1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include <string.h>
6
7 #include "src/v8.h"
8 #include "src/zone-inl.h"
9
10 namespace v8 {
11 namespace internal {
12
13
14 // Segments represent chunks of memory: They have starting address
15 // (encoded in the this pointer) and a size in bytes. Segments are
16 // chained together forming a LIFO structure with the newest segment
17 // available as segment_head_. Segments are allocated using malloc()
18 // and de-allocated using free().
19
20 class Segment {
21 public:
Initialize(Segment * next,int size)22 void Initialize(Segment* next, int size) {
23 next_ = next;
24 size_ = size;
25 }
26
next() const27 Segment* next() const { return next_; }
clear_next()28 void clear_next() { next_ = NULL; }
29
size() const30 int size() const { return size_; }
capacity() const31 int capacity() const { return size_ - sizeof(Segment); }
32
start() const33 Address start() const { return address(sizeof(Segment)); }
end() const34 Address end() const { return address(size_); }
35
36 private:
37 // Computes the address of the nth byte in this segment.
address(int n) const38 Address address(int n) const {
39 return Address(this) + n;
40 }
41
42 Segment* next_;
43 int size_;
44 };
45
46
Zone(Isolate * isolate)47 Zone::Zone(Isolate* isolate)
48 : allocation_size_(0),
49 segment_bytes_allocated_(0),
50 position_(0),
51 limit_(0),
52 segment_head_(NULL),
53 isolate_(isolate) {
54 }
55
56
~Zone()57 Zone::~Zone() {
58 DeleteAll();
59 DeleteKeptSegment();
60
61 DCHECK(segment_bytes_allocated_ == 0);
62 }
63
64
New(int size)65 void* Zone::New(int size) {
66 // Round up the requested size to fit the alignment.
67 size = RoundUp(size, kAlignment);
68
69 // If the allocation size is divisible by 8 then we return an 8-byte aligned
70 // address.
71 if (kPointerSize == 4 && kAlignment == 4) {
72 position_ += ((~size) & 4) & (reinterpret_cast<intptr_t>(position_) & 4);
73 } else {
74 DCHECK(kAlignment >= kPointerSize);
75 }
76
77 // Check if the requested size is available without expanding.
78 Address result = position_;
79
80 int size_with_redzone =
81 #ifdef V8_USE_ADDRESS_SANITIZER
82 size + kASanRedzoneBytes;
83 #else
84 size;
85 #endif
86
87 if (size_with_redzone > limit_ - position_) {
88 result = NewExpand(size_with_redzone);
89 } else {
90 position_ += size_with_redzone;
91 }
92
93 #ifdef V8_USE_ADDRESS_SANITIZER
94 Address redzone_position = result + size;
95 DCHECK(redzone_position + kASanRedzoneBytes == position_);
96 ASAN_POISON_MEMORY_REGION(redzone_position, kASanRedzoneBytes);
97 #endif
98
99 // Check that the result has the proper alignment and return it.
100 DCHECK(IsAddressAligned(result, kAlignment, 0));
101 allocation_size_ += size;
102 return reinterpret_cast<void*>(result);
103 }
104
105
DeleteAll()106 void Zone::DeleteAll() {
107 #ifdef DEBUG
108 // Constant byte value used for zapping dead memory in debug mode.
109 static const unsigned char kZapDeadByte = 0xcd;
110 #endif
111
112 // Find a segment with a suitable size to keep around.
113 Segment* keep = NULL;
114 // Traverse the chained list of segments, zapping (in debug mode)
115 // and freeing every segment except the one we wish to keep.
116 for (Segment* current = segment_head_; current != NULL; ) {
117 Segment* next = current->next();
118 if (keep == NULL && current->size() <= kMaximumKeptSegmentSize) {
119 // Unlink the segment we wish to keep from the list.
120 keep = current;
121 keep->clear_next();
122 } else {
123 int size = current->size();
124 #ifdef DEBUG
125 // Un-poison first so the zapping doesn't trigger ASan complaints.
126 ASAN_UNPOISON_MEMORY_REGION(current, size);
127 // Zap the entire current segment (including the header).
128 memset(current, kZapDeadByte, size);
129 #endif
130 DeleteSegment(current, size);
131 }
132 current = next;
133 }
134
135 // If we have found a segment we want to keep, we must recompute the
136 // variables 'position' and 'limit' to prepare for future allocate
137 // attempts. Otherwise, we must clear the position and limit to
138 // force a new segment to be allocated on demand.
139 if (keep != NULL) {
140 Address start = keep->start();
141 position_ = RoundUp(start, kAlignment);
142 limit_ = keep->end();
143 // Un-poison so we can re-use the segment later.
144 ASAN_UNPOISON_MEMORY_REGION(start, keep->capacity());
145 #ifdef DEBUG
146 // Zap the contents of the kept segment (but not the header).
147 memset(start, kZapDeadByte, keep->capacity());
148 #endif
149 } else {
150 position_ = limit_ = 0;
151 }
152
153 // Update the head segment to be the kept segment (if any).
154 segment_head_ = keep;
155 }
156
157
DeleteKeptSegment()158 void Zone::DeleteKeptSegment() {
159 #ifdef DEBUG
160 // Constant byte value used for zapping dead memory in debug mode.
161 static const unsigned char kZapDeadByte = 0xcd;
162 #endif
163
164 DCHECK(segment_head_ == NULL || segment_head_->next() == NULL);
165 if (segment_head_ != NULL) {
166 int size = segment_head_->size();
167 #ifdef DEBUG
168 // Un-poison first so the zapping doesn't trigger ASan complaints.
169 ASAN_UNPOISON_MEMORY_REGION(segment_head_, size);
170 // Zap the entire kept segment (including the header).
171 memset(segment_head_, kZapDeadByte, size);
172 #endif
173 DeleteSegment(segment_head_, size);
174 segment_head_ = NULL;
175 }
176
177 DCHECK(segment_bytes_allocated_ == 0);
178 }
179
180
181 // Creates a new segment, sets it size, and pushes it to the front
182 // of the segment chain. Returns the new segment.
NewSegment(int size)183 Segment* Zone::NewSegment(int size) {
184 Segment* result = reinterpret_cast<Segment*>(Malloced::New(size));
185 adjust_segment_bytes_allocated(size);
186 if (result != NULL) {
187 result->Initialize(segment_head_, size);
188 segment_head_ = result;
189 }
190 return result;
191 }
192
193
194 // Deletes the given segment. Does not touch the segment chain.
DeleteSegment(Segment * segment,int size)195 void Zone::DeleteSegment(Segment* segment, int size) {
196 adjust_segment_bytes_allocated(-size);
197 Malloced::Delete(segment);
198 }
199
200
NewExpand(int size)201 Address Zone::NewExpand(int size) {
202 // Make sure the requested size is already properly aligned and that
203 // there isn't enough room in the Zone to satisfy the request.
204 DCHECK(size == RoundDown(size, kAlignment));
205 DCHECK(size > limit_ - position_);
206
207 // Compute the new segment size. We use a 'high water mark'
208 // strategy, where we increase the segment size every time we expand
209 // except that we employ a maximum segment size when we delete. This
210 // is to avoid excessive malloc() and free() overhead.
211 Segment* head = segment_head_;
212 const size_t old_size = (head == NULL) ? 0 : head->size();
213 static const size_t kSegmentOverhead = sizeof(Segment) + kAlignment;
214 const size_t new_size_no_overhead = size + (old_size << 1);
215 size_t new_size = kSegmentOverhead + new_size_no_overhead;
216 const size_t min_new_size = kSegmentOverhead + static_cast<size_t>(size);
217 // Guard against integer overflow.
218 if (new_size_no_overhead < static_cast<size_t>(size) ||
219 new_size < static_cast<size_t>(kSegmentOverhead)) {
220 V8::FatalProcessOutOfMemory("Zone");
221 return NULL;
222 }
223 if (new_size < static_cast<size_t>(kMinimumSegmentSize)) {
224 new_size = kMinimumSegmentSize;
225 } else if (new_size > static_cast<size_t>(kMaximumSegmentSize)) {
226 // Limit the size of new segments to avoid growing the segment size
227 // exponentially, thus putting pressure on contiguous virtual address space.
228 // All the while making sure to allocate a segment large enough to hold the
229 // requested size.
230 new_size = Max(min_new_size, static_cast<size_t>(kMaximumSegmentSize));
231 }
232 if (new_size > INT_MAX) {
233 V8::FatalProcessOutOfMemory("Zone");
234 return NULL;
235 }
236 Segment* segment = NewSegment(static_cast<int>(new_size));
237 if (segment == NULL) {
238 V8::FatalProcessOutOfMemory("Zone");
239 return NULL;
240 }
241
242 // Recompute 'top' and 'limit' based on the new segment.
243 Address result = RoundUp(segment->start(), kAlignment);
244 position_ = result + size;
245 // Check for address overflow.
246 // (Should not happen since the segment is guaranteed to accomodate
247 // size bytes + header and alignment padding)
248 if (reinterpret_cast<uintptr_t>(position_)
249 < reinterpret_cast<uintptr_t>(result)) {
250 V8::FatalProcessOutOfMemory("Zone");
251 return NULL;
252 }
253 limit_ = segment->end();
254 DCHECK(position_ <= limit_);
255 return result;
256 }
257
258
259 } } // namespace v8::internal
260