• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/MC/MCInstrDesc.h - Instruction Descriptors -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the MCOperandInfo and MCInstrDesc classes, which
11 // are used to describe target instructions and their operands.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_MC_MCINSTRDESC_H
16 #define LLVM_MC_MCINSTRDESC_H
17 
18 #include "llvm/MC/MCInst.h"
19 #include "llvm/MC/MCRegisterInfo.h"
20 #include "llvm/MC/MCSubtargetInfo.h"
21 #include "llvm/Support/DataTypes.h"
22 
23 namespace llvm {
24 
25 //===----------------------------------------------------------------------===//
26 // Machine Operand Flags and Description
27 //===----------------------------------------------------------------------===//
28 
29 namespace MCOI {
30   // Operand constraints
31   enum OperandConstraint {
32     TIED_TO = 0,    // Must be allocated the same register as.
33     EARLY_CLOBBER   // Operand is an early clobber register operand
34   };
35 
36   /// OperandFlags - These are flags set on operands, but should be considered
37   /// private, all access should go through the MCOperandInfo accessors.
38   /// See the accessors for a description of what these are.
39   enum OperandFlags {
40     LookupPtrRegClass = 0,
41     Predicate,
42     OptionalDef
43   };
44 
45   /// Operand Type - Operands are tagged with one of the values of this enum.
46   enum OperandType {
47     OPERAND_UNKNOWN,
48     OPERAND_IMMEDIATE,
49     OPERAND_REGISTER,
50     OPERAND_MEMORY,
51     OPERAND_PCREL
52   };
53 }
54 
55 /// MCOperandInfo - This holds information about one operand of a machine
56 /// instruction, indicating the register class for register operands, etc.
57 ///
58 class MCOperandInfo {
59 public:
60   /// RegClass - This specifies the register class enumeration of the operand
61   /// if the operand is a register.  If isLookupPtrRegClass is set, then this is
62   /// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to
63   /// get a dynamic register class.
64   int16_t RegClass;
65 
66   /// Flags - These are flags from the MCOI::OperandFlags enum.
67   uint8_t Flags;
68 
69   /// OperandType - Information about the type of the operand.
70   uint8_t OperandType;
71 
72   /// Lower 16 bits are used to specify which constraints are set. The higher 16
73   /// bits are used to specify the value of constraints (4 bits each).
74   uint32_t Constraints;
75   /// Currently no other information.
76 
77   /// isLookupPtrRegClass - Set if this operand is a pointer value and it
78   /// requires a callback to look up its register class.
isLookupPtrRegClass()79   bool isLookupPtrRegClass() const {return Flags&(1 <<MCOI::LookupPtrRegClass);}
80 
81   /// isPredicate - Set if this is one of the operands that made up of
82   /// the predicate operand that controls an isPredicable() instruction.
isPredicate()83   bool isPredicate() const { return Flags & (1 << MCOI::Predicate); }
84 
85   /// isOptionalDef - Set if this operand is a optional def.
86   ///
isOptionalDef()87   bool isOptionalDef() const { return Flags & (1 << MCOI::OptionalDef); }
88 };
89 
90 
91 //===----------------------------------------------------------------------===//
92 // Machine Instruction Flags and Description
93 //===----------------------------------------------------------------------===//
94 
95 /// MCInstrDesc flags - These should be considered private to the
96 /// implementation of the MCInstrDesc class.  Clients should use the predicate
97 /// methods on MCInstrDesc, not use these directly.  These all correspond to
98 /// bitfields in the MCInstrDesc::Flags field.
99 namespace MCID {
100   enum {
101     Variadic = 0,
102     HasOptionalDef,
103     Pseudo,
104     Return,
105     Call,
106     Barrier,
107     Terminator,
108     Branch,
109     IndirectBranch,
110     Compare,
111     MoveImm,
112     Bitcast,
113     Select,
114     DelaySlot,
115     FoldableAsLoad,
116     MayLoad,
117     MayStore,
118     Predicable,
119     NotDuplicable,
120     UnmodeledSideEffects,
121     Commutable,
122     ConvertibleTo3Addr,
123     UsesCustomInserter,
124     HasPostISelHook,
125     Rematerializable,
126     CheapAsAMove,
127     ExtraSrcRegAllocReq,
128     ExtraDefRegAllocReq
129   };
130 }
131 
132 /// MCInstrDesc - Describe properties that are true of each instruction in the
133 /// target description file.  This captures information about side effects,
134 /// register use and many other things.  There is one instance of this struct
135 /// for each target instruction class, and the MachineInstr class points to
136 /// this struct directly to describe itself.
137 class MCInstrDesc {
138 public:
139   unsigned short  Opcode;        // The opcode number
140   unsigned short  NumOperands;   // Num of args (may be more if variable_ops)
141   unsigned short  NumDefs;       // Num of args that are definitions
142   unsigned short  SchedClass;    // enum identifying instr sched class
143   unsigned short  Size;          // Number of bytes in encoding.
144   unsigned        Flags;         // Flags identifying machine instr class
145   uint64_t        TSFlags;       // Target Specific Flag values
146   const uint16_t *ImplicitUses;  // Registers implicitly read by this instr
147   const uint16_t *ImplicitDefs;  // Registers implicitly defined by this instr
148   const MCOperandInfo *OpInfo;   // 'NumOperands' entries about operands
149   uint64_t DeprecatedFeatureMask;// Feature bits that this is deprecated on, if any
150   // A complex method to determine is a certain is deprecated or not, and return
151   // the reason for deprecation.
152   bool (*ComplexDeprecationInfo)(MCInst &, MCSubtargetInfo &, std::string &);
153 
154   /// \brief Returns the value of the specific constraint if
155   /// it is set. Returns -1 if it is not set.
getOperandConstraint(unsigned OpNum,MCOI::OperandConstraint Constraint)156   int getOperandConstraint(unsigned OpNum,
157                            MCOI::OperandConstraint Constraint) const {
158     if (OpNum < NumOperands &&
159         (OpInfo[OpNum].Constraints & (1 << Constraint))) {
160       unsigned Pos = 16 + Constraint * 4;
161       return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
162     }
163     return -1;
164   }
165 
166   /// \brief Returns true if a certain instruction is deprecated and if so
167   /// returns the reason in \p Info.
getDeprecatedInfo(MCInst & MI,MCSubtargetInfo & STI,std::string & Info)168   bool getDeprecatedInfo(MCInst &MI, MCSubtargetInfo &STI,
169                          std::string &Info) const {
170     if (ComplexDeprecationInfo)
171       return ComplexDeprecationInfo(MI, STI, Info);
172     if ((DeprecatedFeatureMask & STI.getFeatureBits()) != 0) {
173       // FIXME: it would be nice to include the subtarget feature here.
174       Info = "deprecated";
175       return true;
176     }
177     return false;
178   }
179 
180   /// \brief Return the opcode number for this descriptor.
getOpcode()181   unsigned getOpcode() const {
182     return Opcode;
183   }
184 
185   /// \brief Return the number of declared MachineOperands for this
186   /// MachineInstruction.  Note that variadic (isVariadic() returns true)
187   /// instructions may have additional operands at the end of the list, and note
188   /// that the machine instruction may include implicit register def/uses as
189   /// well.
getNumOperands()190   unsigned getNumOperands() const {
191     return NumOperands;
192   }
193 
194   /// \brief Return the number of MachineOperands that are register
195   /// definitions.  Register definitions always occur at the start of the
196   /// machine operand list.  This is the number of "outs" in the .td file,
197   /// and does not include implicit defs.
getNumDefs()198   unsigned getNumDefs() const {
199     return NumDefs;
200   }
201 
202   /// \brief Return flags of this instruction.
getFlags()203   unsigned getFlags() const { return Flags; }
204 
205   /// \brief Return true if this instruction can have a variable number of
206   /// operands.  In this case, the variable operands will be after the normal
207   /// operands but before the implicit definitions and uses (if any are
208   /// present).
isVariadic()209   bool isVariadic() const {
210     return Flags & (1 << MCID::Variadic);
211   }
212 
213   /// \brief Set if this instruction has an optional definition, e.g.
214   /// ARM instructions which can set condition code if 's' bit is set.
hasOptionalDef()215   bool hasOptionalDef() const {
216     return Flags & (1 << MCID::HasOptionalDef);
217   }
218 
219   /// \brief Return true if this is a pseudo instruction that doesn't
220   /// correspond to a real machine instruction.
221   ///
isPseudo()222   bool isPseudo() const {
223     return Flags & (1 << MCID::Pseudo);
224   }
225 
226   /// \brief Return true if the instruction is a return.
isReturn()227   bool isReturn() const {
228     return Flags & (1 << MCID::Return);
229   }
230 
231   /// \brief  Return true if the instruction is a call.
isCall()232   bool isCall() const {
233     return Flags & (1 << MCID::Call);
234   }
235 
236   /// \brief Returns true if the specified instruction stops control flow
237   /// from executing the instruction immediately following it.  Examples include
238   /// unconditional branches and return instructions.
isBarrier()239   bool isBarrier() const {
240     return Flags & (1 << MCID::Barrier);
241   }
242 
243   /// \brief Returns true if this instruction part of the terminator for
244   /// a basic block.  Typically this is things like return and branch
245   /// instructions.
246   ///
247   /// Various passes use this to insert code into the bottom of a basic block,
248   /// but before control flow occurs.
isTerminator()249   bool isTerminator() const {
250     return Flags & (1 << MCID::Terminator);
251   }
252 
253   /// \brief Returns true if this is a conditional, unconditional, or
254   /// indirect branch.  Predicates below can be used to discriminate between
255   /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
256   /// get more information.
isBranch()257   bool isBranch() const {
258     return Flags & (1 << MCID::Branch);
259   }
260 
261   /// \brief Return true if this is an indirect branch, such as a
262   /// branch through a register.
isIndirectBranch()263   bool isIndirectBranch() const {
264     return Flags & (1 << MCID::IndirectBranch);
265   }
266 
267   /// \brief Return true if this is a branch which may fall
268   /// through to the next instruction or may transfer control flow to some other
269   /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
270   /// information about this branch.
isConditionalBranch()271   bool isConditionalBranch() const {
272     return isBranch() & !isBarrier() & !isIndirectBranch();
273   }
274 
275   /// \brief Return true if this is a branch which always
276   /// transfers control flow to some other block.  The
277   /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
278   /// about this branch.
isUnconditionalBranch()279   bool isUnconditionalBranch() const {
280     return isBranch() & isBarrier() & !isIndirectBranch();
281   }
282 
283   /// \brief Return true if this is a branch or an instruction which directly
284   /// writes to the program counter. Considered 'may' affect rather than
285   /// 'does' affect as things like predication are not taken into account.
mayAffectControlFlow(const MCInst & MI,const MCRegisterInfo & RI)286   bool mayAffectControlFlow(const MCInst &MI, const MCRegisterInfo &RI) const {
287     if (isBranch() || isCall() || isReturn() || isIndirectBranch())
288       return true;
289     unsigned PC = RI.getProgramCounter();
290     if (PC == 0)
291       return false;
292     if (hasDefOfPhysReg(MI, PC, RI))
293       return true;
294     // A variadic instruction may define PC in the variable operand list.
295     // There's currently no indication of which entries in a variable
296     // list are defs and which are uses. While that's the case, this function
297     // needs to assume they're defs in order to be conservatively correct.
298     for (int i = NumOperands, e = MI.getNumOperands(); i != e; ++i) {
299       if (MI.getOperand(i).isReg() &&
300           RI.isSubRegisterEq(PC, MI.getOperand(i).getReg()))
301         return true;
302     }
303     return false;
304   }
305 
306   /// \brief Return true if this instruction has a predicate operand
307   /// that controls execution. It may be set to 'always', or may be set to other
308   /// values. There are various methods in TargetInstrInfo that can be used to
309   /// control and modify the predicate in this instruction.
isPredicable()310   bool isPredicable() const {
311     return Flags & (1 << MCID::Predicable);
312   }
313 
314   /// \brief Return true if this instruction is a comparison.
isCompare()315   bool isCompare() const {
316     return Flags & (1 << MCID::Compare);
317   }
318 
319   /// \brief Return true if this instruction is a move immediate
320   /// (including conditional moves) instruction.
isMoveImmediate()321   bool isMoveImmediate() const {
322     return Flags & (1 << MCID::MoveImm);
323   }
324 
325   /// \brief Return true if this instruction is a bitcast instruction.
isBitcast()326   bool isBitcast() const {
327     return Flags & (1 << MCID::Bitcast);
328   }
329 
330   /// \brief Return true if this is a select instruction.
isSelect()331   bool isSelect() const {
332     return Flags & (1 << MCID::Select);
333   }
334 
335   /// \brief Return true if this instruction cannot be safely
336   /// duplicated.  For example, if the instruction has a unique labels attached
337   /// to it, duplicating it would cause multiple definition errors.
isNotDuplicable()338   bool isNotDuplicable() const {
339     return Flags & (1 << MCID::NotDuplicable);
340   }
341 
342   /// hasDelaySlot - Returns true if the specified instruction has a delay slot
343   /// which must be filled by the code generator.
hasDelaySlot()344   bool hasDelaySlot() const {
345     return Flags & (1 << MCID::DelaySlot);
346   }
347 
348   /// canFoldAsLoad - Return true for instructions that can be folded as
349   /// memory operands in other instructions. The most common use for this
350   /// is instructions that are simple loads from memory that don't modify
351   /// the loaded value in any way, but it can also be used for instructions
352   /// that can be expressed as constant-pool loads, such as V_SETALLONES
353   /// on x86, to allow them to be folded when it is beneficial.
354   /// This should only be set on instructions that return a value in their
355   /// only virtual register definition.
canFoldAsLoad()356   bool canFoldAsLoad() const {
357     return Flags & (1 << MCID::FoldableAsLoad);
358   }
359 
360   //===--------------------------------------------------------------------===//
361   // Side Effect Analysis
362   //===--------------------------------------------------------------------===//
363 
364   /// \brief Return true if this instruction could possibly read memory.
365   /// Instructions with this flag set are not necessarily simple load
366   /// instructions, they may load a value and modify it, for example.
mayLoad()367   bool mayLoad() const {
368     return Flags & (1 << MCID::MayLoad);
369   }
370 
371 
372   /// \brief Return true if this instruction could possibly modify memory.
373   /// Instructions with this flag set are not necessarily simple store
374   /// instructions, they may store a modified value based on their operands, or
375   /// may not actually modify anything, for example.
mayStore()376   bool mayStore() const {
377     return Flags & (1 << MCID::MayStore);
378   }
379 
380   /// hasUnmodeledSideEffects - Return true if this instruction has side
381   /// effects that are not modeled by other flags.  This does not return true
382   /// for instructions whose effects are captured by:
383   ///
384   ///  1. Their operand list and implicit definition/use list.  Register use/def
385   ///     info is explicit for instructions.
386   ///  2. Memory accesses.  Use mayLoad/mayStore.
387   ///  3. Calling, branching, returning: use isCall/isReturn/isBranch.
388   ///
389   /// Examples of side effects would be modifying 'invisible' machine state like
390   /// a control register, flushing a cache, modifying a register invisible to
391   /// LLVM, etc.
392   ///
hasUnmodeledSideEffects()393   bool hasUnmodeledSideEffects() const {
394     return Flags & (1 << MCID::UnmodeledSideEffects);
395   }
396 
397   //===--------------------------------------------------------------------===//
398   // Flags that indicate whether an instruction can be modified by a method.
399   //===--------------------------------------------------------------------===//
400 
401   /// isCommutable - Return true if this may be a 2- or 3-address
402   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
403   /// result if Y and Z are exchanged.  If this flag is set, then the
404   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
405   /// instruction.
406   ///
407   /// Note that this flag may be set on instructions that are only commutable
408   /// sometimes.  In these cases, the call to commuteInstruction will fail.
409   /// Also note that some instructions require non-trivial modification to
410   /// commute them.
isCommutable()411   bool isCommutable() const {
412     return Flags & (1 << MCID::Commutable);
413   }
414 
415   /// isConvertibleTo3Addr - Return true if this is a 2-address instruction
416   /// which can be changed into a 3-address instruction if needed.  Doing this
417   /// transformation can be profitable in the register allocator, because it
418   /// means that the instruction can use a 2-address form if possible, but
419   /// degrade into a less efficient form if the source and dest register cannot
420   /// be assigned to the same register.  For example, this allows the x86
421   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
422   /// is the same speed as the shift but has bigger code size.
423   ///
424   /// If this returns true, then the target must implement the
425   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
426   /// is allowed to fail if the transformation isn't valid for this specific
427   /// instruction (e.g. shl reg, 4 on x86).
428   ///
isConvertibleTo3Addr()429   bool isConvertibleTo3Addr() const {
430     return Flags & (1 << MCID::ConvertibleTo3Addr);
431   }
432 
433   /// usesCustomInsertionHook - Return true if this instruction requires
434   /// custom insertion support when the DAG scheduler is inserting it into a
435   /// machine basic block.  If this is true for the instruction, it basically
436   /// means that it is a pseudo instruction used at SelectionDAG time that is
437   /// expanded out into magic code by the target when MachineInstrs are formed.
438   ///
439   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
440   /// is used to insert this into the MachineBasicBlock.
usesCustomInsertionHook()441   bool usesCustomInsertionHook() const {
442     return Flags & (1 << MCID::UsesCustomInserter);
443   }
444 
445   /// hasPostISelHook - Return true if this instruction requires *adjustment*
446   /// after instruction selection by calling a target hook. For example, this
447   /// can be used to fill in ARM 's' optional operand depending on whether
448   /// the conditional flag register is used.
hasPostISelHook()449   bool hasPostISelHook() const {
450     return Flags & (1 << MCID::HasPostISelHook);
451   }
452 
453   /// isRematerializable - Returns true if this instruction is a candidate for
454   /// remat. This flag is only used in TargetInstrInfo method
455   /// isTriviallyRematerializable.
456   ///
457   /// If this flag is set, the isReallyTriviallyReMaterializable()
458   /// or isReallyTriviallyReMaterializableGeneric methods are called to verify
459   /// the instruction is really rematable.
isRematerializable()460   bool isRematerializable() const {
461     return Flags & (1 << MCID::Rematerializable);
462   }
463 
464   /// isAsCheapAsAMove - Returns true if this instruction has the same cost (or
465   /// less) than a move instruction. This is useful during certain types of
466   /// optimizations (e.g., remat during two-address conversion or machine licm)
467   /// where we would like to remat or hoist the instruction, but not if it costs
468   /// more than moving the instruction into the appropriate register. Note, we
469   /// are not marking copies from and to the same register class with this flag.
470   ///
471   /// This method could be called by interface TargetInstrInfo::isAsCheapAsAMove
472   /// for different subtargets.
isAsCheapAsAMove()473   bool isAsCheapAsAMove() const {
474     return Flags & (1 << MCID::CheapAsAMove);
475   }
476 
477   /// hasExtraSrcRegAllocReq - Returns true if this instruction source operands
478   /// have special register allocation requirements that are not captured by the
479   /// operand register classes. e.g. ARM::STRD's two source registers must be an
480   /// even / odd pair, ARM::STM registers have to be in ascending order.
481   /// Post-register allocation passes should not attempt to change allocations
482   /// for sources of instructions with this flag.
hasExtraSrcRegAllocReq()483   bool hasExtraSrcRegAllocReq() const {
484     return Flags & (1 << MCID::ExtraSrcRegAllocReq);
485   }
486 
487   /// hasExtraDefRegAllocReq - Returns true if this instruction def operands
488   /// have special register allocation requirements that are not captured by the
489   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
490   /// even / odd pair, ARM::LDM registers have to be in ascending order.
491   /// Post-register allocation passes should not attempt to change allocations
492   /// for definitions of instructions with this flag.
hasExtraDefRegAllocReq()493   bool hasExtraDefRegAllocReq() const {
494     return Flags & (1 << MCID::ExtraDefRegAllocReq);
495   }
496 
497 
498   /// getImplicitUses - Return a list of registers that are potentially
499   /// read by any instance of this machine instruction.  For example, on X86,
500   /// the "adc" instruction adds two register operands and adds the carry bit in
501   /// from the flags register.  In this case, the instruction is marked as
502   /// implicitly reading the flags.  Likewise, the variable shift instruction on
503   /// X86 is marked as implicitly reading the 'CL' register, which it always
504   /// does.
505   ///
506   /// This method returns null if the instruction has no implicit uses.
getImplicitUses()507   const uint16_t *getImplicitUses() const {
508     return ImplicitUses;
509   }
510 
511   /// \brief Return the number of implicit uses this instruction has.
getNumImplicitUses()512   unsigned getNumImplicitUses() const {
513     if (!ImplicitUses) return 0;
514     unsigned i = 0;
515     for (; ImplicitUses[i]; ++i) /*empty*/;
516     return i;
517   }
518 
519   /// getImplicitDefs - Return a list of registers that are potentially
520   /// written by any instance of this machine instruction.  For example, on X86,
521   /// many instructions implicitly set the flags register.  In this case, they
522   /// are marked as setting the FLAGS.  Likewise, many instructions always
523   /// deposit their result in a physical register.  For example, the X86 divide
524   /// instruction always deposits the quotient and remainder in the EAX/EDX
525   /// registers.  For that instruction, this will return a list containing the
526   /// EAX/EDX/EFLAGS registers.
527   ///
528   /// This method returns null if the instruction has no implicit defs.
getImplicitDefs()529   const uint16_t *getImplicitDefs() const {
530     return ImplicitDefs;
531   }
532 
533   /// \brief Return the number of implicit defs this instruct has.
getNumImplicitDefs()534   unsigned getNumImplicitDefs() const {
535     if (!ImplicitDefs) return 0;
536     unsigned i = 0;
537     for (; ImplicitDefs[i]; ++i) /*empty*/;
538     return i;
539   }
540 
541   /// \brief Return true if this instruction implicitly
542   /// uses the specified physical register.
hasImplicitUseOfPhysReg(unsigned Reg)543   bool hasImplicitUseOfPhysReg(unsigned Reg) const {
544     if (const uint16_t *ImpUses = ImplicitUses)
545       for (; *ImpUses; ++ImpUses)
546         if (*ImpUses == Reg) return true;
547     return false;
548   }
549 
550   /// \brief Return true if this instruction implicitly
551   /// defines the specified physical register.
552   bool hasImplicitDefOfPhysReg(unsigned Reg,
553                                const MCRegisterInfo *MRI = nullptr) const {
554     if (const uint16_t *ImpDefs = ImplicitDefs)
555       for (; *ImpDefs; ++ImpDefs)
556         if (*ImpDefs == Reg || (MRI && MRI->isSubRegister(Reg, *ImpDefs)))
557             return true;
558     return false;
559   }
560 
561   /// \brief Return true if this instruction defines the specified physical
562   /// register, either explicitly or implicitly.
hasDefOfPhysReg(const MCInst & MI,unsigned Reg,const MCRegisterInfo & RI)563   bool hasDefOfPhysReg(const MCInst &MI, unsigned Reg,
564                        const MCRegisterInfo &RI) const {
565     for (int i = 0, e = NumDefs; i != e; ++i)
566       if (MI.getOperand(i).isReg() &&
567           RI.isSubRegisterEq(Reg, MI.getOperand(i).getReg()))
568         return true;
569     return hasImplicitDefOfPhysReg(Reg, &RI);
570   }
571 
572   /// \brief Return the scheduling class for this instruction.  The
573   /// scheduling class is an index into the InstrItineraryData table.  This
574   /// returns zero if there is no known scheduling information for the
575   /// instruction.
getSchedClass()576   unsigned getSchedClass() const {
577     return SchedClass;
578   }
579 
580   /// \brief Return the number of bytes in the encoding of this instruction,
581   /// or zero if the encoding size cannot be known from the opcode.
getSize()582   unsigned getSize() const {
583     return Size;
584   }
585 
586   /// \brief Find the index of the first operand in the
587   /// operand list that is used to represent the predicate. It returns -1 if
588   /// none is found.
findFirstPredOperandIdx()589   int findFirstPredOperandIdx() const {
590     if (isPredicable()) {
591       for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
592         if (OpInfo[i].isPredicate())
593           return i;
594     }
595     return -1;
596   }
597 };
598 
599 } // end namespace llvm
600 
601 #endif
602