• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "compiler_internals.h"
18 #include "global_value_numbering.h"
19 #include "local_value_numbering.h"
20 #include "dataflow_iterator-inl.h"
21 #include "dex/global_value_numbering.h"
22 #include "dex/quick/dex_file_method_inliner.h"
23 #include "dex/quick/dex_file_to_method_inliner_map.h"
24 #include "utils/scoped_arena_containers.h"
25 
26 namespace art {
27 
Predecessors(BasicBlock * bb)28 static unsigned int Predecessors(BasicBlock* bb) {
29   return bb->predecessors->Size();
30 }
31 
32 /* Setup a constant value for opcodes thare have the DF_SETS_CONST attribute */
SetConstant(int32_t ssa_reg,int value)33 void MIRGraph::SetConstant(int32_t ssa_reg, int value) {
34   is_constant_v_->SetBit(ssa_reg);
35   constant_values_[ssa_reg] = value;
36 }
37 
SetConstantWide(int ssa_reg,int64_t value)38 void MIRGraph::SetConstantWide(int ssa_reg, int64_t value) {
39   is_constant_v_->SetBit(ssa_reg);
40   is_constant_v_->SetBit(ssa_reg + 1);
41   constant_values_[ssa_reg] = Low32Bits(value);
42   constant_values_[ssa_reg + 1] = High32Bits(value);
43 }
44 
DoConstantPropagation(BasicBlock * bb)45 void MIRGraph::DoConstantPropagation(BasicBlock* bb) {
46   MIR* mir;
47 
48   for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
49     // Skip pass if BB has MIR without SSA representation.
50     if (mir->ssa_rep == nullptr) {
51        return;
52     }
53 
54     uint64_t df_attributes = GetDataFlowAttributes(mir);
55 
56     MIR::DecodedInstruction* d_insn = &mir->dalvikInsn;
57 
58     if (!(df_attributes & DF_HAS_DEFS)) continue;
59 
60     /* Handle instructions that set up constants directly */
61     if (df_attributes & DF_SETS_CONST) {
62       if (df_attributes & DF_DA) {
63         int32_t vB = static_cast<int32_t>(d_insn->vB);
64         switch (d_insn->opcode) {
65           case Instruction::CONST_4:
66           case Instruction::CONST_16:
67           case Instruction::CONST:
68             SetConstant(mir->ssa_rep->defs[0], vB);
69             break;
70           case Instruction::CONST_HIGH16:
71             SetConstant(mir->ssa_rep->defs[0], vB << 16);
72             break;
73           case Instruction::CONST_WIDE_16:
74           case Instruction::CONST_WIDE_32:
75             SetConstantWide(mir->ssa_rep->defs[0], static_cast<int64_t>(vB));
76             break;
77           case Instruction::CONST_WIDE:
78             SetConstantWide(mir->ssa_rep->defs[0], d_insn->vB_wide);
79             break;
80           case Instruction::CONST_WIDE_HIGH16:
81             SetConstantWide(mir->ssa_rep->defs[0], static_cast<int64_t>(vB) << 48);
82             break;
83           default:
84             break;
85         }
86       }
87       /* Handle instructions that set up constants directly */
88     } else if (df_attributes & DF_IS_MOVE) {
89       int i;
90 
91       for (i = 0; i < mir->ssa_rep->num_uses; i++) {
92         if (!is_constant_v_->IsBitSet(mir->ssa_rep->uses[i])) break;
93       }
94       /* Move a register holding a constant to another register */
95       if (i == mir->ssa_rep->num_uses) {
96         SetConstant(mir->ssa_rep->defs[0], constant_values_[mir->ssa_rep->uses[0]]);
97         if (df_attributes & DF_A_WIDE) {
98           SetConstant(mir->ssa_rep->defs[1], constant_values_[mir->ssa_rep->uses[1]]);
99         }
100       }
101     }
102   }
103   /* TODO: implement code to handle arithmetic operations */
104 }
105 
106 /* Advance to next strictly dominated MIR node in an extended basic block */
AdvanceMIR(BasicBlock ** p_bb,MIR * mir)107 MIR* MIRGraph::AdvanceMIR(BasicBlock** p_bb, MIR* mir) {
108   BasicBlock* bb = *p_bb;
109   if (mir != NULL) {
110     mir = mir->next;
111     if (mir == NULL) {
112       bb = GetBasicBlock(bb->fall_through);
113       if ((bb == NULL) || Predecessors(bb) != 1) {
114         mir = NULL;
115       } else {
116       *p_bb = bb;
117       mir = bb->first_mir_insn;
118       }
119     }
120   }
121   return mir;
122 }
123 
124 /*
125  * To be used at an invoke mir.  If the logically next mir node represents
126  * a move-result, return it.  Else, return NULL.  If a move-result exists,
127  * it is required to immediately follow the invoke with no intervening
128  * opcodes or incoming arcs.  However, if the result of the invoke is not
129  * used, a move-result may not be present.
130  */
FindMoveResult(BasicBlock * bb,MIR * mir)131 MIR* MIRGraph::FindMoveResult(BasicBlock* bb, MIR* mir) {
132   BasicBlock* tbb = bb;
133   mir = AdvanceMIR(&tbb, mir);
134   while (mir != NULL) {
135     if ((mir->dalvikInsn.opcode == Instruction::MOVE_RESULT) ||
136         (mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) ||
137         (mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_WIDE)) {
138       break;
139     }
140     // Keep going if pseudo op, otherwise terminate
141     if (MIR::DecodedInstruction::IsPseudoMirOp(mir->dalvikInsn.opcode)) {
142       mir = AdvanceMIR(&tbb, mir);
143     } else {
144       mir = NULL;
145     }
146   }
147   return mir;
148 }
149 
NextDominatedBlock(BasicBlock * bb)150 BasicBlock* MIRGraph::NextDominatedBlock(BasicBlock* bb) {
151   if (bb->block_type == kDead) {
152     return NULL;
153   }
154   DCHECK((bb->block_type == kEntryBlock) || (bb->block_type == kDalvikByteCode)
155       || (bb->block_type == kExitBlock));
156   BasicBlock* bb_taken = GetBasicBlock(bb->taken);
157   BasicBlock* bb_fall_through = GetBasicBlock(bb->fall_through);
158   if (((bb_fall_through == NULL) && (bb_taken != NULL)) &&
159       ((bb_taken->block_type == kDalvikByteCode) || (bb_taken->block_type == kExitBlock))) {
160     // Follow simple unconditional branches.
161     bb = bb_taken;
162   } else {
163     // Follow simple fallthrough
164     bb = (bb_taken != NULL) ? NULL : bb_fall_through;
165   }
166   if (bb == NULL || (Predecessors(bb) != 1)) {
167     return NULL;
168   }
169   DCHECK((bb->block_type == kDalvikByteCode) || (bb->block_type == kExitBlock));
170   return bb;
171 }
172 
FindPhi(BasicBlock * bb,int ssa_name)173 static MIR* FindPhi(BasicBlock* bb, int ssa_name) {
174   for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
175     if (static_cast<int>(mir->dalvikInsn.opcode) == kMirOpPhi) {
176       for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
177         if (mir->ssa_rep->uses[i] == ssa_name) {
178           return mir;
179         }
180       }
181     }
182   }
183   return NULL;
184 }
185 
SelectKind(MIR * mir)186 static SelectInstructionKind SelectKind(MIR* mir) {
187   switch (mir->dalvikInsn.opcode) {
188     case Instruction::MOVE:
189     case Instruction::MOVE_OBJECT:
190     case Instruction::MOVE_16:
191     case Instruction::MOVE_OBJECT_16:
192     case Instruction::MOVE_FROM16:
193     case Instruction::MOVE_OBJECT_FROM16:
194       return kSelectMove;
195     case Instruction::CONST:
196     case Instruction::CONST_4:
197     case Instruction::CONST_16:
198       return kSelectConst;
199     case Instruction::GOTO:
200     case Instruction::GOTO_16:
201     case Instruction::GOTO_32:
202       return kSelectGoto;
203     default:
204       return kSelectNone;
205   }
206 }
207 
208 static constexpr ConditionCode kIfCcZConditionCodes[] = {
209     kCondEq, kCondNe, kCondLt, kCondGe, kCondGt, kCondLe
210 };
211 
212 COMPILE_ASSERT(arraysize(kIfCcZConditionCodes) == Instruction::IF_LEZ - Instruction::IF_EQZ + 1,
213                if_ccz_ccodes_size1);
214 
IsInstructionIfCcZ(Instruction::Code opcode)215 static constexpr bool IsInstructionIfCcZ(Instruction::Code opcode) {
216   return Instruction::IF_EQZ <= opcode && opcode <= Instruction::IF_LEZ;
217 }
218 
ConditionCodeForIfCcZ(Instruction::Code opcode)219 static constexpr ConditionCode ConditionCodeForIfCcZ(Instruction::Code opcode) {
220   return kIfCcZConditionCodes[opcode - Instruction::IF_EQZ];
221 }
222 
223 COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_EQZ) == kCondEq, check_if_eqz_ccode);
224 COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_NEZ) == kCondNe, check_if_nez_ccode);
225 COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_LTZ) == kCondLt, check_if_ltz_ccode);
226 COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_GEZ) == kCondGe, check_if_gez_ccode);
227 COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_GTZ) == kCondGt, check_if_gtz_ccode);
228 COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_LEZ) == kCondLe, check_if_lez_ccode);
229 
GetSSAUseCount(int s_reg)230 int MIRGraph::GetSSAUseCount(int s_reg) {
231   return raw_use_counts_.Get(s_reg);
232 }
233 
GetNumAvailableNonSpecialCompilerTemps()234 size_t MIRGraph::GetNumAvailableNonSpecialCompilerTemps() {
235   if (num_non_special_compiler_temps_ >= max_available_non_special_compiler_temps_) {
236     return 0;
237   } else {
238     return max_available_non_special_compiler_temps_ - num_non_special_compiler_temps_;
239   }
240 }
241 
242 
243 // FIXME - will probably need to revisit all uses of this, as type not defined.
244 static const RegLocation temp_loc = {kLocCompilerTemp,
245                                      0, 1 /*defined*/, 0, 0, 0, 0, 0, 1 /*home*/,
246                                      RegStorage(), INVALID_SREG, INVALID_SREG};
247 
GetNewCompilerTemp(CompilerTempType ct_type,bool wide)248 CompilerTemp* MIRGraph::GetNewCompilerTemp(CompilerTempType ct_type, bool wide) {
249   // There is a limit to the number of non-special temps so check to make sure it wasn't exceeded.
250   if (ct_type == kCompilerTempVR) {
251     size_t available_temps = GetNumAvailableNonSpecialCompilerTemps();
252     if (available_temps <= 0 || (available_temps <= 1 && wide)) {
253       return 0;
254     }
255   }
256 
257   CompilerTemp *compiler_temp = static_cast<CompilerTemp *>(arena_->Alloc(sizeof(CompilerTemp),
258                                                             kArenaAllocRegAlloc));
259 
260   // Create the type of temp requested. Special temps need special handling because
261   // they have a specific virtual register assignment.
262   if (ct_type == kCompilerTempSpecialMethodPtr) {
263     DCHECK_EQ(wide, false);
264     compiler_temp->v_reg = static_cast<int>(kVRegMethodPtrBaseReg);
265     compiler_temp->s_reg_low = AddNewSReg(compiler_temp->v_reg);
266 
267     // The MIR graph keeps track of the sreg for method pointer specially, so record that now.
268     method_sreg_ = compiler_temp->s_reg_low;
269   } else {
270     DCHECK_EQ(ct_type, kCompilerTempVR);
271 
272     // The new non-special compiler temp must receive a unique v_reg with a negative value.
273     compiler_temp->v_reg = static_cast<int>(kVRegNonSpecialTempBaseReg) -
274         num_non_special_compiler_temps_;
275     compiler_temp->s_reg_low = AddNewSReg(compiler_temp->v_reg);
276     num_non_special_compiler_temps_++;
277 
278     if (wide) {
279       // Create a new CompilerTemp for the high part.
280       CompilerTemp *compiler_temp_high =
281           static_cast<CompilerTemp *>(arena_->Alloc(sizeof(CompilerTemp), kArenaAllocRegAlloc));
282       compiler_temp_high->v_reg = compiler_temp->v_reg;
283       compiler_temp_high->s_reg_low = compiler_temp->s_reg_low;
284       compiler_temps_.Insert(compiler_temp_high);
285 
286       // Ensure that the two registers are consecutive. Since the virtual registers used for temps
287       // grow in a negative fashion, we need the smaller to refer to the low part. Thus, we
288       // redefine the v_reg and s_reg_low.
289       compiler_temp->v_reg--;
290       int ssa_reg_high = compiler_temp->s_reg_low;
291       compiler_temp->s_reg_low = AddNewSReg(compiler_temp->v_reg);
292       int ssa_reg_low = compiler_temp->s_reg_low;
293 
294       // If needed initialize the register location for the high part.
295       // The low part is handled later in this method on a common path.
296       if (reg_location_ != nullptr) {
297         reg_location_[ssa_reg_high] = temp_loc;
298         reg_location_[ssa_reg_high].high_word = 1;
299         reg_location_[ssa_reg_high].s_reg_low = ssa_reg_low;
300         reg_location_[ssa_reg_high].wide = true;
301       }
302 
303       num_non_special_compiler_temps_++;
304     }
305   }
306 
307   // Have we already allocated the register locations?
308   if (reg_location_ != nullptr) {
309     int ssa_reg_low = compiler_temp->s_reg_low;
310     reg_location_[ssa_reg_low] = temp_loc;
311     reg_location_[ssa_reg_low].s_reg_low = ssa_reg_low;
312     reg_location_[ssa_reg_low].wide = wide;
313   }
314 
315   compiler_temps_.Insert(compiler_temp);
316   return compiler_temp;
317 }
318 
319 /* Do some MIR-level extended basic block optimizations */
BasicBlockOpt(BasicBlock * bb)320 bool MIRGraph::BasicBlockOpt(BasicBlock* bb) {
321   if (bb->block_type == kDead) {
322     return true;
323   }
324   // Don't do a separate LVN if we did the GVN.
325   bool use_lvn = bb->use_lvn && (cu_->disable_opt & (1u << kGlobalValueNumbering)) != 0u;
326   std::unique_ptr<ScopedArenaAllocator> allocator;
327   std::unique_ptr<GlobalValueNumbering> global_valnum;
328   std::unique_ptr<LocalValueNumbering> local_valnum;
329   if (use_lvn) {
330     allocator.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
331     global_valnum.reset(new (allocator.get()) GlobalValueNumbering(cu_, allocator.get()));
332     local_valnum.reset(new (allocator.get()) LocalValueNumbering(global_valnum.get(), bb->id,
333                                                                  allocator.get()));
334   }
335   while (bb != NULL) {
336     for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
337       // TUNING: use the returned value number for CSE.
338       if (use_lvn) {
339         local_valnum->GetValueNumber(mir);
340       }
341       // Look for interesting opcodes, skip otherwise
342       Instruction::Code opcode = mir->dalvikInsn.opcode;
343       switch (opcode) {
344         case Instruction::CMPL_FLOAT:
345         case Instruction::CMPL_DOUBLE:
346         case Instruction::CMPG_FLOAT:
347         case Instruction::CMPG_DOUBLE:
348         case Instruction::CMP_LONG:
349           if ((cu_->disable_opt & (1 << kBranchFusing)) != 0) {
350             // Bitcode doesn't allow this optimization.
351             break;
352           }
353           if (mir->next != NULL) {
354             MIR* mir_next = mir->next;
355             // Make sure result of cmp is used by next insn and nowhere else
356             if (IsInstructionIfCcZ(mir_next->dalvikInsn.opcode) &&
357                 (mir->ssa_rep->defs[0] == mir_next->ssa_rep->uses[0]) &&
358                 (GetSSAUseCount(mir->ssa_rep->defs[0]) == 1)) {
359               mir_next->meta.ccode = ConditionCodeForIfCcZ(mir_next->dalvikInsn.opcode);
360               switch (opcode) {
361                 case Instruction::CMPL_FLOAT:
362                   mir_next->dalvikInsn.opcode =
363                       static_cast<Instruction::Code>(kMirOpFusedCmplFloat);
364                   break;
365                 case Instruction::CMPL_DOUBLE:
366                   mir_next->dalvikInsn.opcode =
367                       static_cast<Instruction::Code>(kMirOpFusedCmplDouble);
368                   break;
369                 case Instruction::CMPG_FLOAT:
370                   mir_next->dalvikInsn.opcode =
371                       static_cast<Instruction::Code>(kMirOpFusedCmpgFloat);
372                   break;
373                 case Instruction::CMPG_DOUBLE:
374                   mir_next->dalvikInsn.opcode =
375                       static_cast<Instruction::Code>(kMirOpFusedCmpgDouble);
376                   break;
377                 case Instruction::CMP_LONG:
378                   mir_next->dalvikInsn.opcode =
379                       static_cast<Instruction::Code>(kMirOpFusedCmpLong);
380                   break;
381                 default: LOG(ERROR) << "Unexpected opcode: " << opcode;
382               }
383               mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
384               // Copy the SSA information that is relevant.
385               mir_next->ssa_rep->num_uses = mir->ssa_rep->num_uses;
386               mir_next->ssa_rep->uses = mir->ssa_rep->uses;
387               mir_next->ssa_rep->fp_use = mir->ssa_rep->fp_use;
388               mir_next->ssa_rep->num_defs = 0;
389               mir->ssa_rep->num_uses = 0;
390               mir->ssa_rep->num_defs = 0;
391               // Copy in the decoded instruction information for potential SSA re-creation.
392               mir_next->dalvikInsn.vA = mir->dalvikInsn.vB;
393               mir_next->dalvikInsn.vB = mir->dalvikInsn.vC;
394             }
395           }
396           break;
397         case Instruction::GOTO:
398         case Instruction::GOTO_16:
399         case Instruction::GOTO_32:
400         case Instruction::IF_EQ:
401         case Instruction::IF_NE:
402         case Instruction::IF_LT:
403         case Instruction::IF_GE:
404         case Instruction::IF_GT:
405         case Instruction::IF_LE:
406         case Instruction::IF_EQZ:
407         case Instruction::IF_NEZ:
408         case Instruction::IF_LTZ:
409         case Instruction::IF_GEZ:
410         case Instruction::IF_GTZ:
411         case Instruction::IF_LEZ:
412           // If we've got a backwards branch to return, no need to suspend check.
413           if ((IsBackedge(bb, bb->taken) && GetBasicBlock(bb->taken)->dominates_return) ||
414               (IsBackedge(bb, bb->fall_through) &&
415                           GetBasicBlock(bb->fall_through)->dominates_return)) {
416             mir->optimization_flags |= MIR_IGNORE_SUSPEND_CHECK;
417             if (cu_->verbose) {
418               LOG(INFO) << "Suppressed suspend check on branch to return at 0x" << std::hex
419                         << mir->offset;
420             }
421           }
422           break;
423         default:
424           break;
425       }
426       // Is this the select pattern?
427       // TODO: flesh out support for Mips.  NOTE: llvm's select op doesn't quite work here.
428       // TUNING: expand to support IF_xx compare & branches
429       if (!cu_->compiler->IsPortable() &&
430           (cu_->instruction_set == kArm64 || cu_->instruction_set == kThumb2 ||
431            cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) &&
432           IsInstructionIfCcZ(mir->dalvikInsn.opcode)) {
433         BasicBlock* ft = GetBasicBlock(bb->fall_through);
434         DCHECK(ft != NULL);
435         BasicBlock* ft_ft = GetBasicBlock(ft->fall_through);
436         BasicBlock* ft_tk = GetBasicBlock(ft->taken);
437 
438         BasicBlock* tk = GetBasicBlock(bb->taken);
439         DCHECK(tk != NULL);
440         BasicBlock* tk_ft = GetBasicBlock(tk->fall_through);
441         BasicBlock* tk_tk = GetBasicBlock(tk->taken);
442 
443         /*
444          * In the select pattern, the taken edge goes to a block that unconditionally
445          * transfers to the rejoin block and the fall_though edge goes to a block that
446          * unconditionally falls through to the rejoin block.
447          */
448         if ((tk_ft == NULL) && (ft_tk == NULL) && (tk_tk == ft_ft) &&
449             (Predecessors(tk) == 1) && (Predecessors(ft) == 1)) {
450           /*
451            * Okay - we have the basic diamond shape.  At the very least, we can eliminate the
452            * suspend check on the taken-taken branch back to the join point.
453            */
454           if (SelectKind(tk->last_mir_insn) == kSelectGoto) {
455               tk->last_mir_insn->optimization_flags |= (MIR_IGNORE_SUSPEND_CHECK);
456           }
457 
458           // TODO: Add logic for LONG.
459           // Are the block bodies something we can handle?
460           if ((ft->first_mir_insn == ft->last_mir_insn) &&
461               (tk->first_mir_insn != tk->last_mir_insn) &&
462               (tk->first_mir_insn->next == tk->last_mir_insn) &&
463               ((SelectKind(ft->first_mir_insn) == kSelectMove) ||
464               (SelectKind(ft->first_mir_insn) == kSelectConst)) &&
465               (SelectKind(ft->first_mir_insn) == SelectKind(tk->first_mir_insn)) &&
466               (SelectKind(tk->last_mir_insn) == kSelectGoto)) {
467             // Almost there.  Are the instructions targeting the same vreg?
468             MIR* if_true = tk->first_mir_insn;
469             MIR* if_false = ft->first_mir_insn;
470             // It's possible that the target of the select isn't used - skip those (rare) cases.
471             MIR* phi = FindPhi(tk_tk, if_true->ssa_rep->defs[0]);
472             if ((phi != NULL) && (if_true->dalvikInsn.vA == if_false->dalvikInsn.vA)) {
473               /*
474                * We'll convert the IF_EQZ/IF_NEZ to a SELECT.  We need to find the
475                * Phi node in the merge block and delete it (while using the SSA name
476                * of the merge as the target of the SELECT.  Delete both taken and
477                * fallthrough blocks, and set fallthrough to merge block.
478                * NOTE: not updating other dataflow info (no longer used at this point).
479                * If this changes, need to update i_dom, etc. here (and in CombineBlocks).
480                */
481               mir->meta.ccode = ConditionCodeForIfCcZ(mir->dalvikInsn.opcode);
482               mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpSelect);
483               bool const_form = (SelectKind(if_true) == kSelectConst);
484               if ((SelectKind(if_true) == kSelectMove)) {
485                 if (IsConst(if_true->ssa_rep->uses[0]) &&
486                     IsConst(if_false->ssa_rep->uses[0])) {
487                     const_form = true;
488                     if_true->dalvikInsn.vB = ConstantValue(if_true->ssa_rep->uses[0]);
489                     if_false->dalvikInsn.vB = ConstantValue(if_false->ssa_rep->uses[0]);
490                 }
491               }
492               if (const_form) {
493                 /*
494                  * TODO: If both constants are the same value, then instead of generating
495                  * a select, we should simply generate a const bytecode. This should be
496                  * considered after inlining which can lead to CFG of this form.
497                  */
498                 // "true" set val in vB
499                 mir->dalvikInsn.vB = if_true->dalvikInsn.vB;
500                 // "false" set val in vC
501                 mir->dalvikInsn.vC = if_false->dalvikInsn.vB;
502               } else {
503                 DCHECK_EQ(SelectKind(if_true), kSelectMove);
504                 DCHECK_EQ(SelectKind(if_false), kSelectMove);
505                 int* src_ssa =
506                     static_cast<int*>(arena_->Alloc(sizeof(int) * 3, kArenaAllocDFInfo));
507                 src_ssa[0] = mir->ssa_rep->uses[0];
508                 src_ssa[1] = if_true->ssa_rep->uses[0];
509                 src_ssa[2] = if_false->ssa_rep->uses[0];
510                 mir->ssa_rep->uses = src_ssa;
511                 mir->ssa_rep->num_uses = 3;
512               }
513               mir->ssa_rep->num_defs = 1;
514               mir->ssa_rep->defs =
515                   static_cast<int*>(arena_->Alloc(sizeof(int) * 1, kArenaAllocDFInfo));
516               mir->ssa_rep->fp_def =
517                   static_cast<bool*>(arena_->Alloc(sizeof(bool) * 1, kArenaAllocDFInfo));
518               mir->ssa_rep->fp_def[0] = if_true->ssa_rep->fp_def[0];
519               // Match type of uses to def.
520               mir->ssa_rep->fp_use =
521                   static_cast<bool*>(arena_->Alloc(sizeof(bool) * mir->ssa_rep->num_uses,
522                                                    kArenaAllocDFInfo));
523               for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
524                 mir->ssa_rep->fp_use[i] = mir->ssa_rep->fp_def[0];
525               }
526               /*
527                * There is usually a Phi node in the join block for our two cases.  If the
528                * Phi node only contains our two cases as input, we will use the result
529                * SSA name of the Phi node as our select result and delete the Phi.  If
530                * the Phi node has more than two operands, we will arbitrarily use the SSA
531                * name of the "true" path, delete the SSA name of the "false" path from the
532                * Phi node (and fix up the incoming arc list).
533                */
534               if (phi->ssa_rep->num_uses == 2) {
535                 mir->ssa_rep->defs[0] = phi->ssa_rep->defs[0];
536                 phi->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
537               } else {
538                 int dead_def = if_false->ssa_rep->defs[0];
539                 int live_def = if_true->ssa_rep->defs[0];
540                 mir->ssa_rep->defs[0] = live_def;
541                 BasicBlockId* incoming = phi->meta.phi_incoming;
542                 for (int i = 0; i < phi->ssa_rep->num_uses; i++) {
543                   if (phi->ssa_rep->uses[i] == live_def) {
544                     incoming[i] = bb->id;
545                   }
546                 }
547                 for (int i = 0; i < phi->ssa_rep->num_uses; i++) {
548                   if (phi->ssa_rep->uses[i] == dead_def) {
549                     int last_slot = phi->ssa_rep->num_uses - 1;
550                     phi->ssa_rep->uses[i] = phi->ssa_rep->uses[last_slot];
551                     incoming[i] = incoming[last_slot];
552                   }
553                 }
554               }
555               phi->ssa_rep->num_uses--;
556               bb->taken = NullBasicBlockId;
557               tk->block_type = kDead;
558               for (MIR* tmir = ft->first_mir_insn; tmir != NULL; tmir = tmir->next) {
559                 tmir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
560               }
561             }
562           }
563         }
564       }
565     }
566     bb = ((cu_->disable_opt & (1 << kSuppressExceptionEdges)) != 0) ? NextDominatedBlock(bb) : NULL;
567   }
568   if (use_lvn && UNLIKELY(!global_valnum->Good())) {
569     LOG(WARNING) << "LVN overflow in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
570   }
571 
572   return true;
573 }
574 
575 /* Collect stats on number of checks removed */
CountChecks(struct BasicBlock * bb)576 void MIRGraph::CountChecks(struct BasicBlock* bb) {
577   if (bb->data_flow_info != NULL) {
578     for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
579       if (mir->ssa_rep == NULL) {
580         continue;
581       }
582       uint64_t df_attributes = GetDataFlowAttributes(mir);
583       if (df_attributes & DF_HAS_NULL_CHKS) {
584         checkstats_->null_checks++;
585         if (mir->optimization_flags & MIR_IGNORE_NULL_CHECK) {
586           checkstats_->null_checks_eliminated++;
587         }
588       }
589       if (df_attributes & DF_HAS_RANGE_CHKS) {
590         checkstats_->range_checks++;
591         if (mir->optimization_flags & MIR_IGNORE_RANGE_CHECK) {
592           checkstats_->range_checks_eliminated++;
593         }
594       }
595     }
596   }
597 }
598 
599 /* Try to make common case the fallthrough path. */
LayoutBlocks(BasicBlock * bb)600 bool MIRGraph::LayoutBlocks(BasicBlock* bb) {
601   // TODO: For now, just looking for direct throws.  Consider generalizing for profile feedback.
602   if (!bb->explicit_throw) {
603     return false;
604   }
605 
606   // If we visited it, we are done.
607   if (bb->visited) {
608     return false;
609   }
610   bb->visited = true;
611 
612   BasicBlock* walker = bb;
613   while (true) {
614     // Check termination conditions.
615     if ((walker->block_type == kEntryBlock) || (Predecessors(walker) != 1)) {
616       break;
617     }
618     BasicBlock* prev = GetBasicBlock(walker->predecessors->Get(0));
619 
620     // If we visited the predecessor, we are done.
621     if (prev->visited) {
622       return false;
623     }
624     prev->visited = true;
625 
626     if (prev->conditional_branch) {
627       if (GetBasicBlock(prev->fall_through) == walker) {
628         // Already done - return.
629         break;
630       }
631       DCHECK_EQ(walker, GetBasicBlock(prev->taken));
632       // Got one.  Flip it and exit.
633       Instruction::Code opcode = prev->last_mir_insn->dalvikInsn.opcode;
634       switch (opcode) {
635         case Instruction::IF_EQ: opcode = Instruction::IF_NE; break;
636         case Instruction::IF_NE: opcode = Instruction::IF_EQ; break;
637         case Instruction::IF_LT: opcode = Instruction::IF_GE; break;
638         case Instruction::IF_GE: opcode = Instruction::IF_LT; break;
639         case Instruction::IF_GT: opcode = Instruction::IF_LE; break;
640         case Instruction::IF_LE: opcode = Instruction::IF_GT; break;
641         case Instruction::IF_EQZ: opcode = Instruction::IF_NEZ; break;
642         case Instruction::IF_NEZ: opcode = Instruction::IF_EQZ; break;
643         case Instruction::IF_LTZ: opcode = Instruction::IF_GEZ; break;
644         case Instruction::IF_GEZ: opcode = Instruction::IF_LTZ; break;
645         case Instruction::IF_GTZ: opcode = Instruction::IF_LEZ; break;
646         case Instruction::IF_LEZ: opcode = Instruction::IF_GTZ; break;
647         default: LOG(FATAL) << "Unexpected opcode " << opcode;
648       }
649       prev->last_mir_insn->dalvikInsn.opcode = opcode;
650       BasicBlockId t_bb = prev->taken;
651       prev->taken = prev->fall_through;
652       prev->fall_through = t_bb;
653       break;
654     }
655     walker = prev;
656   }
657   return false;
658 }
659 
660 /* Combine any basic blocks terminated by instructions that we now know can't throw */
CombineBlocks(struct BasicBlock * bb)661 void MIRGraph::CombineBlocks(struct BasicBlock* bb) {
662   // Loop here to allow combining a sequence of blocks
663   while (true) {
664     // Check termination conditions
665     if ((bb->first_mir_insn == NULL)
666         || (bb->data_flow_info == NULL)
667         || (bb->block_type == kExceptionHandling)
668         || (bb->block_type == kExitBlock)
669         || (bb->block_type == kDead)
670         || (bb->taken == NullBasicBlockId)
671         || (GetBasicBlock(bb->taken)->block_type != kExceptionHandling)
672         || (bb->successor_block_list_type != kNotUsed)
673         || (static_cast<int>(bb->last_mir_insn->dalvikInsn.opcode) != kMirOpCheck)) {
674       break;
675     }
676 
677     // Test the kMirOpCheck instruction
678     MIR* mir = bb->last_mir_insn;
679     // Grab the attributes from the paired opcode
680     MIR* throw_insn = mir->meta.throw_insn;
681     uint64_t df_attributes = GetDataFlowAttributes(throw_insn);
682     bool can_combine = true;
683     if (df_attributes & DF_HAS_NULL_CHKS) {
684       can_combine &= ((throw_insn->optimization_flags & MIR_IGNORE_NULL_CHECK) != 0);
685     }
686     if (df_attributes & DF_HAS_RANGE_CHKS) {
687       can_combine &= ((throw_insn->optimization_flags & MIR_IGNORE_RANGE_CHECK) != 0);
688     }
689     if (!can_combine) {
690       break;
691     }
692     // OK - got one.  Combine
693     BasicBlock* bb_next = GetBasicBlock(bb->fall_through);
694     DCHECK(!bb_next->catch_entry);
695     DCHECK_EQ(Predecessors(bb_next), 1U);
696     // Overwrite the kOpCheck insn with the paired opcode
697     DCHECK_EQ(bb_next->first_mir_insn, throw_insn);
698     *bb->last_mir_insn = *throw_insn;
699     // Use the successor info from the next block
700     bb->successor_block_list_type = bb_next->successor_block_list_type;
701     bb->successor_blocks = bb_next->successor_blocks;
702     // Use the ending block linkage from the next block
703     bb->fall_through = bb_next->fall_through;
704     GetBasicBlock(bb->taken)->block_type = kDead;  // Kill the unused exception block
705     bb->taken = bb_next->taken;
706     // Include the rest of the instructions
707     bb->last_mir_insn = bb_next->last_mir_insn;
708     /*
709      * If lower-half of pair of blocks to combine contained a return, move the flag
710      * to the newly combined block.
711      */
712     bb->terminated_by_return = bb_next->terminated_by_return;
713 
714     /*
715      * NOTE: we aren't updating all dataflow info here.  Should either make sure this pass
716      * happens after uses of i_dominated, dom_frontier or update the dataflow info here.
717      */
718 
719     // Kill bb_next and remap now-dead id to parent
720     bb_next->block_type = kDead;
721     block_id_map_.Overwrite(bb_next->id, bb->id);
722 
723     // Now, loop back and see if we can keep going
724   }
725 }
726 
EliminateNullChecksAndInferTypesStart()727 void MIRGraph::EliminateNullChecksAndInferTypesStart() {
728   if ((cu_->disable_opt & (1 << kNullCheckElimination)) == 0) {
729     if (kIsDebugBuild) {
730       AllNodesIterator iter(this);
731       for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
732         CHECK(bb->data_flow_info == nullptr || bb->data_flow_info->ending_check_v == nullptr);
733       }
734     }
735 
736     DCHECK(temp_scoped_alloc_.get() == nullptr);
737     temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
738     temp_bit_vector_size_ = GetNumSSARegs();
739     temp_bit_vector_ = new (temp_scoped_alloc_.get()) ArenaBitVector(
740         temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapTempSSARegisterV);
741   }
742 }
743 
744 /*
745  * Eliminate unnecessary null checks for a basic block.   Also, while we're doing
746  * an iterative walk go ahead and perform type and size inference.
747  */
EliminateNullChecksAndInferTypes(BasicBlock * bb)748 bool MIRGraph::EliminateNullChecksAndInferTypes(BasicBlock* bb) {
749   if (bb->data_flow_info == NULL) return false;
750   bool infer_changed = false;
751   bool do_nce = ((cu_->disable_opt & (1 << kNullCheckElimination)) == 0);
752 
753   ArenaBitVector* ssa_regs_to_check = temp_bit_vector_;
754   if (do_nce) {
755     /*
756      * Set initial state. Catch blocks don't need any special treatment.
757      */
758     if (bb->block_type == kEntryBlock) {
759       ssa_regs_to_check->ClearAllBits();
760       // Assume all ins are objects.
761       for (uint16_t in_reg = cu_->num_dalvik_registers - cu_->num_ins;
762            in_reg < cu_->num_dalvik_registers; in_reg++) {
763         ssa_regs_to_check->SetBit(in_reg);
764       }
765       if ((cu_->access_flags & kAccStatic) == 0) {
766         // If non-static method, mark "this" as non-null
767         int this_reg = cu_->num_dalvik_registers - cu_->num_ins;
768         ssa_regs_to_check->ClearBit(this_reg);
769       }
770     } else if (bb->predecessors->Size() == 1) {
771       BasicBlock* pred_bb = GetBasicBlock(bb->predecessors->Get(0));
772       // pred_bb must have already been processed at least once.
773       DCHECK(pred_bb->data_flow_info->ending_check_v != nullptr);
774       ssa_regs_to_check->Copy(pred_bb->data_flow_info->ending_check_v);
775       if (pred_bb->block_type == kDalvikByteCode) {
776         // Check to see if predecessor had an explicit null-check.
777         MIR* last_insn = pred_bb->last_mir_insn;
778         if (last_insn != nullptr) {
779           Instruction::Code last_opcode = last_insn->dalvikInsn.opcode;
780           if (last_opcode == Instruction::IF_EQZ) {
781             if (pred_bb->fall_through == bb->id) {
782               // The fall-through of a block following a IF_EQZ, set the vA of the IF_EQZ to show that
783               // it can't be null.
784               ssa_regs_to_check->ClearBit(last_insn->ssa_rep->uses[0]);
785             }
786           } else if (last_opcode == Instruction::IF_NEZ) {
787             if (pred_bb->taken == bb->id) {
788               // The taken block following a IF_NEZ, set the vA of the IF_NEZ to show that it can't be
789               // null.
790               ssa_regs_to_check->ClearBit(last_insn->ssa_rep->uses[0]);
791             }
792           }
793         }
794       }
795     } else {
796       // Starting state is union of all incoming arcs
797       GrowableArray<BasicBlockId>::Iterator iter(bb->predecessors);
798       BasicBlock* pred_bb = GetBasicBlock(iter.Next());
799       CHECK(pred_bb != NULL);
800       while (pred_bb->data_flow_info->ending_check_v == nullptr) {
801         pred_bb = GetBasicBlock(iter.Next());
802         // At least one predecessor must have been processed before this bb.
803         DCHECK(pred_bb != nullptr);
804         DCHECK(pred_bb->data_flow_info != nullptr);
805       }
806       ssa_regs_to_check->Copy(pred_bb->data_flow_info->ending_check_v);
807       while (true) {
808         pred_bb = GetBasicBlock(iter.Next());
809         if (!pred_bb) break;
810         DCHECK(pred_bb->data_flow_info != nullptr);
811         if (pred_bb->data_flow_info->ending_check_v == nullptr) {
812           continue;
813         }
814         ssa_regs_to_check->Union(pred_bb->data_flow_info->ending_check_v);
815       }
816     }
817     // At this point, ssa_regs_to_check shows which sregs have an object definition with
818     // no intervening uses.
819   }
820 
821   // Walk through the instruction in the block, updating as necessary
822   for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
823     if (mir->ssa_rep == NULL) {
824         continue;
825     }
826 
827     // Propagate type info.
828     infer_changed = InferTypeAndSize(bb, mir, infer_changed);
829     if (!do_nce) {
830       continue;
831     }
832 
833     uint64_t df_attributes = GetDataFlowAttributes(mir);
834 
835     // Might need a null check?
836     if (df_attributes & DF_HAS_NULL_CHKS) {
837       int src_idx;
838       if (df_attributes & DF_NULL_CHK_1) {
839         src_idx = 1;
840       } else if (df_attributes & DF_NULL_CHK_2) {
841         src_idx = 2;
842       } else {
843         src_idx = 0;
844       }
845       int src_sreg = mir->ssa_rep->uses[src_idx];
846       if (!ssa_regs_to_check->IsBitSet(src_sreg)) {
847         // Eliminate the null check.
848         mir->optimization_flags |= MIR_IGNORE_NULL_CHECK;
849       } else {
850         // Do the null check.
851         mir->optimization_flags &= ~MIR_IGNORE_NULL_CHECK;
852         // Mark s_reg as null-checked
853         ssa_regs_to_check->ClearBit(src_sreg);
854       }
855     }
856 
857     if ((df_attributes & DF_A_WIDE) ||
858         (df_attributes & (DF_REF_A | DF_SETS_CONST | DF_NULL_TRANSFER)) == 0) {
859       continue;
860     }
861 
862     /*
863      * First, mark all object definitions as requiring null check.
864      * Note: we can't tell if a CONST definition might be used as an object, so treat
865      * them all as object definitions.
866      */
867     if (((df_attributes & (DF_DA | DF_REF_A)) == (DF_DA | DF_REF_A)) ||
868         (df_attributes & DF_SETS_CONST))  {
869       ssa_regs_to_check->SetBit(mir->ssa_rep->defs[0]);
870     }
871 
872     // Now, remove mark from all object definitions we know are non-null.
873     if (df_attributes & DF_NON_NULL_DST) {
874       // Mark target of NEW* as non-null
875       ssa_regs_to_check->ClearBit(mir->ssa_rep->defs[0]);
876     }
877 
878     // Mark non-null returns from invoke-style NEW*
879     if (df_attributes & DF_NON_NULL_RET) {
880       MIR* next_mir = mir->next;
881       // Next should be an MOVE_RESULT_OBJECT
882       if (next_mir &&
883           next_mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) {
884         // Mark as null checked
885         ssa_regs_to_check->ClearBit(next_mir->ssa_rep->defs[0]);
886       } else {
887         if (next_mir) {
888           LOG(WARNING) << "Unexpected opcode following new: " << next_mir->dalvikInsn.opcode;
889         } else if (bb->fall_through != NullBasicBlockId) {
890           // Look in next basic block
891           struct BasicBlock* next_bb = GetBasicBlock(bb->fall_through);
892           for (MIR* tmir = next_bb->first_mir_insn; tmir != NULL;
893             tmir =tmir->next) {
894             if (MIR::DecodedInstruction::IsPseudoMirOp(tmir->dalvikInsn.opcode)) {
895               continue;
896             }
897             // First non-pseudo should be MOVE_RESULT_OBJECT
898             if (tmir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) {
899               // Mark as null checked
900               ssa_regs_to_check->ClearBit(tmir->ssa_rep->defs[0]);
901             } else {
902               LOG(WARNING) << "Unexpected op after new: " << tmir->dalvikInsn.opcode;
903             }
904             break;
905           }
906         }
907       }
908     }
909 
910     /*
911      * Propagate nullcheck state on register copies (including
912      * Phi pseudo copies.  For the latter, nullcheck state is
913      * the "or" of all the Phi's operands.
914      */
915     if (df_attributes & (DF_NULL_TRANSFER_0 | DF_NULL_TRANSFER_N)) {
916       int tgt_sreg = mir->ssa_rep->defs[0];
917       int operands = (df_attributes & DF_NULL_TRANSFER_0) ? 1 :
918           mir->ssa_rep->num_uses;
919       bool needs_null_check = false;
920       for (int i = 0; i < operands; i++) {
921         needs_null_check |= ssa_regs_to_check->IsBitSet(mir->ssa_rep->uses[i]);
922       }
923       if (needs_null_check) {
924         ssa_regs_to_check->SetBit(tgt_sreg);
925       } else {
926         ssa_regs_to_check->ClearBit(tgt_sreg);
927       }
928     }
929   }
930 
931   // Did anything change?
932   bool nce_changed = false;
933   if (do_nce) {
934     if (bb->data_flow_info->ending_check_v == nullptr) {
935       DCHECK(temp_scoped_alloc_.get() != nullptr);
936       bb->data_flow_info->ending_check_v = new (temp_scoped_alloc_.get()) ArenaBitVector(
937           temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapNullCheck);
938       nce_changed = ssa_regs_to_check->GetHighestBitSet() != -1;
939       bb->data_flow_info->ending_check_v->Copy(ssa_regs_to_check);
940     } else if (!ssa_regs_to_check->SameBitsSet(bb->data_flow_info->ending_check_v)) {
941       nce_changed = true;
942       bb->data_flow_info->ending_check_v->Copy(ssa_regs_to_check);
943     }
944   }
945   return infer_changed | nce_changed;
946 }
947 
EliminateNullChecksAndInferTypesEnd()948 void MIRGraph::EliminateNullChecksAndInferTypesEnd() {
949   if ((cu_->disable_opt & (1 << kNullCheckElimination)) == 0) {
950     // Clean up temporaries.
951     temp_bit_vector_size_ = 0u;
952     temp_bit_vector_ = nullptr;
953     AllNodesIterator iter(this);
954     for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
955       if (bb->data_flow_info != nullptr) {
956         bb->data_flow_info->ending_check_v = nullptr;
957       }
958     }
959     DCHECK(temp_scoped_alloc_.get() != nullptr);
960     temp_scoped_alloc_.reset();
961   }
962 }
963 
EliminateClassInitChecksGate()964 bool MIRGraph::EliminateClassInitChecksGate() {
965   if ((cu_->disable_opt & (1 << kClassInitCheckElimination)) != 0 ||
966       !cu_->mir_graph->HasStaticFieldAccess()) {
967     return false;
968   }
969 
970   if (kIsDebugBuild) {
971     AllNodesIterator iter(this);
972     for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
973       CHECK(bb->data_flow_info == nullptr || bb->data_flow_info->ending_check_v == nullptr);
974     }
975   }
976 
977   DCHECK(temp_scoped_alloc_.get() == nullptr);
978   temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
979 
980   // Each insn we use here has at least 2 code units, offset/2 will be a unique index.
981   const size_t end = (cu_->code_item->insns_size_in_code_units_ + 1u) / 2u;
982   temp_insn_data_ = static_cast<uint16_t*>(
983       temp_scoped_alloc_->Alloc(end * sizeof(*temp_insn_data_), kArenaAllocGrowableArray));
984 
985   uint32_t unique_class_count = 0u;
986   {
987     // Get unique_class_count and store indexes in temp_insn_data_ using a map on a nested
988     // ScopedArenaAllocator.
989 
990     // Embed the map value in the entry to save space.
991     struct MapEntry {
992       // Map key: the class identified by the declaring dex file and type index.
993       const DexFile* declaring_dex_file;
994       uint16_t declaring_class_idx;
995       // Map value: index into bit vectors of classes requiring initialization checks.
996       uint16_t index;
997     };
998     struct MapEntryComparator {
999       bool operator()(const MapEntry& lhs, const MapEntry& rhs) const {
1000         if (lhs.declaring_class_idx != rhs.declaring_class_idx) {
1001           return lhs.declaring_class_idx < rhs.declaring_class_idx;
1002         }
1003         return lhs.declaring_dex_file < rhs.declaring_dex_file;
1004       }
1005     };
1006 
1007     ScopedArenaAllocator allocator(&cu_->arena_stack);
1008     ScopedArenaSet<MapEntry, MapEntryComparator> class_to_index_map(MapEntryComparator(),
1009                                                                     allocator.Adapter());
1010 
1011     // First, find all SGET/SPUTs that may need class initialization checks, record INVOKE_STATICs.
1012     AllNodesIterator iter(this);
1013     for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
1014       for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
1015         DCHECK(bb->data_flow_info != nullptr);
1016         if (mir->dalvikInsn.opcode >= Instruction::SGET &&
1017             mir->dalvikInsn.opcode <= Instruction::SPUT_SHORT) {
1018           const MirSFieldLoweringInfo& field_info = GetSFieldLoweringInfo(mir);
1019           uint16_t index = 0xffffu;
1020           if (!field_info.IsInitialized()) {
1021             DCHECK_LT(class_to_index_map.size(), 0xffffu);
1022             MapEntry entry = {
1023                 // Treat unresolved fields as if each had its own class.
1024                 field_info.IsResolved() ? field_info.DeclaringDexFile()
1025                                         : nullptr,
1026                 field_info.IsResolved() ? field_info.DeclaringClassIndex()
1027                                         : field_info.FieldIndex(),
1028                 static_cast<uint16_t>(class_to_index_map.size())
1029             };
1030             index = class_to_index_map.insert(entry).first->index;
1031           }
1032           // Using offset/2 for index into temp_insn_data_.
1033           temp_insn_data_[mir->offset / 2u] = index;
1034         }
1035       }
1036     }
1037     unique_class_count = static_cast<uint32_t>(class_to_index_map.size());
1038   }
1039 
1040   if (unique_class_count == 0u) {
1041     // All SGET/SPUTs refer to initialized classes. Nothing to do.
1042     temp_insn_data_ = nullptr;
1043     temp_scoped_alloc_.reset();
1044     return false;
1045   }
1046 
1047   temp_bit_vector_size_ = unique_class_count;
1048   temp_bit_vector_ = new (temp_scoped_alloc_.get()) ArenaBitVector(
1049       temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapClInitCheck);
1050   DCHECK_GT(temp_bit_vector_size_, 0u);
1051   return true;
1052 }
1053 
1054 /*
1055  * Eliminate unnecessary class initialization checks for a basic block.
1056  */
EliminateClassInitChecks(BasicBlock * bb)1057 bool MIRGraph::EliminateClassInitChecks(BasicBlock* bb) {
1058   DCHECK_EQ((cu_->disable_opt & (1 << kClassInitCheckElimination)), 0u);
1059   if (bb->data_flow_info == NULL) {
1060     return false;
1061   }
1062 
1063   /*
1064    * Set initial state.  Catch blocks don't need any special treatment.
1065    */
1066   ArenaBitVector* classes_to_check = temp_bit_vector_;
1067   DCHECK(classes_to_check != nullptr);
1068   if (bb->block_type == kEntryBlock) {
1069     classes_to_check->SetInitialBits(temp_bit_vector_size_);
1070   } else if (bb->predecessors->Size() == 1) {
1071     BasicBlock* pred_bb = GetBasicBlock(bb->predecessors->Get(0));
1072     // pred_bb must have already been processed at least once.
1073     DCHECK(pred_bb != nullptr);
1074     DCHECK(pred_bb->data_flow_info != nullptr);
1075     DCHECK(pred_bb->data_flow_info->ending_check_v != nullptr);
1076     classes_to_check->Copy(pred_bb->data_flow_info->ending_check_v);
1077   } else {
1078     // Starting state is union of all incoming arcs
1079     GrowableArray<BasicBlockId>::Iterator iter(bb->predecessors);
1080     BasicBlock* pred_bb = GetBasicBlock(iter.Next());
1081     DCHECK(pred_bb != NULL);
1082     DCHECK(pred_bb->data_flow_info != NULL);
1083     while (pred_bb->data_flow_info->ending_check_v == nullptr) {
1084       pred_bb = GetBasicBlock(iter.Next());
1085       // At least one predecessor must have been processed before this bb.
1086       DCHECK(pred_bb != nullptr);
1087       DCHECK(pred_bb->data_flow_info != nullptr);
1088     }
1089     classes_to_check->Copy(pred_bb->data_flow_info->ending_check_v);
1090     while (true) {
1091       pred_bb = GetBasicBlock(iter.Next());
1092       if (!pred_bb) break;
1093       DCHECK(pred_bb->data_flow_info != nullptr);
1094       if (pred_bb->data_flow_info->ending_check_v == nullptr) {
1095         continue;
1096       }
1097       classes_to_check->Union(pred_bb->data_flow_info->ending_check_v);
1098     }
1099   }
1100   // At this point, classes_to_check shows which classes need clinit checks.
1101 
1102   // Walk through the instruction in the block, updating as necessary
1103   for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
1104     if (mir->dalvikInsn.opcode >= Instruction::SGET &&
1105         mir->dalvikInsn.opcode <= Instruction::SPUT_SHORT) {
1106       uint16_t index = temp_insn_data_[mir->offset / 2u];
1107       if (index != 0xffffu) {
1108         if (mir->dalvikInsn.opcode >= Instruction::SGET &&
1109             mir->dalvikInsn.opcode <= Instruction::SPUT_SHORT) {
1110           if (!classes_to_check->IsBitSet(index)) {
1111             // Eliminate the class init check.
1112             mir->optimization_flags |= MIR_IGNORE_CLINIT_CHECK;
1113           } else {
1114             // Do the class init check.
1115             mir->optimization_flags &= ~MIR_IGNORE_CLINIT_CHECK;
1116           }
1117         }
1118         // Mark the class as initialized.
1119         classes_to_check->ClearBit(index);
1120       }
1121     }
1122   }
1123 
1124   // Did anything change?
1125   bool changed = false;
1126   if (bb->data_flow_info->ending_check_v == nullptr) {
1127     DCHECK(temp_scoped_alloc_.get() != nullptr);
1128     DCHECK(bb->data_flow_info != nullptr);
1129     bb->data_flow_info->ending_check_v = new (temp_scoped_alloc_.get()) ArenaBitVector(
1130         temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapClInitCheck);
1131     changed = classes_to_check->GetHighestBitSet() != -1;
1132     bb->data_flow_info->ending_check_v->Copy(classes_to_check);
1133   } else if (!classes_to_check->Equal(bb->data_flow_info->ending_check_v)) {
1134     changed = true;
1135     bb->data_flow_info->ending_check_v->Copy(classes_to_check);
1136   }
1137   return changed;
1138 }
1139 
EliminateClassInitChecksEnd()1140 void MIRGraph::EliminateClassInitChecksEnd() {
1141   // Clean up temporaries.
1142   temp_bit_vector_size_ = 0u;
1143   temp_bit_vector_ = nullptr;
1144   AllNodesIterator iter(this);
1145   for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
1146     if (bb->data_flow_info != nullptr) {
1147       bb->data_flow_info->ending_check_v = nullptr;
1148     }
1149   }
1150 
1151   DCHECK(temp_insn_data_ != nullptr);
1152   temp_insn_data_ = nullptr;
1153   DCHECK(temp_scoped_alloc_.get() != nullptr);
1154   temp_scoped_alloc_.reset();
1155 }
1156 
ApplyGlobalValueNumberingGate()1157 bool MIRGraph::ApplyGlobalValueNumberingGate() {
1158   if ((cu_->disable_opt & (1u << kGlobalValueNumbering)) != 0u) {
1159     return false;
1160   }
1161 
1162   DCHECK(temp_scoped_alloc_ == nullptr);
1163   temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
1164   DCHECK(temp_gvn_ == nullptr);
1165   temp_gvn_.reset(
1166       new (temp_scoped_alloc_.get()) GlobalValueNumbering(cu_, temp_scoped_alloc_.get()));
1167   return true;
1168 }
1169 
ApplyGlobalValueNumbering(BasicBlock * bb)1170 bool MIRGraph::ApplyGlobalValueNumbering(BasicBlock* bb) {
1171   DCHECK(temp_gvn_ != nullptr);
1172   LocalValueNumbering* lvn = temp_gvn_->PrepareBasicBlock(bb);
1173   if (lvn != nullptr) {
1174     for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
1175       lvn->GetValueNumber(mir);
1176     }
1177   }
1178   bool change = (lvn != nullptr) && temp_gvn_->FinishBasicBlock(bb);
1179   return change;
1180 }
1181 
ApplyGlobalValueNumberingEnd()1182 void MIRGraph::ApplyGlobalValueNumberingEnd() {
1183   // Perform modifications.
1184   if (temp_gvn_->Good()) {
1185     temp_gvn_->AllowModifications();
1186     PreOrderDfsIterator iter(this);
1187     for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
1188       ScopedArenaAllocator allocator(&cu_->arena_stack);  // Reclaim memory after each LVN.
1189       LocalValueNumbering* lvn = temp_gvn_->PrepareBasicBlock(bb, &allocator);
1190       if (lvn != nullptr) {
1191         for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
1192           lvn->GetValueNumber(mir);
1193         }
1194         bool change = temp_gvn_->FinishBasicBlock(bb);
1195         DCHECK(!change) << PrettyMethod(cu_->method_idx, *cu_->dex_file);
1196       }
1197     }
1198   } else {
1199     LOG(WARNING) << "GVN failed for " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
1200   }
1201 
1202   DCHECK(temp_gvn_ != nullptr);
1203   temp_gvn_.reset();
1204   DCHECK(temp_scoped_alloc_ != nullptr);
1205   temp_scoped_alloc_.reset();
1206 }
1207 
ComputeInlineIFieldLoweringInfo(uint16_t field_idx,MIR * invoke,MIR * iget_or_iput)1208 void MIRGraph::ComputeInlineIFieldLoweringInfo(uint16_t field_idx, MIR* invoke, MIR* iget_or_iput) {
1209   uint32_t method_index = invoke->meta.method_lowering_info;
1210   if (temp_bit_vector_->IsBitSet(method_index)) {
1211     iget_or_iput->meta.ifield_lowering_info = temp_insn_data_[method_index];
1212     DCHECK_EQ(field_idx, GetIFieldLoweringInfo(iget_or_iput).FieldIndex());
1213     return;
1214   }
1215 
1216   const MirMethodLoweringInfo& method_info = GetMethodLoweringInfo(invoke);
1217   MethodReference target = method_info.GetTargetMethod();
1218   DexCompilationUnit inlined_unit(
1219       cu_, cu_->class_loader, cu_->class_linker, *target.dex_file,
1220       nullptr /* code_item not used */, 0u /* class_def_idx not used */, target.dex_method_index,
1221       0u /* access_flags not used */, nullptr /* verified_method not used */);
1222   MirIFieldLoweringInfo inlined_field_info(field_idx);
1223   MirIFieldLoweringInfo::Resolve(cu_->compiler_driver, &inlined_unit, &inlined_field_info, 1u);
1224   DCHECK(inlined_field_info.IsResolved());
1225 
1226   uint32_t field_info_index = ifield_lowering_infos_.Size();
1227   ifield_lowering_infos_.Insert(inlined_field_info);
1228   temp_bit_vector_->SetBit(method_index);
1229   temp_insn_data_[method_index] = field_info_index;
1230   iget_or_iput->meta.ifield_lowering_info = field_info_index;
1231 }
1232 
InlineSpecialMethodsGate()1233 bool MIRGraph::InlineSpecialMethodsGate() {
1234   if ((cu_->disable_opt & (1 << kSuppressMethodInlining)) != 0 ||
1235       method_lowering_infos_.Size() == 0u) {
1236     return false;
1237   }
1238   if (cu_->compiler_driver->GetMethodInlinerMap() == nullptr) {
1239     // This isn't the Quick compiler.
1240     return false;
1241   }
1242   return true;
1243 }
1244 
InlineSpecialMethodsStart()1245 void MIRGraph::InlineSpecialMethodsStart() {
1246   // Prepare for inlining getters/setters. Since we're inlining at most 1 IGET/IPUT from
1247   // each INVOKE, we can index the data by the MIR::meta::method_lowering_info index.
1248 
1249   DCHECK(temp_scoped_alloc_.get() == nullptr);
1250   temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
1251   temp_bit_vector_size_ = method_lowering_infos_.Size();
1252   temp_bit_vector_ = new (temp_scoped_alloc_.get()) ArenaBitVector(
1253       temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapMisc);
1254   temp_bit_vector_->ClearAllBits();
1255   temp_insn_data_ = static_cast<uint16_t*>(temp_scoped_alloc_->Alloc(
1256       temp_bit_vector_size_ * sizeof(*temp_insn_data_), kArenaAllocGrowableArray));
1257 }
1258 
InlineSpecialMethods(BasicBlock * bb)1259 void MIRGraph::InlineSpecialMethods(BasicBlock* bb) {
1260   if (bb->block_type != kDalvikByteCode) {
1261     return;
1262   }
1263   for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
1264     if (MIR::DecodedInstruction::IsPseudoMirOp(mir->dalvikInsn.opcode)) {
1265       continue;
1266     }
1267     if (!(Instruction::FlagsOf(mir->dalvikInsn.opcode) & Instruction::kInvoke)) {
1268       continue;
1269     }
1270     const MirMethodLoweringInfo& method_info = GetMethodLoweringInfo(mir);
1271     if (!method_info.FastPath()) {
1272       continue;
1273     }
1274     InvokeType sharp_type = method_info.GetSharpType();
1275     if ((sharp_type != kDirect) &&
1276         (sharp_type != kStatic || method_info.NeedsClassInitialization())) {
1277       continue;
1278     }
1279     DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr);
1280     MethodReference target = method_info.GetTargetMethod();
1281     if (cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(target.dex_file)
1282             ->GenInline(this, bb, mir, target.dex_method_index)) {
1283       if (cu_->verbose || cu_->print_pass) {
1284         LOG(INFO) << "SpecialMethodInliner: Inlined " << method_info.GetInvokeType() << " ("
1285             << sharp_type << ") call to \"" << PrettyMethod(target.dex_method_index, *target.dex_file)
1286             << "\" from \"" << PrettyMethod(cu_->method_idx, *cu_->dex_file)
1287             << "\" @0x" << std::hex << mir->offset;
1288       }
1289     }
1290   }
1291 }
1292 
InlineSpecialMethodsEnd()1293 void MIRGraph::InlineSpecialMethodsEnd() {
1294   DCHECK(temp_insn_data_ != nullptr);
1295   temp_insn_data_ = nullptr;
1296   DCHECK(temp_bit_vector_ != nullptr);
1297   temp_bit_vector_ = nullptr;
1298   DCHECK(temp_scoped_alloc_.get() != nullptr);
1299   temp_scoped_alloc_.reset();
1300 }
1301 
DumpCheckStats()1302 void MIRGraph::DumpCheckStats() {
1303   Checkstats* stats =
1304       static_cast<Checkstats*>(arena_->Alloc(sizeof(Checkstats), kArenaAllocDFInfo));
1305   checkstats_ = stats;
1306   AllNodesIterator iter(this);
1307   for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
1308     CountChecks(bb);
1309   }
1310   if (stats->null_checks > 0) {
1311     float eliminated = static_cast<float>(stats->null_checks_eliminated);
1312     float checks = static_cast<float>(stats->null_checks);
1313     LOG(INFO) << "Null Checks: " << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " "
1314               << stats->null_checks_eliminated << " of " << stats->null_checks << " -> "
1315               << (eliminated/checks) * 100.0 << "%";
1316     }
1317   if (stats->range_checks > 0) {
1318     float eliminated = static_cast<float>(stats->range_checks_eliminated);
1319     float checks = static_cast<float>(stats->range_checks);
1320     LOG(INFO) << "Range Checks: " << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " "
1321               << stats->range_checks_eliminated << " of " << stats->range_checks << " -> "
1322               << (eliminated/checks) * 100.0 << "%";
1323   }
1324 }
1325 
BuildExtendedBBList(struct BasicBlock * bb)1326 bool MIRGraph::BuildExtendedBBList(struct BasicBlock* bb) {
1327   if (bb->visited) return false;
1328   if (!((bb->block_type == kEntryBlock) || (bb->block_type == kDalvikByteCode)
1329       || (bb->block_type == kExitBlock))) {
1330     // Ignore special blocks
1331     bb->visited = true;
1332     return false;
1333   }
1334   // Must be head of extended basic block.
1335   BasicBlock* start_bb = bb;
1336   extended_basic_blocks_.push_back(bb->id);
1337   bool terminated_by_return = false;
1338   bool do_local_value_numbering = false;
1339   // Visit blocks strictly dominated by this head.
1340   while (bb != NULL) {
1341     bb->visited = true;
1342     terminated_by_return |= bb->terminated_by_return;
1343     do_local_value_numbering |= bb->use_lvn;
1344     bb = NextDominatedBlock(bb);
1345   }
1346   if (terminated_by_return || do_local_value_numbering) {
1347     // Do lvn for all blocks in this extended set.
1348     bb = start_bb;
1349     while (bb != NULL) {
1350       bb->use_lvn = do_local_value_numbering;
1351       bb->dominates_return = terminated_by_return;
1352       bb = NextDominatedBlock(bb);
1353     }
1354   }
1355   return false;  // Not iterative - return value will be ignored
1356 }
1357 
BasicBlockOptimization()1358 void MIRGraph::BasicBlockOptimization() {
1359   if ((cu_->disable_opt & (1 << kSuppressExceptionEdges)) != 0) {
1360     ClearAllVisitedFlags();
1361     PreOrderDfsIterator iter2(this);
1362     for (BasicBlock* bb = iter2.Next(); bb != NULL; bb = iter2.Next()) {
1363       BuildExtendedBBList(bb);
1364     }
1365     // Perform extended basic block optimizations.
1366     for (unsigned int i = 0; i < extended_basic_blocks_.size(); i++) {
1367       BasicBlockOpt(GetBasicBlock(extended_basic_blocks_[i]));
1368     }
1369   } else {
1370     PreOrderDfsIterator iter(this);
1371     for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
1372       BasicBlockOpt(bb);
1373     }
1374   }
1375 }
1376 
1377 }  // namespace art
1378