1 //===-- llvm/MC/MCInstrDesc.h - Instruction Descriptors -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the MCOperandInfo and MCInstrDesc classes, which 11 // are used to describe target instructions and their operands. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_MC_MCINSTRDESC_H 16 #define LLVM_MC_MCINSTRDESC_H 17 18 #include "llvm/MC/MCInst.h" 19 #include "llvm/MC/MCRegisterInfo.h" 20 #include "llvm/MC/MCSubtargetInfo.h" 21 #include "llvm/Support/DataTypes.h" 22 23 namespace llvm { 24 25 //===----------------------------------------------------------------------===// 26 // Machine Operand Flags and Description 27 //===----------------------------------------------------------------------===// 28 29 namespace MCOI { 30 // Operand constraints 31 enum OperandConstraint { 32 TIED_TO = 0, // Must be allocated the same register as. 33 EARLY_CLOBBER // Operand is an early clobber register operand 34 }; 35 36 /// OperandFlags - These are flags set on operands, but should be considered 37 /// private, all access should go through the MCOperandInfo accessors. 38 /// See the accessors for a description of what these are. 39 enum OperandFlags { 40 LookupPtrRegClass = 0, 41 Predicate, 42 OptionalDef 43 }; 44 45 /// Operand Type - Operands are tagged with one of the values of this enum. 46 enum OperandType { 47 OPERAND_UNKNOWN, 48 OPERAND_IMMEDIATE, 49 OPERAND_REGISTER, 50 OPERAND_MEMORY, 51 OPERAND_PCREL 52 }; 53 } 54 55 /// MCOperandInfo - This holds information about one operand of a machine 56 /// instruction, indicating the register class for register operands, etc. 57 /// 58 class MCOperandInfo { 59 public: 60 /// RegClass - This specifies the register class enumeration of the operand 61 /// if the operand is a register. If isLookupPtrRegClass is set, then this is 62 /// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to 63 /// get a dynamic register class. 64 int16_t RegClass; 65 66 /// Flags - These are flags from the MCOI::OperandFlags enum. 67 uint8_t Flags; 68 69 /// OperandType - Information about the type of the operand. 70 uint8_t OperandType; 71 72 /// Lower 16 bits are used to specify which constraints are set. The higher 16 73 /// bits are used to specify the value of constraints (4 bits each). 74 uint32_t Constraints; 75 /// Currently no other information. 76 77 /// isLookupPtrRegClass - Set if this operand is a pointer value and it 78 /// requires a callback to look up its register class. isLookupPtrRegClass()79 bool isLookupPtrRegClass() const {return Flags&(1 <<MCOI::LookupPtrRegClass);} 80 81 /// isPredicate - Set if this is one of the operands that made up of 82 /// the predicate operand that controls an isPredicable() instruction. isPredicate()83 bool isPredicate() const { return Flags & (1 << MCOI::Predicate); } 84 85 /// isOptionalDef - Set if this operand is a optional def. 86 /// isOptionalDef()87 bool isOptionalDef() const { return Flags & (1 << MCOI::OptionalDef); } 88 }; 89 90 91 //===----------------------------------------------------------------------===// 92 // Machine Instruction Flags and Description 93 //===----------------------------------------------------------------------===// 94 95 /// MCInstrDesc flags - These should be considered private to the 96 /// implementation of the MCInstrDesc class. Clients should use the predicate 97 /// methods on MCInstrDesc, not use these directly. These all correspond to 98 /// bitfields in the MCInstrDesc::Flags field. 99 namespace MCID { 100 enum { 101 Variadic = 0, 102 HasOptionalDef, 103 Pseudo, 104 Return, 105 Call, 106 Barrier, 107 Terminator, 108 Branch, 109 IndirectBranch, 110 Compare, 111 MoveImm, 112 Bitcast, 113 Select, 114 DelaySlot, 115 FoldableAsLoad, 116 MayLoad, 117 MayStore, 118 Predicable, 119 NotDuplicable, 120 UnmodeledSideEffects, 121 Commutable, 122 ConvertibleTo3Addr, 123 UsesCustomInserter, 124 HasPostISelHook, 125 Rematerializable, 126 CheapAsAMove, 127 ExtraSrcRegAllocReq, 128 ExtraDefRegAllocReq 129 }; 130 } 131 132 /// MCInstrDesc - Describe properties that are true of each instruction in the 133 /// target description file. This captures information about side effects, 134 /// register use and many other things. There is one instance of this struct 135 /// for each target instruction class, and the MachineInstr class points to 136 /// this struct directly to describe itself. 137 class MCInstrDesc { 138 public: 139 unsigned short Opcode; // The opcode number 140 unsigned short NumOperands; // Num of args (may be more if variable_ops) 141 unsigned short NumDefs; // Num of args that are definitions 142 unsigned short SchedClass; // enum identifying instr sched class 143 unsigned short Size; // Number of bytes in encoding. 144 unsigned Flags; // Flags identifying machine instr class 145 uint64_t TSFlags; // Target Specific Flag values 146 const uint16_t *ImplicitUses; // Registers implicitly read by this instr 147 const uint16_t *ImplicitDefs; // Registers implicitly defined by this instr 148 const MCOperandInfo *OpInfo; // 'NumOperands' entries about operands 149 uint64_t DeprecatedFeatureMask;// Feature bits that this is deprecated on, if any 150 // A complex method to determine is a certain is deprecated or not, and return 151 // the reason for deprecation. 152 bool (*ComplexDeprecationInfo)(MCInst &, MCSubtargetInfo &, std::string &); 153 154 /// \brief Returns the value of the specific constraint if 155 /// it is set. Returns -1 if it is not set. getOperandConstraint(unsigned OpNum,MCOI::OperandConstraint Constraint)156 int getOperandConstraint(unsigned OpNum, 157 MCOI::OperandConstraint Constraint) const { 158 if (OpNum < NumOperands && 159 (OpInfo[OpNum].Constraints & (1 << Constraint))) { 160 unsigned Pos = 16 + Constraint * 4; 161 return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf; 162 } 163 return -1; 164 } 165 166 /// \brief Returns true if a certain instruction is deprecated and if so 167 /// returns the reason in \p Info. getDeprecatedInfo(MCInst & MI,MCSubtargetInfo & STI,std::string & Info)168 bool getDeprecatedInfo(MCInst &MI, MCSubtargetInfo &STI, 169 std::string &Info) const { 170 if (ComplexDeprecationInfo) 171 return ComplexDeprecationInfo(MI, STI, Info); 172 if ((DeprecatedFeatureMask & STI.getFeatureBits()) != 0) { 173 // FIXME: it would be nice to include the subtarget feature here. 174 Info = "deprecated"; 175 return true; 176 } 177 return false; 178 } 179 180 /// \brief Return the opcode number for this descriptor. getOpcode()181 unsigned getOpcode() const { 182 return Opcode; 183 } 184 185 /// \brief Return the number of declared MachineOperands for this 186 /// MachineInstruction. Note that variadic (isVariadic() returns true) 187 /// instructions may have additional operands at the end of the list, and note 188 /// that the machine instruction may include implicit register def/uses as 189 /// well. getNumOperands()190 unsigned getNumOperands() const { 191 return NumOperands; 192 } 193 194 /// \brief Return the number of MachineOperands that are register 195 /// definitions. Register definitions always occur at the start of the 196 /// machine operand list. This is the number of "outs" in the .td file, 197 /// and does not include implicit defs. getNumDefs()198 unsigned getNumDefs() const { 199 return NumDefs; 200 } 201 202 /// \brief Return flags of this instruction. getFlags()203 unsigned getFlags() const { return Flags; } 204 205 /// \brief Return true if this instruction can have a variable number of 206 /// operands. In this case, the variable operands will be after the normal 207 /// operands but before the implicit definitions and uses (if any are 208 /// present). isVariadic()209 bool isVariadic() const { 210 return Flags & (1 << MCID::Variadic); 211 } 212 213 /// \brief Set if this instruction has an optional definition, e.g. 214 /// ARM instructions which can set condition code if 's' bit is set. hasOptionalDef()215 bool hasOptionalDef() const { 216 return Flags & (1 << MCID::HasOptionalDef); 217 } 218 219 /// \brief Return true if this is a pseudo instruction that doesn't 220 /// correspond to a real machine instruction. 221 /// isPseudo()222 bool isPseudo() const { 223 return Flags & (1 << MCID::Pseudo); 224 } 225 226 /// \brief Return true if the instruction is a return. isReturn()227 bool isReturn() const { 228 return Flags & (1 << MCID::Return); 229 } 230 231 /// \brief Return true if the instruction is a call. isCall()232 bool isCall() const { 233 return Flags & (1 << MCID::Call); 234 } 235 236 /// \brief Returns true if the specified instruction stops control flow 237 /// from executing the instruction immediately following it. Examples include 238 /// unconditional branches and return instructions. isBarrier()239 bool isBarrier() const { 240 return Flags & (1 << MCID::Barrier); 241 } 242 243 /// \brief Returns true if this instruction part of the terminator for 244 /// a basic block. Typically this is things like return and branch 245 /// instructions. 246 /// 247 /// Various passes use this to insert code into the bottom of a basic block, 248 /// but before control flow occurs. isTerminator()249 bool isTerminator() const { 250 return Flags & (1 << MCID::Terminator); 251 } 252 253 /// \brief Returns true if this is a conditional, unconditional, or 254 /// indirect branch. Predicates below can be used to discriminate between 255 /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to 256 /// get more information. isBranch()257 bool isBranch() const { 258 return Flags & (1 << MCID::Branch); 259 } 260 261 /// \brief Return true if this is an indirect branch, such as a 262 /// branch through a register. isIndirectBranch()263 bool isIndirectBranch() const { 264 return Flags & (1 << MCID::IndirectBranch); 265 } 266 267 /// \brief Return true if this is a branch which may fall 268 /// through to the next instruction or may transfer control flow to some other 269 /// block. The TargetInstrInfo::AnalyzeBranch method can be used to get more 270 /// information about this branch. isConditionalBranch()271 bool isConditionalBranch() const { 272 return isBranch() & !isBarrier() & !isIndirectBranch(); 273 } 274 275 /// \brief Return true if this is a branch which always 276 /// transfers control flow to some other block. The 277 /// TargetInstrInfo::AnalyzeBranch method can be used to get more information 278 /// about this branch. isUnconditionalBranch()279 bool isUnconditionalBranch() const { 280 return isBranch() & isBarrier() & !isIndirectBranch(); 281 } 282 283 /// \brief Return true if this is a branch or an instruction which directly 284 /// writes to the program counter. Considered 'may' affect rather than 285 /// 'does' affect as things like predication are not taken into account. mayAffectControlFlow(const MCInst & MI,const MCRegisterInfo & RI)286 bool mayAffectControlFlow(const MCInst &MI, const MCRegisterInfo &RI) const { 287 if (isBranch() || isCall() || isReturn() || isIndirectBranch()) 288 return true; 289 unsigned PC = RI.getProgramCounter(); 290 if (PC == 0) 291 return false; 292 if (hasDefOfPhysReg(MI, PC, RI)) 293 return true; 294 // A variadic instruction may define PC in the variable operand list. 295 // There's currently no indication of which entries in a variable 296 // list are defs and which are uses. While that's the case, this function 297 // needs to assume they're defs in order to be conservatively correct. 298 for (int i = NumOperands, e = MI.getNumOperands(); i != e; ++i) { 299 if (MI.getOperand(i).isReg() && 300 RI.isSubRegisterEq(PC, MI.getOperand(i).getReg())) 301 return true; 302 } 303 return false; 304 } 305 306 /// \brief Return true if this instruction has a predicate operand 307 /// that controls execution. It may be set to 'always', or may be set to other 308 /// values. There are various methods in TargetInstrInfo that can be used to 309 /// control and modify the predicate in this instruction. isPredicable()310 bool isPredicable() const { 311 return Flags & (1 << MCID::Predicable); 312 } 313 314 /// \brief Return true if this instruction is a comparison. isCompare()315 bool isCompare() const { 316 return Flags & (1 << MCID::Compare); 317 } 318 319 /// \brief Return true if this instruction is a move immediate 320 /// (including conditional moves) instruction. isMoveImmediate()321 bool isMoveImmediate() const { 322 return Flags & (1 << MCID::MoveImm); 323 } 324 325 /// \brief Return true if this instruction is a bitcast instruction. isBitcast()326 bool isBitcast() const { 327 return Flags & (1 << MCID::Bitcast); 328 } 329 330 /// \brief Return true if this is a select instruction. isSelect()331 bool isSelect() const { 332 return Flags & (1 << MCID::Select); 333 } 334 335 /// \brief Return true if this instruction cannot be safely 336 /// duplicated. For example, if the instruction has a unique labels attached 337 /// to it, duplicating it would cause multiple definition errors. isNotDuplicable()338 bool isNotDuplicable() const { 339 return Flags & (1 << MCID::NotDuplicable); 340 } 341 342 /// hasDelaySlot - Returns true if the specified instruction has a delay slot 343 /// which must be filled by the code generator. hasDelaySlot()344 bool hasDelaySlot() const { 345 return Flags & (1 << MCID::DelaySlot); 346 } 347 348 /// canFoldAsLoad - Return true for instructions that can be folded as 349 /// memory operands in other instructions. The most common use for this 350 /// is instructions that are simple loads from memory that don't modify 351 /// the loaded value in any way, but it can also be used for instructions 352 /// that can be expressed as constant-pool loads, such as V_SETALLONES 353 /// on x86, to allow them to be folded when it is beneficial. 354 /// This should only be set on instructions that return a value in their 355 /// only virtual register definition. canFoldAsLoad()356 bool canFoldAsLoad() const { 357 return Flags & (1 << MCID::FoldableAsLoad); 358 } 359 360 //===--------------------------------------------------------------------===// 361 // Side Effect Analysis 362 //===--------------------------------------------------------------------===// 363 364 /// \brief Return true if this instruction could possibly read memory. 365 /// Instructions with this flag set are not necessarily simple load 366 /// instructions, they may load a value and modify it, for example. mayLoad()367 bool mayLoad() const { 368 return Flags & (1 << MCID::MayLoad); 369 } 370 371 372 /// \brief Return true if this instruction could possibly modify memory. 373 /// Instructions with this flag set are not necessarily simple store 374 /// instructions, they may store a modified value based on their operands, or 375 /// may not actually modify anything, for example. mayStore()376 bool mayStore() const { 377 return Flags & (1 << MCID::MayStore); 378 } 379 380 /// hasUnmodeledSideEffects - Return true if this instruction has side 381 /// effects that are not modeled by other flags. This does not return true 382 /// for instructions whose effects are captured by: 383 /// 384 /// 1. Their operand list and implicit definition/use list. Register use/def 385 /// info is explicit for instructions. 386 /// 2. Memory accesses. Use mayLoad/mayStore. 387 /// 3. Calling, branching, returning: use isCall/isReturn/isBranch. 388 /// 389 /// Examples of side effects would be modifying 'invisible' machine state like 390 /// a control register, flushing a cache, modifying a register invisible to 391 /// LLVM, etc. 392 /// hasUnmodeledSideEffects()393 bool hasUnmodeledSideEffects() const { 394 return Flags & (1 << MCID::UnmodeledSideEffects); 395 } 396 397 //===--------------------------------------------------------------------===// 398 // Flags that indicate whether an instruction can be modified by a method. 399 //===--------------------------------------------------------------------===// 400 401 /// isCommutable - Return true if this may be a 2- or 3-address 402 /// instruction (of the form "X = op Y, Z, ..."), which produces the same 403 /// result if Y and Z are exchanged. If this flag is set, then the 404 /// TargetInstrInfo::commuteInstruction method may be used to hack on the 405 /// instruction. 406 /// 407 /// Note that this flag may be set on instructions that are only commutable 408 /// sometimes. In these cases, the call to commuteInstruction will fail. 409 /// Also note that some instructions require non-trivial modification to 410 /// commute them. isCommutable()411 bool isCommutable() const { 412 return Flags & (1 << MCID::Commutable); 413 } 414 415 /// isConvertibleTo3Addr - Return true if this is a 2-address instruction 416 /// which can be changed into a 3-address instruction if needed. Doing this 417 /// transformation can be profitable in the register allocator, because it 418 /// means that the instruction can use a 2-address form if possible, but 419 /// degrade into a less efficient form if the source and dest register cannot 420 /// be assigned to the same register. For example, this allows the x86 421 /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which 422 /// is the same speed as the shift but has bigger code size. 423 /// 424 /// If this returns true, then the target must implement the 425 /// TargetInstrInfo::convertToThreeAddress method for this instruction, which 426 /// is allowed to fail if the transformation isn't valid for this specific 427 /// instruction (e.g. shl reg, 4 on x86). 428 /// isConvertibleTo3Addr()429 bool isConvertibleTo3Addr() const { 430 return Flags & (1 << MCID::ConvertibleTo3Addr); 431 } 432 433 /// usesCustomInsertionHook - Return true if this instruction requires 434 /// custom insertion support when the DAG scheduler is inserting it into a 435 /// machine basic block. If this is true for the instruction, it basically 436 /// means that it is a pseudo instruction used at SelectionDAG time that is 437 /// expanded out into magic code by the target when MachineInstrs are formed. 438 /// 439 /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method 440 /// is used to insert this into the MachineBasicBlock. usesCustomInsertionHook()441 bool usesCustomInsertionHook() const { 442 return Flags & (1 << MCID::UsesCustomInserter); 443 } 444 445 /// hasPostISelHook - Return true if this instruction requires *adjustment* 446 /// after instruction selection by calling a target hook. For example, this 447 /// can be used to fill in ARM 's' optional operand depending on whether 448 /// the conditional flag register is used. hasPostISelHook()449 bool hasPostISelHook() const { 450 return Flags & (1 << MCID::HasPostISelHook); 451 } 452 453 /// isRematerializable - Returns true if this instruction is a candidate for 454 /// remat. This flag is only used in TargetInstrInfo method 455 /// isTriviallyRematerializable. 456 /// 457 /// If this flag is set, the isReallyTriviallyReMaterializable() 458 /// or isReallyTriviallyReMaterializableGeneric methods are called to verify 459 /// the instruction is really rematable. isRematerializable()460 bool isRematerializable() const { 461 return Flags & (1 << MCID::Rematerializable); 462 } 463 464 /// isAsCheapAsAMove - Returns true if this instruction has the same cost (or 465 /// less) than a move instruction. This is useful during certain types of 466 /// optimizations (e.g., remat during two-address conversion or machine licm) 467 /// where we would like to remat or hoist the instruction, but not if it costs 468 /// more than moving the instruction into the appropriate register. Note, we 469 /// are not marking copies from and to the same register class with this flag. 470 /// 471 /// This method could be called by interface TargetInstrInfo::isAsCheapAsAMove 472 /// for different subtargets. isAsCheapAsAMove()473 bool isAsCheapAsAMove() const { 474 return Flags & (1 << MCID::CheapAsAMove); 475 } 476 477 /// hasExtraSrcRegAllocReq - Returns true if this instruction source operands 478 /// have special register allocation requirements that are not captured by the 479 /// operand register classes. e.g. ARM::STRD's two source registers must be an 480 /// even / odd pair, ARM::STM registers have to be in ascending order. 481 /// Post-register allocation passes should not attempt to change allocations 482 /// for sources of instructions with this flag. hasExtraSrcRegAllocReq()483 bool hasExtraSrcRegAllocReq() const { 484 return Flags & (1 << MCID::ExtraSrcRegAllocReq); 485 } 486 487 /// hasExtraDefRegAllocReq - Returns true if this instruction def operands 488 /// have special register allocation requirements that are not captured by the 489 /// operand register classes. e.g. ARM::LDRD's two def registers must be an 490 /// even / odd pair, ARM::LDM registers have to be in ascending order. 491 /// Post-register allocation passes should not attempt to change allocations 492 /// for definitions of instructions with this flag. hasExtraDefRegAllocReq()493 bool hasExtraDefRegAllocReq() const { 494 return Flags & (1 << MCID::ExtraDefRegAllocReq); 495 } 496 497 498 /// getImplicitUses - Return a list of registers that are potentially 499 /// read by any instance of this machine instruction. For example, on X86, 500 /// the "adc" instruction adds two register operands and adds the carry bit in 501 /// from the flags register. In this case, the instruction is marked as 502 /// implicitly reading the flags. Likewise, the variable shift instruction on 503 /// X86 is marked as implicitly reading the 'CL' register, which it always 504 /// does. 505 /// 506 /// This method returns null if the instruction has no implicit uses. getImplicitUses()507 const uint16_t *getImplicitUses() const { 508 return ImplicitUses; 509 } 510 511 /// \brief Return the number of implicit uses this instruction has. getNumImplicitUses()512 unsigned getNumImplicitUses() const { 513 if (!ImplicitUses) return 0; 514 unsigned i = 0; 515 for (; ImplicitUses[i]; ++i) /*empty*/; 516 return i; 517 } 518 519 /// getImplicitDefs - Return a list of registers that are potentially 520 /// written by any instance of this machine instruction. For example, on X86, 521 /// many instructions implicitly set the flags register. In this case, they 522 /// are marked as setting the FLAGS. Likewise, many instructions always 523 /// deposit their result in a physical register. For example, the X86 divide 524 /// instruction always deposits the quotient and remainder in the EAX/EDX 525 /// registers. For that instruction, this will return a list containing the 526 /// EAX/EDX/EFLAGS registers. 527 /// 528 /// This method returns null if the instruction has no implicit defs. getImplicitDefs()529 const uint16_t *getImplicitDefs() const { 530 return ImplicitDefs; 531 } 532 533 /// \brief Return the number of implicit defs this instruct has. getNumImplicitDefs()534 unsigned getNumImplicitDefs() const { 535 if (!ImplicitDefs) return 0; 536 unsigned i = 0; 537 for (; ImplicitDefs[i]; ++i) /*empty*/; 538 return i; 539 } 540 541 /// \brief Return true if this instruction implicitly 542 /// uses the specified physical register. hasImplicitUseOfPhysReg(unsigned Reg)543 bool hasImplicitUseOfPhysReg(unsigned Reg) const { 544 if (const uint16_t *ImpUses = ImplicitUses) 545 for (; *ImpUses; ++ImpUses) 546 if (*ImpUses == Reg) return true; 547 return false; 548 } 549 550 /// \brief Return true if this instruction implicitly 551 /// defines the specified physical register. 552 bool hasImplicitDefOfPhysReg(unsigned Reg, 553 const MCRegisterInfo *MRI = nullptr) const { 554 if (const uint16_t *ImpDefs = ImplicitDefs) 555 for (; *ImpDefs; ++ImpDefs) 556 if (*ImpDefs == Reg || (MRI && MRI->isSubRegister(Reg, *ImpDefs))) 557 return true; 558 return false; 559 } 560 561 /// \brief Return true if this instruction defines the specified physical 562 /// register, either explicitly or implicitly. hasDefOfPhysReg(const MCInst & MI,unsigned Reg,const MCRegisterInfo & RI)563 bool hasDefOfPhysReg(const MCInst &MI, unsigned Reg, 564 const MCRegisterInfo &RI) const { 565 for (int i = 0, e = NumDefs; i != e; ++i) 566 if (MI.getOperand(i).isReg() && 567 RI.isSubRegisterEq(Reg, MI.getOperand(i).getReg())) 568 return true; 569 return hasImplicitDefOfPhysReg(Reg, &RI); 570 } 571 572 /// \brief Return the scheduling class for this instruction. The 573 /// scheduling class is an index into the InstrItineraryData table. This 574 /// returns zero if there is no known scheduling information for the 575 /// instruction. getSchedClass()576 unsigned getSchedClass() const { 577 return SchedClass; 578 } 579 580 /// \brief Return the number of bytes in the encoding of this instruction, 581 /// or zero if the encoding size cannot be known from the opcode. getSize()582 unsigned getSize() const { 583 return Size; 584 } 585 586 /// \brief Find the index of the first operand in the 587 /// operand list that is used to represent the predicate. It returns -1 if 588 /// none is found. findFirstPredOperandIdx()589 int findFirstPredOperandIdx() const { 590 if (isPredicable()) { 591 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 592 if (OpInfo[i].isPredicate()) 593 return i; 594 } 595 return -1; 596 } 597 }; 598 599 } // end namespace llvm 600 601 #endif 602