1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // TODO(vtl): I currently potentially overflow in doing index calculations.
6 // E.g., |start_index_| and |current_num_bytes_| fit into a |uint32_t|, but
7 // their sum may not. This is bad and poses a security risk. (We're currently
8 // saved by the limit on capacity -- the maximum size of the buffer, checked in
9 // |DataPipe::ValidateOptions()|, is currently sufficiently small.)
10
11 #include "mojo/system/local_data_pipe.h"
12
13 #include <string.h>
14
15 #include <algorithm>
16
17 #include "base/logging.h"
18 #include "mojo/system/constants.h"
19
20 namespace mojo {
21 namespace system {
22
LocalDataPipe(const MojoCreateDataPipeOptions & options)23 LocalDataPipe::LocalDataPipe(const MojoCreateDataPipeOptions& options)
24 : DataPipe(true, true, options), start_index_(0), current_num_bytes_(0) {
25 // Note: |buffer_| is lazily allocated, since a common case will be that one
26 // of the handles is immediately passed off to another process.
27 }
28
~LocalDataPipe()29 LocalDataPipe::~LocalDataPipe() {
30 }
31
ProducerCloseImplNoLock()32 void LocalDataPipe::ProducerCloseImplNoLock() {
33 // If the consumer is still open and we still have data, we have to keep the
34 // buffer around. Currently, we won't free it even if it empties later. (We
35 // could do this -- requiring a check on every read -- but that seems to be
36 // optimizing for the uncommon case.)
37 if (!consumer_open_no_lock() || !current_num_bytes_) {
38 // Note: There can only be a two-phase *read* (by the consumer) if we still
39 // have data.
40 DCHECK(!consumer_in_two_phase_read_no_lock());
41 DestroyBufferNoLock();
42 }
43 }
44
ProducerWriteDataImplNoLock(UserPointer<const void> elements,UserPointer<uint32_t> num_bytes,uint32_t max_num_bytes_to_write,uint32_t min_num_bytes_to_write)45 MojoResult LocalDataPipe::ProducerWriteDataImplNoLock(
46 UserPointer<const void> elements,
47 UserPointer<uint32_t> num_bytes,
48 uint32_t max_num_bytes_to_write,
49 uint32_t min_num_bytes_to_write) {
50 DCHECK_EQ(max_num_bytes_to_write % element_num_bytes(), 0u);
51 DCHECK_EQ(min_num_bytes_to_write % element_num_bytes(), 0u);
52 DCHECK_GT(max_num_bytes_to_write, 0u);
53 DCHECK(consumer_open_no_lock());
54
55 size_t num_bytes_to_write = 0;
56 if (may_discard()) {
57 if (min_num_bytes_to_write > capacity_num_bytes())
58 return MOJO_RESULT_OUT_OF_RANGE;
59
60 num_bytes_to_write = std::min(static_cast<size_t>(max_num_bytes_to_write),
61 capacity_num_bytes());
62 if (num_bytes_to_write > capacity_num_bytes() - current_num_bytes_) {
63 // Discard as much as needed (discard oldest first).
64 MarkDataAsConsumedNoLock(num_bytes_to_write -
65 (capacity_num_bytes() - current_num_bytes_));
66 // No need to wake up write waiters, since we're definitely going to leave
67 // the buffer full.
68 }
69 } else {
70 if (min_num_bytes_to_write > capacity_num_bytes() - current_num_bytes_) {
71 // Don't return "should wait" since you can't wait for a specified amount
72 // of data.
73 return MOJO_RESULT_OUT_OF_RANGE;
74 }
75
76 num_bytes_to_write = std::min(static_cast<size_t>(max_num_bytes_to_write),
77 capacity_num_bytes() - current_num_bytes_);
78 }
79 if (num_bytes_to_write == 0)
80 return MOJO_RESULT_SHOULD_WAIT;
81
82 // The amount we can write in our first |memcpy()|.
83 size_t num_bytes_to_write_first =
84 std::min(num_bytes_to_write, GetMaxNumBytesToWriteNoLock());
85 // Do the first (and possibly only) |memcpy()|.
86 size_t first_write_index =
87 (start_index_ + current_num_bytes_) % capacity_num_bytes();
88 EnsureBufferNoLock();
89 elements.GetArray(buffer_.get() + first_write_index,
90 num_bytes_to_write_first);
91
92 if (num_bytes_to_write_first < num_bytes_to_write) {
93 // The "second write index" is zero.
94 elements.At(num_bytes_to_write_first)
95 .GetArray(buffer_.get(), num_bytes_to_write - num_bytes_to_write_first);
96 }
97
98 current_num_bytes_ += num_bytes_to_write;
99 DCHECK_LE(current_num_bytes_, capacity_num_bytes());
100 num_bytes.Put(static_cast<uint32_t>(num_bytes_to_write));
101 return MOJO_RESULT_OK;
102 }
103
ProducerBeginWriteDataImplNoLock(UserPointer<void * > buffer,UserPointer<uint32_t> buffer_num_bytes,uint32_t min_num_bytes_to_write)104 MojoResult LocalDataPipe::ProducerBeginWriteDataImplNoLock(
105 UserPointer<void*> buffer,
106 UserPointer<uint32_t> buffer_num_bytes,
107 uint32_t min_num_bytes_to_write) {
108 DCHECK(consumer_open_no_lock());
109
110 // The index we need to start writing at.
111 size_t write_index =
112 (start_index_ + current_num_bytes_) % capacity_num_bytes();
113
114 size_t max_num_bytes_to_write = GetMaxNumBytesToWriteNoLock();
115 if (min_num_bytes_to_write > max_num_bytes_to_write) {
116 // In "may discard" mode, we can always write from the write index to the
117 // end of the buffer.
118 if (may_discard() &&
119 min_num_bytes_to_write <= capacity_num_bytes() - write_index) {
120 // To do so, we need to discard an appropriate amount of data.
121 // We should only reach here if the start index is after the write index!
122 DCHECK_GE(start_index_, write_index);
123 DCHECK_GT(min_num_bytes_to_write - max_num_bytes_to_write, 0u);
124 MarkDataAsConsumedNoLock(min_num_bytes_to_write - max_num_bytes_to_write);
125 max_num_bytes_to_write = min_num_bytes_to_write;
126 } else {
127 // Don't return "should wait" since you can't wait for a specified amount
128 // of data.
129 return MOJO_RESULT_OUT_OF_RANGE;
130 }
131 }
132
133 // Don't go into a two-phase write if there's no room.
134 if (max_num_bytes_to_write == 0)
135 return MOJO_RESULT_SHOULD_WAIT;
136
137 EnsureBufferNoLock();
138 buffer.Put(buffer_.get() + write_index);
139 buffer_num_bytes.Put(static_cast<uint32_t>(max_num_bytes_to_write));
140 set_producer_two_phase_max_num_bytes_written_no_lock(
141 static_cast<uint32_t>(max_num_bytes_to_write));
142 return MOJO_RESULT_OK;
143 }
144
ProducerEndWriteDataImplNoLock(uint32_t num_bytes_written)145 MojoResult LocalDataPipe::ProducerEndWriteDataImplNoLock(
146 uint32_t num_bytes_written) {
147 DCHECK_LE(num_bytes_written,
148 producer_two_phase_max_num_bytes_written_no_lock());
149 current_num_bytes_ += num_bytes_written;
150 DCHECK_LE(current_num_bytes_, capacity_num_bytes());
151 set_producer_two_phase_max_num_bytes_written_no_lock(0);
152 return MOJO_RESULT_OK;
153 }
154
ProducerGetHandleSignalsStateImplNoLock() const155 HandleSignalsState LocalDataPipe::ProducerGetHandleSignalsStateImplNoLock()
156 const {
157 HandleSignalsState rv;
158 if (consumer_open_no_lock()) {
159 if ((may_discard() || current_num_bytes_ < capacity_num_bytes()) &&
160 !producer_in_two_phase_write_no_lock())
161 rv.satisfied_signals |= MOJO_HANDLE_SIGNAL_WRITABLE;
162 rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_WRITABLE;
163 }
164 return rv;
165 }
166
ConsumerCloseImplNoLock()167 void LocalDataPipe::ConsumerCloseImplNoLock() {
168 // If the producer is around and in a two-phase write, we have to keep the
169 // buffer around. (We then don't free it until the producer is closed. This
170 // could be rectified, but again seems like optimizing for the uncommon case.)
171 if (!producer_open_no_lock() || !producer_in_two_phase_write_no_lock())
172 DestroyBufferNoLock();
173 current_num_bytes_ = 0;
174 }
175
ConsumerReadDataImplNoLock(UserPointer<void> elements,UserPointer<uint32_t> num_bytes,uint32_t max_num_bytes_to_read,uint32_t min_num_bytes_to_read)176 MojoResult LocalDataPipe::ConsumerReadDataImplNoLock(
177 UserPointer<void> elements,
178 UserPointer<uint32_t> num_bytes,
179 uint32_t max_num_bytes_to_read,
180 uint32_t min_num_bytes_to_read) {
181 DCHECK_EQ(max_num_bytes_to_read % element_num_bytes(), 0u);
182 DCHECK_EQ(min_num_bytes_to_read % element_num_bytes(), 0u);
183 DCHECK_GT(max_num_bytes_to_read, 0u);
184
185 if (min_num_bytes_to_read > current_num_bytes_) {
186 // Don't return "should wait" since you can't wait for a specified amount of
187 // data.
188 return producer_open_no_lock() ? MOJO_RESULT_OUT_OF_RANGE
189 : MOJO_RESULT_FAILED_PRECONDITION;
190 }
191
192 size_t num_bytes_to_read =
193 std::min(static_cast<size_t>(max_num_bytes_to_read), current_num_bytes_);
194 if (num_bytes_to_read == 0) {
195 return producer_open_no_lock() ? MOJO_RESULT_SHOULD_WAIT
196 : MOJO_RESULT_FAILED_PRECONDITION;
197 }
198
199 // The amount we can read in our first |memcpy()|.
200 size_t num_bytes_to_read_first =
201 std::min(num_bytes_to_read, GetMaxNumBytesToReadNoLock());
202 elements.PutArray(buffer_.get() + start_index_, num_bytes_to_read_first);
203
204 if (num_bytes_to_read_first < num_bytes_to_read) {
205 // The "second read index" is zero.
206 elements.At(num_bytes_to_read_first)
207 .PutArray(buffer_.get(), num_bytes_to_read - num_bytes_to_read_first);
208 }
209
210 MarkDataAsConsumedNoLock(num_bytes_to_read);
211 num_bytes.Put(static_cast<uint32_t>(num_bytes_to_read));
212 return MOJO_RESULT_OK;
213 }
214
ConsumerDiscardDataImplNoLock(UserPointer<uint32_t> num_bytes,uint32_t max_num_bytes_to_discard,uint32_t min_num_bytes_to_discard)215 MojoResult LocalDataPipe::ConsumerDiscardDataImplNoLock(
216 UserPointer<uint32_t> num_bytes,
217 uint32_t max_num_bytes_to_discard,
218 uint32_t min_num_bytes_to_discard) {
219 DCHECK_EQ(max_num_bytes_to_discard % element_num_bytes(), 0u);
220 DCHECK_EQ(min_num_bytes_to_discard % element_num_bytes(), 0u);
221 DCHECK_GT(max_num_bytes_to_discard, 0u);
222
223 if (min_num_bytes_to_discard > current_num_bytes_) {
224 // Don't return "should wait" since you can't wait for a specified amount of
225 // data.
226 return producer_open_no_lock() ? MOJO_RESULT_OUT_OF_RANGE
227 : MOJO_RESULT_FAILED_PRECONDITION;
228 }
229
230 // Be consistent with other operations; error if no data available.
231 if (current_num_bytes_ == 0) {
232 return producer_open_no_lock() ? MOJO_RESULT_SHOULD_WAIT
233 : MOJO_RESULT_FAILED_PRECONDITION;
234 }
235
236 size_t num_bytes_to_discard = std::min(
237 static_cast<size_t>(max_num_bytes_to_discard), current_num_bytes_);
238 MarkDataAsConsumedNoLock(num_bytes_to_discard);
239 num_bytes.Put(static_cast<uint32_t>(num_bytes_to_discard));
240 return MOJO_RESULT_OK;
241 }
242
ConsumerQueryDataImplNoLock(UserPointer<uint32_t> num_bytes)243 MojoResult LocalDataPipe::ConsumerQueryDataImplNoLock(
244 UserPointer<uint32_t> num_bytes) {
245 // Note: This cast is safe, since the capacity fits into a |uint32_t|.
246 num_bytes.Put(static_cast<uint32_t>(current_num_bytes_));
247 return MOJO_RESULT_OK;
248 }
249
ConsumerBeginReadDataImplNoLock(UserPointer<const void * > buffer,UserPointer<uint32_t> buffer_num_bytes,uint32_t min_num_bytes_to_read)250 MojoResult LocalDataPipe::ConsumerBeginReadDataImplNoLock(
251 UserPointer<const void*> buffer,
252 UserPointer<uint32_t> buffer_num_bytes,
253 uint32_t min_num_bytes_to_read) {
254 size_t max_num_bytes_to_read = GetMaxNumBytesToReadNoLock();
255 if (min_num_bytes_to_read > max_num_bytes_to_read) {
256 // Don't return "should wait" since you can't wait for a specified amount of
257 // data.
258 return producer_open_no_lock() ? MOJO_RESULT_OUT_OF_RANGE
259 : MOJO_RESULT_FAILED_PRECONDITION;
260 }
261
262 // Don't go into a two-phase read if there's no data.
263 if (max_num_bytes_to_read == 0) {
264 return producer_open_no_lock() ? MOJO_RESULT_SHOULD_WAIT
265 : MOJO_RESULT_FAILED_PRECONDITION;
266 }
267
268 buffer.Put(buffer_.get() + start_index_);
269 buffer_num_bytes.Put(static_cast<uint32_t>(max_num_bytes_to_read));
270 set_consumer_two_phase_max_num_bytes_read_no_lock(
271 static_cast<uint32_t>(max_num_bytes_to_read));
272 return MOJO_RESULT_OK;
273 }
274
ConsumerEndReadDataImplNoLock(uint32_t num_bytes_read)275 MojoResult LocalDataPipe::ConsumerEndReadDataImplNoLock(
276 uint32_t num_bytes_read) {
277 DCHECK_LE(num_bytes_read, consumer_two_phase_max_num_bytes_read_no_lock());
278 DCHECK_LE(start_index_ + num_bytes_read, capacity_num_bytes());
279 MarkDataAsConsumedNoLock(num_bytes_read);
280 set_consumer_two_phase_max_num_bytes_read_no_lock(0);
281 return MOJO_RESULT_OK;
282 }
283
ConsumerGetHandleSignalsStateImplNoLock() const284 HandleSignalsState LocalDataPipe::ConsumerGetHandleSignalsStateImplNoLock()
285 const {
286 HandleSignalsState rv;
287 if (current_num_bytes_ > 0) {
288 if (!consumer_in_two_phase_read_no_lock())
289 rv.satisfied_signals |= MOJO_HANDLE_SIGNAL_READABLE;
290 rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_READABLE;
291 } else if (producer_open_no_lock()) {
292 rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_READABLE;
293 }
294 return rv;
295 }
296
EnsureBufferNoLock()297 void LocalDataPipe::EnsureBufferNoLock() {
298 DCHECK(producer_open_no_lock());
299 if (buffer_)
300 return;
301 buffer_.reset(static_cast<char*>(
302 base::AlignedAlloc(capacity_num_bytes(), kDataPipeBufferAlignmentBytes)));
303 }
304
DestroyBufferNoLock()305 void LocalDataPipe::DestroyBufferNoLock() {
306 #ifndef NDEBUG
307 // Scribble on the buffer to help detect use-after-frees. (This also helps the
308 // unit test detect certain bugs without needing ASAN or similar.)
309 if (buffer_)
310 memset(buffer_.get(), 0xcd, capacity_num_bytes());
311 #endif
312 buffer_.reset();
313 }
314
GetMaxNumBytesToWriteNoLock()315 size_t LocalDataPipe::GetMaxNumBytesToWriteNoLock() {
316 size_t next_index = start_index_ + current_num_bytes_;
317 if (next_index >= capacity_num_bytes()) {
318 next_index %= capacity_num_bytes();
319 DCHECK_GE(start_index_, next_index);
320 DCHECK_EQ(start_index_ - next_index,
321 capacity_num_bytes() - current_num_bytes_);
322 return start_index_ - next_index;
323 }
324 return capacity_num_bytes() - next_index;
325 }
326
GetMaxNumBytesToReadNoLock()327 size_t LocalDataPipe::GetMaxNumBytesToReadNoLock() {
328 if (start_index_ + current_num_bytes_ > capacity_num_bytes())
329 return capacity_num_bytes() - start_index_;
330 return current_num_bytes_;
331 }
332
MarkDataAsConsumedNoLock(size_t num_bytes)333 void LocalDataPipe::MarkDataAsConsumedNoLock(size_t num_bytes) {
334 DCHECK_LE(num_bytes, current_num_bytes_);
335 start_index_ += num_bytes;
336 start_index_ %= capacity_num_bytes();
337 current_num_bytes_ -= num_bytes;
338 }
339
340 } // namespace system
341 } // namespace mojo
342