• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 #include "ceres/dogleg_strategy.h"
32 
33 #include <cmath>
34 #include "Eigen/Dense"
35 #include "ceres/array_utils.h"
36 #include "ceres/internal/eigen.h"
37 #include "ceres/linear_least_squares_problems.h"
38 #include "ceres/linear_solver.h"
39 #include "ceres/polynomial.h"
40 #include "ceres/sparse_matrix.h"
41 #include "ceres/trust_region_strategy.h"
42 #include "ceres/types.h"
43 #include "glog/logging.h"
44 
45 namespace ceres {
46 namespace internal {
47 namespace {
48 const double kMaxMu = 1.0;
49 const double kMinMu = 1e-8;
50 }
51 
DoglegStrategy(const TrustRegionStrategy::Options & options)52 DoglegStrategy::DoglegStrategy(const TrustRegionStrategy::Options& options)
53     : linear_solver_(options.linear_solver),
54       radius_(options.initial_radius),
55       max_radius_(options.max_radius),
56       min_diagonal_(options.min_lm_diagonal),
57       max_diagonal_(options.max_lm_diagonal),
58       mu_(kMinMu),
59       min_mu_(kMinMu),
60       max_mu_(kMaxMu),
61       mu_increase_factor_(10.0),
62       increase_threshold_(0.75),
63       decrease_threshold_(0.25),
64       dogleg_step_norm_(0.0),
65       reuse_(false),
66       dogleg_type_(options.dogleg_type) {
67   CHECK_NOTNULL(linear_solver_);
68   CHECK_GT(min_diagonal_, 0.0);
69   CHECK_LE(min_diagonal_, max_diagonal_);
70   CHECK_GT(max_radius_, 0.0);
71 }
72 
73 // If the reuse_ flag is not set, then the Cauchy point (scaled
74 // gradient) and the new Gauss-Newton step are computed from
75 // scratch. The Dogleg step is then computed as interpolation of these
76 // two vectors.
ComputeStep(const TrustRegionStrategy::PerSolveOptions & per_solve_options,SparseMatrix * jacobian,const double * residuals,double * step)77 TrustRegionStrategy::Summary DoglegStrategy::ComputeStep(
78     const TrustRegionStrategy::PerSolveOptions& per_solve_options,
79     SparseMatrix* jacobian,
80     const double* residuals,
81     double* step) {
82   CHECK_NOTNULL(jacobian);
83   CHECK_NOTNULL(residuals);
84   CHECK_NOTNULL(step);
85 
86   const int n = jacobian->num_cols();
87   if (reuse_) {
88     // Gauss-Newton and gradient vectors are always available, only a
89     // new interpolant need to be computed. For the subspace case,
90     // the subspace and the two-dimensional model are also still valid.
91     switch (dogleg_type_) {
92       case TRADITIONAL_DOGLEG:
93         ComputeTraditionalDoglegStep(step);
94         break;
95 
96       case SUBSPACE_DOGLEG:
97         ComputeSubspaceDoglegStep(step);
98         break;
99     }
100     TrustRegionStrategy::Summary summary;
101     summary.num_iterations = 0;
102     summary.termination_type = LINEAR_SOLVER_SUCCESS;
103     return summary;
104   }
105 
106   reuse_ = true;
107   // Check that we have the storage needed to hold the various
108   // temporary vectors.
109   if (diagonal_.rows() != n) {
110     diagonal_.resize(n, 1);
111     gradient_.resize(n, 1);
112     gauss_newton_step_.resize(n, 1);
113   }
114 
115   // Vector used to form the diagonal matrix that is used to
116   // regularize the Gauss-Newton solve and that defines the
117   // elliptical trust region
118   //
119   //   || D * step || <= radius_ .
120   //
121   jacobian->SquaredColumnNorm(diagonal_.data());
122   for (int i = 0; i < n; ++i) {
123     diagonal_[i] = min(max(diagonal_[i], min_diagonal_), max_diagonal_);
124   }
125   diagonal_ = diagonal_.array().sqrt();
126 
127   ComputeGradient(jacobian, residuals);
128   ComputeCauchyPoint(jacobian);
129 
130   LinearSolver::Summary linear_solver_summary =
131       ComputeGaussNewtonStep(per_solve_options, jacobian, residuals);
132 
133   TrustRegionStrategy::Summary summary;
134   summary.residual_norm = linear_solver_summary.residual_norm;
135   summary.num_iterations = linear_solver_summary.num_iterations;
136   summary.termination_type = linear_solver_summary.termination_type;
137 
138   if (linear_solver_summary.termination_type == LINEAR_SOLVER_FATAL_ERROR) {
139     return summary;
140   }
141 
142   if (linear_solver_summary.termination_type != LINEAR_SOLVER_FAILURE) {
143     switch (dogleg_type_) {
144       // Interpolate the Cauchy point and the Gauss-Newton step.
145       case TRADITIONAL_DOGLEG:
146         ComputeTraditionalDoglegStep(step);
147         break;
148 
149       // Find the minimum in the subspace defined by the
150       // Cauchy point and the (Gauss-)Newton step.
151       case SUBSPACE_DOGLEG:
152         if (!ComputeSubspaceModel(jacobian)) {
153           summary.termination_type = LINEAR_SOLVER_FAILURE;
154           break;
155         }
156         ComputeSubspaceDoglegStep(step);
157         break;
158     }
159   }
160 
161   return summary;
162 }
163 
164 // The trust region is assumed to be elliptical with the
165 // diagonal scaling matrix D defined by sqrt(diagonal_).
166 // It is implemented by substituting step' = D * step.
167 // The trust region for step' is spherical.
168 // The gradient, the Gauss-Newton step, the Cauchy point,
169 // and all calculations involving the Jacobian have to
170 // be adjusted accordingly.
ComputeGradient(SparseMatrix * jacobian,const double * residuals)171 void DoglegStrategy::ComputeGradient(
172     SparseMatrix* jacobian,
173     const double* residuals) {
174   gradient_.setZero();
175   jacobian->LeftMultiply(residuals, gradient_.data());
176   gradient_.array() /= diagonal_.array();
177 }
178 
179 // The Cauchy point is the global minimizer of the quadratic model
180 // along the one-dimensional subspace spanned by the gradient.
ComputeCauchyPoint(SparseMatrix * jacobian)181 void DoglegStrategy::ComputeCauchyPoint(SparseMatrix* jacobian) {
182   // alpha * -gradient is the Cauchy point.
183   Vector Jg(jacobian->num_rows());
184   Jg.setZero();
185   // The Jacobian is scaled implicitly by computing J * (D^-1 * (D^-1 * g))
186   // instead of (J * D^-1) * (D^-1 * g).
187   Vector scaled_gradient =
188       (gradient_.array() / diagonal_.array()).matrix();
189   jacobian->RightMultiply(scaled_gradient.data(), Jg.data());
190   alpha_ = gradient_.squaredNorm() / Jg.squaredNorm();
191 }
192 
193 // The dogleg step is defined as the intersection of the trust region
194 // boundary with the piecewise linear path from the origin to the Cauchy
195 // point and then from there to the Gauss-Newton point (global minimizer
196 // of the model function). The Gauss-Newton point is taken if it lies
197 // within the trust region.
ComputeTraditionalDoglegStep(double * dogleg)198 void DoglegStrategy::ComputeTraditionalDoglegStep(double* dogleg) {
199   VectorRef dogleg_step(dogleg, gradient_.rows());
200 
201   // Case 1. The Gauss-Newton step lies inside the trust region, and
202   // is therefore the optimal solution to the trust-region problem.
203   const double gradient_norm = gradient_.norm();
204   const double gauss_newton_norm = gauss_newton_step_.norm();
205   if (gauss_newton_norm <= radius_) {
206     dogleg_step = gauss_newton_step_;
207     dogleg_step_norm_ = gauss_newton_norm;
208     dogleg_step.array() /= diagonal_.array();
209     VLOG(3) << "GaussNewton step size: " << dogleg_step_norm_
210             << " radius: " << radius_;
211     return;
212   }
213 
214   // Case 2. The Cauchy point and the Gauss-Newton steps lie outside
215   // the trust region. Rescale the Cauchy point to the trust region
216   // and return.
217   if  (gradient_norm * alpha_ >= radius_) {
218     dogleg_step = -(radius_ / gradient_norm) * gradient_;
219     dogleg_step_norm_ = radius_;
220     dogleg_step.array() /= diagonal_.array();
221     VLOG(3) << "Cauchy step size: " << dogleg_step_norm_
222             << " radius: " << radius_;
223     return;
224   }
225 
226   // Case 3. The Cauchy point is inside the trust region and the
227   // Gauss-Newton step is outside. Compute the line joining the two
228   // points and the point on it which intersects the trust region
229   // boundary.
230 
231   // a = alpha * -gradient
232   // b = gauss_newton_step
233   const double b_dot_a = -alpha_ * gradient_.dot(gauss_newton_step_);
234   const double a_squared_norm = pow(alpha_ * gradient_norm, 2.0);
235   const double b_minus_a_squared_norm =
236       a_squared_norm - 2 * b_dot_a + pow(gauss_newton_norm, 2);
237 
238   // c = a' (b - a)
239   //   = alpha * -gradient' gauss_newton_step - alpha^2 |gradient|^2
240   const double c = b_dot_a - a_squared_norm;
241   const double d = sqrt(c * c + b_minus_a_squared_norm *
242                         (pow(radius_, 2.0) - a_squared_norm));
243 
244   double beta =
245       (c <= 0)
246       ? (d - c) /  b_minus_a_squared_norm
247       : (radius_ * radius_ - a_squared_norm) / (d + c);
248   dogleg_step = (-alpha_ * (1.0 - beta)) * gradient_
249       + beta * gauss_newton_step_;
250   dogleg_step_norm_ = dogleg_step.norm();
251   dogleg_step.array() /= diagonal_.array();
252   VLOG(3) << "Dogleg step size: " << dogleg_step_norm_
253           << " radius: " << radius_;
254 }
255 
256 // The subspace method finds the minimum of the two-dimensional problem
257 //
258 //   min. 1/2 x' B' H B x + g' B x
259 //   s.t. || B x ||^2 <= r^2
260 //
261 // where r is the trust region radius and B is the matrix with unit columns
262 // spanning the subspace defined by the steepest descent and Newton direction.
263 // This subspace by definition includes the Gauss-Newton point, which is
264 // therefore taken if it lies within the trust region.
ComputeSubspaceDoglegStep(double * dogleg)265 void DoglegStrategy::ComputeSubspaceDoglegStep(double* dogleg) {
266   VectorRef dogleg_step(dogleg, gradient_.rows());
267 
268   // The Gauss-Newton point is inside the trust region if |GN| <= radius_.
269   // This test is valid even though radius_ is a length in the two-dimensional
270   // subspace while gauss_newton_step_ is expressed in the (scaled)
271   // higher dimensional original space. This is because
272   //
273   //   1. gauss_newton_step_ by definition lies in the subspace, and
274   //   2. the subspace basis is orthonormal.
275   //
276   // As a consequence, the norm of the gauss_newton_step_ in the subspace is
277   // the same as its norm in the original space.
278   const double gauss_newton_norm = gauss_newton_step_.norm();
279   if (gauss_newton_norm <= radius_) {
280     dogleg_step = gauss_newton_step_;
281     dogleg_step_norm_ = gauss_newton_norm;
282     dogleg_step.array() /= diagonal_.array();
283     VLOG(3) << "GaussNewton step size: " << dogleg_step_norm_
284             << " radius: " << radius_;
285     return;
286   }
287 
288   // The optimum lies on the boundary of the trust region. The above problem
289   // therefore becomes
290   //
291   //   min. 1/2 x^T B^T H B x + g^T B x
292   //   s.t. || B x ||^2 = r^2
293   //
294   // Notice the equality in the constraint.
295   //
296   // This can be solved by forming the Lagrangian, solving for x(y), where
297   // y is the Lagrange multiplier, using the gradient of the objective, and
298   // putting x(y) back into the constraint. This results in a fourth order
299   // polynomial in y, which can be solved using e.g. the companion matrix.
300   // See the description of MakePolynomialForBoundaryConstrainedProblem for
301   // details. The result is up to four real roots y*, not all of which
302   // correspond to feasible points. The feasible points x(y*) have to be
303   // tested for optimality.
304 
305   if (subspace_is_one_dimensional_) {
306     // The subspace is one-dimensional, so both the gradient and
307     // the Gauss-Newton step point towards the same direction.
308     // In this case, we move along the gradient until we reach the trust
309     // region boundary.
310     dogleg_step = -(radius_ / gradient_.norm()) * gradient_;
311     dogleg_step_norm_ = radius_;
312     dogleg_step.array() /= diagonal_.array();
313     VLOG(3) << "Dogleg subspace step size (1D): " << dogleg_step_norm_
314             << " radius: " << radius_;
315     return;
316   }
317 
318   Vector2d minimum(0.0, 0.0);
319   if (!FindMinimumOnTrustRegionBoundary(&minimum)) {
320     // For the positive semi-definite case, a traditional dogleg step
321     // is taken in this case.
322     LOG(WARNING) << "Failed to compute polynomial roots. "
323                  << "Taking traditional dogleg step instead.";
324     ComputeTraditionalDoglegStep(dogleg);
325     return;
326   }
327 
328   // Test first order optimality at the minimum.
329   // The first order KKT conditions state that the minimum x*
330   // has to satisfy either || x* ||^2 < r^2 (i.e. has to lie within
331   // the trust region), or
332   //
333   //   (B x* + g) + y x* = 0
334   //
335   // for some positive scalar y.
336   // Here, as it is already known that the minimum lies on the boundary, the
337   // latter condition is tested. To allow for small imprecisions, we test if
338   // the angle between (B x* + g) and -x* is smaller than acos(0.99).
339   // The exact value of the cosine is arbitrary but should be close to 1.
340   //
341   // This condition should not be violated. If it is, the minimum was not
342   // correctly determined.
343   const double kCosineThreshold = 0.99;
344   const Vector2d grad_minimum = subspace_B_ * minimum + subspace_g_;
345   const double cosine_angle = -minimum.dot(grad_minimum) /
346       (minimum.norm() * grad_minimum.norm());
347   if (cosine_angle < kCosineThreshold) {
348     LOG(WARNING) << "First order optimality seems to be violated "
349                  << "in the subspace method!\n"
350                  << "Cosine of angle between x and B x + g is "
351                  << cosine_angle << ".\n"
352                  << "Taking a regular dogleg step instead.\n"
353                  << "Please consider filing a bug report if this "
354                  << "happens frequently or consistently.\n";
355     ComputeTraditionalDoglegStep(dogleg);
356     return;
357   }
358 
359   // Create the full step from the optimal 2d solution.
360   dogleg_step = subspace_basis_ * minimum;
361   dogleg_step_norm_ = radius_;
362   dogleg_step.array() /= diagonal_.array();
363   VLOG(3) << "Dogleg subspace step size: " << dogleg_step_norm_
364           << " radius: " << radius_;
365 }
366 
367 // Build the polynomial that defines the optimal Lagrange multipliers.
368 // Let the Lagrangian be
369 //
370 //   L(x, y) = 0.5 x^T B x + x^T g + y (0.5 x^T x - 0.5 r^2).       (1)
371 //
372 // Stationary points of the Lagrangian are given by
373 //
374 //   0 = d L(x, y) / dx = Bx + g + y x                              (2)
375 //   0 = d L(x, y) / dy = 0.5 x^T x - 0.5 r^2                       (3)
376 //
377 // For any given y, we can solve (2) for x as
378 //
379 //   x(y) = -(B + y I)^-1 g .                                       (4)
380 //
381 // As B + y I is 2x2, we form the inverse explicitly:
382 //
383 //   (B + y I)^-1 = (1 / det(B + y I)) adj(B + y I)                 (5)
384 //
385 // where adj() denotes adjugation. This should be safe, as B is positive
386 // semi-definite and y is necessarily positive, so (B + y I) is indeed
387 // invertible.
388 // Plugging (5) into (4) and the result into (3), then dividing by 0.5 we
389 // obtain
390 //
391 //   0 = (1 / det(B + y I))^2 g^T adj(B + y I)^T adj(B + y I) g - r^2
392 //                                                                  (6)
393 //
394 // or
395 //
396 //   det(B + y I)^2 r^2 = g^T adj(B + y I)^T adj(B + y I) g         (7a)
397 //                      = g^T adj(B)^T adj(B) g
398 //                           + 2 y g^T adj(B)^T g + y^2 g^T g       (7b)
399 //
400 // as
401 //
402 //   adj(B + y I) = adj(B) + y I = adj(B)^T + y I .                 (8)
403 //
404 // The left hand side can be expressed explicitly using
405 //
406 //   det(B + y I) = det(B) + y tr(B) + y^2 .                        (9)
407 //
408 // So (7) is a polynomial in y of degree four.
409 // Bringing everything back to the left hand side, the coefficients can
410 // be read off as
411 //
412 //     y^4  r^2
413 //   + y^3  2 r^2 tr(B)
414 //   + y^2 (r^2 tr(B)^2 + 2 r^2 det(B) - g^T g)
415 //   + y^1 (2 r^2 det(B) tr(B) - 2 g^T adj(B)^T g)
416 //   + y^0 (r^2 det(B)^2 - g^T adj(B)^T adj(B) g)
417 //
MakePolynomialForBoundaryConstrainedProblem() const418 Vector DoglegStrategy::MakePolynomialForBoundaryConstrainedProblem() const {
419   const double detB = subspace_B_.determinant();
420   const double trB = subspace_B_.trace();
421   const double r2 = radius_ * radius_;
422   Matrix2d B_adj;
423   B_adj <<  subspace_B_(1, 1) , -subspace_B_(0, 1),
424             -subspace_B_(1, 0) ,  subspace_B_(0, 0);
425 
426   Vector polynomial(5);
427   polynomial(0) = r2;
428   polynomial(1) = 2.0 * r2 * trB;
429   polynomial(2) = r2 * (trB * trB + 2.0 * detB) - subspace_g_.squaredNorm();
430   polynomial(3) = -2.0 * (subspace_g_.transpose() * B_adj * subspace_g_
431       - r2 * detB * trB);
432   polynomial(4) = r2 * detB * detB - (B_adj * subspace_g_).squaredNorm();
433 
434   return polynomial;
435 }
436 
437 // Given a Lagrange multiplier y that corresponds to a stationary point
438 // of the Lagrangian L(x, y), compute the corresponding x from the
439 // equation
440 //
441 //   0 = d L(x, y) / dx
442 //     = B * x + g + y * x
443 //     = (B + y * I) * x + g
444 //
ComputeSubspaceStepFromRoot(double y) const445 DoglegStrategy::Vector2d DoglegStrategy::ComputeSubspaceStepFromRoot(
446     double y) const {
447   const Matrix2d B_i = subspace_B_ + y * Matrix2d::Identity();
448   return -B_i.partialPivLu().solve(subspace_g_);
449 }
450 
451 // This function evaluates the quadratic model at a point x in the
452 // subspace spanned by subspace_basis_.
EvaluateSubspaceModel(const Vector2d & x) const453 double DoglegStrategy::EvaluateSubspaceModel(const Vector2d& x) const {
454   return 0.5 * x.dot(subspace_B_ * x) + subspace_g_.dot(x);
455 }
456 
457 // This function attempts to solve the boundary-constrained subspace problem
458 //
459 //   min. 1/2 x^T B^T H B x + g^T B x
460 //   s.t. || B x ||^2 = r^2
461 //
462 // where B is an orthonormal subspace basis and r is the trust-region radius.
463 //
464 // This is done by finding the roots of a fourth degree polynomial. If the
465 // root finding fails, the function returns false and minimum will be set
466 // to (0, 0). If it succeeds, true is returned.
467 //
468 // In the failure case, another step should be taken, such as the traditional
469 // dogleg step.
FindMinimumOnTrustRegionBoundary(Vector2d * minimum) const470 bool DoglegStrategy::FindMinimumOnTrustRegionBoundary(Vector2d* minimum) const {
471   CHECK_NOTNULL(minimum);
472 
473   // Return (0, 0) in all error cases.
474   minimum->setZero();
475 
476   // Create the fourth-degree polynomial that is a necessary condition for
477   // optimality.
478   const Vector polynomial = MakePolynomialForBoundaryConstrainedProblem();
479 
480   // Find the real parts y_i of its roots (not only the real roots).
481   Vector roots_real;
482   if (!FindPolynomialRoots(polynomial, &roots_real, NULL)) {
483     // Failed to find the roots of the polynomial, i.e. the candidate
484     // solutions of the constrained problem. Report this back to the caller.
485     return false;
486   }
487 
488   // For each root y, compute B x(y) and check for feasibility.
489   // Notice that there should always be four roots, as the leading term of
490   // the polynomial is r^2 and therefore non-zero. However, as some roots
491   // may be complex, the real parts are not necessarily unique.
492   double minimum_value = std::numeric_limits<double>::max();
493   bool valid_root_found = false;
494   for (int i = 0; i < roots_real.size(); ++i) {
495     const Vector2d x_i = ComputeSubspaceStepFromRoot(roots_real(i));
496 
497     // Not all roots correspond to points on the trust region boundary.
498     // There are at most four candidate solutions. As we are interested
499     // in the minimum, it is safe to consider all of them after projecting
500     // them onto the trust region boundary.
501     if (x_i.norm() > 0) {
502       const double f_i = EvaluateSubspaceModel((radius_ / x_i.norm()) * x_i);
503       valid_root_found = true;
504       if (f_i < minimum_value) {
505         minimum_value = f_i;
506         *minimum = x_i;
507       }
508     }
509   }
510 
511   return valid_root_found;
512 }
513 
ComputeGaussNewtonStep(const PerSolveOptions & per_solve_options,SparseMatrix * jacobian,const double * residuals)514 LinearSolver::Summary DoglegStrategy::ComputeGaussNewtonStep(
515     const PerSolveOptions& per_solve_options,
516     SparseMatrix* jacobian,
517     const double* residuals) {
518   const int n = jacobian->num_cols();
519   LinearSolver::Summary linear_solver_summary;
520   linear_solver_summary.termination_type = LINEAR_SOLVER_FAILURE;
521 
522   // The Jacobian matrix is often quite poorly conditioned. Thus it is
523   // necessary to add a diagonal matrix at the bottom to prevent the
524   // linear solver from failing.
525   //
526   // We do this by computing the same diagonal matrix as the one used
527   // by Levenberg-Marquardt (other choices are possible), and scaling
528   // it by a small constant (independent of the trust region radius).
529   //
530   // If the solve fails, the multiplier to the diagonal is increased
531   // up to max_mu_ by a factor of mu_increase_factor_ every time. If
532   // the linear solver is still not successful, the strategy returns
533   // with LINEAR_SOLVER_FAILURE.
534   //
535   // Next time when a new Gauss-Newton step is requested, the
536   // multiplier starts out from the last successful solve.
537   //
538   // When a step is declared successful, the multiplier is decreased
539   // by half of mu_increase_factor_.
540 
541   while (mu_ < max_mu_) {
542     // Dogleg, as far as I (sameeragarwal) understand it, requires a
543     // reasonably good estimate of the Gauss-Newton step. This means
544     // that we need to solve the normal equations more or less
545     // exactly. This is reflected in the values of the tolerances set
546     // below.
547     //
548     // For now, this strategy should only be used with exact
549     // factorization based solvers, for which these tolerances are
550     // automatically satisfied.
551     //
552     // The right way to combine inexact solves with trust region
553     // methods is to use Stiehaug's method.
554     LinearSolver::PerSolveOptions solve_options;
555     solve_options.q_tolerance = 0.0;
556     solve_options.r_tolerance = 0.0;
557 
558     lm_diagonal_ = diagonal_ * std::sqrt(mu_);
559     solve_options.D = lm_diagonal_.data();
560 
561     // As in the LevenbergMarquardtStrategy, solve Jy = r instead
562     // of Jx = -r and later set x = -y to avoid having to modify
563     // either jacobian or residuals.
564     InvalidateArray(n, gauss_newton_step_.data());
565     linear_solver_summary = linear_solver_->Solve(jacobian,
566                                                   residuals,
567                                                   solve_options,
568                                                   gauss_newton_step_.data());
569 
570     if (per_solve_options.dump_format_type == CONSOLE ||
571         (per_solve_options.dump_format_type != CONSOLE &&
572          !per_solve_options.dump_filename_base.empty())) {
573       if (!DumpLinearLeastSquaresProblem(per_solve_options.dump_filename_base,
574                                          per_solve_options.dump_format_type,
575                                          jacobian,
576                                          solve_options.D,
577                                          residuals,
578                                          gauss_newton_step_.data(),
579                                          0)) {
580         LOG(ERROR) << "Unable to dump trust region problem."
581                    << " Filename base: "
582                    << per_solve_options.dump_filename_base;
583       }
584     }
585 
586     if (linear_solver_summary.termination_type == LINEAR_SOLVER_FATAL_ERROR) {
587       return linear_solver_summary;
588     }
589 
590     if (linear_solver_summary.termination_type == LINEAR_SOLVER_FAILURE ||
591         !IsArrayValid(n, gauss_newton_step_.data())) {
592       mu_ *= mu_increase_factor_;
593       VLOG(2) << "Increasing mu " << mu_;
594       linear_solver_summary.termination_type = LINEAR_SOLVER_FAILURE;
595       continue;
596     }
597     break;
598   }
599 
600   if (linear_solver_summary.termination_type != LINEAR_SOLVER_FAILURE) {
601     // The scaled Gauss-Newton step is D * GN:
602     //
603     //     - (D^-1 J^T J D^-1)^-1 (D^-1 g)
604     //   = - D (J^T J)^-1 D D^-1 g
605     //   = D -(J^T J)^-1 g
606     //
607     gauss_newton_step_.array() *= -diagonal_.array();
608   }
609 
610   return linear_solver_summary;
611 }
612 
StepAccepted(double step_quality)613 void DoglegStrategy::StepAccepted(double step_quality) {
614   CHECK_GT(step_quality, 0.0);
615 
616   if (step_quality < decrease_threshold_) {
617     radius_ *= 0.5;
618   }
619 
620   if (step_quality > increase_threshold_) {
621     radius_ = max(radius_, 3.0 * dogleg_step_norm_);
622   }
623 
624   // Reduce the regularization multiplier, in the hope that whatever
625   // was causing the rank deficiency has gone away and we can return
626   // to doing a pure Gauss-Newton solve.
627   mu_ = max(min_mu_, 2.0 * mu_ / mu_increase_factor_);
628   reuse_ = false;
629 }
630 
StepRejected(double step_quality)631 void DoglegStrategy::StepRejected(double step_quality) {
632   radius_ *= 0.5;
633   reuse_ = true;
634 }
635 
StepIsInvalid()636 void DoglegStrategy::StepIsInvalid() {
637   mu_ *= mu_increase_factor_;
638   reuse_ = false;
639 }
640 
Radius() const641 double DoglegStrategy::Radius() const {
642   return radius_;
643 }
644 
ComputeSubspaceModel(SparseMatrix * jacobian)645 bool DoglegStrategy::ComputeSubspaceModel(SparseMatrix* jacobian) {
646   // Compute an orthogonal basis for the subspace using QR decomposition.
647   Matrix basis_vectors(jacobian->num_cols(), 2);
648   basis_vectors.col(0) = gradient_;
649   basis_vectors.col(1) = gauss_newton_step_;
650   Eigen::ColPivHouseholderQR<Matrix> basis_qr(basis_vectors);
651 
652   switch (basis_qr.rank()) {
653     case 0:
654       // This should never happen, as it implies that both the gradient
655       // and the Gauss-Newton step are zero. In this case, the minimizer should
656       // have stopped due to the gradient being too small.
657       LOG(ERROR) << "Rank of subspace basis is 0. "
658                  << "This means that the gradient at the current iterate is "
659                  << "zero but the optimization has not been terminated. "
660                  << "You may have found a bug in Ceres.";
661       return false;
662 
663     case 1:
664       // Gradient and Gauss-Newton step coincide, so we lie on one of the
665       // major axes of the quadratic problem. In this case, we simply move
666       // along the gradient until we reach the trust region boundary.
667       subspace_is_one_dimensional_ = true;
668       return true;
669 
670     case 2:
671       subspace_is_one_dimensional_ = false;
672       break;
673 
674     default:
675       LOG(ERROR) << "Rank of the subspace basis matrix is reported to be "
676                  << "greater than 2. As the matrix contains only two "
677                  << "columns this cannot be true and is indicative of "
678                  << "a bug.";
679       return false;
680   }
681 
682   // The subspace is two-dimensional, so compute the subspace model.
683   // Given the basis U, this is
684   //
685   //   subspace_g_ = g_scaled^T U
686   //
687   // and
688   //
689   //   subspace_B_ = U^T (J_scaled^T J_scaled) U
690   //
691   // As J_scaled = J * D^-1, the latter becomes
692   //
693   //   subspace_B_ = ((U^T D^-1) J^T) (J (D^-1 U))
694   //               = (J (D^-1 U))^T (J (D^-1 U))
695 
696   subspace_basis_ =
697       basis_qr.householderQ() * Matrix::Identity(jacobian->num_cols(), 2);
698 
699   subspace_g_ = subspace_basis_.transpose() * gradient_;
700 
701   Eigen::Matrix<double, 2, Eigen::Dynamic, Eigen::RowMajor>
702       Jb(2, jacobian->num_rows());
703   Jb.setZero();
704 
705   Vector tmp;
706   tmp = (subspace_basis_.col(0).array() / diagonal_.array()).matrix();
707   jacobian->RightMultiply(tmp.data(), Jb.row(0).data());
708   tmp = (subspace_basis_.col(1).array() / diagonal_.array()).matrix();
709   jacobian->RightMultiply(tmp.data(), Jb.row(1).data());
710 
711   subspace_B_ = Jb * Jb.transpose();
712 
713   return true;
714 }
715 
716 }  // namespace internal
717 }  // namespace ceres
718