
2537
BuildCXXCastArgument(Sema & S,SourceLocation CastLoc,QualType Ty,CastKind Kind,CXXMethodDecl * Method,DeclAccessPair FoundDecl,bool HadMultipleCandidates,Expr * From)2538 static ExprResult BuildCXXCastArgument(Sema &S,
2539 SourceLocation CastLoc,
2540 QualType Ty,
2541 CastKind Kind,
2542 CXXMethodDecl *Method,
2543 DeclAccessPair FoundDecl,
2544 bool HadMultipleCandidates,
2545 Expr *From) {
2546 switch (Kind) {
2547 default: llvm_unreachable("Unhandled cast kind!");
2548 case CK_ConstructorConversion: {
2549 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
2550 SmallVector<Expr*, 8> ConstructorArgs;
2551
2552 if (S.RequireNonAbstractType(CastLoc, Ty,
2553 diag::err_allocation_of_abstract_type))
2554 return ExprError();
2555
2556 if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
2557 return ExprError();
2558
2559 S.CheckConstructorAccess(CastLoc, Constructor,
2560 InitializedEntity::InitializeTemporary(Ty),
2561 Constructor->getAccess());
2562
2563 ExprResult Result
2564 = S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
2565 ConstructorArgs, HadMultipleCandidates,
2566 /*ListInit*/ false, /*ZeroInit*/ false,
2567 CXXConstructExpr::CK_Complete, SourceRange());
2568 if (Result.isInvalid())
2569 return ExprError();
2570
2571 return S.MaybeBindToTemporary(Result.getAs<Expr>());
2572 }
2573
2574 case CK_UserDefinedConversion: {
2575 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
2576
2577 // Create an implicit call expr that calls it.
2578 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
2579 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
2580 HadMultipleCandidates);
2581 if (Result.isInvalid())
2582 return ExprError();
2583 // Record usage of conversion in an implicit cast.
2584 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
2585 CK_UserDefinedConversion, Result.get(),
2586 nullptr, Result.get()->getValueKind());
2587
2588 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
2589
2590 return S.MaybeBindToTemporary(Result.get());
2591 }
2592 }
2593 }
2594
2595 /// PerformImplicitConversion - Perform an implicit conversion of the
2596 /// expression From to the type ToType using the pre-computed implicit
2597 /// conversion sequence ICS. Returns the converted
2598 /// expression. Action is the kind of conversion we're performing,
2599 /// used in the error message.
2600 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,const ImplicitConversionSequence & ICS,AssignmentAction Action,CheckedConversionKind CCK)2601 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2602 const ImplicitConversionSequence &ICS,
2603 AssignmentAction Action,
2604 CheckedConversionKind CCK) {
2605 switch (ICS.getKind()) {
2606 case ImplicitConversionSequence::StandardConversion: {
2607 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
2608 Action, CCK);
2609 if (Res.isInvalid())
2610 return ExprError();
2611 From = Res.get();
2612 break;
2613 }
2614
2615 case ImplicitConversionSequence::UserDefinedConversion: {
2616
2617 FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
2618 CastKind CastKind;
2619 QualType BeforeToType;
2620 assert(FD && "FIXME: aggregate initialization from init list");
2621 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
2622 CastKind = CK_UserDefinedConversion;
2623
2624 // If the user-defined conversion is specified by a conversion function,
2625 // the initial standard conversion sequence converts the source type to
2626 // the implicit object parameter of the conversion function.
2627 BeforeToType = Context.getTagDeclType(Conv->getParent());
2628 } else {
2629 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
2630 CastKind = CK_ConstructorConversion;
2631 // Do no conversion if dealing with ... for the first conversion.
2632 if (!ICS.UserDefined.EllipsisConversion) {
2633 // If the user-defined conversion is specified by a constructor, the
2634 // initial standard conversion sequence converts the source type to the
2635 // type required by the argument of the constructor
2636 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
2637 }
2638 }
2639 // Watch out for ellipsis conversion.
2640 if (!ICS.UserDefined.EllipsisConversion) {
2641 ExprResult Res =
2642 PerformImplicitConversion(From, BeforeToType,
2643 ICS.UserDefined.Before, AA_Converting,
2644 CCK);
2645 if (Res.isInvalid())
2646 return ExprError();
2647 From = Res.get();
2648 }
2649
2650 ExprResult CastArg
2651 = BuildCXXCastArgument(*this,
2652 From->getLocStart(),
2653 ToType.getNonReferenceType(),
2654 CastKind, cast<CXXMethodDecl>(FD),
2655 ICS.UserDefined.FoundConversionFunction,
2656 ICS.UserDefined.HadMultipleCandidates,
2657 From);
2658
2659 if (CastArg.isInvalid())
2660 return ExprError();
2661
2662 From = CastArg.get();
2663
2664 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
2665 AA_Converting, CCK);
2666 }
2667
2668 case ImplicitConversionSequence::AmbiguousConversion:
2669 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
2670 PDiag(diag::err_typecheck_ambiguous_condition)
2671 << From->getSourceRange());
2672 return ExprError();
2673
2674 case ImplicitConversionSequence::EllipsisConversion:
2675 llvm_unreachable("Cannot perform an ellipsis conversion");
2676
2677 case ImplicitConversionSequence::BadConversion:
2678 return ExprError();
2679 }
2680
2681 // Everything went well.
2682 return From;
2683 }
2684
2685 /// PerformImplicitConversion - Perform an implicit conversion of the
2686 /// expression From to the type ToType by following the standard
2687 /// conversion sequence SCS. Returns the converted
2688 /// expression. Flavor is the context in which we're performing this
2689 /// conversion, for use in error messages.
2690 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,const StandardConversionSequence & SCS,AssignmentAction Action,CheckedConversionKind CCK)2691 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2692 const StandardConversionSequence& SCS,
2693 AssignmentAction Action,
2694 CheckedConversionKind CCK) {
2695 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
2696
2697 // Overall FIXME: we are recomputing too many types here and doing far too
2698 // much extra work. What this means is that we need to keep track of more
2699 // information that is computed when we try the implicit conversion initially,
2700 // so that we don't need to recompute anything here.
2701 QualType FromType = From->getType();
2702
2703 if (SCS.CopyConstructor) {
2704 // FIXME: When can ToType be a reference type?
2705 assert(!ToType->isReferenceType());
2706 if (SCS.Second == ICK_Derived_To_Base) {
2707 SmallVector<Expr*, 8> ConstructorArgs;
2708 if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
2709 From, /*FIXME:ConstructLoc*/SourceLocation(),
2710 ConstructorArgs))
2711 return ExprError();
2712 return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2713 ToType, SCS.CopyConstructor,
2714 ConstructorArgs,
2715 /*HadMultipleCandidates*/ false,
2716 /*ListInit*/ false, /*ZeroInit*/ false,
2717 CXXConstructExpr::CK_Complete,
2718 SourceRange());
2719 }
2720 return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2721 ToType, SCS.CopyConstructor,
2722 From, /*HadMultipleCandidates*/ false,
2723 /*ListInit*/ false, /*ZeroInit*/ false,
2724 CXXConstructExpr::CK_Complete,
2725 SourceRange());
2726 }
2727
2728 // Resolve overloaded function references.
2729 if (Context.hasSameType(FromType, Context.OverloadTy)) {
2730 DeclAccessPair Found;
2731 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
2732 true, Found);
2733 if (!Fn)
2734 return ExprError();
2735
2736 if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
2737 return ExprError();
2738
2739 From = FixOverloadedFunctionReference(From, Found, Fn);
2740 FromType = From->getType();
2741 }
2742
2743 // If we're converting to an atomic type, first convert to the corresponding
2744 // non-atomic type.
2745 QualType ToAtomicType;
2746 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
2747 ToAtomicType = ToType;
2748 ToType = ToAtomic->getValueType();
2749 }
2750
2751 // Perform the first implicit conversion.
2752 switch (SCS.First) {
2753 case ICK_Identity:
2754 // Nothing to do.
2755 break;
2756
2757 case ICK_Lvalue_To_Rvalue: {
2758 assert(From->getObjectKind() != OK_ObjCProperty);
2759 FromType = FromType.getUnqualifiedType();
2760 ExprResult FromRes = DefaultLvalueConversion(From);
2761 assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
2762 From = FromRes.get();
2763 break;
2764 }
2765
2766 case ICK_Array_To_Pointer:
2767 FromType = Context.getArrayDecayedType(FromType);
2768 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
2769 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2770 break;
2771
2772 case ICK_Function_To_Pointer:
2773 FromType = Context.getPointerType(FromType);
2774 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
2775 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2776 break;
2777
2778 default:
2779 llvm_unreachable("Improper first standard conversion");
2780 }
2781
2782 // Perform the second implicit conversion
2783 switch (SCS.Second) {
2784 case ICK_Identity:
2785 // If both sides are functions (or pointers/references to them), there could
2786 // be incompatible exception declarations.
2787 if (CheckExceptionSpecCompatibility(From, ToType))
2788 return ExprError();
2789 // Nothing else to do.
2790 break;
2791
2792 case ICK_NoReturn_Adjustment:
2793 // If both sides are functions (or pointers/references to them), there could
2794 // be incompatible exception declarations.
2795 if (CheckExceptionSpecCompatibility(From, ToType))
2796 return ExprError();
2797
2798 From = ImpCastExprToType(From, ToType, CK_NoOp,
2799 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2800 break;
2801
2802 case ICK_Integral_Promotion:
2803 case ICK_Integral_Conversion:
2804 if (ToType->isBooleanType()) {
2805 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
2806 SCS.Second == ICK_Integral_Promotion &&
2807 "only enums with fixed underlying type can promote to bool");
2808 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
2809 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2810 } else {
2811 From = ImpCastExprToType(From, ToType, CK_IntegralCast,
2812 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2813 }
2814 break;
2815
2816 case ICK_Floating_Promotion:
2817 case ICK_Floating_Conversion:
2818 From = ImpCastExprToType(From, ToType, CK_FloatingCast,
2819 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2820 break;
2821
2822 case ICK_Complex_Promotion:
2823 case ICK_Complex_Conversion: {
2824 QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2825 QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2826 CastKind CK;
2827 if (FromEl->isRealFloatingType()) {
2828 if (ToEl->isRealFloatingType())
2829 CK = CK_FloatingComplexCast;
2830 else
2831 CK = CK_FloatingComplexToIntegralComplex;
2832 } else if (ToEl->isRealFloatingType()) {
2833 CK = CK_IntegralComplexToFloatingComplex;
2834 } else {
2835 CK = CK_IntegralComplexCast;
2836 }
2837 From = ImpCastExprToType(From, ToType, CK,
2838 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2839 break;
2840 }
2841
2842 case ICK_Floating_Integral:
2843 if (ToType->isRealFloatingType())
2844 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
2845 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2846 else
2847 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
2848 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2849 break;
2850
2851 case ICK_Compatible_Conversion:
2852 From = ImpCastExprToType(From, ToType, CK_NoOp,
2853 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2854 break;
2855
2856 case ICK_Writeback_Conversion:
2857 case ICK_Pointer_Conversion: {
2858 if (SCS.IncompatibleObjC && Action != AA_Casting) {
2859 // Diagnose incompatible Objective-C conversions
2860 if (Action == AA_Initializing || Action == AA_Assigning)
2861 Diag(From->getLocStart(),
2862 diag::ext_typecheck_convert_incompatible_pointer)
2863 << ToType << From->getType() << Action
2864 << From->getSourceRange() << 0;
2865 else
2866 Diag(From->getLocStart(),
2867 diag::ext_typecheck_convert_incompatible_pointer)
2868 << From->getType() << ToType << Action
2869 << From->getSourceRange() << 0;
2870
2871 if (From->getType()->isObjCObjectPointerType() &&
2872 ToType->isObjCObjectPointerType())
2873 EmitRelatedResultTypeNote(From);
2874 }
2875 else if (getLangOpts().ObjCAutoRefCount &&
2876 !CheckObjCARCUnavailableWeakConversion(ToType,
2877 From->getType())) {
2878 if (Action == AA_Initializing)
2879 Diag(From->getLocStart(),
2880 diag::err_arc_weak_unavailable_assign);
2881 else
2882 Diag(From->getLocStart(),
2883 diag::err_arc_convesion_of_weak_unavailable)
2884 << (Action == AA_Casting) << From->getType() << ToType
2885 << From->getSourceRange();
2886 }
2887
2888 CastKind Kind = CK_Invalid;
2889 CXXCastPath BasePath;
2890 if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
2891 return ExprError();
2892
2893 // Make sure we extend blocks if necessary.
2894 // FIXME: doing this here is really ugly.
2895 if (Kind == CK_BlockPointerToObjCPointerCast) {
2896 ExprResult E = From;
2897 (void) PrepareCastToObjCObjectPointer(E);
2898 From = E.get();
2899 }
2900 if (getLangOpts().ObjCAutoRefCount)
2901 CheckObjCARCConversion(SourceRange(), ToType, From, CCK);
2902 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2903 .get();
2904 break;
2905 }
2906
2907 case ICK_Pointer_Member: {
2908 CastKind Kind = CK_Invalid;
2909 CXXCastPath BasePath;
2910 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
2911 return ExprError();
2912 if (CheckExceptionSpecCompatibility(From, ToType))
2913 return ExprError();
2914 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2915 .get();
2916 break;
2917 }
2918
2919 case ICK_Boolean_Conversion:
2920 // Perform half-to-boolean conversion via float.
2921 if (From->getType()->isHalfType()) {
2922 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
2923 FromType = Context.FloatTy;
2924 }
2925
2926 From = ImpCastExprToType(From, Context.BoolTy,
2927 ScalarTypeToBooleanCastKind(FromType),
2928 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2929 break;
2930
2931 case ICK_Derived_To_Base: {
2932 CXXCastPath BasePath;
2933 if (CheckDerivedToBaseConversion(From->getType(),
2934 ToType.getNonReferenceType(),
2935 From->getLocStart(),
2936 From->getSourceRange(),
2937 &BasePath,
2938 CStyle))
2939 return ExprError();
2940
2941 From = ImpCastExprToType(From, ToType.getNonReferenceType(),
2942 CK_DerivedToBase, From->getValueKind(),
2943 &BasePath, CCK).get();
2944 break;
2945 }
2946
2947 case ICK_Vector_Conversion:
2948 From = ImpCastExprToType(From, ToType, CK_BitCast,
2949 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2950 break;
2951
2952 case ICK_Vector_Splat:
2953 From = ImpCastExprToType(From, ToType, CK_VectorSplat,
2954 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2955 break;
2956
2957 case ICK_Complex_Real:
2958 // Case 1. x -> _Complex y
2959 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2960 QualType ElType = ToComplex->getElementType();
2961 bool isFloatingComplex = ElType->isRealFloatingType();
2962
2963 // x -> y
2964 if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2965 // do nothing
2966 } else if (From->getType()->isRealFloatingType()) {
2967 From = ImpCastExprToType(From, ElType,
2968 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
2969 } else {
2970 assert(From->getType()->isIntegerType());
2971 From = ImpCastExprToType(From, ElType,
2972 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
2973 }
2974 // y -> _Complex y
2975 From = ImpCastExprToType(From, ToType,
2976 isFloatingComplex ? CK_FloatingRealToComplex
2977 : CK_IntegralRealToComplex).get();
2978
2979 // Case 2. _Complex x -> y
2980 } else {
2981 const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
2982 assert(FromComplex);
2983
2984 QualType ElType = FromComplex->getElementType();
2985 bool isFloatingComplex = ElType->isRealFloatingType();
2986
2987 // _Complex x -> x
2988 From = ImpCastExprToType(From, ElType,
2989 isFloatingComplex ? CK_FloatingComplexToReal
2990 : CK_IntegralComplexToReal,
2991 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2992
2993 // x -> y
2994 if (Context.hasSameUnqualifiedType(ElType, ToType)) {
2995 // do nothing
2996 } else if (ToType->isRealFloatingType()) {
2997 From = ImpCastExprToType(From, ToType,
2998 isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
2999 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3000 } else {
3001 assert(ToType->isIntegerType());
3002 From = ImpCastExprToType(From, ToType,
3003 isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
3004 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3005 }
3006 }
3007 break;
3008
3009 case ICK_Block_Pointer_Conversion: {
3010 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
3011 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3012 break;
3013 }
3014
3015 case ICK_TransparentUnionConversion: {
3016 ExprResult FromRes = From;
3017 Sema::AssignConvertType ConvTy =
3018 CheckTransparentUnionArgumentConstraints(ToType, FromRes);
3019 if (FromRes.isInvalid())
3020 return ExprError();
3021 From = FromRes.get();
3022 assert ((ConvTy == Sema::Compatible) &&
3023 "Improper transparent union conversion");
3024 (void)ConvTy;
3025 break;
3026 }
3027
3028 case ICK_Zero_Event_Conversion:
3029 From = ImpCastExprToType(From, ToType,
3030 CK_ZeroToOCLEvent,
3031 From->getValueKind()).get();
3032 break;
3033
3034 case ICK_Lvalue_To_Rvalue:
3035 case ICK_Array_To_Pointer:
3036 case ICK_Function_To_Pointer:
3037 case ICK_Qualification:
3038 case ICK_Num_Conversion_Kinds:
3039 llvm_unreachable("Improper second standard conversion");
3040 }
3041
3042 switch (SCS.Third) {
3043 case ICK_Identity:
3044 // Nothing to do.
3045 break;
3046
3047 case ICK_Qualification: {
3048 // The qualification keeps the category of the inner expression, unless the
3049 // target type isn't a reference.
3050 ExprValueKind VK = ToType->isReferenceType() ?
3051 From->getValueKind() : VK_RValue;
3052 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
3053 CK_NoOp, VK, /*BasePath=*/nullptr, CCK).get();
3054
3055 if (SCS.DeprecatedStringLiteralToCharPtr &&
3056 !getLangOpts().WritableStrings) {
3057 Diag(From->getLocStart(), getLangOpts().CPlusPlus11
3058 ? diag::ext_deprecated_string_literal_conversion
3059 : diag::warn_deprecated_string_literal_conversion)
3060 << ToType.getNonReferenceType();
3061 }
3062
3063 break;
3064 }
3065
3066 default:
3067 llvm_unreachable("Improper third standard conversion");
3068 }
3069
3070 // If this conversion sequence involved a scalar -> atomic conversion, perform
3071 // that conversion now.
3072 if (!ToAtomicType.isNull()) {
3073 assert(Context.hasSameType(
3074 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
3075 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
3076 VK_RValue, nullptr, CCK).get();
3077 }
3078
3079 return From;
3080 }
3081
3082 /// \brief Check the completeness of a type in a unary type trait.
3083 ///
3084 /// If the particular type trait requires a complete type, tries to complete
3085 /// it. If completing the type fails, a diagnostic is emitted and false
3086 /// returned. If completing the type succeeds or no completion was required,
3087 /// returns true.
CheckUnaryTypeTraitTypeCompleteness(Sema & S,TypeTrait UTT,SourceLocation Loc,QualType ArgTy)3088 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
3089 SourceLocation Loc,
3090 QualType ArgTy) {
3091 // C++0x [meta.unary.prop]p3:
3092 // For all of the class templates X declared in this Clause, instantiating
3093 // that template with a template argument that is a class template
3094 // specialization may result in the implicit instantiation of the template
3095 // argument if and only if the semantics of X require that the argument
3096 // must be a complete type.
3097 // We apply this rule to all the type trait expressions used to implement
3098 // these class templates. We also try to follow any GCC documented behavior
3099 // in these expressions to ensure portability of standard libraries.
3100 switch (UTT) {
3101 default: llvm_unreachable("not a UTT");
3102 // is_complete_type somewhat obviously cannot require a complete type.
3103 case UTT_IsCompleteType:
3104 // Fall-through
3105
3106 // These traits are modeled on the type predicates in C++0x
3107 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
3108 // requiring a complete type, as whether or not they return true cannot be
3109 // impacted by the completeness of the type.
3110 case UTT_IsVoid:
3111 case UTT_IsIntegral:
3112 case UTT_IsFloatingPoint:
3113 case UTT_IsArray:
3114 case UTT_IsPointer:
3115 case UTT_IsLvalueReference:
3116 case UTT_IsRvalueReference:
3117 case UTT_IsMemberFunctionPointer:
3118 case UTT_IsMemberObjectPointer:
3119 case UTT_IsEnum:
3120 case UTT_IsUnion:
3121 case UTT_IsClass:
3122 case UTT_IsFunction:
3123 case UTT_IsReference:
3124 case UTT_IsArithmetic:
3125 case UTT_IsFundamental:
3126 case UTT_IsObject:
3127 case UTT_IsScalar:
3128 case UTT_IsCompound:
3129 case UTT_IsMemberPointer:
3130 // Fall-through
3131
3132 // These traits are modeled on type predicates in C++0x [meta.unary.prop]
3133 // which requires some of its traits to have the complete type. However,
3134 // the completeness of the type cannot impact these traits' semantics, and
3135 // so they don't require it. This matches the comments on these traits in
3136 // Table 49.
3137 case UTT_IsConst:
3138 case UTT_IsVolatile:
3139 case UTT_IsSigned:
3140 case UTT_IsUnsigned:
3141 return true;
3142
3143 // C++0x [meta.unary.prop] Table 49 requires the following traits to be
3144 // applied to a complete type.
3145 case UTT_IsTrivial:
3146 case UTT_IsTriviallyCopyable:
3147 case UTT_IsStandardLayout:
3148 case UTT_IsPOD:
3149 case UTT_IsLiteral:
3150 case UTT_IsEmpty:
3151 case UTT_IsPolymorphic:
3152 case UTT_IsAbstract:
3153 case UTT_IsInterfaceClass:
3154 case UTT_IsDestructible:
3155 case UTT_IsNothrowDestructible:
3156 // Fall-through
3157
3158 // These traits require a complete type.
3159 case UTT_IsFinal:
3160 case UTT_IsSealed:
3161
3162 // These trait expressions are designed to help implement predicates in
3163 // [meta.unary.prop] despite not being named the same. They are specified
3164 // by both GCC and the Embarcadero C++ compiler, and require the complete
3165 // type due to the overarching C++0x type predicates being implemented
3166 // requiring the complete type.
3167 case UTT_HasNothrowAssign:
3168 case UTT_HasNothrowMoveAssign:
3169 case UTT_HasNothrowConstructor:
3170 case UTT_HasNothrowCopy:
3171 case UTT_HasTrivialAssign:
3172 case UTT_HasTrivialMoveAssign:
3173 case UTT_HasTrivialDefaultConstructor:
3174 case UTT_HasTrivialMoveConstructor:
3175 case UTT_HasTrivialCopy:
3176 case UTT_HasTrivialDestructor:
3177 case UTT_HasVirtualDestructor:
3178 // Arrays of unknown bound are expressly allowed.
3179 QualType ElTy = ArgTy;
3180 if (ArgTy->isIncompleteArrayType())
3181 ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
3182
3183 // The void type is expressly allowed.
3184 if (ElTy->isVoidType())
3185 return true;
3186
3187 return !S.RequireCompleteType(
3188 Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
3189 }
3190 }
3191
HasNoThrowOperator(const RecordType * RT,OverloadedOperatorKind Op,Sema & Self,SourceLocation KeyLoc,ASTContext & C,bool (CXXRecordDecl::* HasTrivial)()const,bool (CXXRecordDecl::* HasNonTrivial)()const,bool (CXXMethodDecl::* IsDesiredOp)()const)3192 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
3193 Sema &Self, SourceLocation KeyLoc, ASTContext &C,
3194 bool (CXXRecordDecl::*HasTrivial)() const,
3195 bool (CXXRecordDecl::*HasNonTrivial)() const,
3196 bool (CXXMethodDecl::*IsDesiredOp)() const)
3197 {
3198 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3199 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
3200 return true;
3201
3202 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
3203 DeclarationNameInfo NameInfo(Name, KeyLoc);
3204 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
3205 if (Self.LookupQualifiedName(Res, RD)) {
3206 bool FoundOperator = false;
3207 Res.suppressDiagnostics();
3208 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
3209 Op != OpEnd; ++Op) {
3210 if (isa<FunctionTemplateDecl>(*Op))
3211 continue;
3212
3213 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
3214 if((Operator->*IsDesiredOp)()) {
3215 FoundOperator = true;
3216 const FunctionProtoType *CPT =
3217 Operator->getType()->getAs<FunctionProtoType>();
3218 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3219 if (!CPT || !CPT->isNothrow(C))
3220 return false;
3221 }
3222 }
3223 return FoundOperator;
3224 }
3225 return false;
3226 }
3227
EvaluateUnaryTypeTrait(Sema & Self,TypeTrait UTT,SourceLocation KeyLoc,QualType T)3228 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
3229 SourceLocation KeyLoc, QualType T) {
3230 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3231
3232 ASTContext &C = Self.Context;
3233 switch(UTT) {
3234 default: llvm_unreachable("not a UTT");
3235 // Type trait expressions corresponding to the primary type category
3236 // predicates in C++0x [meta.unary.cat].
3237 case UTT_IsVoid:
3238 return T->isVoidType();
3239 case UTT_IsIntegral:
3240 return T->isIntegralType(C);
3241 case UTT_IsFloatingPoint:
3242 return T->isFloatingType();
3243 case UTT_IsArray:
3244 return T->isArrayType();
3245 case UTT_IsPointer:
3246 return T->isPointerType();
3247 case UTT_IsLvalueReference:
3248 return T->isLValueReferenceType();
3249 case UTT_IsRvalueReference:
3250 return T->isRValueReferenceType();
3251 case UTT_IsMemberFunctionPointer:
3252 return T->isMemberFunctionPointerType();
3253 case UTT_IsMemberObjectPointer:
3254 return T->isMemberDataPointerType();
3255 case UTT_IsEnum:
3256 return T->isEnumeralType();
3257 case UTT_IsUnion:
3258 return T->isUnionType();
3259 case UTT_IsClass:
3260 return T->isClassType() || T->isStructureType() || T->isInterfaceType();
3261 case UTT_IsFunction:
3262 return T->isFunctionType();
3263
3264 // Type trait expressions which correspond to the convenient composition
3265 // predicates in C++0x [meta.unary.comp].
3266 case UTT_IsReference:
3267 return T->isReferenceType();
3268 case UTT_IsArithmetic:
3269 return T->isArithmeticType() && !T->isEnumeralType();
3270 case UTT_IsFundamental:
3271 return T->isFundamentalType();
3272 case UTT_IsObject:
3273 return T->isObjectType();
3274 case UTT_IsScalar:
3275 // Note: semantic analysis depends on Objective-C lifetime types to be
3276 // considered scalar types. However, such types do not actually behave
3277 // like scalar types at run time (since they may require retain/release
3278 // operations), so we report them as non-scalar.
3279 if (T->isObjCLifetimeType()) {
3280 switch (T.getObjCLifetime()) {
3281 case Qualifiers::OCL_None:
3282 case Qualifiers::OCL_ExplicitNone:
3283 return true;
3284
3285 case Qualifiers::OCL_Strong:
3286 case Qualifiers::OCL_Weak:
3287 case Qualifiers::OCL_Autoreleasing:
3288 return false;
3289 }
3290 }
3291
3292 return T->isScalarType();
3293 case UTT_IsCompound:
3294 return T->isCompoundType();
3295 case UTT_IsMemberPointer:
3296 return T->isMemberPointerType();
3297
3298 // Type trait expressions which correspond to the type property predicates
3299 // in C++0x [meta.unary.prop].
3300 case UTT_IsConst:
3301 return T.isConstQualified();
3302 case UTT_IsVolatile:
3303 return T.isVolatileQualified();
3304 case UTT_IsTrivial:
3305 return T.isTrivialType(Self.Context);
3306 case UTT_IsTriviallyCopyable:
3307 return T.isTriviallyCopyableType(Self.Context);
3308 case UTT_IsStandardLayout:
3309 return T->isStandardLayoutType();
3310 case UTT_IsPOD:
3311 return T.isPODType(Self.Context);
3312 case UTT_IsLiteral:
3313 return T->isLiteralType(Self.Context);
3314 case UTT_IsEmpty:
3315 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3316 return !RD->isUnion() && RD->isEmpty();
3317 return false;
3318 case UTT_IsPolymorphic:
3319 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3320 return RD->isPolymorphic();
3321 return false;
3322 case UTT_IsAbstract:
3323 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3324 return RD->isAbstract();
3325 return false;
3326 case UTT_IsInterfaceClass:
3327 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3328 return RD->isInterface();
3329 return false;
3330 case UTT_IsFinal:
3331 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3332 return RD->hasAttr<FinalAttr>();
3333 return false;
3334 case UTT_IsSealed:
3335 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3336 if (FinalAttr *FA = RD->getAttr<FinalAttr>())
3337 return FA->isSpelledAsSealed();
3338 return false;
3339 case UTT_IsSigned:
3340 return T->isSignedIntegerType();
3341 case UTT_IsUnsigned:
3342 return T->isUnsignedIntegerType();
3343
3344 // Type trait expressions which query classes regarding their construction,
3345 // destruction, and copying. Rather than being based directly on the
3346 // related type predicates in the standard, they are specified by both
3347 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
3348 // specifications.
3349 //
3350 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
3351 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3352 //
3353 // Note that these builtins do not behave as documented in g++: if a class
3354 // has both a trivial and a non-trivial special member of a particular kind,
3355 // they return false! For now, we emulate this behavior.
3356 // FIXME: This appears to be a g++ bug: more complex cases reveal that it
3357 // does not correctly compute triviality in the presence of multiple special
3358 // members of the same kind. Revisit this once the g++ bug is fixed.
3359 case UTT_HasTrivialDefaultConstructor:
3360 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3361 // If __is_pod (type) is true then the trait is true, else if type is
3362 // a cv class or union type (or array thereof) with a trivial default
3363 // constructor ([class.ctor]) then the trait is true, else it is false.
3364 if (T.isPODType(Self.Context))
3365 return true;
3366 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3367 return RD->hasTrivialDefaultConstructor() &&
3368 !RD->hasNonTrivialDefaultConstructor();
3369 return false;
3370 case UTT_HasTrivialMoveConstructor:
3371 // This trait is implemented by MSVC 2012 and needed to parse the
3372 // standard library headers. Specifically this is used as the logic
3373 // behind std::is_trivially_move_constructible (20.9.4.3).
3374 if (T.isPODType(Self.Context))
3375 return true;
3376 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3377 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
3378 return false;
3379 case UTT_HasTrivialCopy:
3380 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3381 // If __is_pod (type) is true or type is a reference type then
3382 // the trait is true, else if type is a cv class or union type
3383 // with a trivial copy constructor ([class.copy]) then the trait
3384 // is true, else it is false.
3385 if (T.isPODType(Self.Context) || T->isReferenceType())
3386 return true;
3387 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3388 return RD->hasTrivialCopyConstructor() &&
3389 !RD->hasNonTrivialCopyConstructor();
3390 return false;
3391 case UTT_HasTrivialMoveAssign:
3392 // This trait is implemented by MSVC 2012 and needed to parse the
3393 // standard library headers. Specifically it is used as the logic
3394 // behind std::is_trivially_move_assignable (20.9.4.3)
3395 if (T.isPODType(Self.Context))
3396 return true;
3397 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3398 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
3399 return false;
3400 case UTT_HasTrivialAssign:
3401 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3402 // If type is const qualified or is a reference type then the
3403 // trait is false. Otherwise if __is_pod (type) is true then the
3404 // trait is true, else if type is a cv class or union type with
3405 // a trivial copy assignment ([class.copy]) then the trait is
3406 // true, else it is false.
3407 // Note: the const and reference restrictions are interesting,
3408 // given that const and reference members don't prevent a class
3409 // from having a trivial copy assignment operator (but do cause
3410 // errors if the copy assignment operator is actually used, q.v.
3411 // [class.copy]p12).
3412
3413 if (T.isConstQualified())
3414 return false;
3415 if (T.isPODType(Self.Context))
3416 return true;
3417 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3418 return RD->hasTrivialCopyAssignment() &&
3419 !RD->hasNonTrivialCopyAssignment();
3420 return false;
3421 case UTT_IsDestructible:
3422 case UTT_IsNothrowDestructible:
3423 // FIXME: Implement UTT_IsDestructible and UTT_IsNothrowDestructible.
3424 // For now, let's fall through.
3425 case UTT_HasTrivialDestructor:
3426 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
3427 // If __is_pod (type) is true or type is a reference type
3428 // then the trait is true, else if type is a cv class or union
3429 // type (or array thereof) with a trivial destructor
3430 // ([class.dtor]) then the trait is true, else it is
3431 // false.
3432 if (T.isPODType(Self.Context) || T->isReferenceType())
3433 return true;
3434
3435 // Objective-C++ ARC: autorelease types don't require destruction.
3436 if (T->isObjCLifetimeType() &&
3437 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
3438 return true;
3439
3440 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3441 return RD->hasTrivialDestructor();
3442 return false;
3443 // TODO: Propagate nothrowness for implicitly declared special members.
3444 case UTT_HasNothrowAssign:
3445 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3446 // If type is const qualified or is a reference type then the
3447 // trait is false. Otherwise if __has_trivial_assign (type)
3448 // is true then the trait is true, else if type is a cv class
3449 // or union type with copy assignment operators that are known
3450 // not to throw an exception then the trait is true, else it is
3451 // false.
3452 if (C.getBaseElementType(T).isConstQualified())
3453 return false;
3454 if (T->isReferenceType())
3455 return false;
3456 if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
3457 return true;
3458
3459 if (const RecordType *RT = T->getAs<RecordType>())
3460 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
3461 &CXXRecordDecl::hasTrivialCopyAssignment,
3462 &CXXRecordDecl::hasNonTrivialCopyAssignment,
3463 &CXXMethodDecl::isCopyAssignmentOperator);
3464 return false;
3465 case UTT_HasNothrowMoveAssign:
3466 // This trait is implemented by MSVC 2012 and needed to parse the
3467 // standard library headers. Specifically this is used as the logic
3468 // behind std::is_nothrow_move_assignable (20.9.4.3).
3469 if (T.isPODType(Self.Context))
3470 return true;
3471
3472 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
3473 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
3474 &CXXRecordDecl::hasTrivialMoveAssignment,
3475 &CXXRecordDecl::hasNonTrivialMoveAssignment,
3476 &CXXMethodDecl::isMoveAssignmentOperator);
3477 return false;
3478 case UTT_HasNothrowCopy:
3479 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3480 // If __has_trivial_copy (type) is true then the trait is true, else
3481 // if type is a cv class or union type with copy constructors that are
3482 // known not to throw an exception then the trait is true, else it is
3483 // false.
3484 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
3485 return true;
3486 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
3487 if (RD->hasTrivialCopyConstructor() &&
3488 !RD->hasNonTrivialCopyConstructor())
3489 return true;
3490
3491 bool FoundConstructor = false;
3492 unsigned FoundTQs;
3493 DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
3494 for (DeclContext::lookup_const_iterator Con = R.begin(),
3495 ConEnd = R.end(); Con != ConEnd; ++Con) {
3496 // A template constructor is never a copy constructor.
3497 // FIXME: However, it may actually be selected at the actual overload
3498 // resolution point.
3499 if (isa<FunctionTemplateDecl>(*Con))
3500 continue;
3501 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3502 if (Constructor->isCopyConstructor(FoundTQs)) {
3503 FoundConstructor = true;
3504 const FunctionProtoType *CPT
3505 = Constructor->getType()->getAs<FunctionProtoType>();
3506 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3507 if (!CPT)
3508 return false;
3509 // TODO: check whether evaluating default arguments can throw.
3510 // For now, we'll be conservative and assume that they can throw.
3511 if (!CPT->isNothrow(Self.Context) || CPT->getNumParams() > 1)
3512 return false;
3513 }
3514 }
3515
3516 return FoundConstructor;
3517 }
3518 return false;
3519 case UTT_HasNothrowConstructor:
3520 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
3521 // If __has_trivial_constructor (type) is true then the trait is
3522 // true, else if type is a cv class or union type (or array
3523 // thereof) with a default constructor that is known not to
3524 // throw an exception then the trait is true, else it is false.
3525 if (T.isPODType(C) || T->isObjCLifetimeType())
3526 return true;
3527 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
3528 if (RD->hasTrivialDefaultConstructor() &&
3529 !RD->hasNonTrivialDefaultConstructor())
3530 return true;
3531
3532 bool FoundConstructor = false;
3533 DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
3534 for (DeclContext::lookup_const_iterator Con = R.begin(),
3535 ConEnd = R.end(); Con != ConEnd; ++Con) {
3536 // FIXME: In C++0x, a constructor template can be a default constructor.
3537 if (isa<FunctionTemplateDecl>(*Con))
3538 continue;
3539 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3540 if (Constructor->isDefaultConstructor()) {
3541 FoundConstructor = true;
3542 const FunctionProtoType *CPT
3543 = Constructor->getType()->getAs<FunctionProtoType>();
3544 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3545 if (!CPT)
3546 return false;
3547 // FIXME: check whether evaluating default arguments can throw.
3548 // For now, we'll be conservative and assume that they can throw.
3549 if (!CPT->isNothrow(Self.Context) || CPT->getNumParams() > 0)
3550 return false;
3551 }
3552 }
3553 return FoundConstructor;
3554 }
3555 return false;
3556 case UTT_HasVirtualDestructor:
3557 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3558 // If type is a class type with a virtual destructor ([class.dtor])
3559 // then the trait is true, else it is false.
3560 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3561 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
3562 return Destructor->isVirtual();
3563 return false;
3564
3565 // These type trait expressions are modeled on the specifications for the
3566 // Embarcadero C++0x type trait functions:
3567 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3568 case UTT_IsCompleteType:
3569 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
3570 // Returns True if and only if T is a complete type at the point of the
3571 // function call.
3572 return !T->isIncompleteType();
3573 }
3574 }
3575
3576 /// \brief Determine whether T has a non-trivial Objective-C lifetime in
3577 /// ARC mode.
hasNontrivialObjCLifetime(QualType T)3578 static bool hasNontrivialObjCLifetime(QualType T) {
3579 switch (T.getObjCLifetime()) {
3580 case Qualifiers::OCL_ExplicitNone:
3581 return false;
3582
3583 case Qualifiers::OCL_Strong:
3584 case Qualifiers::OCL_Weak:
3585 case Qualifiers::OCL_Autoreleasing:
3586 return true;
3587
3588 case Qualifiers::OCL_None:
3589 return T->isObjCLifetimeType();
3590 }
3591
3592 llvm_unreachable("Unknown ObjC lifetime qualifier");
3593 }
3594
3595 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
3596 QualType RhsT, SourceLocation KeyLoc);
3597
evaluateTypeTrait(Sema & S,TypeTrait Kind,SourceLocation KWLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)3598 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
3599 ArrayRef<TypeSourceInfo *> Args,
3600 SourceLocation RParenLoc) {
3601 if (Kind <= UTT_Last)
3602 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
3603
3604 if (Kind <= BTT_Last)
3605 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
3606 Args[1]->getType(), RParenLoc);
3607
3608 switch (Kind) {
3609 case clang::TT_IsConstructible:
3610 case clang::TT_IsNothrowConstructible:
3611 case clang::TT_IsTriviallyConstructible: {
3612 // C++11 [meta.unary.prop]:
3613 // is_trivially_constructible is defined as:
3614 //
3615 // is_constructible<T, Args...>::value is true and the variable
3616 // definition for is_constructible, as defined below, is known to call
3617 // no operation that is not trivial.
3618 //
3619 // The predicate condition for a template specialization
3620 // is_constructible<T, Args...> shall be satisfied if and only if the
3621 // following variable definition would be well-formed for some invented
3622 // variable t:
3623 //
3624 // T t(create<Args>()...);
3625 assert(!Args.empty());
3626
3627 // Precondition: T and all types in the parameter pack Args shall be
3628 // complete types, (possibly cv-qualified) void, or arrays of
3629 // unknown bound.
3630 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3631 QualType ArgTy = Args[I]->getType();
3632 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
3633 continue;
3634
3635 if (S.RequireCompleteType(KWLoc, ArgTy,
3636 diag::err_incomplete_type_used_in_type_trait_expr))
3637 return false;
3638 }
3639
3640 // Make sure the first argument is a complete type.
3641 if (Args[0]->getType()->isIncompleteType())
3642 return false;
3643
3644 // Make sure the first argument is not an abstract type.
3645 CXXRecordDecl *RD = Args[0]->getType()->getAsCXXRecordDecl();
3646 if (RD && RD->isAbstract())
3647 return false;
3648
3649 SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
3650 SmallVector<Expr *, 2> ArgExprs;
3651 ArgExprs.reserve(Args.size() - 1);
3652 for (unsigned I = 1, N = Args.size(); I != N; ++I) {
3653 QualType T = Args[I]->getType();
3654 if (T->isObjectType() || T->isFunctionType())
3655 T = S.Context.getRValueReferenceType(T);
3656 OpaqueArgExprs.push_back(
3657 OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
3658 T.getNonLValueExprType(S.Context),
3659 Expr::getValueKindForType(T)));
3660 ArgExprs.push_back(&OpaqueArgExprs.back());
3661 }
3662
3663 // Perform the initialization in an unevaluated context within a SFINAE
3664 // trap at translation unit scope.
3665 EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
3666 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
3667 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
3668 InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
3669 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
3670 RParenLoc));
3671 InitializationSequence Init(S, To, InitKind, ArgExprs);
3672 if (Init.Failed())
3673 return false;
3674
3675 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
3676 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3677 return false;
3678
3679 if (Kind == clang::TT_IsConstructible)
3680 return true;
3681
3682 if (Kind == clang::TT_IsNothrowConstructible)
3683 return S.canThrow(Result.get()) == CT_Cannot;
3684
3685 if (Kind == clang::TT_IsTriviallyConstructible) {
3686 // Under Objective-C ARC, if the destination has non-trivial Objective-C
3687 // lifetime, this is a non-trivial construction.
3688 if (S.getLangOpts().ObjCAutoRefCount &&
3689 hasNontrivialObjCLifetime(Args[0]->getType().getNonReferenceType()))
3690 return false;
3691
3692 // The initialization succeeded; now make sure there are no non-trivial
3693 // calls.
3694 return !Result.get()->hasNonTrivialCall(S.Context);
3695 }
3696
3697 llvm_unreachable("unhandled type trait");
3698 return false;
3699 }
3700 default: llvm_unreachable("not a TT");
3701 }
3702
3703 return false;
3704 }
3705
BuildTypeTrait(TypeTrait Kind,SourceLocation KWLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)3706 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3707 ArrayRef<TypeSourceInfo *> Args,
3708 SourceLocation RParenLoc) {
3709 QualType ResultType = Context.getLogicalOperationType();
3710
3711 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
3712 *this, Kind, KWLoc, Args[0]->getType()))
3713 return ExprError();
3714
3715 bool Dependent = false;
3716 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3717 if (Args[I]->getType()->isDependentType()) {
3718 Dependent = true;
3719 break;
3720 }
3721 }
3722
3723 bool Result = false;
3724 if (!Dependent)
3725 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
3726
3727 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
3728 RParenLoc, Result);
3729 }
3730
ActOnTypeTrait(TypeTrait Kind,SourceLocation KWLoc,ArrayRef<ParsedType> Args,SourceLocation RParenLoc)3731 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3732 ArrayRef<ParsedType> Args,
3733 SourceLocation RParenLoc) {
3734 SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
3735 ConvertedArgs.reserve(Args.size());
3736
3737 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3738 TypeSourceInfo *TInfo;
3739 QualType T = GetTypeFromParser(Args[I], &TInfo);
3740 if (!TInfo)
3741 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
3742
3743 ConvertedArgs.push_back(TInfo);
3744 }
3745
3746 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
3747 }
3748
EvaluateBinaryTypeTrait(Sema & Self,TypeTrait BTT,QualType LhsT,QualType RhsT,SourceLocation KeyLoc)3749 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
3750 QualType RhsT, SourceLocation KeyLoc) {
3751 assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
3752 "Cannot evaluate traits of dependent types");
3753
3754 switch(BTT) {
3755 case BTT_IsBaseOf: {
3756 // C++0x [meta.rel]p2
3757 // Base is a base class of Derived without regard to cv-qualifiers or
3758 // Base and Derived are not unions and name the same class type without
3759 // regard to cv-qualifiers.
3760
3761 const RecordType *lhsRecord = LhsT->getAs<RecordType>();
3762 if (!lhsRecord) return false;
3763
3764 const RecordType *rhsRecord = RhsT->getAs<RecordType>();
3765 if (!rhsRecord) return false;
3766
3767 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
3768 == (lhsRecord == rhsRecord));
3769
3770 if (lhsRecord == rhsRecord)
3771 return !lhsRecord->getDecl()->isUnion();
3772
3773 // C++0x [meta.rel]p2:
3774 // If Base and Derived are class types and are different types
3775 // (ignoring possible cv-qualifiers) then Derived shall be a
3776 // complete type.
3777 if (Self.RequireCompleteType(KeyLoc, RhsT,
3778 diag::err_incomplete_type_used_in_type_trait_expr))
3779 return false;
3780
3781 return cast<CXXRecordDecl>(rhsRecord->getDecl())
3782 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
3783 }
3784 case BTT_IsSame:
3785 return Self.Context.hasSameType(LhsT, RhsT);
3786 case BTT_TypeCompatible:
3787 return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
3788 RhsT.getUnqualifiedType());
3789 case BTT_IsConvertible:
3790 case BTT_IsConvertibleTo: {
3791 // C++0x [meta.rel]p4:
3792 // Given the following function prototype:
3793 //
3794 // template <class T>
3795 // typename add_rvalue_reference<T>::type create();
3796 //
3797 // the predicate condition for a template specialization
3798 // is_convertible<From, To> shall be satisfied if and only if
3799 // the return expression in the following code would be
3800 // well-formed, including any implicit conversions to the return
3801 // type of the function:
3802 //
3803 // To test() {
3804 // return create<From>();
3805 // }
3806 //
3807 // Access checking is performed as if in a context unrelated to To and
3808 // From. Only the validity of the immediate context of the expression
3809 // of the return-statement (including conversions to the return type)
3810 // is considered.
3811 //
3812 // We model the initialization as a copy-initialization of a temporary
3813 // of the appropriate type, which for this expression is identical to the
3814 // return statement (since NRVO doesn't apply).
3815
3816 // Functions aren't allowed to return function or array types.
3817 if (RhsT->isFunctionType() || RhsT->isArrayType())
3818 return false;
3819
3820 // A return statement in a void function must have void type.
3821 if (RhsT->isVoidType())
3822 return LhsT->isVoidType();
3823
3824 // A function definition requires a complete, non-abstract return type.
3825 if (Self.RequireCompleteType(KeyLoc, RhsT, 0) ||
3826 Self.RequireNonAbstractType(KeyLoc, RhsT, 0))
3827 return false;
3828
3829 // Compute the result of add_rvalue_reference.
3830 if (LhsT->isObjectType() || LhsT->isFunctionType())
3831 LhsT = Self.Context.getRValueReferenceType(LhsT);
3832
3833 // Build a fake source and destination for initialization.
3834 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
3835 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3836 Expr::getValueKindForType(LhsT));
3837 Expr *FromPtr = &From;
3838 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
3839 SourceLocation()));
3840
3841 // Perform the initialization in an unevaluated context within a SFINAE
3842 // trap at translation unit scope.
3843 EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3844 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3845 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3846 InitializationSequence Init(Self, To, Kind, FromPtr);
3847 if (Init.Failed())
3848 return false;
3849
3850 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
3851 return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
3852 }
3853
3854 case BTT_IsNothrowAssignable:
3855 case BTT_IsTriviallyAssignable: {
3856 // C++11 [meta.unary.prop]p3:
3857 // is_trivially_assignable is defined as:
3858 // is_assignable<T, U>::value is true and the assignment, as defined by
3859 // is_assignable, is known to call no operation that is not trivial
3860 //
3861 // is_assignable is defined as:
3862 // The expression declval<T>() = declval<U>() is well-formed when
3863 // treated as an unevaluated operand (Clause 5).
3864 //
3865 // For both, T and U shall be complete types, (possibly cv-qualified)
3866 // void, or arrays of unknown bound.
3867 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
3868 Self.RequireCompleteType(KeyLoc, LhsT,
3869 diag::err_incomplete_type_used_in_type_trait_expr))
3870 return false;
3871 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
3872 Self.RequireCompleteType(KeyLoc, RhsT,
3873 diag::err_incomplete_type_used_in_type_trait_expr))
3874 return false;
3875
3876 // cv void is never assignable.
3877 if (LhsT->isVoidType() || RhsT->isVoidType())
3878 return false;
3879
3880 // Build expressions that emulate the effect of declval<T>() and
3881 // declval<U>().
3882 if (LhsT->isObjectType() || LhsT->isFunctionType())
3883 LhsT = Self.Context.getRValueReferenceType(LhsT);
3884 if (RhsT->isObjectType() || RhsT->isFunctionType())
3885 RhsT = Self.Context.getRValueReferenceType(RhsT);
3886 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3887 Expr::getValueKindForType(LhsT));
3888 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
3889 Expr::getValueKindForType(RhsT));
3890
3891 // Attempt the assignment in an unevaluated context within a SFINAE
3892 // trap at translation unit scope.
3893 EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3894 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3895 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3896 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
3897 &Rhs);
3898 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3899 return false;
3900
3901 if (BTT == BTT_IsNothrowAssignable)
3902 return Self.canThrow(Result.get()) == CT_Cannot;
3903
3904 if (BTT == BTT_IsTriviallyAssignable) {
3905 // Under Objective-C ARC, if the destination has non-trivial Objective-C
3906 // lifetime, this is a non-trivial assignment.
3907 if (Self.getLangOpts().ObjCAutoRefCount &&
3908 hasNontrivialObjCLifetime(LhsT.getNonReferenceType()))
3909 return false;
3910
3911 return !Result.get()->hasNonTrivialCall(Self.Context);
3912 }
3913
3914 llvm_unreachable("unhandled type trait");
3915 return false;
3916 }
3917 default: llvm_unreachable("not a BTT");
3918 }
3919 llvm_unreachable("Unknown type trait or not implemented");
3920 }
3921
ActOnArrayTypeTrait(ArrayTypeTrait ATT,SourceLocation KWLoc,ParsedType Ty,Expr * DimExpr,SourceLocation RParen)3922 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
3923 SourceLocation KWLoc,
3924 ParsedType Ty,
3925 Expr* DimExpr,
3926 SourceLocation RParen) {
3927 TypeSourceInfo *TSInfo;
3928 QualType T = GetTypeFromParser(Ty, &TSInfo);
3929 if (!TSInfo)
3930 TSInfo = Context.getTrivialTypeSourceInfo(T);
3931
3932 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
3933 }
3934
EvaluateArrayTypeTrait(Sema & Self,ArrayTypeTrait ATT,QualType T,Expr * DimExpr,SourceLocation KeyLoc)3935 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
3936 QualType T, Expr *DimExpr,
3937 SourceLocation KeyLoc) {
3938 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3939
3940 switch(ATT) {
3941 case ATT_ArrayRank:
3942 if (T->isArrayType()) {
3943 unsigned Dim = 0;
3944 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3945 ++Dim;
3946 T = AT->getElementType();
3947 }
3948 return Dim;
3949 }
3950 return 0;
3951
3952 case ATT_ArrayExtent: {
3953 llvm::APSInt Value;
3954 uint64_t Dim;
3955 if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
3956 diag::err_dimension_expr_not_constant_integer,
3957 false).isInvalid())
3958 return 0;
3959 if (Value.isSigned() && Value.isNegative()) {
3960 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
3961 << DimExpr->getSourceRange();
3962 return 0;
3963 }
3964 Dim = Value.getLimitedValue();
3965
3966 if (T->isArrayType()) {
3967 unsigned D = 0;
3968 bool Matched = false;
3969 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3970 if (Dim == D) {
3971 Matched = true;
3972 break;
3973 }
3974 ++D;
3975 T = AT->getElementType();
3976 }
3977
3978 if (Matched && T->isArrayType()) {
3979 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
3980 return CAT->getSize().getLimitedValue();
3981 }
3982 }
3983 return 0;
3984 }
3985 }
3986 llvm_unreachable("Unknown type trait or not implemented");
3987 }
3988
BuildArrayTypeTrait(ArrayTypeTrait ATT,SourceLocation KWLoc,TypeSourceInfo * TSInfo,Expr * DimExpr,SourceLocation RParen)3989 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
3990 SourceLocation KWLoc,
3991 TypeSourceInfo *TSInfo,
3992 Expr* DimExpr,
3993 SourceLocation RParen) {
3994 QualType T = TSInfo->getType();
3995
3996 // FIXME: This should likely be tracked as an APInt to remove any host
3997 // assumptions about the width of size_t on the target.
3998 uint64_t Value = 0;
3999 if (!T->isDependentType())
4000 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
4001
4002 // While the specification for these traits from the Embarcadero C++
4003 // compiler's documentation says the return type is 'unsigned int', Clang
4004 // returns 'size_t'. On Windows, the primary platform for the Embarcadero
4005 // compiler, there is no difference. On several other platforms this is an
4006 // important distinction.
4007 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
4008 RParen, Context.getSizeType());
4009 }
4010
ActOnExpressionTrait(ExpressionTrait ET,SourceLocation KWLoc,Expr * Queried,SourceLocation RParen)4011 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
4012 SourceLocation KWLoc,
4013 Expr *Queried,
4014 SourceLocation RParen) {
4015 // If error parsing the expression, ignore.
4016 if (!Queried)
4017 return ExprError();
4018
4019 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
4020
4021 return Result;
4022 }
4023
EvaluateExpressionTrait(ExpressionTrait ET,Expr * E)4024 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
4025 switch (ET) {
4026 case ET_IsLValueExpr: return E->isLValue();
4027 case ET_IsRValueExpr: return E->isRValue();
4028 }
4029 llvm_unreachable("Expression trait not covered by switch");
4030 }
4031
BuildExpressionTrait(ExpressionTrait ET,SourceLocation KWLoc,Expr * Queried,SourceLocation RParen)4032 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
4033 SourceLocation KWLoc,
4034 Expr *Queried,
4035 SourceLocation RParen) {
4036 if (Queried->isTypeDependent()) {
4037 // Delay type-checking for type-dependent expressions.
4038 } else if (Queried->getType()->isPlaceholderType()) {
4039 ExprResult PE = CheckPlaceholderExpr(Queried);
4040 if (PE.isInvalid()) return ExprError();
4041 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
4042 }
4043
4044 bool Value = EvaluateExpressionTrait(ET, Queried);
4045
4046 return new (Context)
4047 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
4048 }
4049
CheckPointerToMemberOperands(ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,SourceLocation Loc,bool isIndirect)4050 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
4051 ExprValueKind &VK,
4052 SourceLocation Loc,
4053 bool isIndirect) {
4054 assert(!LHS.get()->getType()->isPlaceholderType() &&
4055 !RHS.get()->getType()->isPlaceholderType() &&
4056 "placeholders should have been weeded out by now");
4057
4058 // The LHS undergoes lvalue conversions if this is ->*.
4059 if (isIndirect) {
4060 LHS = DefaultLvalueConversion(LHS.get());
4061 if (LHS.isInvalid()) return QualType();
4062 }
4063
4064 // The RHS always undergoes lvalue conversions.
4065 RHS = DefaultLvalueConversion(RHS.get());
4066 if (RHS.isInvalid()) return QualType();
4067
4068 const char *OpSpelling = isIndirect ? "->*" : ".*";
4069 // C++ 5.5p2
4070 // The binary operator .* [p3: ->*] binds its second operand, which shall
4071 // be of type "pointer to member of T" (where T is a completely-defined
4072 // class type) [...]
4073 QualType RHSType = RHS.get()->getType();
4074 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
4075 if (!MemPtr) {
4076 Diag(Loc, diag::err_bad_memptr_rhs)
4077 << OpSpelling << RHSType << RHS.get()->getSourceRange();
4078 return QualType();
4079 }
4080
4081 QualType Class(MemPtr->getClass(), 0);
4082
4083 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
4084 // member pointer points must be completely-defined. However, there is no
4085 // reason for this semantic distinction, and the rule is not enforced by
4086 // other compilers. Therefore, we do not check this property, as it is
4087 // likely to be considered a defect.
4088
4089 // C++ 5.5p2
4090 // [...] to its first operand, which shall be of class T or of a class of
4091 // which T is an unambiguous and accessible base class. [p3: a pointer to
4092 // such a class]
4093 QualType LHSType = LHS.get()->getType();
4094 if (isIndirect) {
4095 if (const PointerType *Ptr = LHSType->getAs<PointerType>())
4096 LHSType = Ptr->getPointeeType();
4097 else {
4098 Diag(Loc, diag::err_bad_memptr_lhs)
4099 << OpSpelling << 1 << LHSType
4100 << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
4101 return QualType();
4102 }
4103 }
4104
4105 if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
4106 // If we want to check the hierarchy, we need a complete type.
4107 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
4108 OpSpelling, (int)isIndirect)) {
4109 return QualType();
4110 }
4111
4112 if (!IsDerivedFrom(LHSType, Class)) {
4113 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
4114 << (int)isIndirect << LHS.get()->getType();
4115 return QualType();
4116 }
4117
4118 CXXCastPath BasePath;
4119 if (CheckDerivedToBaseConversion(LHSType, Class, Loc,
4120 SourceRange(LHS.get()->getLocStart(),
4121 RHS.get()->getLocEnd()),
4122 &BasePath))
4123 return QualType();
4124
4125 // Cast LHS to type of use.
4126 QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
4127 ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
4128 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
4129 &BasePath);
4130 }
4131
4132 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
4133 // Diagnose use of pointer-to-member type which when used as
4134 // the functional cast in a pointer-to-member expression.
4135 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
4136 return QualType();
4137 }
4138
4139 // C++ 5.5p2
4140 // The result is an object or a function of the type specified by the
4141 // second operand.
4142 // The cv qualifiers are the union of those in the pointer and the left side,
4143 // in accordance with 5.5p5 and 5.2.5.
4144 QualType Result = MemPtr->getPointeeType();
4145 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
4146
4147 // C++0x [expr.mptr.oper]p6:
4148 // In a .* expression whose object expression is an rvalue, the program is
4149 // ill-formed if the second operand is a pointer to member function with
4150 // ref-qualifier &. In a ->* expression or in a .* expression whose object
4151 // expression is an lvalue, the program is ill-formed if the second operand
4152 // is a pointer to member function with ref-qualifier &&.
4153 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
4154 switch (Proto->getRefQualifier()) {
4155 case RQ_None:
4156 // Do nothing
4157 break;
4158
4159 case RQ_LValue:
4160 if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
4161 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
4162 << RHSType << 1 << LHS.get()->getSourceRange();
4163 break;
4164
4165 case RQ_RValue:
4166 if (isIndirect || !LHS.get()->Classify(Context).isRValue())
4167 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
4168 << RHSType << 0 << LHS.get()->getSourceRange();
4169 break;
4170 }
4171 }
4172
4173 // C++ [expr.mptr.oper]p6:
4174 // The result of a .* expression whose second operand is a pointer
4175 // to a data member is of the same value category as its
4176 // first operand. The result of a .* expression whose second
4177 // operand is a pointer to a member function is a prvalue. The
4178 // result of an ->* expression is an lvalue if its second operand
4179 // is a pointer to data member and a prvalue otherwise.
4180 if (Result->isFunctionType()) {
4181 VK = VK_RValue;
4182 return Context.BoundMemberTy;
4183 } else if (isIndirect) {
4184 VK = VK_LValue;
4185 } else {
4186 VK = LHS.get()->getValueKind();
4187 }
4188
4189 return Result;
4190 }
4191
4192 /// \brief Try to convert a type to another according to C++0x 5.16p3.
4193 ///
4194 /// This is part of the parameter validation for the ? operator. If either
4195 /// value operand is a class type, the two operands are attempted to be
4196 /// converted to each other. This function does the conversion in one direction.
4197 /// It returns true if the program is ill-formed and has already been diagnosed
4198 /// as such.
TryClassUnification(Sema & Self,Expr * From,Expr * To,SourceLocation QuestionLoc,bool & HaveConversion,QualType & ToType)4199 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
4200 SourceLocation QuestionLoc,
4201 bool &HaveConversion,
4202 QualType &ToType) {
4203 HaveConversion = false;
4204 ToType = To->getType();
4205
4206 InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
4207 SourceLocation());
4208 // C++0x 5.16p3
4209 // The process for determining whether an operand expression E1 of type T1
4210 // can be converted to match an operand expression E2 of type T2 is defined
4211 // as follows:
4212 // -- If E2 is an lvalue:
4213 bool ToIsLvalue = To->isLValue();
4214 if (ToIsLvalue) {
4215 // E1 can be converted to match E2 if E1 can be implicitly converted to
4216 // type "lvalue reference to T2", subject to the constraint that in the
4217 // conversion the reference must bind directly to E1.
4218 QualType T = Self.Context.getLValueReferenceType(ToType);
4219 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4220
4221 InitializationSequence InitSeq(Self, Entity, Kind, From);
4222 if (InitSeq.isDirectReferenceBinding()) {
4223 ToType = T;
4224 HaveConversion = true;
4225 return false;
4226 }
4227
4228 if (InitSeq.isAmbiguous())
4229 return InitSeq.Diagnose(Self, Entity, Kind, From);
4230 }
4231
4232 // -- If E2 is an rvalue, or if the conversion above cannot be done:
4233 // -- if E1 and E2 have class type, and the underlying class types are
4234 // the same or one is a base class of the other:
4235 QualType FTy = From->getType();
4236 QualType TTy = To->getType();
4237 const RecordType *FRec = FTy->getAs<RecordType>();
4238 const RecordType *TRec = TTy->getAs<RecordType>();
4239 bool FDerivedFromT = FRec && TRec && FRec != TRec &&
4240 Self.IsDerivedFrom(FTy, TTy);
4241 if (FRec && TRec &&
4242 (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
4243 // E1 can be converted to match E2 if the class of T2 is the
4244 // same type as, or a base class of, the class of T1, and
4245 // [cv2 > cv1].
4246 if (FRec == TRec || FDerivedFromT) {
4247 if (TTy.isAtLeastAsQualifiedAs(FTy)) {
4248 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4249 InitializationSequence InitSeq(Self, Entity, Kind, From);
4250 if (InitSeq) {
4251 HaveConversion = true;
4252 return false;
4253 }
4254
4255 if (InitSeq.isAmbiguous())
4256 return InitSeq.Diagnose(Self, Entity, Kind, From);
4257 }
4258 }
4259
4260 return false;
4261 }
4262
4263 // -- Otherwise: E1 can be converted to match E2 if E1 can be
4264 // implicitly converted to the type that expression E2 would have
4265 // if E2 were converted to an rvalue (or the type it has, if E2 is
4266 // an rvalue).
4267 //
4268 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
4269 // to the array-to-pointer or function-to-pointer conversions.
4270 if (!TTy->getAs<TagType>())
4271 TTy = TTy.getUnqualifiedType();
4272
4273 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4274 InitializationSequence InitSeq(Self, Entity, Kind, From);
4275 HaveConversion = !InitSeq.Failed();
4276 ToType = TTy;
4277 if (InitSeq.isAmbiguous())
4278 return InitSeq.Diagnose(Self, Entity, Kind, From);
4279
4280 return false;
4281 }
4282
4283 /// \brief Try to find a common type for two according to C++0x 5.16p5.
4284 ///
4285 /// This is part of the parameter validation for the ? operator. If either
4286 /// value operand is a class type, overload resolution is used to find a
4287 /// conversion to a common type.
FindConditionalOverload(Sema & Self,ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)4288 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
4289 SourceLocation QuestionLoc) {
4290 Expr *Args[2] = { LHS.get(), RHS.get() };
4291 OverloadCandidateSet CandidateSet(QuestionLoc,
4292 OverloadCandidateSet::CSK_Operator);
4293 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
4294 CandidateSet);
4295
4296 OverloadCandidateSet::iterator Best;
4297 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
4298 case OR_Success: {
4299 // We found a match. Perform the conversions on the arguments and move on.
4300 ExprResult LHSRes =
4301 Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
4302 Best->Conversions[0], Sema::AA_Converting);
4303 if (LHSRes.isInvalid())
4304 break;
4305 LHS = LHSRes;
4306
4307 ExprResult RHSRes =
4308 Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
4309 Best->Conversions[1], Sema::AA_Converting);
4310 if (RHSRes.isInvalid())
4311 break;
4312 RHS = RHSRes;
4313 if (Best->Function)
4314 Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
4315 return false;
4316 }
4317
4318 case OR_No_Viable_Function:
4319
4320 // Emit a better diagnostic if one of the expressions is a null pointer
4321 // constant and the other is a pointer type. In this case, the user most
4322 // likely forgot to take the address of the other expression.
4323 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4324 return true;
4325
4326 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4327 << LHS.get()->getType() << RHS.get()->getType()
4328 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4329 return true;
4330
4331 case OR_Ambiguous:
4332 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
4333 << LHS.get()->getType() << RHS.get()->getType()
4334 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4335 // FIXME: Print the possible common types by printing the return types of
4336 // the viable candidates.
4337 break;
4338
4339 case OR_Deleted:
4340 llvm_unreachable("Conditional operator has only built-in overloads");
4341 }
4342 return true;
4343 }
4344
4345 /// \brief Perform an "extended" implicit conversion as returned by
4346 /// TryClassUnification.
ConvertForConditional(Sema & Self,ExprResult & E,QualType T)4347 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
4348 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4349 InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
4350 SourceLocation());
4351 Expr *Arg = E.get();
4352 InitializationSequence InitSeq(Self, Entity, Kind, Arg);
4353 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
4354 if (Result.isInvalid())
4355 return true;
4356
4357 E = Result;
4358 return false;
4359 }
4360
4361 /// \brief Check the operands of ?: under C++ semantics.
4362 ///
4363 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
4364 /// extension. In this case, LHS == Cond. (But they're not aliases.)
CXXCheckConditionalOperands(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation QuestionLoc)4365 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
4366 ExprResult &RHS, ExprValueKind &VK,
4367 ExprObjectKind &OK,
4368 SourceLocation QuestionLoc) {
4369 // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
4370 // interface pointers.
4371
4372 // C++11 [expr.cond]p1
4373 // The first expression is contextually converted to bool.
4374 if (!Cond.get()->isTypeDependent()) {
4375 ExprResult CondRes = CheckCXXBooleanCondition(Cond.get());
4376 if (CondRes.isInvalid())
4377 return QualType();
4378 Cond = CondRes;
4379 }
4380
4381 // Assume r-value.
4382 VK = VK_RValue;
4383 OK = OK_Ordinary;
4384
4385 // Either of the arguments dependent?
4386 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
4387 return Context.DependentTy;
4388
4389 // C++11 [expr.cond]p2
4390 // If either the second or the third operand has type (cv) void, ...
4391 QualType LTy = LHS.get()->getType();
4392 QualType RTy = RHS.get()->getType();
4393 bool LVoid = LTy->isVoidType();
4394 bool RVoid = RTy->isVoidType();
4395 if (LVoid || RVoid) {
4396 // ... one of the following shall hold:
4397 // -- The second or the third operand (but not both) is a (possibly
4398 // parenthesized) throw-expression; the result is of the type
4399 // and value category of the other.
4400 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
4401 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
4402 if (LThrow != RThrow) {
4403 Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
4404 VK = NonThrow->getValueKind();
4405 // DR (no number yet): the result is a bit-field if the
4406 // non-throw-expression operand is a bit-field.
4407 OK = NonThrow->getObjectKind();
4408 return NonThrow->getType();
4409 }
4410
4411 // -- Both the second and third operands have type void; the result is of
4412 // type void and is a prvalue.
4413 if (LVoid && RVoid)
4414 return Context.VoidTy;
4415
4416 // Neither holds, error.
4417 Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
4418 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
4419 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4420 return QualType();
4421 }
4422
4423 // Neither is void.
4424
4425 // C++11 [expr.cond]p3
4426 // Otherwise, if the second and third operand have different types, and
4427 // either has (cv) class type [...] an attempt is made to convert each of
4428 // those operands to the type of the other.
4429 if (!Context.hasSameType(LTy, RTy) &&
4430 (LTy->isRecordType() || RTy->isRecordType())) {
4431 // These return true if a single direction is already ambiguous.
4432 QualType L2RType, R2LType;
4433 bool HaveL2R, HaveR2L;
4434 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
4435 return QualType();
4436 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
4437 return QualType();
4438
4439 // If both can be converted, [...] the program is ill-formed.
4440 if (HaveL2R && HaveR2L) {
4441 Diag(QuestionLoc, diag::err_conditional_ambiguous)
4442 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4443 return QualType();
4444 }
4445
4446 // If exactly one conversion is possible, that conversion is applied to
4447 // the chosen operand and the converted operands are used in place of the
4448 // original operands for the remainder of this section.
4449 if (HaveL2R) {
4450 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
4451 return QualType();
4452 LTy = LHS.get()->getType();
4453 } else if (HaveR2L) {
4454 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
4455 return QualType();
4456 RTy = RHS.get()->getType();
4457 }
4458 }
4459
4460 // C++11 [expr.cond]p3
4461 // if both are glvalues of the same value category and the same type except
4462 // for cv-qualification, an attempt is made to convert each of those
4463 // operands to the type of the other.
4464 ExprValueKind LVK = LHS.get()->getValueKind();
4465 ExprValueKind RVK = RHS.get()->getValueKind();
4466 if (!Context.hasSameType(LTy, RTy) &&
4467 Context.hasSameUnqualifiedType(LTy, RTy) &&
4468 LVK == RVK && LVK != VK_RValue) {
4469 // Since the unqualified types are reference-related and we require the
4470 // result to be as if a reference bound directly, the only conversion
4471 // we can perform is to add cv-qualifiers.
4472 Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers());
4473 Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers());
4474 if (RCVR.isStrictSupersetOf(LCVR)) {
4475 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
4476 LTy = LHS.get()->getType();
4477 }
4478 else if (LCVR.isStrictSupersetOf(RCVR)) {
4479 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
4480 RTy = RHS.get()->getType();
4481 }
4482 }
4483
4484 // C++11 [expr.cond]p4
4485 // If the second and third operands are glvalues of the same value
4486 // category and have the same type, the result is of that type and
4487 // value category and it is a bit-field if the second or the third
4488 // operand is a bit-field, or if both are bit-fields.
4489 // We only extend this to bitfields, not to the crazy other kinds of
4490 // l-values.
4491 bool Same = Context.hasSameType(LTy, RTy);
4492 if (Same && LVK == RVK && LVK != VK_RValue &&
4493 LHS.get()->isOrdinaryOrBitFieldObject() &&
4494 RHS.get()->isOrdinaryOrBitFieldObject()) {
4495 VK = LHS.get()->getValueKind();
4496 if (LHS.get()->getObjectKind() == OK_BitField ||
4497 RHS.get()->getObjectKind() == OK_BitField)
4498 OK = OK_BitField;
4499 return LTy;
4500 }
4501
4502 // C++11 [expr.cond]p5
4503 // Otherwise, the result is a prvalue. If the second and third operands
4504 // do not have the same type, and either has (cv) class type, ...
4505 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
4506 // ... overload resolution is used to determine the conversions (if any)
4507 // to be applied to the operands. If the overload resolution fails, the
4508 // program is ill-formed.
4509 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
4510 return QualType();
4511 }
4512
4513 // C++11 [expr.cond]p6
4514 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
4515 // conversions are performed on the second and third operands.
4516 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
4517 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
4518 if (LHS.isInvalid() || RHS.isInvalid())
4519 return QualType();
4520 LTy = LHS.get()->getType();
4521 RTy = RHS.get()->getType();
4522
4523 // After those conversions, one of the following shall hold:
4524 // -- The second and third operands have the same type; the result
4525 // is of that type. If the operands have class type, the result
4526 // is a prvalue temporary of the result type, which is
4527 // copy-initialized from either the second operand or the third
4528 // operand depending on the value of the first operand.
4529 if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
4530 if (LTy->isRecordType()) {
4531 // The operands have class type. Make a temporary copy.
4532 if (RequireNonAbstractType(QuestionLoc, LTy,
4533 diag::err_allocation_of_abstract_type))
4534 return QualType();
4535 InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
4536
4537 ExprResult LHSCopy = PerformCopyInitialization(Entity,
4538 SourceLocation(),
4539 LHS);
4540 if (LHSCopy.isInvalid())
4541 return QualType();
4542
4543 ExprResult RHSCopy = PerformCopyInitialization(Entity,
4544 SourceLocation(),
4545 RHS);
4546 if (RHSCopy.isInvalid())
4547 return QualType();
4548
4549 LHS = LHSCopy;
4550 RHS = RHSCopy;
4551 }
4552
4553 return LTy;
4554 }
4555
4556 // Extension: conditional operator involving vector types.
4557 if (LTy->isVectorType() || RTy->isVectorType())
4558 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
4559
4560 // -- The second and third operands have arithmetic or enumeration type;
4561 // the usual arithmetic conversions are performed to bring them to a
4562 // common type, and the result is of that type.
4563 if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
4564 UsualArithmeticConversions(LHS, RHS);
4565 if (LHS.isInvalid() || RHS.isInvalid())
4566 return QualType();
4567 return LHS.get()->getType();
4568 }
4569
4570 // -- The second and third operands have pointer type, or one has pointer
4571 // type and the other is a null pointer constant, or both are null
4572 // pointer constants, at least one of which is non-integral; pointer
4573 // conversions and qualification conversions are performed to bring them
4574 // to their composite pointer type. The result is of the composite
4575 // pointer type.
4576 // -- The second and third operands have pointer to member type, or one has
4577 // pointer to member type and the other is a null pointer constant;
4578 // pointer to member conversions and qualification conversions are
4579 // performed to bring them to a common type, whose cv-qualification
4580 // shall match the cv-qualification of either the second or the third
4581 // operand. The result is of the common type.
4582 bool NonStandardCompositeType = false;
4583 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
4584 isSFINAEContext() ? nullptr
4585 : &NonStandardCompositeType);
4586 if (!Composite.isNull()) {
4587 if (NonStandardCompositeType)
4588 Diag(QuestionLoc,
4589 diag::ext_typecheck_cond_incompatible_operands_nonstandard)
4590 << LTy << RTy << Composite
4591 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4592
4593 return Composite;
4594 }
4595
4596 // Similarly, attempt to find composite type of two objective-c pointers.
4597 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
4598 if (!Composite.isNull())
4599 return Composite;
4600
4601 // Check if we are using a null with a non-pointer type.
4602 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4603 return QualType();
4604
4605 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4606 << LHS.get()->getType() << RHS.get()->getType()
4607 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4608 return QualType();
4609 }
4610
4611 /// \brief Find a merged pointer type and convert the two expressions to it.
4612 ///
4613 /// This finds the composite pointer type (or member pointer type) for @p E1
4614 /// and @p E2 according to C++11 5.9p2. It converts both expressions to this
4615 /// type and returns it.
4616 /// It does not emit diagnostics.
4617 ///
4618 /// \param Loc The location of the operator requiring these two expressions to
4619 /// be converted to the composite pointer type.
4620 ///
4621 /// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
4622 /// a non-standard (but still sane) composite type to which both expressions
4623 /// can be converted. When such a type is chosen, \c *NonStandardCompositeType
4624 /// will be set true.
FindCompositePointerType(SourceLocation Loc,Expr * & E1,Expr * & E2,bool * NonStandardCompositeType)4625 QualType Sema::FindCompositePointerType(SourceLocation Loc,
4626 Expr *&E1, Expr *&E2,
4627 bool *NonStandardCompositeType) {
4628 if (NonStandardCompositeType)
4629 *NonStandardCompositeType = false;
4630
4631 assert(getLangOpts().CPlusPlus && "This function assumes C++");
4632 QualType T1 = E1->getType(), T2 = E2->getType();
4633
4634 // C++11 5.9p2
4635 // Pointer conversions and qualification conversions are performed on
4636 // pointer operands to bring them to their composite pointer type. If
4637 // one operand is a null pointer constant, the composite pointer type is
4638 // std::nullptr_t if the other operand is also a null pointer constant or,
4639 // if the other operand is a pointer, the type of the other operand.
4640 if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
4641 !T2->isAnyPointerType() && !T2->isMemberPointerType()) {
4642 if (T1->isNullPtrType() &&
4643 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4644 E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get();
4645 return T1;
4646 }
4647 if (T2->isNullPtrType() &&
4648 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4649 E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get();
4650 return T2;
4651 }
4652 return QualType();
4653 }
4654
4655 if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4656 if (T2->isMemberPointerType())
4657 E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).get();
4658 else
4659 E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get();
4660 return T2;
4661 }
4662 if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4663 if (T1->isMemberPointerType())
4664 E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).get();
4665 else
4666 E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get();
4667 return T1;
4668 }
4669
4670 // Now both have to be pointers or member pointers.
4671 if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
4672 (!T2->isPointerType() && !T2->isMemberPointerType()))
4673 return QualType();
4674
4675 // Otherwise, of one of the operands has type "pointer to cv1 void," then
4676 // the other has type "pointer to cv2 T" and the composite pointer type is
4677 // "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
4678 // Otherwise, the composite pointer type is a pointer type similar to the
4679 // type of one of the operands, with a cv-qualification signature that is
4680 // the union of the cv-qualification signatures of the operand types.
4681 // In practice, the first part here is redundant; it's subsumed by the second.
4682 // What we do here is, we build the two possible composite types, and try the
4683 // conversions in both directions. If only one works, or if the two composite
4684 // types are the same, we have succeeded.
4685 // FIXME: extended qualifiers?
4686 typedef SmallVector<unsigned, 4> QualifierVector;
4687 QualifierVector QualifierUnion;
4688 typedef SmallVector<std::pair<const Type *, const Type *>, 4>
4689 ContainingClassVector;
4690 ContainingClassVector MemberOfClass;
4691 QualType Composite1 = Context.getCanonicalType(T1),
4692 Composite2 = Context.getCanonicalType(T2);
4693 unsigned NeedConstBefore = 0;
4694 do {
4695 const PointerType *Ptr1, *Ptr2;
4696 if ((Ptr1 = Composite1->getAs<PointerType>()) &&
4697 (Ptr2 = Composite2->getAs<PointerType>())) {
4698 Composite1 = Ptr1->getPointeeType();
4699 Composite2 = Ptr2->getPointeeType();
4700
4701 // If we're allowed to create a non-standard composite type, keep track
4702 // of where we need to fill in additional 'const' qualifiers.
4703 if (NonStandardCompositeType &&
4704 Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4705 NeedConstBefore = QualifierUnion.size();
4706
4707 QualifierUnion.push_back(
4708 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4709 MemberOfClass.push_back(std::make_pair(nullptr, nullptr));
4710 continue;
4711 }
4712
4713 const MemberPointerType *MemPtr1, *MemPtr2;
4714 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
4715 (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
4716 Composite1 = MemPtr1->getPointeeType();
4717 Composite2 = MemPtr2->getPointeeType();
4718
4719 // If we're allowed to create a non-standard composite type, keep track
4720 // of where we need to fill in additional 'const' qualifiers.
4721 if (NonStandardCompositeType &&
4722 Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4723 NeedConstBefore = QualifierUnion.size();
4724
4725 QualifierUnion.push_back(
4726 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4727 MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
4728 MemPtr2->getClass()));
4729 continue;
4730 }
4731
4732 // FIXME: block pointer types?
4733
4734 // Cannot unwrap any more types.
4735 break;
4736 } while (true);
4737
4738 if (NeedConstBefore && NonStandardCompositeType) {
4739 // Extension: Add 'const' to qualifiers that come before the first qualifier
4740 // mismatch, so that our (non-standard!) composite type meets the
4741 // requirements of C++ [conv.qual]p4 bullet 3.
4742 for (unsigned I = 0; I != NeedConstBefore; ++I) {
4743 if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
4744 QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
4745 *NonStandardCompositeType = true;
4746 }
4747 }
4748 }
4749
4750 // Rewrap the composites as pointers or member pointers with the union CVRs.
4751 ContainingClassVector::reverse_iterator MOC
4752 = MemberOfClass.rbegin();
4753 for (QualifierVector::reverse_iterator
4754 I = QualifierUnion.rbegin(),
4755 E = QualifierUnion.rend();
4756 I != E; (void)++I, ++MOC) {
4757 Qualifiers Quals = Qualifiers::fromCVRMask(*I);
4758 if (MOC->first && MOC->second) {
4759 // Rebuild member pointer type
4760 Composite1 = Context.getMemberPointerType(
4761 Context.getQualifiedType(Composite1, Quals),
4762 MOC->first);
4763 Composite2 = Context.getMemberPointerType(
4764 Context.getQualifiedType(Composite2, Quals),
4765 MOC->second);
4766 } else {
4767 // Rebuild pointer type
4768 Composite1
4769 = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
4770 Composite2
4771 = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
4772 }
4773 }
4774
4775 // Try to convert to the first composite pointer type.
4776 InitializedEntity Entity1
4777 = InitializedEntity::InitializeTemporary(Composite1);
4778 InitializationKind Kind
4779 = InitializationKind::CreateCopy(Loc, SourceLocation());
4780 InitializationSequence E1ToC1(*this, Entity1, Kind, E1);
4781 InitializationSequence E2ToC1(*this, Entity1, Kind, E2);
4782
4783 if (E1ToC1 && E2ToC1) {
4784 // Conversion to Composite1 is viable.
4785 if (!Context.hasSameType(Composite1, Composite2)) {
4786 // Composite2 is a different type from Composite1. Check whether
4787 // Composite2 is also viable.
4788 InitializedEntity Entity2
4789 = InitializedEntity::InitializeTemporary(Composite2);
4790 InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
4791 InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
4792 if (E1ToC2 && E2ToC2) {
4793 // Both Composite1 and Composite2 are viable and are different;
4794 // this is an ambiguity.
4795 return QualType();
4796 }
4797 }
4798
4799 // Convert E1 to Composite1
4800 ExprResult E1Result
4801 = E1ToC1.Perform(*this, Entity1, Kind, E1);
4802 if (E1Result.isInvalid())
4803 return QualType();
4804 E1 = E1Result.getAs<Expr>();
4805
4806 // Convert E2 to Composite1
4807 ExprResult E2Result
4808 = E2ToC1.Perform(*this, Entity1, Kind, E2);
4809 if (E2Result.isInvalid())
4810 return QualType();
4811 E2 = E2Result.getAs<Expr>();
4812
4813 return Composite1;
4814 }
4815
4816 // Check whether Composite2 is viable.
4817 InitializedEntity Entity2
4818 = InitializedEntity::InitializeTemporary(Composite2);
4819 InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
4820 InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
4821 if (!E1ToC2 || !E2ToC2)
4822 return QualType();
4823
4824 // Convert E1 to Composite2
4825 ExprResult E1Result
4826 = E1ToC2.Perform(*this, Entity2, Kind, E1);
4827 if (E1Result.isInvalid())
4828 return QualType();
4829 E1 = E1Result.getAs<Expr>();
4830
4831 // Convert E2 to Composite2
4832 ExprResult E2Result
4833 = E2ToC2.Perform(*this, Entity2, Kind, E2);
4834 if (E2Result.isInvalid())
4835 return QualType();
4836 E2 = E2Result.getAs<Expr>();
4837
4838 return Composite2;
4839 }
4840
MaybeBindToTemporary(Expr * E)4841 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
4842 if (!E)
4843 return ExprError();
4844
4845 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
4846
4847 // If the result is a glvalue, we shouldn't bind it.
4848 if (!E->isRValue())
4849 return E;
4850
4851 // In ARC, calls that return a retainable type can return retained,
4852 // in which case we have to insert a consuming cast.
4853 if (getLangOpts().ObjCAutoRefCount &&
4854 E->getType()->isObjCRetainableType()) {
4855
4856 bool ReturnsRetained;
4857
4858 // For actual calls, we compute this by examining the type of the
4859 // called value.
4860 if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
4861 Expr *Callee = Call->getCallee()->IgnoreParens();
4862 QualType T = Callee->getType();
4863
4864 if (T == Context.BoundMemberTy) {
4865 // Handle pointer-to-members.
4866 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
4867 T = BinOp->getRHS()->getType();
4868 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
4869 T = Mem->getMemberDecl()->getType();
4870 }
4871
4872 if (const PointerType *Ptr = T->getAs<PointerType>())
4873 T = Ptr->getPointeeType();
4874 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
4875 T = Ptr->getPointeeType();
4876 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
4877 T = MemPtr->getPointeeType();
4878
4879 const FunctionType *FTy = T->getAs<FunctionType>();
4880 assert(FTy && "call to value not of function type?");
4881 ReturnsRetained = FTy->getExtInfo().getProducesResult();
4882
4883 // ActOnStmtExpr arranges things so that StmtExprs of retainable
4884 // type always produce a +1 object.
4885 } else if (isa<StmtExpr>(E)) {
4886 ReturnsRetained = true;
4887
4888 // We hit this case with the lambda conversion-to-block optimization;
4889 // we don't want any extra casts here.
4890 } else if (isa<CastExpr>(E) &&
4891 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
4892 return E;
4893
4894 // For message sends and property references, we try to find an
4895 // actual method. FIXME: we should infer retention by selector in
4896 // cases where we don't have an actual method.
4897 } else {
4898 ObjCMethodDecl *D = nullptr;
4899 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
4900 D = Send->getMethodDecl();
4901 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
4902 D = BoxedExpr->getBoxingMethod();
4903 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
4904 D = ArrayLit->getArrayWithObjectsMethod();
4905 } else if (ObjCDictionaryLiteral *DictLit
4906 = dyn_cast<ObjCDictionaryLiteral>(E)) {
4907 D = DictLit->getDictWithObjectsMethod();
4908 }
4909
4910 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
4911
4912 // Don't do reclaims on performSelector calls; despite their
4913 // return type, the invoked method doesn't necessarily actually
4914 // return an object.
4915 if (!ReturnsRetained &&
4916 D && D->getMethodFamily() == OMF_performSelector)
4917 return E;
4918 }
4919
4920 // Don't reclaim an object of Class type.
4921 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
4922 return E;
4923
4924 ExprNeedsCleanups = true;
4925
4926 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
4927 : CK_ARCReclaimReturnedObject);
4928 return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
4929 VK_RValue);
4930 }
4931
4932 if (!getLangOpts().CPlusPlus)
4933 return E;
4934
4935 // Search for the base element type (cf. ASTContext::getBaseElementType) with
4936 // a fast path for the common case that the type is directly a RecordType.
4937 const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
4938 const RecordType *RT = nullptr;
4939 while (!RT) {
4940 switch (T->getTypeClass()) {
4941 case Type::Record:
4942 RT = cast<RecordType>(T);
4943 break;
4944 case Type::ConstantArray:
4945 case Type::IncompleteArray:
4946 case Type::VariableArray:
4947 case Type::DependentSizedArray:
4948 T = cast<ArrayType>(T)->getElementType().getTypePtr();
4949 break;
4950 default:
4951 return E;
4952 }
4953 }
4954
4955 // That should be enough to guarantee that this type is complete, if we're
4956 // not processing a decltype expression.
4957 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4958 if (RD->isInvalidDecl() || RD->isDependentContext())
4959 return E;
4960
4961 bool IsDecltype = ExprEvalContexts.back().IsDecltype;
4962 CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
4963
4964 if (Destructor) {
4965 MarkFunctionReferenced(E->getExprLoc(), Destructor);
4966 CheckDestructorAccess(E->getExprLoc(), Destructor,
4967 PDiag(diag::err_access_dtor_temp)
4968 << E->getType());
4969 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
4970 return ExprError();
4971
4972 // If destructor is trivial, we can avoid the extra copy.
4973 if (Destructor->isTrivial())
4974 return E;
4975
4976 // We need a cleanup, but we don't need to remember the temporary.
4977 ExprNeedsCleanups = true;
4978 }
4979
4980 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
4981 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
4982
4983 if (IsDecltype)
4984 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
4985
4986 return Bind;
4987 }
4988
4989 ExprResult
MaybeCreateExprWithCleanups(ExprResult SubExpr)4990 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
4991 if (SubExpr.isInvalid())
4992 return ExprError();
4993
4994 return MaybeCreateExprWithCleanups(SubExpr.get());
4995 }
4996
MaybeCreateExprWithCleanups(Expr * SubExpr)4997 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
4998 assert(SubExpr && "subexpression can't be null!");
4999
5000 CleanupVarDeclMarking();
5001
5002 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
5003 assert(ExprCleanupObjects.size() >= FirstCleanup);
5004 assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
5005 if (!ExprNeedsCleanups)
5006 return SubExpr;
5007
5008 ArrayRef<ExprWithCleanups::CleanupObject> Cleanups
5009 = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
5010 ExprCleanupObjects.size() - FirstCleanup);
5011
5012 Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
5013 DiscardCleanupsInEvaluationContext();
5014
5015 return E;
5016 }
5017
MaybeCreateStmtWithCleanups(Stmt * SubStmt)5018 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
5019 assert(SubStmt && "sub-statement can't be null!");
5020
5021 CleanupVarDeclMarking();
5022
5023 if (!ExprNeedsCleanups)
5024 return SubStmt;
5025
5026 // FIXME: In order to attach the temporaries, wrap the statement into
5027 // a StmtExpr; currently this is only used for asm statements.
5028 // This is hacky, either create a new CXXStmtWithTemporaries statement or
5029 // a new AsmStmtWithTemporaries.
5030 CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, SubStmt,
5031 SourceLocation(),
5032 SourceLocation());
5033 Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
5034 SourceLocation());
5035 return MaybeCreateExprWithCleanups(E);
5036 }
5037
5038 /// Process the expression contained within a decltype. For such expressions,
5039 /// certain semantic checks on temporaries are delayed until this point, and
5040 /// are omitted for the 'topmost' call in the decltype expression. If the
5041 /// topmost call bound a temporary, strip that temporary off the expression.
ActOnDecltypeExpression(Expr * E)5042 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
5043 assert(ExprEvalContexts.back().IsDecltype && "not in a decltype expression");
5044
5045 // C++11 [expr.call]p11:
5046 // If a function call is a prvalue of object type,
5047 // -- if the function call is either
5048 // -- the operand of a decltype-specifier, or
5049 // -- the right operand of a comma operator that is the operand of a
5050 // decltype-specifier,
5051 // a temporary object is not introduced for the prvalue.
5052
5053 // Recursively rebuild ParenExprs and comma expressions to strip out the
5054 // outermost CXXBindTemporaryExpr, if any.
5055 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
5056 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
5057 if (SubExpr.isInvalid())
5058 return ExprError();
5059 if (SubExpr.get() == PE->getSubExpr())
5060 return E;
5061 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
5062 }
5063 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5064 if (BO->getOpcode() == BO_Comma) {
5065 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
5066 if (RHS.isInvalid())
5067 return ExprError();
5068 if (RHS.get() == BO->getRHS())
5069 return E;
5070 return new (Context) BinaryOperator(
5071 BO->getLHS(), RHS.get(), BO_Comma, BO->getType(), BO->getValueKind(),
5072 BO->getObjectKind(), BO->getOperatorLoc(), BO->isFPContractable());
5073 }
5074 }
5075
5076 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
5077 CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
5078 : nullptr;
5079 if (TopCall)
5080 E = TopCall;
5081 else
5082 TopBind = nullptr;
5083
5084 // Disable the special decltype handling now.
5085 ExprEvalContexts.back().IsDecltype = false;
5086
5087 // In MS mode, don't perform any extra checking of call return types within a
5088 // decltype expression.
5089 if (getLangOpts().MSVCCompat)
5090 return E;
5091
5092 // Perform the semantic checks we delayed until this point.
5093 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
5094 I != N; ++I) {
5095 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
5096 if (Call == TopCall)
5097 continue;
5098
5099 if (CheckCallReturnType(Call->getCallReturnType(),
5100 Call->getLocStart(),
5101 Call, Call->getDirectCallee()))
5102 return ExprError();
5103 }
5104
5105 // Now all relevant types are complete, check the destructors are accessible
5106 // and non-deleted, and annotate them on the temporaries.
5107 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
5108 I != N; ++I) {
5109 CXXBindTemporaryExpr *Bind =
5110 ExprEvalContexts.back().DelayedDecltypeBinds[I];
5111 if (Bind == TopBind)
5112 continue;
5113
5114 CXXTemporary *Temp = Bind->getTemporary();
5115
5116 CXXRecordDecl *RD =
5117 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
5118 CXXDestructorDecl *Destructor = LookupDestructor(RD);
5119 Temp->setDestructor(Destructor);
5120
5121 MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
5122 CheckDestructorAccess(Bind->getExprLoc(), Destructor,
5123 PDiag(diag::err_access_dtor_temp)
5124 << Bind->getType());
5125 if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
5126 return ExprError();
5127
5128 // We need a cleanup, but we don't need to remember the temporary.
5129 ExprNeedsCleanups = true;
5130 }
5131
5132 // Possibly strip off the top CXXBindTemporaryExpr.
5133 return E;
5134 }
5135
5136 /// Note a set of 'operator->' functions that were used for a member access.
noteOperatorArrows(Sema & S,ArrayRef<FunctionDecl * > OperatorArrows)5137 static void noteOperatorArrows(Sema &S,
5138 ArrayRef<FunctionDecl *> OperatorArrows) {
5139 unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
5140 // FIXME: Make this configurable?
5141 unsigned Limit = 9;
5142 if (OperatorArrows.size() > Limit) {
5143 // Produce Limit-1 normal notes and one 'skipping' note.
5144 SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
5145 SkipCount = OperatorArrows.size() - (Limit - 1);
5146 }
5147
5148 for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
5149 if (I == SkipStart) {
5150 S.Diag(OperatorArrows[I]->getLocation(),
5151 diag::note_operator_arrows_suppressed)
5152 << SkipCount;
5153 I += SkipCount;
5154 } else {
5155 S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
5156 << OperatorArrows[I]->getCallResultType();
5157 ++I;
5158 }
5159 }
5160 }
5161
5162 ExprResult
ActOnStartCXXMemberReference(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,ParsedType & ObjectType,bool & MayBePseudoDestructor)5163 Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
5164 tok::TokenKind OpKind, ParsedType &ObjectType,
5165 bool &MayBePseudoDestructor) {
5166 // Since this might be a postfix expression, get rid of ParenListExprs.
5167 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
5168 if (Result.isInvalid()) return ExprError();
5169 Base = Result.get();
5170
5171 Result = CheckPlaceholderExpr(Base);
5172 if (Result.isInvalid()) return ExprError();
5173 Base = Result.get();
5174
5175 QualType BaseType = Base->getType();
5176 MayBePseudoDestructor = false;
5177 if (BaseType->isDependentType()) {
5178 // If we have a pointer to a dependent type and are using the -> operator,
5179 // the object type is the type that the pointer points to. We might still
5180 // have enough information about that type to do something useful.
5181 if (OpKind == tok::arrow)
5182 if (const PointerType *Ptr = BaseType->getAs<PointerType>())
5183 BaseType = Ptr->getPointeeType();
5184
5185 ObjectType = ParsedType::make(BaseType);
5186 MayBePseudoDestructor = true;
5187 return Base;
5188 }
5189
5190 // C++ [over.match.oper]p8:
5191 // [...] When operator->returns, the operator-> is applied to the value
5192 // returned, with the original second operand.
5193 if (OpKind == tok::arrow) {
5194 QualType StartingType = BaseType;
5195 bool NoArrowOperatorFound = false;
5196 bool FirstIteration = true;
5197 FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
5198 // The set of types we've considered so far.
5199 llvm::SmallPtrSet<CanQualType,8> CTypes;
5200 SmallVector<FunctionDecl*, 8> OperatorArrows;
5201 CTypes.insert(Context.getCanonicalType(BaseType));
5202
5203 while (BaseType->isRecordType()) {
5204 if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
5205 Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
5206 << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
5207 noteOperatorArrows(*this, OperatorArrows);
5208 Diag(OpLoc, diag::note_operator_arrow_depth)
5209 << getLangOpts().ArrowDepth;
5210 return ExprError();
5211 }
5212
5213 Result = BuildOverloadedArrowExpr(
5214 S, Base, OpLoc,
5215 // When in a template specialization and on the first loop iteration,
5216 // potentially give the default diagnostic (with the fixit in a
5217 // separate note) instead of having the error reported back to here
5218 // and giving a diagnostic with a fixit attached to the error itself.
5219 (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
5220 ? nullptr
5221 : &NoArrowOperatorFound);
5222 if (Result.isInvalid()) {
5223 if (NoArrowOperatorFound) {
5224 if (FirstIteration) {
5225 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
5226 << BaseType << 1 << Base->getSourceRange()
5227 << FixItHint::CreateReplacement(OpLoc, ".");
5228 OpKind = tok::period;
5229 break;
5230 }
5231 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
5232 << BaseType << Base->getSourceRange();
5233 CallExpr *CE = dyn_cast<CallExpr>(Base);
5234 if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
5235 Diag(CD->getLocStart(),
5236 diag::note_member_reference_arrow_from_operator_arrow);
5237 }
5238 }
5239 return ExprError();
5240 }
5241 Base = Result.get();
5242 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
5243 OperatorArrows.push_back(OpCall->getDirectCallee());
5244 BaseType = Base->getType();
5245 CanQualType CBaseType = Context.getCanonicalType(BaseType);
5246 if (!CTypes.insert(CBaseType)) {
5247 Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
5248 noteOperatorArrows(*this, OperatorArrows);
5249 return ExprError();
5250 }
5251 FirstIteration = false;
5252 }
5253
5254 if (OpKind == tok::arrow &&
5255 (BaseType->isPointerType() || BaseType->isObjCObjectPointerType()))
5256 BaseType = BaseType->getPointeeType();
5257 }
5258
5259 // Objective-C properties allow "." access on Objective-C pointer types,
5260 // so adjust the base type to the object type itself.
5261 if (BaseType->isObjCObjectPointerType())
5262 BaseType = BaseType->getPointeeType();
5263
5264 // C++ [basic.lookup.classref]p2:
5265 // [...] If the type of the object expression is of pointer to scalar
5266 // type, the unqualified-id is looked up in the context of the complete
5267 // postfix-expression.
5268 //
5269 // This also indicates that we could be parsing a pseudo-destructor-name.
5270 // Note that Objective-C class and object types can be pseudo-destructor
5271 // expressions or normal member (ivar or property) access expressions.
5272 if (BaseType->isObjCObjectOrInterfaceType()) {
5273 MayBePseudoDestructor = true;
5274 } else if (!BaseType->isRecordType()) {
5275 ObjectType = ParsedType();
5276 MayBePseudoDestructor = true;
5277 return Base;
5278 }
5279
5280 // The object type must be complete (or dependent), or
5281 // C++11 [expr.prim.general]p3:
5282 // Unlike the object expression in other contexts, *this is not required to
5283 // be of complete type for purposes of class member access (5.2.5) outside
5284 // the member function body.
5285 if (!BaseType->isDependentType() &&
5286 !isThisOutsideMemberFunctionBody(BaseType) &&
5287 RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
5288 return ExprError();
5289
5290 // C++ [basic.lookup.classref]p2:
5291 // If the id-expression in a class member access (5.2.5) is an
5292 // unqualified-id, and the type of the object expression is of a class
5293 // type C (or of pointer to a class type C), the unqualified-id is looked
5294 // up in the scope of class C. [...]
5295 ObjectType = ParsedType::make(BaseType);
5296 return Base;
5297 }
5298
DiagnoseDtorReference(SourceLocation NameLoc,Expr * MemExpr)5299 ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
5300 Expr *MemExpr) {
5301 SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
5302 Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
5303 << isa<CXXPseudoDestructorExpr>(MemExpr)
5304 << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
5305
5306 return ActOnCallExpr(/*Scope*/ nullptr,
5307 MemExpr,
5308 /*LPLoc*/ ExpectedLParenLoc,
5309 None,
5310 /*RPLoc*/ ExpectedLParenLoc);
5311 }
5312
CheckArrow(Sema & S,QualType & ObjectType,Expr * & Base,tok::TokenKind & OpKind,SourceLocation OpLoc)5313 static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
5314 tok::TokenKind& OpKind, SourceLocation OpLoc) {
5315 if (Base->hasPlaceholderType()) {
5316 ExprResult result = S.CheckPlaceholderExpr(Base);
5317 if (result.isInvalid()) return true;
5318 Base = result.get();
5319 }
5320 ObjectType = Base->getType();
5321
5322 // C++ [expr.pseudo]p2:
5323 // The left-hand side of the dot operator shall be of scalar type. The
5324 // left-hand side of the arrow operator shall be of pointer to scalar type.
5325 // This scalar type is the object type.
5326 // Note that this is rather different from the normal handling for the
5327 // arrow operator.
5328 if (OpKind == tok::arrow) {
5329 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
5330 ObjectType = Ptr->getPointeeType();
5331 } else if (!Base->isTypeDependent()) {
5332 // The user wrote "p->" when she probably meant "p."; fix it.
5333 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
5334 << ObjectType << true
5335 << FixItHint::CreateReplacement(OpLoc, ".");
5336 if (S.isSFINAEContext())
5337 return true;
5338
5339 OpKind = tok::period;
5340 }
5341 }
5342
5343 return false;
5344 }
5345
BuildPseudoDestructorExpr(Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,const CXXScopeSpec & SS,TypeSourceInfo * ScopeTypeInfo,SourceLocation CCLoc,SourceLocation TildeLoc,PseudoDestructorTypeStorage Destructed,bool HasTrailingLParen)5346 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
5347 SourceLocation OpLoc,
5348 tok::TokenKind OpKind,
5349 const CXXScopeSpec &SS,
5350 TypeSourceInfo *ScopeTypeInfo,
5351 SourceLocation CCLoc,
5352 SourceLocation TildeLoc,
5353 PseudoDestructorTypeStorage Destructed,
5354 bool HasTrailingLParen) {
5355 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
5356
5357 QualType ObjectType;
5358 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5359 return ExprError();
5360
5361 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
5362 !ObjectType->isVectorType()) {
5363 if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
5364 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
5365 else {
5366 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
5367 << ObjectType << Base->getSourceRange();
5368 return ExprError();
5369 }
5370 }
5371
5372 // C++ [expr.pseudo]p2:
5373 // [...] The cv-unqualified versions of the object type and of the type
5374 // designated by the pseudo-destructor-name shall be the same type.
5375 if (DestructedTypeInfo) {
5376 QualType DestructedType = DestructedTypeInfo->getType();
5377 SourceLocation DestructedTypeStart
5378 = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
5379 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
5380 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
5381 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
5382 << ObjectType << DestructedType << Base->getSourceRange()
5383 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5384
5385 // Recover by setting the destructed type to the object type.
5386 DestructedType = ObjectType;
5387 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5388 DestructedTypeStart);
5389 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5390 } else if (DestructedType.getObjCLifetime() !=
5391 ObjectType.getObjCLifetime()) {
5392
5393 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
5394 // Okay: just pretend that the user provided the correctly-qualified
5395 // type.
5396 } else {
5397 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
5398 << ObjectType << DestructedType << Base->getSourceRange()
5399 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5400 }
5401
5402 // Recover by setting the destructed type to the object type.
5403 DestructedType = ObjectType;
5404 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5405 DestructedTypeStart);
5406 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5407 }
5408 }
5409 }
5410
5411 // C++ [expr.pseudo]p2:
5412 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the
5413 // form
5414 //
5415 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
5416 //
5417 // shall designate the same scalar type.
5418 if (ScopeTypeInfo) {
5419 QualType ScopeType = ScopeTypeInfo->getType();
5420 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
5421 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
5422
5423 Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
5424 diag::err_pseudo_dtor_type_mismatch)
5425 << ObjectType << ScopeType << Base->getSourceRange()
5426 << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
5427
5428 ScopeType = QualType();
5429 ScopeTypeInfo = nullptr;
5430 }
5431 }
5432
5433 Expr *Result
5434 = new (Context) CXXPseudoDestructorExpr(Context, Base,
5435 OpKind == tok::arrow, OpLoc,
5436 SS.getWithLocInContext(Context),
5437 ScopeTypeInfo,
5438 CCLoc,
5439 TildeLoc,
5440 Destructed);
5441
5442 if (HasTrailingLParen)
5443 return Result;
5444
5445 return DiagnoseDtorReference(Destructed.getLocation(), Result);
5446 }
5447
ActOnPseudoDestructorExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,CXXScopeSpec & SS,UnqualifiedId & FirstTypeName,SourceLocation CCLoc,SourceLocation TildeLoc,UnqualifiedId & SecondTypeName,bool HasTrailingLParen)5448 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5449 SourceLocation OpLoc,
5450 tok::TokenKind OpKind,
5451 CXXScopeSpec &SS,
5452 UnqualifiedId &FirstTypeName,
5453 SourceLocation CCLoc,
5454 SourceLocation TildeLoc,
5455 UnqualifiedId &SecondTypeName,
5456 bool HasTrailingLParen) {
5457 assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5458 FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5459 "Invalid first type name in pseudo-destructor");
5460 assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5461 SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5462 "Invalid second type name in pseudo-destructor");
5463
5464 QualType ObjectType;
5465 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5466 return ExprError();
5467
5468 // Compute the object type that we should use for name lookup purposes. Only
5469 // record types and dependent types matter.
5470 ParsedType ObjectTypePtrForLookup;
5471 if (!SS.isSet()) {
5472 if (ObjectType->isRecordType())
5473 ObjectTypePtrForLookup = ParsedType::make(ObjectType);
5474 else if (ObjectType->isDependentType())
5475 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
5476 }
5477
5478 // Convert the name of the type being destructed (following the ~) into a
5479 // type (with source-location information).
5480 QualType DestructedType;
5481 TypeSourceInfo *DestructedTypeInfo = nullptr;
5482 PseudoDestructorTypeStorage Destructed;
5483 if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5484 ParsedType T = getTypeName(*SecondTypeName.Identifier,
5485 SecondTypeName.StartLocation,
5486 S, &SS, true, false, ObjectTypePtrForLookup);
5487 if (!T &&
5488 ((SS.isSet() && !computeDeclContext(SS, false)) ||
5489 (!SS.isSet() && ObjectType->isDependentType()))) {
5490 // The name of the type being destroyed is a dependent name, and we
5491 // couldn't find anything useful in scope. Just store the identifier and
5492 // it's location, and we'll perform (qualified) name lookup again at
5493 // template instantiation time.
5494 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
5495 SecondTypeName.StartLocation);
5496 } else if (!T) {
5497 Diag(SecondTypeName.StartLocation,
5498 diag::err_pseudo_dtor_destructor_non_type)
5499 << SecondTypeName.Identifier << ObjectType;
5500 if (isSFINAEContext())
5501 return ExprError();
5502
5503 // Recover by assuming we had the right type all along.
5504 DestructedType = ObjectType;
5505 } else
5506 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
5507 } else {
5508 // Resolve the template-id to a type.
5509 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
5510 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5511 TemplateId->NumArgs);
5512 TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5513 TemplateId->TemplateKWLoc,
5514 TemplateId->Template,
5515 TemplateId->TemplateNameLoc,
5516 TemplateId->LAngleLoc,
5517 TemplateArgsPtr,
5518 TemplateId->RAngleLoc);
5519 if (T.isInvalid() || !T.get()) {
5520 // Recover by assuming we had the right type all along.
5521 DestructedType = ObjectType;
5522 } else
5523 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
5524 }
5525
5526 // If we've performed some kind of recovery, (re-)build the type source
5527 // information.
5528 if (!DestructedType.isNull()) {
5529 if (!DestructedTypeInfo)
5530 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
5531 SecondTypeName.StartLocation);
5532 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5533 }
5534
5535 // Convert the name of the scope type (the type prior to '::') into a type.
5536 TypeSourceInfo *ScopeTypeInfo = nullptr;
5537 QualType ScopeType;
5538 if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5539 FirstTypeName.Identifier) {
5540 if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5541 ParsedType T = getTypeName(*FirstTypeName.Identifier,
5542 FirstTypeName.StartLocation,
5543 S, &SS, true, false, ObjectTypePtrForLookup);
5544 if (!T) {
5545 Diag(FirstTypeName.StartLocation,
5546 diag::err_pseudo_dtor_destructor_non_type)
5547 << FirstTypeName.Identifier << ObjectType;
5548
5549 if (isSFINAEContext())
5550 return ExprError();
5551
5552 // Just drop this type. It's unnecessary anyway.
5553 ScopeType = QualType();
5554 } else
5555 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
5556 } else {
5557 // Resolve the template-id to a type.
5558 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
5559 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5560 TemplateId->NumArgs);
5561 TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5562 TemplateId->TemplateKWLoc,
5563 TemplateId->Template,
5564 TemplateId->TemplateNameLoc,
5565 TemplateId->LAngleLoc,
5566 TemplateArgsPtr,
5567 TemplateId->RAngleLoc);
5568 if (T.isInvalid() || !T.get()) {
5569 // Recover by dropping this type.
5570 ScopeType = QualType();
5571 } else
5572 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
5573 }
5574 }
5575
5576 if (!ScopeType.isNull() && !ScopeTypeInfo)
5577 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
5578 FirstTypeName.StartLocation);
5579
5580
5581 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
5582 ScopeTypeInfo, CCLoc, TildeLoc,
5583 Destructed, HasTrailingLParen);
5584 }
5585
ActOnPseudoDestructorExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,SourceLocation TildeLoc,const DeclSpec & DS,bool HasTrailingLParen)5586 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5587 SourceLocation OpLoc,
5588 tok::TokenKind OpKind,
5589 SourceLocation TildeLoc,
5590 const DeclSpec& DS,
5591 bool HasTrailingLParen) {
5592 QualType ObjectType;
5593 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5594 return ExprError();
5595
5596 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
5597
5598 TypeLocBuilder TLB;
5599 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
5600 DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
5601 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
5602 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
5603
5604 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
5605 nullptr, SourceLocation(), TildeLoc,
5606 Destructed, HasTrailingLParen);
5607 }
5608
BuildCXXMemberCallExpr(Expr * E,NamedDecl * FoundDecl,CXXConversionDecl * Method,bool HadMultipleCandidates)5609 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
5610 CXXConversionDecl *Method,
5611 bool HadMultipleCandidates) {
5612 if (Method->getParent()->isLambda() &&
5613 Method->getConversionType()->isBlockPointerType()) {
5614 // This is a lambda coversion to block pointer; check if the argument
5615 // is a LambdaExpr.
5616 Expr *SubE = E;
5617 CastExpr *CE = dyn_cast<CastExpr>(SubE);
5618 if (CE && CE->getCastKind() == CK_NoOp)
5619 SubE = CE->getSubExpr();
5620 SubE = SubE->IgnoreParens();
5621 if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
5622 SubE = BE->getSubExpr();
5623 if (isa<LambdaExpr>(SubE)) {
5624 // For the conversion to block pointer on a lambda expression, we
5625 // construct a special BlockLiteral instead; this doesn't really make
5626 // a difference in ARC, but outside of ARC the resulting block literal
5627 // follows the normal lifetime rules for block literals instead of being
5628 // autoreleased.
5629 DiagnosticErrorTrap Trap(Diags);
5630 ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
5631 E->getExprLoc(),
5632 Method, E);
5633 if (Exp.isInvalid())
5634 Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
5635 return Exp;
5636 }
5637 }
5638
5639 ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr,
5640 FoundDecl, Method);
5641 if (Exp.isInvalid())
5642 return true;
5643
5644 MemberExpr *ME =
5645 new (Context) MemberExpr(Exp.get(), /*IsArrow=*/false, Method,
5646 SourceLocation(), Context.BoundMemberTy,
5647 VK_RValue, OK_Ordinary);
5648 if (HadMultipleCandidates)
5649 ME->setHadMultipleCandidates(true);
5650 MarkMemberReferenced(ME);
5651
5652 QualType ResultType = Method->getReturnType();
5653 ExprValueKind VK = Expr::getValueKindForType(ResultType);
5654 ResultType = ResultType.getNonLValueExprType(Context);
5655
5656 CXXMemberCallExpr *CE =
5657 new (Context) CXXMemberCallExpr(Context, ME, None, ResultType, VK,
5658 Exp.get()->getLocEnd());
5659 return CE;
5660 }
5661
BuildCXXNoexceptExpr(SourceLocation KeyLoc,Expr * Operand,SourceLocation RParen)5662 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
5663 SourceLocation RParen) {
5664 CanThrowResult CanThrow = canThrow(Operand);
5665 return new (Context)
5666 CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
5667 }
5668
ActOnNoexceptExpr(SourceLocation KeyLoc,SourceLocation,Expr * Operand,SourceLocation RParen)5669 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
5670 Expr *Operand, SourceLocation RParen) {
5671 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
5672 }
5673
IsSpecialDiscardedValue(Expr * E)5674 static bool IsSpecialDiscardedValue(Expr *E) {
5675 // In C++11, discarded-value expressions of a certain form are special,
5676 // according to [expr]p10:
5677 // The lvalue-to-rvalue conversion (4.1) is applied only if the
5678 // expression is an lvalue of volatile-qualified type and it has
5679 // one of the following forms:
5680 E = E->IgnoreParens();
5681
5682 // - id-expression (5.1.1),
5683 if (isa<DeclRefExpr>(E))
5684 return true;
5685
5686 // - subscripting (5.2.1),
5687 if (isa<ArraySubscriptExpr>(E))
5688 return true;
5689
5690 // - class member access (5.2.5),
5691 if (isa<MemberExpr>(E))
5692 return true;
5693
5694 // - indirection (5.3.1),
5695 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
5696 if (UO->getOpcode() == UO_Deref)
5697 return true;
5698
5699 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5700 // - pointer-to-member operation (5.5),
5701 if (BO->isPtrMemOp())
5702 return true;
5703
5704 // - comma expression (5.18) where the right operand is one of the above.
5705 if (BO->getOpcode() == BO_Comma)
5706 return IsSpecialDiscardedValue(BO->getRHS());
5707 }
5708
5709 // - conditional expression (5.16) where both the second and the third
5710 // operands are one of the above, or
5711 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
5712 return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
5713 IsSpecialDiscardedValue(CO->getFalseExpr());
5714 // The related edge case of "*x ?: *x".
5715 if (BinaryConditionalOperator *BCO =
5716 dyn_cast<BinaryConditionalOperator>(E)) {
5717 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
5718 return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
5719 IsSpecialDiscardedValue(BCO->getFalseExpr());
5720 }
5721
5722 // Objective-C++ extensions to the rule.
5723 if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
5724 return true;
5725
5726 return false;
5727 }
5728
5729 /// Perform the conversions required for an expression used in a
5730 /// context that ignores the result.
IgnoredValueConversions(Expr * E)5731 ExprResult Sema::IgnoredValueConversions(Expr *E) {
5732 if (E->hasPlaceholderType()) {
5733 ExprResult result = CheckPlaceholderExpr(E);
5734 if (result.isInvalid()) return E;
5735 E = result.get();
5736 }
5737
5738 // C99 6.3.2.1:
5739 // [Except in specific positions,] an lvalue that does not have
5740 // array type is converted to the value stored in the
5741 // designated object (and is no longer an lvalue).
5742 if (E->isRValue()) {
5743 // In C, function designators (i.e. expressions of function type)
5744 // are r-values, but we still want to do function-to-pointer decay
5745 // on them. This is both technically correct and convenient for
5746 // some clients.
5747 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
5748 return DefaultFunctionArrayConversion(E);
5749
5750 return E;
5751 }
5752
5753 if (getLangOpts().CPlusPlus) {
5754 // The C++11 standard defines the notion of a discarded-value expression;
5755 // normally, we don't need to do anything to handle it, but if it is a
5756 // volatile lvalue with a special form, we perform an lvalue-to-rvalue
5757 // conversion.
5758 if (getLangOpts().CPlusPlus11 && E->isGLValue() &&
5759 E->getType().isVolatileQualified() &&
5760 IsSpecialDiscardedValue(E)) {
5761 ExprResult Res = DefaultLvalueConversion(E);
5762 if (Res.isInvalid())
5763 return E;
5764 E = Res.get();
5765 }
5766 return E;
5767 }
5768
5769 // GCC seems to also exclude expressions of incomplete enum type.
5770 if (const EnumType *T = E->getType()->getAs<EnumType>()) {
5771 if (!T->getDecl()->isComplete()) {
5772 // FIXME: stupid workaround for a codegen bug!
5773 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
5774 return E;
5775 }
5776 }
5777
5778 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
5779 if (Res.isInvalid())
5780 return E;
5781 E = Res.get();
5782
5783 if (!E->getType()->isVoidType())
5784 RequireCompleteType(E->getExprLoc(), E->getType(),
5785 diag::err_incomplete_type);
5786 return E;
5787 }
5788
5789 // If we can unambiguously determine whether Var can never be used
5790 // in a constant expression, return true.
5791 // - if the variable and its initializer are non-dependent, then
5792 // we can unambiguously check if the variable is a constant expression.
5793 // - if the initializer is not value dependent - we can determine whether
5794 // it can be used to initialize a constant expression. If Init can not
5795 // be used to initialize a constant expression we conclude that Var can
5796 // never be a constant expression.
5797 // - FXIME: if the initializer is dependent, we can still do some analysis and
5798 // identify certain cases unambiguously as non-const by using a Visitor:
5799 // - such as those that involve odr-use of a ParmVarDecl, involve a new
5800 // delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
VariableCanNeverBeAConstantExpression(VarDecl * Var,ASTContext & Context)5801 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
5802 ASTContext &Context) {
5803 if (isa<ParmVarDecl>(Var)) return true;
5804 const VarDecl *DefVD = nullptr;
5805
5806 // If there is no initializer - this can not be a constant expression.
5807 if (!Var->getAnyInitializer(DefVD)) return true;
5808 assert(DefVD);
5809 if (DefVD->isWeak()) return false;
5810 EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
5811
5812 Expr *Init = cast<Expr>(Eval->Value);
5813
5814 if (Var->getType()->isDependentType() || Init->isValueDependent()) {
5815 // FIXME: Teach the constant evaluator to deal with the non-dependent parts
5816 // of value-dependent expressions, and use it here to determine whether the
5817 // initializer is a potential constant expression.
5818 return false;
5819 }
5820
5821 return !IsVariableAConstantExpression(Var, Context);
5822 }
5823
5824 /// \brief Check if the current lambda has any potential captures
5825 /// that must be captured by any of its enclosing lambdas that are ready to
5826 /// capture. If there is a lambda that can capture a nested
5827 /// potential-capture, go ahead and do so. Also, check to see if any
5828 /// variables are uncaptureable or do not involve an odr-use so do not
5829 /// need to be captured.
5830
CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(Expr * const FE,LambdaScopeInfo * const CurrentLSI,Sema & S)5831 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
5832 Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
5833
5834 assert(!S.isUnevaluatedContext());
5835 assert(S.CurContext->isDependentContext());
5836 assert(CurrentLSI->CallOperator == S.CurContext &&
5837 "The current call operator must be synchronized with Sema's CurContext");
5838
5839 const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
5840
5841 ArrayRef<const FunctionScopeInfo *> FunctionScopesArrayRef(
5842 S.FunctionScopes.data(), S.FunctionScopes.size());
5843
5844 // All the potentially captureable variables in the current nested
5845 // lambda (within a generic outer lambda), must be captured by an
5846 // outer lambda that is enclosed within a non-dependent context.
5847 const unsigned NumPotentialCaptures =
5848 CurrentLSI->getNumPotentialVariableCaptures();
5849 for (unsigned I = 0; I != NumPotentialCaptures; ++I) {
5850 Expr *VarExpr = nullptr;
5851 VarDecl *Var = nullptr;
5852 CurrentLSI->getPotentialVariableCapture(I, Var, VarExpr);
5853 // If the variable is clearly identified as non-odr-used and the full
5854 // expression is not instantiation dependent, only then do we not
5855 // need to check enclosing lambda's for speculative captures.
5856 // For e.g.:
5857 // Even though 'x' is not odr-used, it should be captured.
5858 // int test() {
5859 // const int x = 10;
5860 // auto L = [=](auto a) {
5861 // (void) +x + a;
5862 // };
5863 // }
5864 if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
5865 !IsFullExprInstantiationDependent)
5866 continue;
5867
5868 // If we have a capture-capable lambda for the variable, go ahead and
5869 // capture the variable in that lambda (and all its enclosing lambdas).
5870 if (const Optional<unsigned> Index =
5871 getStackIndexOfNearestEnclosingCaptureCapableLambda(
5872 FunctionScopesArrayRef, Var, S)) {
5873 const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
5874 MarkVarDeclODRUsed(Var, VarExpr->getExprLoc(), S,
5875 &FunctionScopeIndexOfCapturableLambda);
5876 }
5877 const bool IsVarNeverAConstantExpression =
5878 VariableCanNeverBeAConstantExpression(Var, S.Context);
5879 if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
5880 // This full expression is not instantiation dependent or the variable
5881 // can not be used in a constant expression - which means
5882 // this variable must be odr-used here, so diagnose a
5883 // capture violation early, if the variable is un-captureable.
5884 // This is purely for diagnosing errors early. Otherwise, this
5885 // error would get diagnosed when the lambda becomes capture ready.
5886 QualType CaptureType, DeclRefType;
5887 SourceLocation ExprLoc = VarExpr->getExprLoc();
5888 if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
5889 /*EllipsisLoc*/ SourceLocation(),
5890 /*BuildAndDiagnose*/false, CaptureType,
5891 DeclRefType, nullptr)) {
5892 // We will never be able to capture this variable, and we need
5893 // to be able to in any and all instantiations, so diagnose it.
5894 S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
5895 /*EllipsisLoc*/ SourceLocation(),
5896 /*BuildAndDiagnose*/true, CaptureType,
5897 DeclRefType, nullptr);
5898 }
5899 }
5900 }
5901
5902 // Check if 'this' needs to be captured.
5903 if (CurrentLSI->hasPotentialThisCapture()) {
5904 // If we have a capture-capable lambda for 'this', go ahead and capture
5905 // 'this' in that lambda (and all its enclosing lambdas).
5906 if (const Optional<unsigned> Index =
5907 getStackIndexOfNearestEnclosingCaptureCapableLambda(
5908 FunctionScopesArrayRef, /*0 is 'this'*/ nullptr, S)) {
5909 const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
5910 S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
5911 /*Explicit*/ false, /*BuildAndDiagnose*/ true,
5912 &FunctionScopeIndexOfCapturableLambda);
5913 }
5914 }
5915
5916 // Reset all the potential captures at the end of each full-expression.
5917 CurrentLSI->clearPotentialCaptures();
5918 }
5919
5920
ActOnFinishFullExpr(Expr * FE,SourceLocation CC,bool DiscardedValue,bool IsConstexpr,bool IsLambdaInitCaptureInitializer)5921 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
5922 bool DiscardedValue,
5923 bool IsConstexpr,
5924 bool IsLambdaInitCaptureInitializer) {
5925 ExprResult FullExpr = FE;
5926
5927 if (!FullExpr.get())
5928 return ExprError();
5929
5930 // If we are an init-expression in a lambdas init-capture, we should not
5931 // diagnose an unexpanded pack now (will be diagnosed once lambda-expr
5932 // containing full-expression is done).
5933 // template<class ... Ts> void test(Ts ... t) {
5934 // test([&a(t)]() { <-- (t) is an init-expr that shouldn't be diagnosed now.
5935 // return a;
5936 // }() ...);
5937 // }
5938 // FIXME: This is a hack. It would be better if we pushed the lambda scope
5939 // when we parse the lambda introducer, and teach capturing (but not
5940 // unexpanded pack detection) to walk over LambdaScopeInfos which don't have a
5941 // corresponding class yet (that is, have LambdaScopeInfo either represent a
5942 // lambda where we've entered the introducer but not the body, or represent a
5943 // lambda where we've entered the body, depending on where the
5944 // parser/instantiation has got to).
5945 if (!IsLambdaInitCaptureInitializer &&
5946 DiagnoseUnexpandedParameterPack(FullExpr.get()))
5947 return ExprError();
5948
5949 // Top-level expressions default to 'id' when we're in a debugger.
5950 if (DiscardedValue && getLangOpts().DebuggerCastResultToId &&
5951 FullExpr.get()->getType() == Context.UnknownAnyTy) {
5952 FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
5953 if (FullExpr.isInvalid())
5954 return ExprError();
5955 }
5956
5957 if (DiscardedValue) {
5958 FullExpr = CheckPlaceholderExpr(FullExpr.get());
5959 if (FullExpr.isInvalid())
5960 return ExprError();
5961
5962 FullExpr = IgnoredValueConversions(FullExpr.get());
5963 if (FullExpr.isInvalid())
5964 return ExprError();
5965 }
5966
5967 CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
5968
5969 // At the end of this full expression (which could be a deeply nested
5970 // lambda), if there is a potential capture within the nested lambda,
5971 // have the outer capture-able lambda try and capture it.
5972 // Consider the following code:
5973 // void f(int, int);
5974 // void f(const int&, double);
5975 // void foo() {
5976 // const int x = 10, y = 20;
5977 // auto L = [=](auto a) {
5978 // auto M = [=](auto b) {
5979 // f(x, b); <-- requires x to be captured by L and M
5980 // f(y, a); <-- requires y to be captured by L, but not all Ms
5981 // };
5982 // };
5983 // }
5984
5985 // FIXME: Also consider what happens for something like this that involves
5986 // the gnu-extension statement-expressions or even lambda-init-captures:
5987 // void f() {
5988 // const int n = 0;
5989 // auto L = [&](auto a) {
5990 // +n + ({ 0; a; });
5991 // };
5992 // }
5993 //
5994 // Here, we see +n, and then the full-expression 0; ends, so we don't
5995 // capture n (and instead remove it from our list of potential captures),
5996 // and then the full-expression +n + ({ 0; }); ends, but it's too late
5997 // for us to see that we need to capture n after all.
5998
5999 LambdaScopeInfo *const CurrentLSI = getCurLambda();
6000 // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
6001 // even if CurContext is not a lambda call operator. Refer to that Bug Report
6002 // for an example of the code that might cause this asynchrony.
6003 // By ensuring we are in the context of a lambda's call operator
6004 // we can fix the bug (we only need to check whether we need to capture
6005 // if we are within a lambda's body); but per the comments in that
6006 // PR, a proper fix would entail :
6007 // "Alternative suggestion:
6008 // - Add to Sema an integer holding the smallest (outermost) scope
6009 // index that we are *lexically* within, and save/restore/set to
6010 // FunctionScopes.size() in InstantiatingTemplate's
6011 // constructor/destructor.
6012 // - Teach the handful of places that iterate over FunctionScopes to
6013 // stop at the outermost enclosing lexical scope."
6014 const bool IsInLambdaDeclContext = isLambdaCallOperator(CurContext);
6015 if (IsInLambdaDeclContext && CurrentLSI &&
6016 CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
6017 CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
6018 *this);
6019 return MaybeCreateExprWithCleanups(FullExpr);
6020 }
6021
ActOnFinishFullStmt(Stmt * FullStmt)6022 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
6023 if (!FullStmt) return StmtError();
6024
6025 return MaybeCreateStmtWithCleanups(FullStmt);
6026 }
6027
6028 Sema::IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope * S,CXXScopeSpec & SS,const DeclarationNameInfo & TargetNameInfo)6029 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
6030 CXXScopeSpec &SS,
6031 const DeclarationNameInfo &TargetNameInfo) {
6032 DeclarationName TargetName = TargetNameInfo.getName();
6033 if (!TargetName)
6034 return IER_DoesNotExist;
6035
6036 // If the name itself is dependent, then the result is dependent.
6037 if (TargetName.isDependentName())
6038 return IER_Dependent;
6039
6040 // Do the redeclaration lookup in the current scope.
6041 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
6042 Sema::NotForRedeclaration);
6043 LookupParsedName(R, S, &SS);
6044 R.suppressDiagnostics();
6045
6046 switch (R.getResultKind()) {
6047 case LookupResult::Found:
6048 case LookupResult::FoundOverloaded:
6049 case LookupResult::FoundUnresolvedValue:
6050 case LookupResult::Ambiguous:
6051 return IER_Exists;
6052
6053 case LookupResult::NotFound:
6054 return IER_DoesNotExist;
6055
6056 case LookupResult::NotFoundInCurrentInstantiation:
6057 return IER_Dependent;
6058 }
6059
6060 llvm_unreachable("Invalid LookupResult Kind!");
6061 }
6062
6063 Sema::IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope * S,SourceLocation KeywordLoc,bool IsIfExists,CXXScopeSpec & SS,UnqualifiedId & Name)6064 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
6065 bool IsIfExists, CXXScopeSpec &SS,
6066 UnqualifiedId &Name) {
6067 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6068
6069 // Check for unexpanded parameter packs.
6070 SmallVector<UnexpandedParameterPack, 4> Unexpanded;
6071 collectUnexpandedParameterPacks(SS, Unexpanded);
6072 collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
6073 if (!Unexpanded.empty()) {
6074 DiagnoseUnexpandedParameterPacks(KeywordLoc,
6075 IsIfExists? UPPC_IfExists
6076 : UPPC_IfNotExists,
6077 Unexpanded);
6078 return IER_Error;
6079 }
6080
6081 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
6082 }
6083