• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- DFAPacketizerEmitter.cpp - Packetization DFA for a VLIW machine-----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This class parses the Schedule.td file and produces an API that can be used
11 // to reason about whether an instruction can be added to a packet on a VLIW
12 // architecture. The class internally generates a deterministic finite
13 // automaton (DFA) that models all possible mappings of machine instructions
14 // to functional units as instructions are added to a packet.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "CodeGenTarget.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/TableGen/Record.h"
22 #include "llvm/TableGen/TableGenBackend.h"
23 #include <list>
24 #include <map>
25 #include <string>
26 using namespace llvm;
27 
28 //
29 // class DFAPacketizerEmitter: class that generates and prints out the DFA
30 // for resource tracking.
31 //
32 namespace {
33 class DFAPacketizerEmitter {
34 private:
35   std::string TargetName;
36   //
37   // allInsnClasses is the set of all possible resources consumed by an
38   // InstrStage.
39   //
40   DenseSet<unsigned> allInsnClasses;
41   RecordKeeper &Records;
42 
43 public:
44   DFAPacketizerEmitter(RecordKeeper &R);
45 
46   //
47   // collectAllInsnClasses: Populate allInsnClasses which is a set of units
48   // used in each stage.
49   //
50   void collectAllInsnClasses(const std::string &Name,
51                              Record *ItinData,
52                              unsigned &NStages,
53                              raw_ostream &OS);
54 
55   void run(raw_ostream &OS);
56 };
57 } // End anonymous namespace.
58 
59 //
60 //
61 // State represents the usage of machine resources if the packet contains
62 // a set of instruction classes.
63 //
64 // Specifically, currentState is a set of bit-masks.
65 // The nth bit in a bit-mask indicates whether the nth resource is being used
66 // by this state. The set of bit-masks in a state represent the different
67 // possible outcomes of transitioning to this state.
68 // For example: consider a two resource architecture: resource L and resource M
69 // with three instruction classes: L, M, and L_or_M.
70 // From the initial state (currentState = 0x00), if we add instruction class
71 // L_or_M we will transition to a state with currentState = [0x01, 0x10]. This
72 // represents the possible resource states that can result from adding a L_or_M
73 // instruction
74 //
75 // Another way of thinking about this transition is we are mapping a NDFA with
76 // two states [0x01] and [0x10] into a DFA with a single state [0x01, 0x10].
77 //
78 // A State instance also contains a collection of transitions from that state:
79 // a map from inputs to new states.
80 //
81 namespace {
82 class State {
83  public:
84   static int currentStateNum;
85   // stateNum is the only member used for equality/ordering, all other members
86   // can be mutated even in const State objects.
87   const int stateNum;
88   mutable bool isInitial;
89   mutable std::set<unsigned> stateInfo;
90   typedef std::map<unsigned, const State *> TransitionMap;
91   mutable TransitionMap Transitions;
92 
93   State();
94 
operator <(const State & s) const95   bool operator<(const State &s) const {
96     return stateNum < s.stateNum;
97   }
98 
99   //
100   // canAddInsnClass - Returns true if an instruction of type InsnClass is a
101   // valid transition from this state, i.e., can an instruction of type InsnClass
102   // be added to the packet represented by this state.
103   //
104   // PossibleStates is the set of valid resource states that ensue from valid
105   // transitions.
106   //
107   bool canAddInsnClass(unsigned InsnClass) const;
108   //
109   // AddInsnClass - Return all combinations of resource reservation
110   // which are possible from this state (PossibleStates).
111   //
112   void AddInsnClass(unsigned InsnClass, std::set<unsigned> &PossibleStates) const;
113   //
114   // addTransition - Add a transition from this state given the input InsnClass
115   //
116   void addTransition(unsigned InsnClass, const State *To) const;
117   //
118   // hasTransition - Returns true if there is a transition from this state
119   // given the input InsnClass
120   //
121   bool hasTransition(unsigned InsnClass) const;
122 };
123 } // End anonymous namespace.
124 
125 //
126 // class DFA: deterministic finite automaton for processor resource tracking.
127 //
128 namespace {
129 class DFA {
130 public:
131   DFA();
132 
133   // Set of states. Need to keep this sorted to emit the transition table.
134   typedef std::set<State> StateSet;
135   StateSet states;
136 
137   State *currentState;
138 
139   //
140   // Modify the DFA.
141   //
142   const State &newState();
143 
144   //
145   // writeTable: Print out a table representing the DFA.
146   //
147   void writeTableAndAPI(raw_ostream &OS, const std::string &ClassName);
148 };
149 } // End anonymous namespace.
150 
151 
152 //
153 // Constructors and destructors for State and DFA
154 //
State()155 State::State() :
156   stateNum(currentStateNum++), isInitial(false) {}
157 
DFA()158 DFA::DFA(): currentState(nullptr) {}
159 
160 //
161 // addTransition - Add a transition from this state given the input InsnClass
162 //
addTransition(unsigned InsnClass,const State * To) const163 void State::addTransition(unsigned InsnClass, const State *To) const {
164   assert(!Transitions.count(InsnClass) &&
165       "Cannot have multiple transitions for the same input");
166   Transitions[InsnClass] = To;
167 }
168 
169 //
170 // hasTransition - Returns true if there is a transition from this state
171 // given the input InsnClass
172 //
hasTransition(unsigned InsnClass) const173 bool State::hasTransition(unsigned InsnClass) const {
174   return Transitions.count(InsnClass) > 0;
175 }
176 
177 //
178 // AddInsnClass - Return all combinations of resource reservation
179 // which are possible from this state (PossibleStates).
180 //
AddInsnClass(unsigned InsnClass,std::set<unsigned> & PossibleStates) const181 void State::AddInsnClass(unsigned InsnClass,
182                             std::set<unsigned> &PossibleStates) const {
183   //
184   // Iterate over all resource states in currentState.
185   //
186 
187   for (std::set<unsigned>::iterator SI = stateInfo.begin();
188        SI != stateInfo.end(); ++SI) {
189     unsigned thisState = *SI;
190 
191     //
192     // Iterate over all possible resources used in InsnClass.
193     // For ex: for InsnClass = 0x11, all resources = {0x01, 0x10}.
194     //
195 
196     DenseSet<unsigned> VisitedResourceStates;
197     for (unsigned int j = 0; j < sizeof(InsnClass) * 8; ++j) {
198       if ((0x1 << j) & InsnClass) {
199         //
200         // For each possible resource used in InsnClass, generate the
201         // resource state if that resource was used.
202         //
203         unsigned ResultingResourceState = thisState | (0x1 << j);
204         //
205         // Check if the resulting resource state can be accommodated in this
206         // packet.
207         // We compute ResultingResourceState OR thisState.
208         // If the result of the OR is different than thisState, it implies
209         // that there is at least one resource that can be used to schedule
210         // InsnClass in the current packet.
211         // Insert ResultingResourceState into PossibleStates only if we haven't
212         // processed ResultingResourceState before.
213         //
214         if ((ResultingResourceState != thisState) &&
215             (VisitedResourceStates.count(ResultingResourceState) == 0)) {
216           VisitedResourceStates.insert(ResultingResourceState);
217           PossibleStates.insert(ResultingResourceState);
218         }
219       }
220     }
221   }
222 
223 }
224 
225 
226 //
227 // canAddInsnClass - Quickly verifies if an instruction of type InsnClass is a
228 // valid transition from this state i.e., can an instruction of type InsnClass
229 // be added to the packet represented by this state.
230 //
canAddInsnClass(unsigned InsnClass) const231 bool State::canAddInsnClass(unsigned InsnClass) const {
232   for (std::set<unsigned>::const_iterator SI = stateInfo.begin();
233        SI != stateInfo.end(); ++SI) {
234     if (~*SI & InsnClass)
235       return true;
236   }
237   return false;
238 }
239 
240 
newState()241 const State &DFA::newState() {
242   auto IterPair = states.insert(State());
243   assert(IterPair.second && "State already exists");
244   return *IterPair.first;
245 }
246 
247 
248 int State::currentStateNum = 0;
249 
DFAPacketizerEmitter(RecordKeeper & R)250 DFAPacketizerEmitter::DFAPacketizerEmitter(RecordKeeper &R):
251   TargetName(CodeGenTarget(R).getName()),
252   allInsnClasses(), Records(R) {}
253 
254 
255 //
256 // writeTableAndAPI - Print out a table representing the DFA and the
257 // associated API to create a DFA packetizer.
258 //
259 // Format:
260 // DFAStateInputTable[][2] = pairs of <Input, Transition> for all valid
261 //                           transitions.
262 // DFAStateEntryTable[i] = Index of the first entry in DFAStateInputTable for
263 //                         the ith state.
264 //
265 //
writeTableAndAPI(raw_ostream & OS,const std::string & TargetName)266 void DFA::writeTableAndAPI(raw_ostream &OS, const std::string &TargetName) {
267   static const std::string SentinelEntry = "{-1, -1}";
268   DFA::StateSet::iterator SI = states.begin();
269   // This table provides a map to the beginning of the transitions for State s
270   // in DFAStateInputTable.
271   std::vector<int> StateEntry(states.size());
272 
273   OS << "namespace llvm {\n\n";
274   OS << "const int " << TargetName << "DFAStateInputTable[][2] = {\n";
275 
276   // Tracks the total valid transitions encountered so far. It is used
277   // to construct the StateEntry table.
278   int ValidTransitions = 0;
279   for (unsigned i = 0; i < states.size(); ++i, ++SI) {
280     assert ((SI->stateNum == (int) i) && "Mismatch in state numbers");
281     StateEntry[i] = ValidTransitions;
282     for (State::TransitionMap::iterator
283         II = SI->Transitions.begin(), IE = SI->Transitions.end();
284         II != IE; ++II) {
285       OS << "{" << II->first << ", "
286          << II->second->stateNum
287          << "},    ";
288     }
289     ValidTransitions += SI->Transitions.size();
290 
291     // If there are no valid transitions from this stage, we need a sentinel
292     // transition.
293     if (ValidTransitions == StateEntry[i]) {
294       OS << SentinelEntry << ",";
295       ++ValidTransitions;
296     }
297 
298     OS << "\n";
299   }
300 
301   // Print out a sentinel entry at the end of the StateInputTable. This is
302   // needed to iterate over StateInputTable in DFAPacketizer::ReadTable()
303   OS << SentinelEntry << "\n";
304 
305   OS << "};\n\n";
306   OS << "const unsigned int " << TargetName << "DFAStateEntryTable[] = {\n";
307 
308   // Multiply i by 2 since each entry in DFAStateInputTable is a set of
309   // two numbers.
310   for (unsigned i = 0; i < states.size(); ++i)
311     OS << StateEntry[i] << ", ";
312 
313   // Print out the index to the sentinel entry in StateInputTable
314   OS << ValidTransitions << ", ";
315 
316   OS << "\n};\n";
317   OS << "} // namespace\n";
318 
319 
320   //
321   // Emit DFA Packetizer tables if the target is a VLIW machine.
322   //
323   std::string SubTargetClassName = TargetName + "GenSubtargetInfo";
324   OS << "\n" << "#include \"llvm/CodeGen/DFAPacketizer.h\"\n";
325   OS << "namespace llvm {\n";
326   OS << "DFAPacketizer *" << SubTargetClassName << "::"
327      << "createDFAPacketizer(const InstrItineraryData *IID) const {\n"
328      << "   return new DFAPacketizer(IID, " << TargetName
329      << "DFAStateInputTable, " << TargetName << "DFAStateEntryTable);\n}\n\n";
330   OS << "} // End llvm namespace \n";
331 }
332 
333 
334 //
335 // collectAllInsnClasses - Populate allInsnClasses which is a set of units
336 // used in each stage.
337 //
collectAllInsnClasses(const std::string & Name,Record * ItinData,unsigned & NStages,raw_ostream & OS)338 void DFAPacketizerEmitter::collectAllInsnClasses(const std::string &Name,
339                                   Record *ItinData,
340                                   unsigned &NStages,
341                                   raw_ostream &OS) {
342   // Collect processor itineraries.
343   std::vector<Record*> ProcItinList =
344     Records.getAllDerivedDefinitions("ProcessorItineraries");
345 
346   // If just no itinerary then don't bother.
347   if (ProcItinList.size() < 2)
348     return;
349   std::map<std::string, unsigned> NameToBitsMap;
350 
351   // Parse functional units for all the itineraries.
352   for (unsigned i = 0, N = ProcItinList.size(); i < N; ++i) {
353     Record *Proc = ProcItinList[i];
354     std::vector<Record*> FUs = Proc->getValueAsListOfDefs("FU");
355 
356     // Convert macros to bits for each stage.
357     for (unsigned i = 0, N = FUs.size(); i < N; ++i)
358       NameToBitsMap[FUs[i]->getName()] = (unsigned) (1U << i);
359   }
360 
361   const std::vector<Record*> &StageList =
362     ItinData->getValueAsListOfDefs("Stages");
363 
364   // The number of stages.
365   NStages = StageList.size();
366 
367   // For each unit.
368   unsigned UnitBitValue = 0;
369 
370   // Compute the bitwise or of each unit used in this stage.
371   for (unsigned i = 0; i < NStages; ++i) {
372     const Record *Stage = StageList[i];
373 
374     // Get unit list.
375     const std::vector<Record*> &UnitList =
376       Stage->getValueAsListOfDefs("Units");
377 
378     for (unsigned j = 0, M = UnitList.size(); j < M; ++j) {
379       // Conduct bitwise or.
380       std::string UnitName = UnitList[j]->getName();
381       assert(NameToBitsMap.count(UnitName));
382       UnitBitValue |= NameToBitsMap[UnitName];
383     }
384 
385     if (UnitBitValue != 0)
386       allInsnClasses.insert(UnitBitValue);
387   }
388 }
389 
390 
391 //
392 // Run the worklist algorithm to generate the DFA.
393 //
run(raw_ostream & OS)394 void DFAPacketizerEmitter::run(raw_ostream &OS) {
395 
396   // Collect processor iteraries.
397   std::vector<Record*> ProcItinList =
398     Records.getAllDerivedDefinitions("ProcessorItineraries");
399 
400   //
401   // Collect the instruction classes.
402   //
403   for (unsigned i = 0, N = ProcItinList.size(); i < N; i++) {
404     Record *Proc = ProcItinList[i];
405 
406     // Get processor itinerary name.
407     const std::string &Name = Proc->getName();
408 
409     // Skip default.
410     if (Name == "NoItineraries")
411       continue;
412 
413     // Sanity check for at least one instruction itinerary class.
414     unsigned NItinClasses =
415       Records.getAllDerivedDefinitions("InstrItinClass").size();
416     if (NItinClasses == 0)
417       return;
418 
419     // Get itinerary data list.
420     std::vector<Record*> ItinDataList = Proc->getValueAsListOfDefs("IID");
421 
422     // Collect instruction classes for all itinerary data.
423     for (unsigned j = 0, M = ItinDataList.size(); j < M; j++) {
424       Record *ItinData = ItinDataList[j];
425       unsigned NStages;
426       collectAllInsnClasses(Name, ItinData, NStages, OS);
427     }
428   }
429 
430 
431   //
432   // Run a worklist algorithm to generate the DFA.
433   //
434   DFA D;
435   const State *Initial = &D.newState();
436   Initial->isInitial = true;
437   Initial->stateInfo.insert(0x0);
438   SmallVector<const State*, 32> WorkList;
439   std::map<std::set<unsigned>, const State*> Visited;
440 
441   WorkList.push_back(Initial);
442 
443   //
444   // Worklist algorithm to create a DFA for processor resource tracking.
445   // C = {set of InsnClasses}
446   // Begin with initial node in worklist. Initial node does not have
447   // any consumed resources,
448   //     ResourceState = 0x0
449   // Visited = {}
450   // While worklist != empty
451   //    S = first element of worklist
452   //    For every instruction class C
453   //      if we can accommodate C in S:
454   //          S' = state with resource states = {S Union C}
455   //          Add a new transition: S x C -> S'
456   //          If S' is not in Visited:
457   //             Add S' to worklist
458   //             Add S' to Visited
459   //
460   while (!WorkList.empty()) {
461     const State *current = WorkList.pop_back_val();
462     for (DenseSet<unsigned>::iterator CI = allInsnClasses.begin(),
463            CE = allInsnClasses.end(); CI != CE; ++CI) {
464       unsigned InsnClass = *CI;
465 
466       std::set<unsigned> NewStateResources;
467       //
468       // If we haven't already created a transition for this input
469       // and the state can accommodate this InsnClass, create a transition.
470       //
471       if (!current->hasTransition(InsnClass) &&
472           current->canAddInsnClass(InsnClass)) {
473         const State *NewState;
474         current->AddInsnClass(InsnClass, NewStateResources);
475         assert(NewStateResources.size() && "New states must be generated");
476 
477         //
478         // If we have seen this state before, then do not create a new state.
479         //
480         //
481         auto VI = Visited.find(NewStateResources);
482         if (VI != Visited.end())
483           NewState = VI->second;
484         else {
485           NewState = &D.newState();
486           NewState->stateInfo = NewStateResources;
487           Visited[NewStateResources] = NewState;
488           WorkList.push_back(NewState);
489         }
490 
491         current->addTransition(InsnClass, NewState);
492       }
493     }
494   }
495 
496   // Print out the table.
497   D.writeTableAndAPI(OS, TargetName);
498 }
499 
500 namespace llvm {
501 
EmitDFAPacketizer(RecordKeeper & RK,raw_ostream & OS)502 void EmitDFAPacketizer(RecordKeeper &RK, raw_ostream &OS) {
503   emitSourceFileHeader("Target DFA Packetizer Tables", OS);
504   DFAPacketizerEmitter(RK).run(OS);
505 }
506 
507 } // End llvm namespace
508