1 /*
2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10 #include "webrtc/modules/video_coding/main/source/jitter_buffer.h"
11
12 #include <assert.h>
13
14 #include <algorithm>
15 #include <utility>
16
17 #include "webrtc/modules/video_coding/main/interface/video_coding.h"
18 #include "webrtc/modules/video_coding/main/source/frame_buffer.h"
19 #include "webrtc/modules/video_coding/main/source/inter_frame_delay.h"
20 #include "webrtc/modules/video_coding/main/source/internal_defines.h"
21 #include "webrtc/modules/video_coding/main/source/jitter_buffer_common.h"
22 #include "webrtc/modules/video_coding/main/source/jitter_estimator.h"
23 #include "webrtc/modules/video_coding/main/source/packet.h"
24 #include "webrtc/system_wrappers/interface/clock.h"
25 #include "webrtc/system_wrappers/interface/critical_section_wrapper.h"
26 #include "webrtc/system_wrappers/interface/event_wrapper.h"
27 #include "webrtc/system_wrappers/interface/logging.h"
28 #include "webrtc/system_wrappers/interface/trace_event.h"
29
30 namespace webrtc {
31
32 // Use this rtt if no value has been reported.
33 static const uint32_t kDefaultRtt = 200;
34
35 typedef std::pair<uint32_t, VCMFrameBuffer*> FrameListPair;
36
IsKeyFrame(FrameListPair pair)37 bool IsKeyFrame(FrameListPair pair) {
38 return pair.second->FrameType() == kVideoFrameKey;
39 }
40
HasNonEmptyState(FrameListPair pair)41 bool HasNonEmptyState(FrameListPair pair) {
42 return pair.second->GetState() != kStateEmpty;
43 }
44
InsertFrame(VCMFrameBuffer * frame)45 void FrameList::InsertFrame(VCMFrameBuffer* frame) {
46 insert(rbegin().base(), FrameListPair(frame->TimeStamp(), frame));
47 }
48
FindFrame(uint32_t timestamp) const49 VCMFrameBuffer* FrameList::FindFrame(uint32_t timestamp) const {
50 FrameList::const_iterator it = find(timestamp);
51 if (it == end())
52 return NULL;
53 return it->second;
54 }
55
PopFrame(uint32_t timestamp)56 VCMFrameBuffer* FrameList::PopFrame(uint32_t timestamp) {
57 FrameList::iterator it = find(timestamp);
58 if (it == end())
59 return NULL;
60 VCMFrameBuffer* frame = it->second;
61 erase(it);
62 return frame;
63 }
64
Front() const65 VCMFrameBuffer* FrameList::Front() const {
66 return begin()->second;
67 }
68
Back() const69 VCMFrameBuffer* FrameList::Back() const {
70 return rbegin()->second;
71 }
72
RecycleFramesUntilKeyFrame(FrameList::iterator * key_frame_it,UnorderedFrameList * free_frames)73 int FrameList::RecycleFramesUntilKeyFrame(FrameList::iterator* key_frame_it,
74 UnorderedFrameList* free_frames) {
75 int drop_count = 0;
76 FrameList::iterator it = begin();
77 while (!empty()) {
78 // Throw at least one frame.
79 it->second->Reset();
80 free_frames->push_back(it->second);
81 erase(it++);
82 ++drop_count;
83 if (it != end() && it->second->FrameType() == kVideoFrameKey) {
84 *key_frame_it = it;
85 return drop_count;
86 }
87 }
88 *key_frame_it = end();
89 return drop_count;
90 }
91
CleanUpOldOrEmptyFrames(VCMDecodingState * decoding_state,UnorderedFrameList * free_frames)92 int FrameList::CleanUpOldOrEmptyFrames(VCMDecodingState* decoding_state,
93 UnorderedFrameList* free_frames) {
94 int drop_count = 0;
95 while (!empty()) {
96 VCMFrameBuffer* oldest_frame = Front();
97 bool remove_frame = false;
98 if (oldest_frame->GetState() == kStateEmpty && size() > 1) {
99 // This frame is empty, try to update the last decoded state and drop it
100 // if successful.
101 remove_frame = decoding_state->UpdateEmptyFrame(oldest_frame);
102 } else {
103 remove_frame = decoding_state->IsOldFrame(oldest_frame);
104 }
105 if (!remove_frame) {
106 break;
107 }
108 free_frames->push_back(oldest_frame);
109 ++drop_count;
110 TRACE_EVENT_INSTANT1("webrtc", "JB::OldOrEmptyFrameDropped", "timestamp",
111 oldest_frame->TimeStamp());
112 erase(begin());
113 }
114 return drop_count;
115 }
116
Reset(UnorderedFrameList * free_frames)117 void FrameList::Reset(UnorderedFrameList* free_frames) {
118 while (!empty()) {
119 begin()->second->Reset();
120 free_frames->push_back(begin()->second);
121 erase(begin());
122 }
123 }
124
VCMJitterBuffer(Clock * clock,EventFactory * event_factory)125 VCMJitterBuffer::VCMJitterBuffer(Clock* clock, EventFactory* event_factory)
126 : clock_(clock),
127 running_(false),
128 crit_sect_(CriticalSectionWrapper::CreateCriticalSection()),
129 frame_event_(event_factory->CreateEvent()),
130 packet_event_(event_factory->CreateEvent()),
131 max_number_of_frames_(kStartNumberOfFrames),
132 frame_buffers_(),
133 free_frames_(),
134 decodable_frames_(),
135 incomplete_frames_(),
136 last_decoded_state_(),
137 first_packet_since_reset_(true),
138 incoming_frame_rate_(0),
139 incoming_frame_count_(0),
140 time_last_incoming_frame_count_(0),
141 incoming_bit_count_(0),
142 incoming_bit_rate_(0),
143 drop_count_(0),
144 num_consecutive_old_frames_(0),
145 num_consecutive_old_packets_(0),
146 num_discarded_packets_(0),
147 jitter_estimate_(clock),
148 inter_frame_delay_(clock_->TimeInMilliseconds()),
149 rtt_ms_(kDefaultRtt),
150 nack_mode_(kNoNack),
151 low_rtt_nack_threshold_ms_(-1),
152 high_rtt_nack_threshold_ms_(-1),
153 missing_sequence_numbers_(SequenceNumberLessThan()),
154 nack_seq_nums_(),
155 max_nack_list_size_(0),
156 max_packet_age_to_nack_(0),
157 max_incomplete_time_ms_(0),
158 decode_error_mode_(kNoErrors),
159 average_packets_per_frame_(0.0f),
160 frame_counter_(0) {
161 memset(frame_buffers_, 0, sizeof(frame_buffers_));
162
163 for (int i = 0; i < kStartNumberOfFrames; i++) {
164 frame_buffers_[i] = new VCMFrameBuffer();
165 free_frames_.push_back(frame_buffers_[i]);
166 }
167 }
168
~VCMJitterBuffer()169 VCMJitterBuffer::~VCMJitterBuffer() {
170 Stop();
171 for (int i = 0; i < kMaxNumberOfFrames; i++) {
172 if (frame_buffers_[i]) {
173 delete frame_buffers_[i];
174 }
175 }
176 delete crit_sect_;
177 }
178
CopyFrom(const VCMJitterBuffer & rhs)179 void VCMJitterBuffer::CopyFrom(const VCMJitterBuffer& rhs) {
180 if (this != &rhs) {
181 crit_sect_->Enter();
182 rhs.crit_sect_->Enter();
183 running_ = rhs.running_;
184 max_number_of_frames_ = rhs.max_number_of_frames_;
185 incoming_frame_rate_ = rhs.incoming_frame_rate_;
186 incoming_frame_count_ = rhs.incoming_frame_count_;
187 time_last_incoming_frame_count_ = rhs.time_last_incoming_frame_count_;
188 incoming_bit_count_ = rhs.incoming_bit_count_;
189 incoming_bit_rate_ = rhs.incoming_bit_rate_;
190 drop_count_ = rhs.drop_count_;
191 num_consecutive_old_frames_ = rhs.num_consecutive_old_frames_;
192 num_consecutive_old_packets_ = rhs.num_consecutive_old_packets_;
193 num_discarded_packets_ = rhs.num_discarded_packets_;
194 jitter_estimate_ = rhs.jitter_estimate_;
195 inter_frame_delay_ = rhs.inter_frame_delay_;
196 waiting_for_completion_ = rhs.waiting_for_completion_;
197 rtt_ms_ = rhs.rtt_ms_;
198 first_packet_since_reset_ = rhs.first_packet_since_reset_;
199 last_decoded_state_ = rhs.last_decoded_state_;
200 decode_error_mode_ = rhs.decode_error_mode_;
201 assert(max_nack_list_size_ == rhs.max_nack_list_size_);
202 assert(max_packet_age_to_nack_ == rhs.max_packet_age_to_nack_);
203 assert(max_incomplete_time_ms_ == rhs.max_incomplete_time_ms_);
204 receive_statistics_ = rhs.receive_statistics_;
205 nack_seq_nums_.resize(rhs.nack_seq_nums_.size());
206 missing_sequence_numbers_ = rhs.missing_sequence_numbers_;
207 latest_received_sequence_number_ = rhs.latest_received_sequence_number_;
208 average_packets_per_frame_ = rhs.average_packets_per_frame_;
209 for (int i = 0; i < kMaxNumberOfFrames; i++) {
210 if (frame_buffers_[i] != NULL) {
211 delete frame_buffers_[i];
212 frame_buffers_[i] = NULL;
213 }
214 }
215 free_frames_.clear();
216 decodable_frames_.clear();
217 incomplete_frames_.clear();
218 int i = 0;
219 for (UnorderedFrameList::const_iterator it = rhs.free_frames_.begin();
220 it != rhs.free_frames_.end(); ++it, ++i) {
221 frame_buffers_[i] = new VCMFrameBuffer;
222 free_frames_.push_back(frame_buffers_[i]);
223 }
224 CopyFrames(&decodable_frames_, rhs.decodable_frames_, &i);
225 CopyFrames(&incomplete_frames_, rhs.incomplete_frames_, &i);
226 rhs.crit_sect_->Leave();
227 crit_sect_->Leave();
228 }
229 }
230
CopyFrames(FrameList * to_list,const FrameList & from_list,int * index)231 void VCMJitterBuffer::CopyFrames(FrameList* to_list,
232 const FrameList& from_list, int* index) {
233 to_list->clear();
234 for (FrameList::const_iterator it = from_list.begin();
235 it != from_list.end(); ++it, ++*index) {
236 frame_buffers_[*index] = new VCMFrameBuffer(*it->second);
237 to_list->InsertFrame(frame_buffers_[*index]);
238 }
239 }
240
Start()241 void VCMJitterBuffer::Start() {
242 CriticalSectionScoped cs(crit_sect_);
243 running_ = true;
244 incoming_frame_count_ = 0;
245 incoming_frame_rate_ = 0;
246 incoming_bit_count_ = 0;
247 incoming_bit_rate_ = 0;
248 time_last_incoming_frame_count_ = clock_->TimeInMilliseconds();
249 receive_statistics_.clear();
250
251 num_consecutive_old_frames_ = 0;
252 num_consecutive_old_packets_ = 0;
253 num_discarded_packets_ = 0;
254
255 // Start in a non-signaled state.
256 frame_event_->Reset();
257 packet_event_->Reset();
258 waiting_for_completion_.frame_size = 0;
259 waiting_for_completion_.timestamp = 0;
260 waiting_for_completion_.latest_packet_time = -1;
261 first_packet_since_reset_ = true;
262 rtt_ms_ = kDefaultRtt;
263 last_decoded_state_.Reset();
264 }
265
Stop()266 void VCMJitterBuffer::Stop() {
267 crit_sect_->Enter();
268 running_ = false;
269 last_decoded_state_.Reset();
270 free_frames_.clear();
271 decodable_frames_.clear();
272 incomplete_frames_.clear();
273 // Make sure all frames are reset and free.
274 for (int i = 0; i < kMaxNumberOfFrames; i++) {
275 if (frame_buffers_[i] != NULL) {
276 static_cast<VCMFrameBuffer*>(frame_buffers_[i])->Reset();
277 free_frames_.push_back(frame_buffers_[i]);
278 }
279 }
280 crit_sect_->Leave();
281 // Make sure we wake up any threads waiting on these events.
282 frame_event_->Set();
283 packet_event_->Set();
284 }
285
Running() const286 bool VCMJitterBuffer::Running() const {
287 CriticalSectionScoped cs(crit_sect_);
288 return running_;
289 }
290
Flush()291 void VCMJitterBuffer::Flush() {
292 CriticalSectionScoped cs(crit_sect_);
293 decodable_frames_.Reset(&free_frames_);
294 incomplete_frames_.Reset(&free_frames_);
295 last_decoded_state_.Reset(); // TODO(mikhal): sync reset.
296 frame_event_->Reset();
297 packet_event_->Reset();
298 num_consecutive_old_frames_ = 0;
299 num_consecutive_old_packets_ = 0;
300 // Also reset the jitter and delay estimates
301 jitter_estimate_.Reset();
302 inter_frame_delay_.Reset(clock_->TimeInMilliseconds());
303 waiting_for_completion_.frame_size = 0;
304 waiting_for_completion_.timestamp = 0;
305 waiting_for_completion_.latest_packet_time = -1;
306 first_packet_since_reset_ = true;
307 missing_sequence_numbers_.clear();
308 }
309
310 // Get received key and delta frames
FrameStatistics() const311 std::map<FrameType, uint32_t> VCMJitterBuffer::FrameStatistics() const {
312 CriticalSectionScoped cs(crit_sect_);
313 return receive_statistics_;
314 }
315
num_discarded_packets() const316 int VCMJitterBuffer::num_discarded_packets() const {
317 CriticalSectionScoped cs(crit_sect_);
318 return num_discarded_packets_;
319 }
320
321 // Calculate framerate and bitrate.
IncomingRateStatistics(unsigned int * framerate,unsigned int * bitrate)322 void VCMJitterBuffer::IncomingRateStatistics(unsigned int* framerate,
323 unsigned int* bitrate) {
324 assert(framerate);
325 assert(bitrate);
326 CriticalSectionScoped cs(crit_sect_);
327 const int64_t now = clock_->TimeInMilliseconds();
328 int64_t diff = now - time_last_incoming_frame_count_;
329 if (diff < 1000 && incoming_frame_rate_ > 0 && incoming_bit_rate_ > 0) {
330 // Make sure we report something even though less than
331 // 1 second has passed since last update.
332 *framerate = incoming_frame_rate_;
333 *bitrate = incoming_bit_rate_;
334 } else if (incoming_frame_count_ != 0) {
335 // We have received frame(s) since last call to this function
336
337 // Prepare calculations
338 if (diff <= 0) {
339 diff = 1;
340 }
341 // we add 0.5f for rounding
342 float rate = 0.5f + ((incoming_frame_count_ * 1000.0f) / diff);
343 if (rate < 1.0f) {
344 rate = 1.0f;
345 }
346
347 // Calculate frame rate
348 // Let r be rate.
349 // r(0) = 1000*framecount/delta_time.
350 // (I.e. frames per second since last calculation.)
351 // frame_rate = r(0)/2 + r(-1)/2
352 // (I.e. fr/s average this and the previous calculation.)
353 *framerate = (incoming_frame_rate_ + static_cast<unsigned int>(rate)) / 2;
354 incoming_frame_rate_ = static_cast<unsigned int>(rate);
355
356 // Calculate bit rate
357 if (incoming_bit_count_ == 0) {
358 *bitrate = 0;
359 } else {
360 *bitrate = 10 * ((100 * incoming_bit_count_) /
361 static_cast<unsigned int>(diff));
362 }
363 incoming_bit_rate_ = *bitrate;
364
365 // Reset count
366 incoming_frame_count_ = 0;
367 incoming_bit_count_ = 0;
368 time_last_incoming_frame_count_ = now;
369
370 } else {
371 // No frames since last call
372 time_last_incoming_frame_count_ = clock_->TimeInMilliseconds();
373 *framerate = 0;
374 *bitrate = 0;
375 incoming_frame_rate_ = 0;
376 incoming_bit_rate_ = 0;
377 }
378 }
379
380 // Answers the question:
381 // Will the packet sequence be complete if the next frame is grabbed for
382 // decoding right now? That is, have we lost a frame between the last decoded
383 // frame and the next, or is the next
384 // frame missing one or more packets?
CompleteSequenceWithNextFrame()385 bool VCMJitterBuffer::CompleteSequenceWithNextFrame() {
386 CriticalSectionScoped cs(crit_sect_);
387 // Finding oldest frame ready for decoder, check sequence number and size
388 CleanUpOldOrEmptyFrames();
389 if (!decodable_frames_.empty()) {
390 if (decodable_frames_.Front()->GetState() == kStateComplete) {
391 return true;
392 }
393 } else if (incomplete_frames_.size() <= 1) {
394 // Frame not ready to be decoded.
395 return true;
396 }
397 return false;
398 }
399
400 // Returns immediately or a |max_wait_time_ms| ms event hang waiting for a
401 // complete frame, |max_wait_time_ms| decided by caller.
NextCompleteTimestamp(uint32_t max_wait_time_ms,uint32_t * timestamp)402 bool VCMJitterBuffer::NextCompleteTimestamp(
403 uint32_t max_wait_time_ms, uint32_t* timestamp) {
404 crit_sect_->Enter();
405 if (!running_) {
406 crit_sect_->Leave();
407 return false;
408 }
409 CleanUpOldOrEmptyFrames();
410
411 if (decodable_frames_.empty() ||
412 decodable_frames_.Front()->GetState() != kStateComplete) {
413 const int64_t end_wait_time_ms = clock_->TimeInMilliseconds() +
414 max_wait_time_ms;
415 int64_t wait_time_ms = max_wait_time_ms;
416 while (wait_time_ms > 0) {
417 crit_sect_->Leave();
418 const EventTypeWrapper ret =
419 frame_event_->Wait(static_cast<uint32_t>(wait_time_ms));
420 crit_sect_->Enter();
421 if (ret == kEventSignaled) {
422 // Are we shutting down the jitter buffer?
423 if (!running_) {
424 crit_sect_->Leave();
425 return false;
426 }
427 // Finding oldest frame ready for decoder.
428 CleanUpOldOrEmptyFrames();
429 if (decodable_frames_.empty() ||
430 decodable_frames_.Front()->GetState() != kStateComplete) {
431 wait_time_ms = end_wait_time_ms - clock_->TimeInMilliseconds();
432 } else {
433 break;
434 }
435 } else {
436 break;
437 }
438 }
439 // Inside |crit_sect_|.
440 } else {
441 // We already have a frame, reset the event.
442 frame_event_->Reset();
443 }
444 if (decodable_frames_.empty() ||
445 decodable_frames_.Front()->GetState() != kStateComplete) {
446 crit_sect_->Leave();
447 return false;
448 }
449 *timestamp = decodable_frames_.Front()->TimeStamp();
450 crit_sect_->Leave();
451 return true;
452 }
453
NextMaybeIncompleteTimestamp(uint32_t * timestamp)454 bool VCMJitterBuffer::NextMaybeIncompleteTimestamp(uint32_t* timestamp) {
455 CriticalSectionScoped cs(crit_sect_);
456 if (!running_) {
457 return false;
458 }
459 if (decode_error_mode_ == kNoErrors) {
460 // No point to continue, as we are not decoding with errors.
461 return false;
462 }
463
464 CleanUpOldOrEmptyFrames();
465
466 if (decodable_frames_.empty()) {
467 return false;
468 }
469 VCMFrameBuffer* oldest_frame = decodable_frames_.Front();
470 // If we have exactly one frame in the buffer, release it only if it is
471 // complete. We know decodable_frames_ is not empty due to the previous
472 // check.
473 if (decodable_frames_.size() == 1 && incomplete_frames_.empty()
474 && oldest_frame->GetState() != kStateComplete) {
475 return false;
476 }
477
478 *timestamp = oldest_frame->TimeStamp();
479 return true;
480 }
481
ExtractAndSetDecode(uint32_t timestamp)482 VCMEncodedFrame* VCMJitterBuffer::ExtractAndSetDecode(uint32_t timestamp) {
483 CriticalSectionScoped cs(crit_sect_);
484 if (!running_) {
485 return NULL;
486 }
487 // Extract the frame with the desired timestamp.
488 VCMFrameBuffer* frame = decodable_frames_.PopFrame(timestamp);
489 bool continuous = true;
490 if (!frame) {
491 frame = incomplete_frames_.PopFrame(timestamp);
492 if (frame)
493 continuous = last_decoded_state_.ContinuousFrame(frame);
494 else
495 return NULL;
496 }
497 TRACE_EVENT_ASYNC_STEP0("webrtc", "Video", timestamp, "Extract");
498 // Frame pulled out from jitter buffer, update the jitter estimate.
499 const bool retransmitted = (frame->GetNackCount() > 0);
500 if (retransmitted) {
501 jitter_estimate_.FrameNacked();
502 } else if (frame->Length() > 0) {
503 // Ignore retransmitted and empty frames.
504 if (waiting_for_completion_.latest_packet_time >= 0) {
505 UpdateJitterEstimate(waiting_for_completion_, true);
506 }
507 if (frame->GetState() == kStateComplete) {
508 UpdateJitterEstimate(*frame, false);
509 } else {
510 // Wait for this one to get complete.
511 waiting_for_completion_.frame_size = frame->Length();
512 waiting_for_completion_.latest_packet_time =
513 frame->LatestPacketTimeMs();
514 waiting_for_completion_.timestamp = frame->TimeStamp();
515 }
516 }
517
518 // The state must be changed to decoding before cleaning up zero sized
519 // frames to avoid empty frames being cleaned up and then given to the
520 // decoder. Propagates the missing_frame bit.
521 frame->PrepareForDecode(continuous);
522
523 // We have a frame - update the last decoded state and nack list.
524 last_decoded_state_.SetState(frame);
525 DropPacketsFromNackList(last_decoded_state_.sequence_num());
526
527 if ((*frame).IsSessionComplete())
528 UpdateAveragePacketsPerFrame(frame->NumPackets());
529
530 return frame;
531 }
532
533 // Release frame when done with decoding. Should never be used to release
534 // frames from within the jitter buffer.
ReleaseFrame(VCMEncodedFrame * frame)535 void VCMJitterBuffer::ReleaseFrame(VCMEncodedFrame* frame) {
536 CriticalSectionScoped cs(crit_sect_);
537 VCMFrameBuffer* frame_buffer = static_cast<VCMFrameBuffer*>(frame);
538 if (frame_buffer) {
539 free_frames_.push_back(frame_buffer);
540 }
541 }
542
543 // Gets frame to use for this timestamp. If no match, get empty frame.
GetFrame(const VCMPacket & packet,VCMFrameBuffer ** frame)544 VCMFrameBufferEnum VCMJitterBuffer::GetFrame(const VCMPacket& packet,
545 VCMFrameBuffer** frame) {
546 // Does this packet belong to an old frame?
547 if (last_decoded_state_.IsOldPacket(&packet)) {
548 // Account only for media packets.
549 if (packet.sizeBytes > 0) {
550 num_discarded_packets_++;
551 num_consecutive_old_packets_++;
552 }
553 // Update last decoded sequence number if the packet arrived late and
554 // belongs to a frame with a timestamp equal to the last decoded
555 // timestamp.
556 last_decoded_state_.UpdateOldPacket(&packet);
557 DropPacketsFromNackList(last_decoded_state_.sequence_num());
558
559 if (num_consecutive_old_packets_ > kMaxConsecutiveOldPackets) {
560 LOG(LS_WARNING) << num_consecutive_old_packets_ << " consecutive old "
561 "packets received. Flushing the jitter buffer.";
562 Flush();
563 return kFlushIndicator;
564 }
565 return kOldPacket;
566 }
567 num_consecutive_old_packets_ = 0;
568
569 *frame = incomplete_frames_.FindFrame(packet.timestamp);
570 if (*frame)
571 return kNoError;
572 *frame = decodable_frames_.FindFrame(packet.timestamp);
573 if (*frame)
574 return kNoError;
575
576 // No match, return empty frame.
577 *frame = GetEmptyFrame();
578 VCMFrameBufferEnum ret = kNoError;
579 if (!*frame) {
580 // No free frame! Try to reclaim some...
581 LOG(LS_WARNING) << "Unable to get empty frame; Recycling.";
582 bool found_key_frame = RecycleFramesUntilKeyFrame();
583 *frame = GetEmptyFrame();
584 assert(*frame);
585 if (!found_key_frame) {
586 ret = kFlushIndicator;
587 }
588 }
589 (*frame)->Reset();
590 return ret;
591 }
592
LastPacketTime(const VCMEncodedFrame * frame,bool * retransmitted) const593 int64_t VCMJitterBuffer::LastPacketTime(const VCMEncodedFrame* frame,
594 bool* retransmitted) const {
595 assert(retransmitted);
596 CriticalSectionScoped cs(crit_sect_);
597 const VCMFrameBuffer* frame_buffer =
598 static_cast<const VCMFrameBuffer*>(frame);
599 *retransmitted = (frame_buffer->GetNackCount() > 0);
600 return frame_buffer->LatestPacketTimeMs();
601 }
602
InsertPacket(const VCMPacket & packet,bool * retransmitted)603 VCMFrameBufferEnum VCMJitterBuffer::InsertPacket(const VCMPacket& packet,
604 bool* retransmitted) {
605 CriticalSectionScoped cs(crit_sect_);
606
607 VCMFrameBuffer* frame = NULL;
608 const VCMFrameBufferEnum error = GetFrame(packet, &frame);
609 if (error != kNoError && frame == NULL) {
610 return error;
611 }
612 int64_t now_ms = clock_->TimeInMilliseconds();
613 // We are keeping track of the first and latest seq numbers, and
614 // the number of wraps to be able to calculate how many packets we expect.
615 if (first_packet_since_reset_) {
616 // Now it's time to start estimating jitter
617 // reset the delay estimate.
618 inter_frame_delay_.Reset(now_ms);
619 }
620 if (last_decoded_state_.IsOldPacket(&packet)) {
621 // This packet belongs to an old, already decoded frame, we want to update
622 // the last decoded sequence number.
623 last_decoded_state_.UpdateOldPacket(&packet);
624 drop_count_++;
625 // Flush if this happens consistently.
626 num_consecutive_old_frames_++;
627 if (num_consecutive_old_frames_ > kMaxConsecutiveOldFrames) {
628 LOG(LS_WARNING) << num_consecutive_old_packets_ << " consecutive old "
629 "frames received. Flushing the jitter buffer.";
630 Flush();
631 return kFlushIndicator;
632 }
633 return kNoError;
634 }
635
636 num_consecutive_old_frames_ = 0;
637
638 // Empty packets may bias the jitter estimate (lacking size component),
639 // therefore don't let empty packet trigger the following updates:
640 if (packet.frameType != kFrameEmpty) {
641 if (waiting_for_completion_.timestamp == packet.timestamp) {
642 // This can get bad if we have a lot of duplicate packets,
643 // we will then count some packet multiple times.
644 waiting_for_completion_.frame_size += packet.sizeBytes;
645 waiting_for_completion_.latest_packet_time = now_ms;
646 } else if (waiting_for_completion_.latest_packet_time >= 0 &&
647 waiting_for_completion_.latest_packet_time + 2000 <= now_ms) {
648 // A packet should never be more than two seconds late
649 UpdateJitterEstimate(waiting_for_completion_, true);
650 waiting_for_completion_.latest_packet_time = -1;
651 waiting_for_completion_.frame_size = 0;
652 waiting_for_completion_.timestamp = 0;
653 }
654 }
655
656 VCMFrameBufferStateEnum previous_state = frame->GetState();
657 // Insert packet.
658 // Check for first packet. High sequence number will be -1 if neither an empty
659 // packet nor a media packet has been inserted.
660 bool first = (frame->GetHighSeqNum() == -1);
661 FrameData frame_data;
662 frame_data.rtt_ms = rtt_ms_;
663 frame_data.rolling_average_packets_per_frame = average_packets_per_frame_;
664 VCMFrameBufferEnum buffer_return = frame->InsertPacket(packet,
665 now_ms,
666 decode_error_mode_,
667 frame_data);
668 if (!frame->GetCountedFrame()) {
669 TRACE_EVENT_ASYNC_BEGIN1("webrtc", "Video", frame->TimeStamp(),
670 "timestamp", frame->TimeStamp());
671 }
672
673 if (buffer_return > 0) {
674 incoming_bit_count_ += packet.sizeBytes << 3;
675 if (first_packet_since_reset_) {
676 latest_received_sequence_number_ = packet.seqNum;
677 first_packet_since_reset_ = false;
678 } else {
679 if (IsPacketRetransmitted(packet)) {
680 frame->IncrementNackCount();
681 }
682 if (!UpdateNackList(packet.seqNum) &&
683 packet.frameType != kVideoFrameKey) {
684 buffer_return = kFlushIndicator;
685 }
686 latest_received_sequence_number_ = LatestSequenceNumber(
687 latest_received_sequence_number_, packet.seqNum);
688 }
689 }
690
691 // Is the frame already in the decodable list?
692 bool update_decodable_list = (previous_state != kStateDecodable &&
693 previous_state != kStateComplete);
694 bool continuous = IsContinuous(*frame);
695 switch (buffer_return) {
696 case kGeneralError:
697 case kTimeStampError:
698 case kSizeError: {
699 // This frame will be cleaned up later from the frame list.
700 frame->Reset();
701 break;
702 }
703 case kCompleteSession: {
704 if (update_decodable_list) {
705 CountFrame(*frame);
706 frame->SetCountedFrame(true);
707 if (continuous) {
708 // Signal that we have a complete session.
709 frame_event_->Set();
710 }
711 }
712 }
713 // Note: There is no break here - continuing to kDecodableSession.
714 case kDecodableSession: {
715 *retransmitted = (frame->GetNackCount() > 0);
716 // Signal that we have a received packet.
717 packet_event_->Set();
718 if (!update_decodable_list) {
719 break;
720 }
721 if (continuous) {
722 if (!first) {
723 incomplete_frames_.PopFrame(packet.timestamp);
724 }
725 decodable_frames_.InsertFrame(frame);
726 FindAndInsertContinuousFrames(*frame);
727 } else if (first) {
728 incomplete_frames_.InsertFrame(frame);
729 }
730 break;
731 }
732 case kIncomplete: {
733 // No point in storing empty continuous frames.
734 if (frame->GetState() == kStateEmpty &&
735 last_decoded_state_.UpdateEmptyFrame(frame)) {
736 free_frames_.push_back(frame);
737 frame->Reset();
738 frame = NULL;
739 return kNoError;
740 } else if (first) {
741 incomplete_frames_.InsertFrame(frame);
742 }
743 // Signal that we have received a packet.
744 packet_event_->Set();
745 break;
746 }
747 case kNoError:
748 case kOutOfBoundsPacket:
749 case kDuplicatePacket: {
750 break;
751 }
752 case kFlushIndicator:
753 return kFlushIndicator;
754 default: {
755 assert(false && "JitterBuffer::InsertPacket: Undefined value");
756 }
757 }
758 return buffer_return;
759 }
760
IsContinuousInState(const VCMFrameBuffer & frame,const VCMDecodingState & decoding_state) const761 bool VCMJitterBuffer::IsContinuousInState(const VCMFrameBuffer& frame,
762 const VCMDecodingState& decoding_state) const {
763 if (decode_error_mode_ == kWithErrors)
764 return true;
765 // Is this frame (complete or decodable) and continuous?
766 // kStateDecodable will never be set when decode_error_mode_ is false
767 // as SessionInfo determines this state based on the error mode (and frame
768 // completeness).
769 if ((frame.GetState() == kStateComplete ||
770 frame.GetState() == kStateDecodable) &&
771 decoding_state.ContinuousFrame(&frame)) {
772 return true;
773 } else {
774 return false;
775 }
776 }
777
IsContinuous(const VCMFrameBuffer & frame) const778 bool VCMJitterBuffer::IsContinuous(const VCMFrameBuffer& frame) const {
779 if (IsContinuousInState(frame, last_decoded_state_)) {
780 return true;
781 }
782 VCMDecodingState decoding_state;
783 decoding_state.CopyFrom(last_decoded_state_);
784 for (FrameList::const_iterator it = decodable_frames_.begin();
785 it != decodable_frames_.end(); ++it) {
786 VCMFrameBuffer* decodable_frame = it->second;
787 if (IsNewerTimestamp(decodable_frame->TimeStamp(), frame.TimeStamp())) {
788 break;
789 }
790 decoding_state.SetState(decodable_frame);
791 if (IsContinuousInState(frame, decoding_state)) {
792 return true;
793 }
794 }
795 return false;
796 }
797
FindAndInsertContinuousFrames(const VCMFrameBuffer & new_frame)798 void VCMJitterBuffer::FindAndInsertContinuousFrames(
799 const VCMFrameBuffer& new_frame) {
800 VCMDecodingState decoding_state;
801 decoding_state.CopyFrom(last_decoded_state_);
802 decoding_state.SetState(&new_frame);
803 // When temporal layers are available, we search for a complete or decodable
804 // frame until we hit one of the following:
805 // 1. Continuous base or sync layer.
806 // 2. The end of the list was reached.
807 for (FrameList::iterator it = incomplete_frames_.begin();
808 it != incomplete_frames_.end();) {
809 VCMFrameBuffer* frame = it->second;
810 if (IsNewerTimestamp(new_frame.TimeStamp(), frame->TimeStamp())) {
811 ++it;
812 continue;
813 }
814 if (IsContinuousInState(*frame, decoding_state)) {
815 decodable_frames_.InsertFrame(frame);
816 incomplete_frames_.erase(it++);
817 decoding_state.SetState(frame);
818 } else if (frame->TemporalId() <= 0) {
819 break;
820 } else {
821 ++it;
822 }
823 }
824 }
825
EstimatedJitterMs()826 uint32_t VCMJitterBuffer::EstimatedJitterMs() {
827 CriticalSectionScoped cs(crit_sect_);
828 // Compute RTT multiplier for estimation.
829 // low_rtt_nackThresholdMs_ == -1 means no FEC.
830 double rtt_mult = 1.0f;
831 if (low_rtt_nack_threshold_ms_ >= 0 &&
832 static_cast<int>(rtt_ms_) >= low_rtt_nack_threshold_ms_) {
833 // For RTTs above low_rtt_nack_threshold_ms_ we don't apply extra delay
834 // when waiting for retransmissions.
835 rtt_mult = 0.0f;
836 }
837 return jitter_estimate_.GetJitterEstimate(rtt_mult);
838 }
839
UpdateRtt(uint32_t rtt_ms)840 void VCMJitterBuffer::UpdateRtt(uint32_t rtt_ms) {
841 CriticalSectionScoped cs(crit_sect_);
842 rtt_ms_ = rtt_ms;
843 jitter_estimate_.UpdateRtt(rtt_ms);
844 }
845
SetNackMode(VCMNackMode mode,int low_rtt_nack_threshold_ms,int high_rtt_nack_threshold_ms)846 void VCMJitterBuffer::SetNackMode(VCMNackMode mode,
847 int low_rtt_nack_threshold_ms,
848 int high_rtt_nack_threshold_ms) {
849 CriticalSectionScoped cs(crit_sect_);
850 nack_mode_ = mode;
851 if (mode == kNoNack) {
852 missing_sequence_numbers_.clear();
853 }
854 assert(low_rtt_nack_threshold_ms >= -1 && high_rtt_nack_threshold_ms >= -1);
855 assert(high_rtt_nack_threshold_ms == -1 ||
856 low_rtt_nack_threshold_ms <= high_rtt_nack_threshold_ms);
857 assert(low_rtt_nack_threshold_ms > -1 || high_rtt_nack_threshold_ms == -1);
858 low_rtt_nack_threshold_ms_ = low_rtt_nack_threshold_ms;
859 high_rtt_nack_threshold_ms_ = high_rtt_nack_threshold_ms;
860 // Don't set a high start rtt if high_rtt_nack_threshold_ms_ is used, to not
861 // disable NACK in hybrid mode.
862 if (rtt_ms_ == kDefaultRtt && high_rtt_nack_threshold_ms_ != -1) {
863 rtt_ms_ = 0;
864 }
865 if (!WaitForRetransmissions()) {
866 jitter_estimate_.ResetNackCount();
867 }
868 }
869
SetNackSettings(size_t max_nack_list_size,int max_packet_age_to_nack,int max_incomplete_time_ms)870 void VCMJitterBuffer::SetNackSettings(size_t max_nack_list_size,
871 int max_packet_age_to_nack,
872 int max_incomplete_time_ms) {
873 CriticalSectionScoped cs(crit_sect_);
874 assert(max_packet_age_to_nack >= 0);
875 assert(max_incomplete_time_ms_ >= 0);
876 max_nack_list_size_ = max_nack_list_size;
877 max_packet_age_to_nack_ = max_packet_age_to_nack;
878 max_incomplete_time_ms_ = max_incomplete_time_ms;
879 nack_seq_nums_.resize(max_nack_list_size_);
880 }
881
nack_mode() const882 VCMNackMode VCMJitterBuffer::nack_mode() const {
883 CriticalSectionScoped cs(crit_sect_);
884 return nack_mode_;
885 }
886
NonContinuousOrIncompleteDuration()887 int VCMJitterBuffer::NonContinuousOrIncompleteDuration() {
888 if (incomplete_frames_.empty()) {
889 return 0;
890 }
891 uint32_t start_timestamp = incomplete_frames_.Front()->TimeStamp();
892 if (!decodable_frames_.empty()) {
893 start_timestamp = decodable_frames_.Back()->TimeStamp();
894 }
895 return incomplete_frames_.Back()->TimeStamp() - start_timestamp;
896 }
897
EstimatedLowSequenceNumber(const VCMFrameBuffer & frame) const898 uint16_t VCMJitterBuffer::EstimatedLowSequenceNumber(
899 const VCMFrameBuffer& frame) const {
900 assert(frame.GetLowSeqNum() >= 0);
901 if (frame.HaveFirstPacket())
902 return frame.GetLowSeqNum();
903
904 // This estimate is not accurate if more than one packet with lower sequence
905 // number is lost.
906 return frame.GetLowSeqNum() - 1;
907 }
908
GetNackList(uint16_t * nack_list_size,bool * request_key_frame)909 uint16_t* VCMJitterBuffer::GetNackList(uint16_t* nack_list_size,
910 bool* request_key_frame) {
911 CriticalSectionScoped cs(crit_sect_);
912 *request_key_frame = false;
913 if (nack_mode_ == kNoNack) {
914 *nack_list_size = 0;
915 return NULL;
916 }
917 if (last_decoded_state_.in_initial_state()) {
918 VCMFrameBuffer* next_frame = NextFrame();
919 const bool first_frame_is_key = next_frame &&
920 next_frame->FrameType() == kVideoFrameKey &&
921 next_frame->HaveFirstPacket();
922 if (!first_frame_is_key) {
923 bool have_non_empty_frame = decodable_frames_.end() != find_if(
924 decodable_frames_.begin(), decodable_frames_.end(),
925 HasNonEmptyState);
926 if (!have_non_empty_frame) {
927 have_non_empty_frame = incomplete_frames_.end() != find_if(
928 incomplete_frames_.begin(), incomplete_frames_.end(),
929 HasNonEmptyState);
930 }
931 bool found_key_frame = RecycleFramesUntilKeyFrame();
932 if (!found_key_frame) {
933 *request_key_frame = have_non_empty_frame;
934 *nack_list_size = 0;
935 return NULL;
936 }
937 }
938 }
939 if (TooLargeNackList()) {
940 *request_key_frame = !HandleTooLargeNackList();
941 }
942 if (max_incomplete_time_ms_ > 0) {
943 int non_continuous_incomplete_duration =
944 NonContinuousOrIncompleteDuration();
945 if (non_continuous_incomplete_duration > 90 * max_incomplete_time_ms_) {
946 LOG_F(LS_WARNING) << "Too long non-decodable duration: "
947 << non_continuous_incomplete_duration << " > "
948 << 90 * max_incomplete_time_ms_;
949 FrameList::reverse_iterator rit = find_if(incomplete_frames_.rbegin(),
950 incomplete_frames_.rend(), IsKeyFrame);
951 if (rit == incomplete_frames_.rend()) {
952 // Request a key frame if we don't have one already.
953 *request_key_frame = true;
954 *nack_list_size = 0;
955 return NULL;
956 } else {
957 // Skip to the last key frame. If it's incomplete we will start
958 // NACKing it.
959 // Note that the estimated low sequence number is correct for VP8
960 // streams because only the first packet of a key frame is marked.
961 last_decoded_state_.Reset();
962 DropPacketsFromNackList(EstimatedLowSequenceNumber(*rit->second));
963 }
964 }
965 }
966 unsigned int i = 0;
967 SequenceNumberSet::iterator it = missing_sequence_numbers_.begin();
968 for (; it != missing_sequence_numbers_.end(); ++it, ++i) {
969 nack_seq_nums_[i] = *it;
970 }
971 *nack_list_size = i;
972 return &nack_seq_nums_[0];
973 }
974
SetDecodeErrorMode(VCMDecodeErrorMode error_mode)975 void VCMJitterBuffer::SetDecodeErrorMode(VCMDecodeErrorMode error_mode) {
976 CriticalSectionScoped cs(crit_sect_);
977 decode_error_mode_ = error_mode;
978 }
979
NextFrame() const980 VCMFrameBuffer* VCMJitterBuffer::NextFrame() const {
981 if (!decodable_frames_.empty())
982 return decodable_frames_.Front();
983 if (!incomplete_frames_.empty())
984 return incomplete_frames_.Front();
985 return NULL;
986 }
987
UpdateNackList(uint16_t sequence_number)988 bool VCMJitterBuffer::UpdateNackList(uint16_t sequence_number) {
989 if (nack_mode_ == kNoNack) {
990 return true;
991 }
992 // Make sure we don't add packets which are already too old to be decoded.
993 if (!last_decoded_state_.in_initial_state()) {
994 latest_received_sequence_number_ = LatestSequenceNumber(
995 latest_received_sequence_number_,
996 last_decoded_state_.sequence_num());
997 }
998 if (IsNewerSequenceNumber(sequence_number,
999 latest_received_sequence_number_)) {
1000 // Push any missing sequence numbers to the NACK list.
1001 for (uint16_t i = latest_received_sequence_number_ + 1;
1002 IsNewerSequenceNumber(sequence_number, i); ++i) {
1003 missing_sequence_numbers_.insert(missing_sequence_numbers_.end(), i);
1004 TRACE_EVENT_INSTANT1("webrtc", "AddNack", "seqnum", i);
1005 }
1006 if (TooLargeNackList() && !HandleTooLargeNackList()) {
1007 LOG(LS_WARNING) << "Requesting key frame due to too large NACK list.";
1008 return false;
1009 }
1010 if (MissingTooOldPacket(sequence_number) &&
1011 !HandleTooOldPackets(sequence_number)) {
1012 LOG(LS_WARNING) << "Requesting key frame due to missing too old packets";
1013 return false;
1014 }
1015 } else {
1016 missing_sequence_numbers_.erase(sequence_number);
1017 TRACE_EVENT_INSTANT1("webrtc", "RemoveNack", "seqnum", sequence_number);
1018 }
1019 return true;
1020 }
1021
TooLargeNackList() const1022 bool VCMJitterBuffer::TooLargeNackList() const {
1023 return missing_sequence_numbers_.size() > max_nack_list_size_;
1024 }
1025
HandleTooLargeNackList()1026 bool VCMJitterBuffer::HandleTooLargeNackList() {
1027 // Recycle frames until the NACK list is small enough. It is likely cheaper to
1028 // request a key frame than to retransmit this many missing packets.
1029 LOG_F(LS_WARNING) << "NACK list has grown too large: "
1030 << missing_sequence_numbers_.size() << " > "
1031 << max_nack_list_size_;
1032 bool key_frame_found = false;
1033 while (TooLargeNackList()) {
1034 key_frame_found = RecycleFramesUntilKeyFrame();
1035 }
1036 return key_frame_found;
1037 }
1038
MissingTooOldPacket(uint16_t latest_sequence_number) const1039 bool VCMJitterBuffer::MissingTooOldPacket(
1040 uint16_t latest_sequence_number) const {
1041 if (missing_sequence_numbers_.empty()) {
1042 return false;
1043 }
1044 const uint16_t age_of_oldest_missing_packet = latest_sequence_number -
1045 *missing_sequence_numbers_.begin();
1046 // Recycle frames if the NACK list contains too old sequence numbers as
1047 // the packets may have already been dropped by the sender.
1048 return age_of_oldest_missing_packet > max_packet_age_to_nack_;
1049 }
1050
HandleTooOldPackets(uint16_t latest_sequence_number)1051 bool VCMJitterBuffer::HandleTooOldPackets(uint16_t latest_sequence_number) {
1052 bool key_frame_found = false;
1053 const uint16_t age_of_oldest_missing_packet = latest_sequence_number -
1054 *missing_sequence_numbers_.begin();
1055 LOG_F(LS_WARNING) << "NACK list contains too old sequence numbers: "
1056 << age_of_oldest_missing_packet << " > "
1057 << max_packet_age_to_nack_;
1058 while (MissingTooOldPacket(latest_sequence_number)) {
1059 key_frame_found = RecycleFramesUntilKeyFrame();
1060 }
1061 return key_frame_found;
1062 }
1063
DropPacketsFromNackList(uint16_t last_decoded_sequence_number)1064 void VCMJitterBuffer::DropPacketsFromNackList(
1065 uint16_t last_decoded_sequence_number) {
1066 // Erase all sequence numbers from the NACK list which we won't need any
1067 // longer.
1068 missing_sequence_numbers_.erase(missing_sequence_numbers_.begin(),
1069 missing_sequence_numbers_.upper_bound(
1070 last_decoded_sequence_number));
1071 }
1072
LastDecodedTimestamp() const1073 int64_t VCMJitterBuffer::LastDecodedTimestamp() const {
1074 CriticalSectionScoped cs(crit_sect_);
1075 return last_decoded_state_.time_stamp();
1076 }
1077
RenderBufferSize(uint32_t * timestamp_start,uint32_t * timestamp_end)1078 void VCMJitterBuffer::RenderBufferSize(uint32_t* timestamp_start,
1079 uint32_t* timestamp_end) {
1080 CriticalSectionScoped cs(crit_sect_);
1081 CleanUpOldOrEmptyFrames();
1082 *timestamp_start = 0;
1083 *timestamp_end = 0;
1084 if (decodable_frames_.empty()) {
1085 return;
1086 }
1087 *timestamp_start = decodable_frames_.Front()->TimeStamp();
1088 *timestamp_end = decodable_frames_.Back()->TimeStamp();
1089 }
1090
GetEmptyFrame()1091 VCMFrameBuffer* VCMJitterBuffer::GetEmptyFrame() {
1092 if (free_frames_.empty()) {
1093 if (!TryToIncreaseJitterBufferSize()) {
1094 return NULL;
1095 }
1096 }
1097 VCMFrameBuffer* frame = free_frames_.front();
1098 free_frames_.pop_front();
1099 return frame;
1100 }
1101
TryToIncreaseJitterBufferSize()1102 bool VCMJitterBuffer::TryToIncreaseJitterBufferSize() {
1103 if (max_number_of_frames_ >= kMaxNumberOfFrames)
1104 return false;
1105 VCMFrameBuffer* new_frame = new VCMFrameBuffer();
1106 frame_buffers_[max_number_of_frames_] = new_frame;
1107 free_frames_.push_back(new_frame);
1108 ++max_number_of_frames_;
1109 TRACE_COUNTER1("webrtc", "JBMaxFrames", max_number_of_frames_);
1110 return true;
1111 }
1112
1113 // Recycle oldest frames up to a key frame, used if jitter buffer is completely
1114 // full.
RecycleFramesUntilKeyFrame()1115 bool VCMJitterBuffer::RecycleFramesUntilKeyFrame() {
1116 // First release incomplete frames, and only release decodable frames if there
1117 // are no incomplete ones.
1118 FrameList::iterator key_frame_it;
1119 bool key_frame_found = false;
1120 int dropped_frames = 0;
1121 dropped_frames += incomplete_frames_.RecycleFramesUntilKeyFrame(
1122 &key_frame_it, &free_frames_);
1123 key_frame_found = key_frame_it != incomplete_frames_.end();
1124 if (dropped_frames == 0) {
1125 dropped_frames += decodable_frames_.RecycleFramesUntilKeyFrame(
1126 &key_frame_it, &free_frames_);
1127 key_frame_found = key_frame_it != decodable_frames_.end();
1128 }
1129 drop_count_ += dropped_frames;
1130 TRACE_EVENT_INSTANT0("webrtc", "JB::RecycleFramesUntilKeyFrame");
1131 if (key_frame_found) {
1132 LOG(LS_INFO) << "Found key frame while dropping frames.";
1133 // Reset last decoded state to make sure the next frame decoded is a key
1134 // frame, and start NACKing from here.
1135 last_decoded_state_.Reset();
1136 DropPacketsFromNackList(EstimatedLowSequenceNumber(*key_frame_it->second));
1137 } else if (decodable_frames_.empty()) {
1138 // All frames dropped. Reset the decoding state and clear missing sequence
1139 // numbers as we're starting fresh.
1140 last_decoded_state_.Reset();
1141 missing_sequence_numbers_.clear();
1142 }
1143 return key_frame_found;
1144 }
1145
1146 // Must be called under the critical section |crit_sect_|.
CountFrame(const VCMFrameBuffer & frame)1147 void VCMJitterBuffer::CountFrame(const VCMFrameBuffer& frame) {
1148 if (!frame.GetCountedFrame()) {
1149 // Ignore ACK frames.
1150 incoming_frame_count_++;
1151 }
1152
1153 if (frame.FrameType() == kVideoFrameKey) {
1154 TRACE_EVENT_ASYNC_STEP0("webrtc", "Video",
1155 frame.TimeStamp(), "KeyComplete");
1156 } else {
1157 TRACE_EVENT_ASYNC_STEP0("webrtc", "Video",
1158 frame.TimeStamp(), "DeltaComplete");
1159 }
1160
1161 // Update receive statistics. We count all layers, thus when you use layers
1162 // adding all key and delta frames might differ from frame count.
1163 if (frame.IsSessionComplete()) {
1164 ++receive_statistics_[frame.FrameType()];
1165 }
1166 }
1167
UpdateAveragePacketsPerFrame(int current_number_packets)1168 void VCMJitterBuffer::UpdateAveragePacketsPerFrame(int current_number_packets) {
1169 if (frame_counter_ > kFastConvergeThreshold) {
1170 average_packets_per_frame_ = average_packets_per_frame_
1171 * (1 - kNormalConvergeMultiplier)
1172 + current_number_packets * kNormalConvergeMultiplier;
1173 } else if (frame_counter_ > 0) {
1174 average_packets_per_frame_ = average_packets_per_frame_
1175 * (1 - kFastConvergeMultiplier)
1176 + current_number_packets * kFastConvergeMultiplier;
1177 frame_counter_++;
1178 } else {
1179 average_packets_per_frame_ = current_number_packets;
1180 frame_counter_++;
1181 }
1182 }
1183
1184 // Must be called under the critical section |crit_sect_|.
CleanUpOldOrEmptyFrames()1185 void VCMJitterBuffer::CleanUpOldOrEmptyFrames() {
1186 drop_count_ +=
1187 decodable_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_,
1188 &free_frames_);
1189 drop_count_ +=
1190 incomplete_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_,
1191 &free_frames_);
1192 if (!last_decoded_state_.in_initial_state()) {
1193 DropPacketsFromNackList(last_decoded_state_.sequence_num());
1194 }
1195 }
1196
1197 // Must be called from within |crit_sect_|.
IsPacketRetransmitted(const VCMPacket & packet) const1198 bool VCMJitterBuffer::IsPacketRetransmitted(const VCMPacket& packet) const {
1199 return missing_sequence_numbers_.find(packet.seqNum) !=
1200 missing_sequence_numbers_.end();
1201 }
1202
1203 // Must be called under the critical section |crit_sect_|. Should never be
1204 // called with retransmitted frames, they must be filtered out before this
1205 // function is called.
UpdateJitterEstimate(const VCMJitterSample & sample,bool incomplete_frame)1206 void VCMJitterBuffer::UpdateJitterEstimate(const VCMJitterSample& sample,
1207 bool incomplete_frame) {
1208 if (sample.latest_packet_time == -1) {
1209 return;
1210 }
1211 UpdateJitterEstimate(sample.latest_packet_time, sample.timestamp,
1212 sample.frame_size, incomplete_frame);
1213 }
1214
1215 // Must be called under the critical section crit_sect_. Should never be
1216 // called with retransmitted frames, they must be filtered out before this
1217 // function is called.
UpdateJitterEstimate(const VCMFrameBuffer & frame,bool incomplete_frame)1218 void VCMJitterBuffer::UpdateJitterEstimate(const VCMFrameBuffer& frame,
1219 bool incomplete_frame) {
1220 if (frame.LatestPacketTimeMs() == -1) {
1221 return;
1222 }
1223 // No retransmitted frames should be a part of the jitter
1224 // estimate.
1225 UpdateJitterEstimate(frame.LatestPacketTimeMs(), frame.TimeStamp(),
1226 frame.Length(), incomplete_frame);
1227 }
1228
1229 // Must be called under the critical section |crit_sect_|. Should never be
1230 // called with retransmitted frames, they must be filtered out before this
1231 // function is called.
UpdateJitterEstimate(int64_t latest_packet_time_ms,uint32_t timestamp,unsigned int frame_size,bool incomplete_frame)1232 void VCMJitterBuffer::UpdateJitterEstimate(
1233 int64_t latest_packet_time_ms,
1234 uint32_t timestamp,
1235 unsigned int frame_size,
1236 bool incomplete_frame) {
1237 if (latest_packet_time_ms == -1) {
1238 return;
1239 }
1240 int64_t frame_delay;
1241 bool not_reordered = inter_frame_delay_.CalculateDelay(timestamp,
1242 &frame_delay,
1243 latest_packet_time_ms);
1244 // Filter out frames which have been reordered in time by the network
1245 if (not_reordered) {
1246 // Update the jitter estimate with the new samples
1247 jitter_estimate_.UpdateEstimate(frame_delay, frame_size, incomplete_frame);
1248 }
1249 }
1250
WaitForRetransmissions()1251 bool VCMJitterBuffer::WaitForRetransmissions() {
1252 if (nack_mode_ == kNoNack) {
1253 // NACK disabled -> don't wait for retransmissions.
1254 return false;
1255 }
1256 // Evaluate if the RTT is higher than |high_rtt_nack_threshold_ms_|, and in
1257 // that case we don't wait for retransmissions.
1258 if (high_rtt_nack_threshold_ms_ >= 0 &&
1259 rtt_ms_ >= static_cast<unsigned int>(high_rtt_nack_threshold_ms_)) {
1260 return false;
1261 }
1262 return true;
1263 }
1264 } // namespace webrtc
1265