1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/ConstantRange.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/NoFolder.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/PatternMatch.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include <algorithm>
47 #include <map>
48 #include <set>
49 using namespace llvm;
50 using namespace PatternMatch;
51
52 #define DEBUG_TYPE "simplifycfg"
53
54 static cl::opt<unsigned>
55 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
56 cl::desc("Control the amount of phi node folding to perform (default = 1)"));
57
58 static cl::opt<bool>
59 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
60 cl::desc("Duplicate return instructions into unconditional branches"));
61
62 static cl::opt<bool>
63 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
64 cl::desc("Sink common instructions down to the end block"));
65
66 static cl::opt<bool> HoistCondStores(
67 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
68 cl::desc("Hoist conditional stores if an unconditional store precedes"));
69
70 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
71 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
72 STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)");
73 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block");
74 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
75
76 namespace {
77 /// ValueEqualityComparisonCase - Represents a case of a switch.
78 struct ValueEqualityComparisonCase {
79 ConstantInt *Value;
80 BasicBlock *Dest;
81
ValueEqualityComparisonCase__anonf185e3840111::ValueEqualityComparisonCase82 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
83 : Value(Value), Dest(Dest) {}
84
operator <__anonf185e3840111::ValueEqualityComparisonCase85 bool operator<(ValueEqualityComparisonCase RHS) const {
86 // Comparing pointers is ok as we only rely on the order for uniquing.
87 return Value < RHS.Value;
88 }
89
operator ==__anonf185e3840111::ValueEqualityComparisonCase90 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
91 };
92
93 class SimplifyCFGOpt {
94 const TargetTransformInfo &TTI;
95 const DataLayout *const DL;
96 Value *isValueEqualityComparison(TerminatorInst *TI);
97 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
98 std::vector<ValueEqualityComparisonCase> &Cases);
99 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
100 BasicBlock *Pred,
101 IRBuilder<> &Builder);
102 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
103 IRBuilder<> &Builder);
104
105 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
106 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
107 bool SimplifyUnreachable(UnreachableInst *UI);
108 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
109 bool SimplifyIndirectBr(IndirectBrInst *IBI);
110 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
111 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
112
113 public:
SimplifyCFGOpt(const TargetTransformInfo & TTI,const DataLayout * DL)114 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout *DL)
115 : TTI(TTI), DL(DL) {}
116 bool run(BasicBlock *BB);
117 };
118 }
119
120 /// SafeToMergeTerminators - Return true if it is safe to merge these two
121 /// terminator instructions together.
122 ///
SafeToMergeTerminators(TerminatorInst * SI1,TerminatorInst * SI2)123 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
124 if (SI1 == SI2) return false; // Can't merge with self!
125
126 // It is not safe to merge these two switch instructions if they have a common
127 // successor, and if that successor has a PHI node, and if *that* PHI node has
128 // conflicting incoming values from the two switch blocks.
129 BasicBlock *SI1BB = SI1->getParent();
130 BasicBlock *SI2BB = SI2->getParent();
131 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
132
133 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
134 if (SI1Succs.count(*I))
135 for (BasicBlock::iterator BBI = (*I)->begin();
136 isa<PHINode>(BBI); ++BBI) {
137 PHINode *PN = cast<PHINode>(BBI);
138 if (PN->getIncomingValueForBlock(SI1BB) !=
139 PN->getIncomingValueForBlock(SI2BB))
140 return false;
141 }
142
143 return true;
144 }
145
146 /// isProfitableToFoldUnconditional - Return true if it is safe and profitable
147 /// to merge these two terminator instructions together, where SI1 is an
148 /// unconditional branch. PhiNodes will store all PHI nodes in common
149 /// successors.
150 ///
isProfitableToFoldUnconditional(BranchInst * SI1,BranchInst * SI2,Instruction * Cond,SmallVectorImpl<PHINode * > & PhiNodes)151 static bool isProfitableToFoldUnconditional(BranchInst *SI1,
152 BranchInst *SI2,
153 Instruction *Cond,
154 SmallVectorImpl<PHINode*> &PhiNodes) {
155 if (SI1 == SI2) return false; // Can't merge with self!
156 assert(SI1->isUnconditional() && SI2->isConditional());
157
158 // We fold the unconditional branch if we can easily update all PHI nodes in
159 // common successors:
160 // 1> We have a constant incoming value for the conditional branch;
161 // 2> We have "Cond" as the incoming value for the unconditional branch;
162 // 3> SI2->getCondition() and Cond have same operands.
163 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
164 if (!Ci2) return false;
165 if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
166 Cond->getOperand(1) == Ci2->getOperand(1)) &&
167 !(Cond->getOperand(0) == Ci2->getOperand(1) &&
168 Cond->getOperand(1) == Ci2->getOperand(0)))
169 return false;
170
171 BasicBlock *SI1BB = SI1->getParent();
172 BasicBlock *SI2BB = SI2->getParent();
173 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
174 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
175 if (SI1Succs.count(*I))
176 for (BasicBlock::iterator BBI = (*I)->begin();
177 isa<PHINode>(BBI); ++BBI) {
178 PHINode *PN = cast<PHINode>(BBI);
179 if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
180 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
181 return false;
182 PhiNodes.push_back(PN);
183 }
184 return true;
185 }
186
187 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
188 /// now be entries in it from the 'NewPred' block. The values that will be
189 /// flowing into the PHI nodes will be the same as those coming in from
190 /// ExistPred, an existing predecessor of Succ.
AddPredecessorToBlock(BasicBlock * Succ,BasicBlock * NewPred,BasicBlock * ExistPred)191 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
192 BasicBlock *ExistPred) {
193 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
194
195 PHINode *PN;
196 for (BasicBlock::iterator I = Succ->begin();
197 (PN = dyn_cast<PHINode>(I)); ++I)
198 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
199 }
200
201 /// ComputeSpeculationCost - Compute an abstract "cost" of speculating the
202 /// given instruction, which is assumed to be safe to speculate. 1 means
203 /// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive.
ComputeSpeculationCost(const User * I,const DataLayout * DL)204 static unsigned ComputeSpeculationCost(const User *I, const DataLayout *DL) {
205 assert(isSafeToSpeculativelyExecute(I, DL) &&
206 "Instruction is not safe to speculatively execute!");
207 switch (Operator::getOpcode(I)) {
208 default:
209 // In doubt, be conservative.
210 return UINT_MAX;
211 case Instruction::GetElementPtr:
212 // GEPs are cheap if all indices are constant.
213 if (!cast<GEPOperator>(I)->hasAllConstantIndices())
214 return UINT_MAX;
215 return 1;
216 case Instruction::ExtractValue:
217 case Instruction::Load:
218 case Instruction::Add:
219 case Instruction::Sub:
220 case Instruction::And:
221 case Instruction::Or:
222 case Instruction::Xor:
223 case Instruction::Shl:
224 case Instruction::LShr:
225 case Instruction::AShr:
226 case Instruction::ICmp:
227 case Instruction::Trunc:
228 case Instruction::ZExt:
229 case Instruction::SExt:
230 case Instruction::BitCast:
231 case Instruction::ExtractElement:
232 case Instruction::InsertElement:
233 return 1; // These are all cheap.
234
235 case Instruction::Call:
236 case Instruction::Select:
237 return 2;
238 }
239 }
240
241 /// DominatesMergePoint - If we have a merge point of an "if condition" as
242 /// accepted above, return true if the specified value dominates the block. We
243 /// don't handle the true generality of domination here, just a special case
244 /// which works well enough for us.
245 ///
246 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
247 /// see if V (which must be an instruction) and its recursive operands
248 /// that do not dominate BB have a combined cost lower than CostRemaining and
249 /// are non-trapping. If both are true, the instruction is inserted into the
250 /// set and true is returned.
251 ///
252 /// The cost for most non-trapping instructions is defined as 1 except for
253 /// Select whose cost is 2.
254 ///
255 /// After this function returns, CostRemaining is decreased by the cost of
256 /// V plus its non-dominating operands. If that cost is greater than
257 /// CostRemaining, false is returned and CostRemaining is undefined.
DominatesMergePoint(Value * V,BasicBlock * BB,SmallPtrSet<Instruction *,4> * AggressiveInsts,unsigned & CostRemaining,const DataLayout * DL)258 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
259 SmallPtrSet<Instruction*, 4> *AggressiveInsts,
260 unsigned &CostRemaining,
261 const DataLayout *DL) {
262 Instruction *I = dyn_cast<Instruction>(V);
263 if (!I) {
264 // Non-instructions all dominate instructions, but not all constantexprs
265 // can be executed unconditionally.
266 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
267 if (C->canTrap())
268 return false;
269 return true;
270 }
271 BasicBlock *PBB = I->getParent();
272
273 // We don't want to allow weird loops that might have the "if condition" in
274 // the bottom of this block.
275 if (PBB == BB) return false;
276
277 // If this instruction is defined in a block that contains an unconditional
278 // branch to BB, then it must be in the 'conditional' part of the "if
279 // statement". If not, it definitely dominates the region.
280 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
281 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
282 return true;
283
284 // If we aren't allowing aggressive promotion anymore, then don't consider
285 // instructions in the 'if region'.
286 if (!AggressiveInsts) return false;
287
288 // If we have seen this instruction before, don't count it again.
289 if (AggressiveInsts->count(I)) return true;
290
291 // Okay, it looks like the instruction IS in the "condition". Check to
292 // see if it's a cheap instruction to unconditionally compute, and if it
293 // only uses stuff defined outside of the condition. If so, hoist it out.
294 if (!isSafeToSpeculativelyExecute(I, DL))
295 return false;
296
297 unsigned Cost = ComputeSpeculationCost(I, DL);
298
299 if (Cost > CostRemaining)
300 return false;
301
302 CostRemaining -= Cost;
303
304 // Okay, we can only really hoist these out if their operands do
305 // not take us over the cost threshold.
306 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
307 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, DL))
308 return false;
309 // Okay, it's safe to do this! Remember this instruction.
310 AggressiveInsts->insert(I);
311 return true;
312 }
313
314 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
315 /// and PointerNullValue. Return NULL if value is not a constant int.
GetConstantInt(Value * V,const DataLayout * DL)316 static ConstantInt *GetConstantInt(Value *V, const DataLayout *DL) {
317 // Normal constant int.
318 ConstantInt *CI = dyn_cast<ConstantInt>(V);
319 if (CI || !DL || !isa<Constant>(V) || !V->getType()->isPointerTy())
320 return CI;
321
322 // This is some kind of pointer constant. Turn it into a pointer-sized
323 // ConstantInt if possible.
324 IntegerType *PtrTy = cast<IntegerType>(DL->getIntPtrType(V->getType()));
325
326 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
327 if (isa<ConstantPointerNull>(V))
328 return ConstantInt::get(PtrTy, 0);
329
330 // IntToPtr const int.
331 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
332 if (CE->getOpcode() == Instruction::IntToPtr)
333 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
334 // The constant is very likely to have the right type already.
335 if (CI->getType() == PtrTy)
336 return CI;
337 else
338 return cast<ConstantInt>
339 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
340 }
341 return nullptr;
342 }
343
344 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
345 /// collection of icmp eq/ne instructions that compare a value against a
346 /// constant, return the value being compared, and stick the constant into the
347 /// Values vector.
348 static Value *
GatherConstantCompares(Value * V,std::vector<ConstantInt * > & Vals,Value * & Extra,const DataLayout * DL,bool isEQ,unsigned & UsedICmps)349 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
350 const DataLayout *DL, bool isEQ, unsigned &UsedICmps) {
351 Instruction *I = dyn_cast<Instruction>(V);
352 if (!I) return nullptr;
353
354 // If this is an icmp against a constant, handle this as one of the cases.
355 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
356 if (ConstantInt *C = GetConstantInt(I->getOperand(1), DL)) {
357 Value *RHSVal;
358 ConstantInt *RHSC;
359
360 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
361 // (x & ~2^x) == y --> x == y || x == y|2^x
362 // This undoes a transformation done by instcombine to fuse 2 compares.
363 if (match(ICI->getOperand(0),
364 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
365 APInt Not = ~RHSC->getValue();
366 if (Not.isPowerOf2()) {
367 Vals.push_back(C);
368 Vals.push_back(
369 ConstantInt::get(C->getContext(), C->getValue() | Not));
370 UsedICmps++;
371 return RHSVal;
372 }
373 }
374
375 UsedICmps++;
376 Vals.push_back(C);
377 return I->getOperand(0);
378 }
379
380 // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
381 // the set.
382 ConstantRange Span =
383 ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
384
385 // Shift the range if the compare is fed by an add. This is the range
386 // compare idiom as emitted by instcombine.
387 bool hasAdd =
388 match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)));
389 if (hasAdd)
390 Span = Span.subtract(RHSC->getValue());
391
392 // If this is an and/!= check then we want to optimize "x ugt 2" into
393 // x != 0 && x != 1.
394 if (!isEQ)
395 Span = Span.inverse();
396
397 // If there are a ton of values, we don't want to make a ginormous switch.
398 if (Span.getSetSize().ugt(8) || Span.isEmptySet())
399 return nullptr;
400
401 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
402 Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
403 UsedICmps++;
404 return hasAdd ? RHSVal : I->getOperand(0);
405 }
406 return nullptr;
407 }
408
409 // Otherwise, we can only handle an | or &, depending on isEQ.
410 if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
411 return nullptr;
412
413 unsigned NumValsBeforeLHS = Vals.size();
414 unsigned UsedICmpsBeforeLHS = UsedICmps;
415 if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, DL,
416 isEQ, UsedICmps)) {
417 unsigned NumVals = Vals.size();
418 unsigned UsedICmpsBeforeRHS = UsedICmps;
419 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, DL,
420 isEQ, UsedICmps)) {
421 if (LHS == RHS)
422 return LHS;
423 Vals.resize(NumVals);
424 UsedICmps = UsedICmpsBeforeRHS;
425 }
426
427 // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
428 // set it and return success.
429 if (Extra == nullptr || Extra == I->getOperand(1)) {
430 Extra = I->getOperand(1);
431 return LHS;
432 }
433
434 Vals.resize(NumValsBeforeLHS);
435 UsedICmps = UsedICmpsBeforeLHS;
436 return nullptr;
437 }
438
439 // If the LHS can't be folded in, but Extra is available and RHS can, try to
440 // use LHS as Extra.
441 if (Extra == nullptr || Extra == I->getOperand(0)) {
442 Value *OldExtra = Extra;
443 Extra = I->getOperand(0);
444 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, DL,
445 isEQ, UsedICmps))
446 return RHS;
447 assert(Vals.size() == NumValsBeforeLHS);
448 Extra = OldExtra;
449 }
450
451 return nullptr;
452 }
453
EraseTerminatorInstAndDCECond(TerminatorInst * TI)454 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
455 Instruction *Cond = nullptr;
456 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
457 Cond = dyn_cast<Instruction>(SI->getCondition());
458 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
459 if (BI->isConditional())
460 Cond = dyn_cast<Instruction>(BI->getCondition());
461 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
462 Cond = dyn_cast<Instruction>(IBI->getAddress());
463 }
464
465 TI->eraseFromParent();
466 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
467 }
468
469 /// isValueEqualityComparison - Return true if the specified terminator checks
470 /// to see if a value is equal to constant integer value.
isValueEqualityComparison(TerminatorInst * TI)471 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
472 Value *CV = nullptr;
473 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
474 // Do not permit merging of large switch instructions into their
475 // predecessors unless there is only one predecessor.
476 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
477 pred_end(SI->getParent())) <= 128)
478 CV = SI->getCondition();
479 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
480 if (BI->isConditional() && BI->getCondition()->hasOneUse())
481 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
482 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
483 CV = ICI->getOperand(0);
484
485 // Unwrap any lossless ptrtoint cast.
486 if (DL && CV) {
487 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
488 Value *Ptr = PTII->getPointerOperand();
489 if (PTII->getType() == DL->getIntPtrType(Ptr->getType()))
490 CV = Ptr;
491 }
492 }
493 return CV;
494 }
495
496 /// GetValueEqualityComparisonCases - Given a value comparison instruction,
497 /// decode all of the 'cases' that it represents and return the 'default' block.
498 BasicBlock *SimplifyCFGOpt::
GetValueEqualityComparisonCases(TerminatorInst * TI,std::vector<ValueEqualityComparisonCase> & Cases)499 GetValueEqualityComparisonCases(TerminatorInst *TI,
500 std::vector<ValueEqualityComparisonCase>
501 &Cases) {
502 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
503 Cases.reserve(SI->getNumCases());
504 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
505 Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
506 i.getCaseSuccessor()));
507 return SI->getDefaultDest();
508 }
509
510 BranchInst *BI = cast<BranchInst>(TI);
511 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
512 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
513 Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
514 DL),
515 Succ));
516 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
517 }
518
519
520 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
521 /// in the list that match the specified block.
EliminateBlockCases(BasicBlock * BB,std::vector<ValueEqualityComparisonCase> & Cases)522 static void EliminateBlockCases(BasicBlock *BB,
523 std::vector<ValueEqualityComparisonCase> &Cases) {
524 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
525 }
526
527 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
528 /// well.
529 static bool
ValuesOverlap(std::vector<ValueEqualityComparisonCase> & C1,std::vector<ValueEqualityComparisonCase> & C2)530 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
531 std::vector<ValueEqualityComparisonCase > &C2) {
532 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
533
534 // Make V1 be smaller than V2.
535 if (V1->size() > V2->size())
536 std::swap(V1, V2);
537
538 if (V1->size() == 0) return false;
539 if (V1->size() == 1) {
540 // Just scan V2.
541 ConstantInt *TheVal = (*V1)[0].Value;
542 for (unsigned i = 0, e = V2->size(); i != e; ++i)
543 if (TheVal == (*V2)[i].Value)
544 return true;
545 }
546
547 // Otherwise, just sort both lists and compare element by element.
548 array_pod_sort(V1->begin(), V1->end());
549 array_pod_sort(V2->begin(), V2->end());
550 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
551 while (i1 != e1 && i2 != e2) {
552 if ((*V1)[i1].Value == (*V2)[i2].Value)
553 return true;
554 if ((*V1)[i1].Value < (*V2)[i2].Value)
555 ++i1;
556 else
557 ++i2;
558 }
559 return false;
560 }
561
562 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
563 /// terminator instruction and its block is known to only have a single
564 /// predecessor block, check to see if that predecessor is also a value
565 /// comparison with the same value, and if that comparison determines the
566 /// outcome of this comparison. If so, simplify TI. This does a very limited
567 /// form of jump threading.
568 bool SimplifyCFGOpt::
SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst * TI,BasicBlock * Pred,IRBuilder<> & Builder)569 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
570 BasicBlock *Pred,
571 IRBuilder<> &Builder) {
572 Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
573 if (!PredVal) return false; // Not a value comparison in predecessor.
574
575 Value *ThisVal = isValueEqualityComparison(TI);
576 assert(ThisVal && "This isn't a value comparison!!");
577 if (ThisVal != PredVal) return false; // Different predicates.
578
579 // TODO: Preserve branch weight metadata, similarly to how
580 // FoldValueComparisonIntoPredecessors preserves it.
581
582 // Find out information about when control will move from Pred to TI's block.
583 std::vector<ValueEqualityComparisonCase> PredCases;
584 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
585 PredCases);
586 EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
587
588 // Find information about how control leaves this block.
589 std::vector<ValueEqualityComparisonCase> ThisCases;
590 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
591 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
592
593 // If TI's block is the default block from Pred's comparison, potentially
594 // simplify TI based on this knowledge.
595 if (PredDef == TI->getParent()) {
596 // If we are here, we know that the value is none of those cases listed in
597 // PredCases. If there are any cases in ThisCases that are in PredCases, we
598 // can simplify TI.
599 if (!ValuesOverlap(PredCases, ThisCases))
600 return false;
601
602 if (isa<BranchInst>(TI)) {
603 // Okay, one of the successors of this condbr is dead. Convert it to a
604 // uncond br.
605 assert(ThisCases.size() == 1 && "Branch can only have one case!");
606 // Insert the new branch.
607 Instruction *NI = Builder.CreateBr(ThisDef);
608 (void) NI;
609
610 // Remove PHI node entries for the dead edge.
611 ThisCases[0].Dest->removePredecessor(TI->getParent());
612
613 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
614 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
615
616 EraseTerminatorInstAndDCECond(TI);
617 return true;
618 }
619
620 SwitchInst *SI = cast<SwitchInst>(TI);
621 // Okay, TI has cases that are statically dead, prune them away.
622 SmallPtrSet<Constant*, 16> DeadCases;
623 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
624 DeadCases.insert(PredCases[i].Value);
625
626 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
627 << "Through successor TI: " << *TI);
628
629 // Collect branch weights into a vector.
630 SmallVector<uint32_t, 8> Weights;
631 MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
632 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
633 if (HasWeight)
634 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
635 ++MD_i) {
636 ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i));
637 assert(CI);
638 Weights.push_back(CI->getValue().getZExtValue());
639 }
640 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
641 --i;
642 if (DeadCases.count(i.getCaseValue())) {
643 if (HasWeight) {
644 std::swap(Weights[i.getCaseIndex()+1], Weights.back());
645 Weights.pop_back();
646 }
647 i.getCaseSuccessor()->removePredecessor(TI->getParent());
648 SI->removeCase(i);
649 }
650 }
651 if (HasWeight && Weights.size() >= 2)
652 SI->setMetadata(LLVMContext::MD_prof,
653 MDBuilder(SI->getParent()->getContext()).
654 createBranchWeights(Weights));
655
656 DEBUG(dbgs() << "Leaving: " << *TI << "\n");
657 return true;
658 }
659
660 // Otherwise, TI's block must correspond to some matched value. Find out
661 // which value (or set of values) this is.
662 ConstantInt *TIV = nullptr;
663 BasicBlock *TIBB = TI->getParent();
664 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
665 if (PredCases[i].Dest == TIBB) {
666 if (TIV)
667 return false; // Cannot handle multiple values coming to this block.
668 TIV = PredCases[i].Value;
669 }
670 assert(TIV && "No edge from pred to succ?");
671
672 // Okay, we found the one constant that our value can be if we get into TI's
673 // BB. Find out which successor will unconditionally be branched to.
674 BasicBlock *TheRealDest = nullptr;
675 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
676 if (ThisCases[i].Value == TIV) {
677 TheRealDest = ThisCases[i].Dest;
678 break;
679 }
680
681 // If not handled by any explicit cases, it is handled by the default case.
682 if (!TheRealDest) TheRealDest = ThisDef;
683
684 // Remove PHI node entries for dead edges.
685 BasicBlock *CheckEdge = TheRealDest;
686 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
687 if (*SI != CheckEdge)
688 (*SI)->removePredecessor(TIBB);
689 else
690 CheckEdge = nullptr;
691
692 // Insert the new branch.
693 Instruction *NI = Builder.CreateBr(TheRealDest);
694 (void) NI;
695
696 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
697 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
698
699 EraseTerminatorInstAndDCECond(TI);
700 return true;
701 }
702
703 namespace {
704 /// ConstantIntOrdering - This class implements a stable ordering of constant
705 /// integers that does not depend on their address. This is important for
706 /// applications that sort ConstantInt's to ensure uniqueness.
707 struct ConstantIntOrdering {
operator ()__anonf185e3840211::ConstantIntOrdering708 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
709 return LHS->getValue().ult(RHS->getValue());
710 }
711 };
712 }
713
ConstantIntSortPredicate(ConstantInt * const * P1,ConstantInt * const * P2)714 static int ConstantIntSortPredicate(ConstantInt *const *P1,
715 ConstantInt *const *P2) {
716 const ConstantInt *LHS = *P1;
717 const ConstantInt *RHS = *P2;
718 if (LHS->getValue().ult(RHS->getValue()))
719 return 1;
720 if (LHS->getValue() == RHS->getValue())
721 return 0;
722 return -1;
723 }
724
HasBranchWeights(const Instruction * I)725 static inline bool HasBranchWeights(const Instruction* I) {
726 MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof);
727 if (ProfMD && ProfMD->getOperand(0))
728 if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
729 return MDS->getString().equals("branch_weights");
730
731 return false;
732 }
733
734 /// Get Weights of a given TerminatorInst, the default weight is at the front
735 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
736 /// metadata.
GetBranchWeights(TerminatorInst * TI,SmallVectorImpl<uint64_t> & Weights)737 static void GetBranchWeights(TerminatorInst *TI,
738 SmallVectorImpl<uint64_t> &Weights) {
739 MDNode* MD = TI->getMetadata(LLVMContext::MD_prof);
740 assert(MD);
741 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
742 ConstantInt *CI = cast<ConstantInt>(MD->getOperand(i));
743 Weights.push_back(CI->getValue().getZExtValue());
744 }
745
746 // If TI is a conditional eq, the default case is the false case,
747 // and the corresponding branch-weight data is at index 2. We swap the
748 // default weight to be the first entry.
749 if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
750 assert(Weights.size() == 2);
751 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
752 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
753 std::swap(Weights.front(), Weights.back());
754 }
755 }
756
757 /// Keep halving the weights until all can fit in uint32_t.
FitWeights(MutableArrayRef<uint64_t> Weights)758 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
759 uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
760 if (Max > UINT_MAX) {
761 unsigned Offset = 32 - countLeadingZeros(Max);
762 for (uint64_t &I : Weights)
763 I >>= Offset;
764 }
765 }
766
767 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value
768 /// equality comparison instruction (either a switch or a branch on "X == c").
769 /// See if any of the predecessors of the terminator block are value comparisons
770 /// on the same value. If so, and if safe to do so, fold them together.
FoldValueComparisonIntoPredecessors(TerminatorInst * TI,IRBuilder<> & Builder)771 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
772 IRBuilder<> &Builder) {
773 BasicBlock *BB = TI->getParent();
774 Value *CV = isValueEqualityComparison(TI); // CondVal
775 assert(CV && "Not a comparison?");
776 bool Changed = false;
777
778 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
779 while (!Preds.empty()) {
780 BasicBlock *Pred = Preds.pop_back_val();
781
782 // See if the predecessor is a comparison with the same value.
783 TerminatorInst *PTI = Pred->getTerminator();
784 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
785
786 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
787 // Figure out which 'cases' to copy from SI to PSI.
788 std::vector<ValueEqualityComparisonCase> BBCases;
789 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
790
791 std::vector<ValueEqualityComparisonCase> PredCases;
792 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
793
794 // Based on whether the default edge from PTI goes to BB or not, fill in
795 // PredCases and PredDefault with the new switch cases we would like to
796 // build.
797 SmallVector<BasicBlock*, 8> NewSuccessors;
798
799 // Update the branch weight metadata along the way
800 SmallVector<uint64_t, 8> Weights;
801 bool PredHasWeights = HasBranchWeights(PTI);
802 bool SuccHasWeights = HasBranchWeights(TI);
803
804 if (PredHasWeights) {
805 GetBranchWeights(PTI, Weights);
806 // branch-weight metadata is inconsistent here.
807 if (Weights.size() != 1 + PredCases.size())
808 PredHasWeights = SuccHasWeights = false;
809 } else if (SuccHasWeights)
810 // If there are no predecessor weights but there are successor weights,
811 // populate Weights with 1, which will later be scaled to the sum of
812 // successor's weights
813 Weights.assign(1 + PredCases.size(), 1);
814
815 SmallVector<uint64_t, 8> SuccWeights;
816 if (SuccHasWeights) {
817 GetBranchWeights(TI, SuccWeights);
818 // branch-weight metadata is inconsistent here.
819 if (SuccWeights.size() != 1 + BBCases.size())
820 PredHasWeights = SuccHasWeights = false;
821 } else if (PredHasWeights)
822 SuccWeights.assign(1 + BBCases.size(), 1);
823
824 if (PredDefault == BB) {
825 // If this is the default destination from PTI, only the edges in TI
826 // that don't occur in PTI, or that branch to BB will be activated.
827 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
828 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
829 if (PredCases[i].Dest != BB)
830 PTIHandled.insert(PredCases[i].Value);
831 else {
832 // The default destination is BB, we don't need explicit targets.
833 std::swap(PredCases[i], PredCases.back());
834
835 if (PredHasWeights || SuccHasWeights) {
836 // Increase weight for the default case.
837 Weights[0] += Weights[i+1];
838 std::swap(Weights[i+1], Weights.back());
839 Weights.pop_back();
840 }
841
842 PredCases.pop_back();
843 --i; --e;
844 }
845
846 // Reconstruct the new switch statement we will be building.
847 if (PredDefault != BBDefault) {
848 PredDefault->removePredecessor(Pred);
849 PredDefault = BBDefault;
850 NewSuccessors.push_back(BBDefault);
851 }
852
853 unsigned CasesFromPred = Weights.size();
854 uint64_t ValidTotalSuccWeight = 0;
855 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
856 if (!PTIHandled.count(BBCases[i].Value) &&
857 BBCases[i].Dest != BBDefault) {
858 PredCases.push_back(BBCases[i]);
859 NewSuccessors.push_back(BBCases[i].Dest);
860 if (SuccHasWeights || PredHasWeights) {
861 // The default weight is at index 0, so weight for the ith case
862 // should be at index i+1. Scale the cases from successor by
863 // PredDefaultWeight (Weights[0]).
864 Weights.push_back(Weights[0] * SuccWeights[i+1]);
865 ValidTotalSuccWeight += SuccWeights[i+1];
866 }
867 }
868
869 if (SuccHasWeights || PredHasWeights) {
870 ValidTotalSuccWeight += SuccWeights[0];
871 // Scale the cases from predecessor by ValidTotalSuccWeight.
872 for (unsigned i = 1; i < CasesFromPred; ++i)
873 Weights[i] *= ValidTotalSuccWeight;
874 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
875 Weights[0] *= SuccWeights[0];
876 }
877 } else {
878 // If this is not the default destination from PSI, only the edges
879 // in SI that occur in PSI with a destination of BB will be
880 // activated.
881 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
882 std::map<ConstantInt*, uint64_t> WeightsForHandled;
883 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
884 if (PredCases[i].Dest == BB) {
885 PTIHandled.insert(PredCases[i].Value);
886
887 if (PredHasWeights || SuccHasWeights) {
888 WeightsForHandled[PredCases[i].Value] = Weights[i+1];
889 std::swap(Weights[i+1], Weights.back());
890 Weights.pop_back();
891 }
892
893 std::swap(PredCases[i], PredCases.back());
894 PredCases.pop_back();
895 --i; --e;
896 }
897
898 // Okay, now we know which constants were sent to BB from the
899 // predecessor. Figure out where they will all go now.
900 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
901 if (PTIHandled.count(BBCases[i].Value)) {
902 // If this is one we are capable of getting...
903 if (PredHasWeights || SuccHasWeights)
904 Weights.push_back(WeightsForHandled[BBCases[i].Value]);
905 PredCases.push_back(BBCases[i]);
906 NewSuccessors.push_back(BBCases[i].Dest);
907 PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
908 }
909
910 // If there are any constants vectored to BB that TI doesn't handle,
911 // they must go to the default destination of TI.
912 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
913 PTIHandled.begin(),
914 E = PTIHandled.end(); I != E; ++I) {
915 if (PredHasWeights || SuccHasWeights)
916 Weights.push_back(WeightsForHandled[*I]);
917 PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
918 NewSuccessors.push_back(BBDefault);
919 }
920 }
921
922 // Okay, at this point, we know which new successor Pred will get. Make
923 // sure we update the number of entries in the PHI nodes for these
924 // successors.
925 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
926 AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
927
928 Builder.SetInsertPoint(PTI);
929 // Convert pointer to int before we switch.
930 if (CV->getType()->isPointerTy()) {
931 assert(DL && "Cannot switch on pointer without DataLayout");
932 CV = Builder.CreatePtrToInt(CV, DL->getIntPtrType(CV->getType()),
933 "magicptr");
934 }
935
936 // Now that the successors are updated, create the new Switch instruction.
937 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
938 PredCases.size());
939 NewSI->setDebugLoc(PTI->getDebugLoc());
940 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
941 NewSI->addCase(PredCases[i].Value, PredCases[i].Dest);
942
943 if (PredHasWeights || SuccHasWeights) {
944 // Halve the weights if any of them cannot fit in an uint32_t
945 FitWeights(Weights);
946
947 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
948
949 NewSI->setMetadata(LLVMContext::MD_prof,
950 MDBuilder(BB->getContext()).
951 createBranchWeights(MDWeights));
952 }
953
954 EraseTerminatorInstAndDCECond(PTI);
955
956 // Okay, last check. If BB is still a successor of PSI, then we must
957 // have an infinite loop case. If so, add an infinitely looping block
958 // to handle the case to preserve the behavior of the code.
959 BasicBlock *InfLoopBlock = nullptr;
960 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
961 if (NewSI->getSuccessor(i) == BB) {
962 if (!InfLoopBlock) {
963 // Insert it at the end of the function, because it's either code,
964 // or it won't matter if it's hot. :)
965 InfLoopBlock = BasicBlock::Create(BB->getContext(),
966 "infloop", BB->getParent());
967 BranchInst::Create(InfLoopBlock, InfLoopBlock);
968 }
969 NewSI->setSuccessor(i, InfLoopBlock);
970 }
971
972 Changed = true;
973 }
974 }
975 return Changed;
976 }
977
978 // isSafeToHoistInvoke - If we would need to insert a select that uses the
979 // value of this invoke (comments in HoistThenElseCodeToIf explain why we
980 // would need to do this), we can't hoist the invoke, as there is nowhere
981 // to put the select in this case.
isSafeToHoistInvoke(BasicBlock * BB1,BasicBlock * BB2,Instruction * I1,Instruction * I2)982 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
983 Instruction *I1, Instruction *I2) {
984 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
985 PHINode *PN;
986 for (BasicBlock::iterator BBI = SI->begin();
987 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
988 Value *BB1V = PN->getIncomingValueForBlock(BB1);
989 Value *BB2V = PN->getIncomingValueForBlock(BB2);
990 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
991 return false;
992 }
993 }
994 }
995 return true;
996 }
997
998 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
999 /// BB2, hoist any common code in the two blocks up into the branch block. The
1000 /// caller of this function guarantees that BI's block dominates BB1 and BB2.
HoistThenElseCodeToIf(BranchInst * BI,const DataLayout * DL)1001 static bool HoistThenElseCodeToIf(BranchInst *BI, const DataLayout *DL) {
1002 // This does very trivial matching, with limited scanning, to find identical
1003 // instructions in the two blocks. In particular, we don't want to get into
1004 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
1005 // such, we currently just scan for obviously identical instructions in an
1006 // identical order.
1007 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1008 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1009
1010 BasicBlock::iterator BB1_Itr = BB1->begin();
1011 BasicBlock::iterator BB2_Itr = BB2->begin();
1012
1013 Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
1014 // Skip debug info if it is not identical.
1015 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1016 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1017 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1018 while (isa<DbgInfoIntrinsic>(I1))
1019 I1 = BB1_Itr++;
1020 while (isa<DbgInfoIntrinsic>(I2))
1021 I2 = BB2_Itr++;
1022 }
1023 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1024 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1025 return false;
1026
1027 BasicBlock *BIParent = BI->getParent();
1028
1029 bool Changed = false;
1030 do {
1031 // If we are hoisting the terminator instruction, don't move one (making a
1032 // broken BB), instead clone it, and remove BI.
1033 if (isa<TerminatorInst>(I1))
1034 goto HoistTerminator;
1035
1036 // For a normal instruction, we just move one to right before the branch,
1037 // then replace all uses of the other with the first. Finally, we remove
1038 // the now redundant second instruction.
1039 BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
1040 if (!I2->use_empty())
1041 I2->replaceAllUsesWith(I1);
1042 I1->intersectOptionalDataWith(I2);
1043 I2->eraseFromParent();
1044 Changed = true;
1045
1046 I1 = BB1_Itr++;
1047 I2 = BB2_Itr++;
1048 // Skip debug info if it is not identical.
1049 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1050 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1051 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1052 while (isa<DbgInfoIntrinsic>(I1))
1053 I1 = BB1_Itr++;
1054 while (isa<DbgInfoIntrinsic>(I2))
1055 I2 = BB2_Itr++;
1056 }
1057 } while (I1->isIdenticalToWhenDefined(I2));
1058
1059 return true;
1060
1061 HoistTerminator:
1062 // It may not be possible to hoist an invoke.
1063 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1064 return Changed;
1065
1066 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1067 PHINode *PN;
1068 for (BasicBlock::iterator BBI = SI->begin();
1069 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1070 Value *BB1V = PN->getIncomingValueForBlock(BB1);
1071 Value *BB2V = PN->getIncomingValueForBlock(BB2);
1072 if (BB1V == BB2V)
1073 continue;
1074
1075 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V, DL))
1076 return Changed;
1077 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V, DL))
1078 return Changed;
1079 }
1080 }
1081
1082 // Okay, it is safe to hoist the terminator.
1083 Instruction *NT = I1->clone();
1084 BIParent->getInstList().insert(BI, NT);
1085 if (!NT->getType()->isVoidTy()) {
1086 I1->replaceAllUsesWith(NT);
1087 I2->replaceAllUsesWith(NT);
1088 NT->takeName(I1);
1089 }
1090
1091 IRBuilder<true, NoFolder> Builder(NT);
1092 // Hoisting one of the terminators from our successor is a great thing.
1093 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1094 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
1095 // nodes, so we insert select instruction to compute the final result.
1096 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
1097 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1098 PHINode *PN;
1099 for (BasicBlock::iterator BBI = SI->begin();
1100 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1101 Value *BB1V = PN->getIncomingValueForBlock(BB1);
1102 Value *BB2V = PN->getIncomingValueForBlock(BB2);
1103 if (BB1V == BB2V) continue;
1104
1105 // These values do not agree. Insert a select instruction before NT
1106 // that determines the right value.
1107 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1108 if (!SI)
1109 SI = cast<SelectInst>
1110 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1111 BB1V->getName()+"."+BB2V->getName()));
1112
1113 // Make the PHI node use the select for all incoming values for BB1/BB2
1114 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1115 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1116 PN->setIncomingValue(i, SI);
1117 }
1118 }
1119
1120 // Update any PHI nodes in our new successors.
1121 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
1122 AddPredecessorToBlock(*SI, BIParent, BB1);
1123
1124 EraseTerminatorInstAndDCECond(BI);
1125 return true;
1126 }
1127
1128 /// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd,
1129 /// check whether BBEnd has only two predecessors and the other predecessor
1130 /// ends with an unconditional branch. If it is true, sink any common code
1131 /// in the two predecessors to BBEnd.
SinkThenElseCodeToEnd(BranchInst * BI1)1132 static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1133 assert(BI1->isUnconditional());
1134 BasicBlock *BB1 = BI1->getParent();
1135 BasicBlock *BBEnd = BI1->getSuccessor(0);
1136
1137 // Check that BBEnd has two predecessors and the other predecessor ends with
1138 // an unconditional branch.
1139 pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
1140 BasicBlock *Pred0 = *PI++;
1141 if (PI == PE) // Only one predecessor.
1142 return false;
1143 BasicBlock *Pred1 = *PI++;
1144 if (PI != PE) // More than two predecessors.
1145 return false;
1146 BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
1147 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
1148 if (!BI2 || !BI2->isUnconditional())
1149 return false;
1150
1151 // Gather the PHI nodes in BBEnd.
1152 std::map<Value*, std::pair<Value*, PHINode*> > MapValueFromBB1ToBB2;
1153 Instruction *FirstNonPhiInBBEnd = nullptr;
1154 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end();
1155 I != E; ++I) {
1156 if (PHINode *PN = dyn_cast<PHINode>(I)) {
1157 Value *BB1V = PN->getIncomingValueForBlock(BB1);
1158 Value *BB2V = PN->getIncomingValueForBlock(BB2);
1159 MapValueFromBB1ToBB2[BB1V] = std::make_pair(BB2V, PN);
1160 } else {
1161 FirstNonPhiInBBEnd = &*I;
1162 break;
1163 }
1164 }
1165 if (!FirstNonPhiInBBEnd)
1166 return false;
1167
1168
1169 // This does very trivial matching, with limited scanning, to find identical
1170 // instructions in the two blocks. We scan backward for obviously identical
1171 // instructions in an identical order.
1172 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
1173 RE1 = BB1->getInstList().rend(), RI2 = BB2->getInstList().rbegin(),
1174 RE2 = BB2->getInstList().rend();
1175 // Skip debug info.
1176 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1177 if (RI1 == RE1)
1178 return false;
1179 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1180 if (RI2 == RE2)
1181 return false;
1182 // Skip the unconditional branches.
1183 ++RI1;
1184 ++RI2;
1185
1186 bool Changed = false;
1187 while (RI1 != RE1 && RI2 != RE2) {
1188 // Skip debug info.
1189 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1190 if (RI1 == RE1)
1191 return Changed;
1192 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1193 if (RI2 == RE2)
1194 return Changed;
1195
1196 Instruction *I1 = &*RI1, *I2 = &*RI2;
1197 // I1 and I2 should have a single use in the same PHI node, and they
1198 // perform the same operation.
1199 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1200 if (isa<PHINode>(I1) || isa<PHINode>(I2) ||
1201 isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) ||
1202 isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) ||
1203 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
1204 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
1205 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
1206 !I1->hasOneUse() || !I2->hasOneUse() ||
1207 MapValueFromBB1ToBB2.find(I1) == MapValueFromBB1ToBB2.end() ||
1208 MapValueFromBB1ToBB2[I1].first != I2)
1209 return Changed;
1210
1211 // Check whether we should swap the operands of ICmpInst.
1212 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
1213 bool SwapOpnds = false;
1214 if (ICmp1 && ICmp2 &&
1215 ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
1216 ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
1217 (ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
1218 ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
1219 ICmp2->swapOperands();
1220 SwapOpnds = true;
1221 }
1222 if (!I1->isSameOperationAs(I2)) {
1223 if (SwapOpnds)
1224 ICmp2->swapOperands();
1225 return Changed;
1226 }
1227
1228 // The operands should be either the same or they need to be generated
1229 // with a PHI node after sinking. We only handle the case where there is
1230 // a single pair of different operands.
1231 Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr;
1232 unsigned Op1Idx = 0;
1233 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
1234 if (I1->getOperand(I) == I2->getOperand(I))
1235 continue;
1236 // Early exit if we have more-than one pair of different operands or
1237 // the different operand is already in MapValueFromBB1ToBB2.
1238 // Early exit if we need a PHI node to replace a constant.
1239 if (DifferentOp1 ||
1240 MapValueFromBB1ToBB2.find(I1->getOperand(I)) !=
1241 MapValueFromBB1ToBB2.end() ||
1242 isa<Constant>(I1->getOperand(I)) ||
1243 isa<Constant>(I2->getOperand(I))) {
1244 // If we can't sink the instructions, undo the swapping.
1245 if (SwapOpnds)
1246 ICmp2->swapOperands();
1247 return Changed;
1248 }
1249 DifferentOp1 = I1->getOperand(I);
1250 Op1Idx = I;
1251 DifferentOp2 = I2->getOperand(I);
1252 }
1253
1254 // We insert the pair of different operands to MapValueFromBB1ToBB2 and
1255 // remove (I1, I2) from MapValueFromBB1ToBB2.
1256 if (DifferentOp1) {
1257 PHINode *NewPN = PHINode::Create(DifferentOp1->getType(), 2,
1258 DifferentOp1->getName() + ".sink",
1259 BBEnd->begin());
1260 MapValueFromBB1ToBB2[DifferentOp1] = std::make_pair(DifferentOp2, NewPN);
1261 // I1 should use NewPN instead of DifferentOp1.
1262 I1->setOperand(Op1Idx, NewPN);
1263 NewPN->addIncoming(DifferentOp1, BB1);
1264 NewPN->addIncoming(DifferentOp2, BB2);
1265 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
1266 }
1267 PHINode *OldPN = MapValueFromBB1ToBB2[I1].second;
1268 MapValueFromBB1ToBB2.erase(I1);
1269
1270 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n";);
1271 DEBUG(dbgs() << " " << *I2 << "\n";);
1272 // We need to update RE1 and RE2 if we are going to sink the first
1273 // instruction in the basic block down.
1274 bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin());
1275 // Sink the instruction.
1276 BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1);
1277 if (!OldPN->use_empty())
1278 OldPN->replaceAllUsesWith(I1);
1279 OldPN->eraseFromParent();
1280
1281 if (!I2->use_empty())
1282 I2->replaceAllUsesWith(I1);
1283 I1->intersectOptionalDataWith(I2);
1284 I2->eraseFromParent();
1285
1286 if (UpdateRE1)
1287 RE1 = BB1->getInstList().rend();
1288 if (UpdateRE2)
1289 RE2 = BB2->getInstList().rend();
1290 FirstNonPhiInBBEnd = I1;
1291 NumSinkCommons++;
1292 Changed = true;
1293 }
1294 return Changed;
1295 }
1296
1297 /// \brief Determine if we can hoist sink a sole store instruction out of a
1298 /// conditional block.
1299 ///
1300 /// We are looking for code like the following:
1301 /// BrBB:
1302 /// store i32 %add, i32* %arrayidx2
1303 /// ... // No other stores or function calls (we could be calling a memory
1304 /// ... // function).
1305 /// %cmp = icmp ult %x, %y
1306 /// br i1 %cmp, label %EndBB, label %ThenBB
1307 /// ThenBB:
1308 /// store i32 %add5, i32* %arrayidx2
1309 /// br label EndBB
1310 /// EndBB:
1311 /// ...
1312 /// We are going to transform this into:
1313 /// BrBB:
1314 /// store i32 %add, i32* %arrayidx2
1315 /// ... //
1316 /// %cmp = icmp ult %x, %y
1317 /// %add.add5 = select i1 %cmp, i32 %add, %add5
1318 /// store i32 %add.add5, i32* %arrayidx2
1319 /// ...
1320 ///
1321 /// \return The pointer to the value of the previous store if the store can be
1322 /// hoisted into the predecessor block. 0 otherwise.
isSafeToSpeculateStore(Instruction * I,BasicBlock * BrBB,BasicBlock * StoreBB,BasicBlock * EndBB)1323 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1324 BasicBlock *StoreBB, BasicBlock *EndBB) {
1325 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1326 if (!StoreToHoist)
1327 return nullptr;
1328
1329 // Volatile or atomic.
1330 if (!StoreToHoist->isSimple())
1331 return nullptr;
1332
1333 Value *StorePtr = StoreToHoist->getPointerOperand();
1334
1335 // Look for a store to the same pointer in BrBB.
1336 unsigned MaxNumInstToLookAt = 10;
1337 for (BasicBlock::reverse_iterator RI = BrBB->rbegin(),
1338 RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) {
1339 Instruction *CurI = &*RI;
1340
1341 // Could be calling an instruction that effects memory like free().
1342 if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI))
1343 return nullptr;
1344
1345 StoreInst *SI = dyn_cast<StoreInst>(CurI);
1346 // Found the previous store make sure it stores to the same location.
1347 if (SI && SI->getPointerOperand() == StorePtr)
1348 // Found the previous store, return its value operand.
1349 return SI->getValueOperand();
1350 else if (SI)
1351 return nullptr; // Unknown store.
1352 }
1353
1354 return nullptr;
1355 }
1356
1357 /// \brief Speculate a conditional basic block flattening the CFG.
1358 ///
1359 /// Note that this is a very risky transform currently. Speculating
1360 /// instructions like this is most often not desirable. Instead, there is an MI
1361 /// pass which can do it with full awareness of the resource constraints.
1362 /// However, some cases are "obvious" and we should do directly. An example of
1363 /// this is speculating a single, reasonably cheap instruction.
1364 ///
1365 /// There is only one distinct advantage to flattening the CFG at the IR level:
1366 /// it makes very common but simplistic optimizations such as are common in
1367 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1368 /// modeling their effects with easier to reason about SSA value graphs.
1369 ///
1370 ///
1371 /// An illustration of this transform is turning this IR:
1372 /// \code
1373 /// BB:
1374 /// %cmp = icmp ult %x, %y
1375 /// br i1 %cmp, label %EndBB, label %ThenBB
1376 /// ThenBB:
1377 /// %sub = sub %x, %y
1378 /// br label BB2
1379 /// EndBB:
1380 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1381 /// ...
1382 /// \endcode
1383 ///
1384 /// Into this IR:
1385 /// \code
1386 /// BB:
1387 /// %cmp = icmp ult %x, %y
1388 /// %sub = sub %x, %y
1389 /// %cond = select i1 %cmp, 0, %sub
1390 /// ...
1391 /// \endcode
1392 ///
1393 /// \returns true if the conditional block is removed.
SpeculativelyExecuteBB(BranchInst * BI,BasicBlock * ThenBB,const DataLayout * DL)1394 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1395 const DataLayout *DL) {
1396 // Be conservative for now. FP select instruction can often be expensive.
1397 Value *BrCond = BI->getCondition();
1398 if (isa<FCmpInst>(BrCond))
1399 return false;
1400
1401 BasicBlock *BB = BI->getParent();
1402 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1403
1404 // If ThenBB is actually on the false edge of the conditional branch, remember
1405 // to swap the select operands later.
1406 bool Invert = false;
1407 if (ThenBB != BI->getSuccessor(0)) {
1408 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1409 Invert = true;
1410 }
1411 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1412
1413 // Keep a count of how many times instructions are used within CondBB when
1414 // they are candidates for sinking into CondBB. Specifically:
1415 // - They are defined in BB, and
1416 // - They have no side effects, and
1417 // - All of their uses are in CondBB.
1418 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1419
1420 unsigned SpeculationCost = 0;
1421 Value *SpeculatedStoreValue = nullptr;
1422 StoreInst *SpeculatedStore = nullptr;
1423 for (BasicBlock::iterator BBI = ThenBB->begin(),
1424 BBE = std::prev(ThenBB->end());
1425 BBI != BBE; ++BBI) {
1426 Instruction *I = BBI;
1427 // Skip debug info.
1428 if (isa<DbgInfoIntrinsic>(I))
1429 continue;
1430
1431 // Only speculatively execution a single instruction (not counting the
1432 // terminator) for now.
1433 ++SpeculationCost;
1434 if (SpeculationCost > 1)
1435 return false;
1436
1437 // Don't hoist the instruction if it's unsafe or expensive.
1438 if (!isSafeToSpeculativelyExecute(I, DL) &&
1439 !(HoistCondStores &&
1440 (SpeculatedStoreValue = isSafeToSpeculateStore(I, BB, ThenBB,
1441 EndBB))))
1442 return false;
1443 if (!SpeculatedStoreValue &&
1444 ComputeSpeculationCost(I, DL) > PHINodeFoldingThreshold)
1445 return false;
1446
1447 // Store the store speculation candidate.
1448 if (SpeculatedStoreValue)
1449 SpeculatedStore = cast<StoreInst>(I);
1450
1451 // Do not hoist the instruction if any of its operands are defined but not
1452 // used in BB. The transformation will prevent the operand from
1453 // being sunk into the use block.
1454 for (User::op_iterator i = I->op_begin(), e = I->op_end();
1455 i != e; ++i) {
1456 Instruction *OpI = dyn_cast<Instruction>(*i);
1457 if (!OpI || OpI->getParent() != BB ||
1458 OpI->mayHaveSideEffects())
1459 continue; // Not a candidate for sinking.
1460
1461 ++SinkCandidateUseCounts[OpI];
1462 }
1463 }
1464
1465 // Consider any sink candidates which are only used in CondBB as costs for
1466 // speculation. Note, while we iterate over a DenseMap here, we are summing
1467 // and so iteration order isn't significant.
1468 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I =
1469 SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end();
1470 I != E; ++I)
1471 if (I->first->getNumUses() == I->second) {
1472 ++SpeculationCost;
1473 if (SpeculationCost > 1)
1474 return false;
1475 }
1476
1477 // Check that the PHI nodes can be converted to selects.
1478 bool HaveRewritablePHIs = false;
1479 for (BasicBlock::iterator I = EndBB->begin();
1480 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1481 Value *OrigV = PN->getIncomingValueForBlock(BB);
1482 Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
1483
1484 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
1485 // Skip PHIs which are trivial.
1486 if (ThenV == OrigV)
1487 continue;
1488
1489 HaveRewritablePHIs = true;
1490 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
1491 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
1492 if (!OrigCE && !ThenCE)
1493 continue; // Known safe and cheap.
1494
1495 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE, DL)) ||
1496 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE, DL)))
1497 return false;
1498 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, DL) : 0;
1499 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, DL) : 0;
1500 if (OrigCost + ThenCost > 2 * PHINodeFoldingThreshold)
1501 return false;
1502
1503 // Account for the cost of an unfolded ConstantExpr which could end up
1504 // getting expanded into Instructions.
1505 // FIXME: This doesn't account for how many operations are combined in the
1506 // constant expression.
1507 ++SpeculationCost;
1508 if (SpeculationCost > 1)
1509 return false;
1510 }
1511
1512 // If there are no PHIs to process, bail early. This helps ensure idempotence
1513 // as well.
1514 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
1515 return false;
1516
1517 // If we get here, we can hoist the instruction and if-convert.
1518 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
1519
1520 // Insert a select of the value of the speculated store.
1521 if (SpeculatedStoreValue) {
1522 IRBuilder<true, NoFolder> Builder(BI);
1523 Value *TrueV = SpeculatedStore->getValueOperand();
1524 Value *FalseV = SpeculatedStoreValue;
1525 if (Invert)
1526 std::swap(TrueV, FalseV);
1527 Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() +
1528 "." + FalseV->getName());
1529 SpeculatedStore->setOperand(0, S);
1530 }
1531
1532 // Hoist the instructions.
1533 BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(),
1534 std::prev(ThenBB->end()));
1535
1536 // Insert selects and rewrite the PHI operands.
1537 IRBuilder<true, NoFolder> Builder(BI);
1538 for (BasicBlock::iterator I = EndBB->begin();
1539 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1540 unsigned OrigI = PN->getBasicBlockIndex(BB);
1541 unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
1542 Value *OrigV = PN->getIncomingValue(OrigI);
1543 Value *ThenV = PN->getIncomingValue(ThenI);
1544
1545 // Skip PHIs which are trivial.
1546 if (OrigV == ThenV)
1547 continue;
1548
1549 // Create a select whose true value is the speculatively executed value and
1550 // false value is the preexisting value. Swap them if the branch
1551 // destinations were inverted.
1552 Value *TrueV = ThenV, *FalseV = OrigV;
1553 if (Invert)
1554 std::swap(TrueV, FalseV);
1555 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV,
1556 TrueV->getName() + "." + FalseV->getName());
1557 PN->setIncomingValue(OrigI, V);
1558 PN->setIncomingValue(ThenI, V);
1559 }
1560
1561 ++NumSpeculations;
1562 return true;
1563 }
1564
1565 /// \returns True if this block contains a CallInst with the NoDuplicate
1566 /// attribute.
HasNoDuplicateCall(const BasicBlock * BB)1567 static bool HasNoDuplicateCall(const BasicBlock *BB) {
1568 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1569 const CallInst *CI = dyn_cast<CallInst>(I);
1570 if (!CI)
1571 continue;
1572 if (CI->cannotDuplicate())
1573 return true;
1574 }
1575 return false;
1576 }
1577
1578 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1579 /// across this block.
BlockIsSimpleEnoughToThreadThrough(BasicBlock * BB)1580 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1581 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1582 unsigned Size = 0;
1583
1584 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1585 if (isa<DbgInfoIntrinsic>(BBI))
1586 continue;
1587 if (Size > 10) return false; // Don't clone large BB's.
1588 ++Size;
1589
1590 // We can only support instructions that do not define values that are
1591 // live outside of the current basic block.
1592 for (User *U : BBI->users()) {
1593 Instruction *UI = cast<Instruction>(U);
1594 if (UI->getParent() != BB || isa<PHINode>(UI)) return false;
1595 }
1596
1597 // Looks ok, continue checking.
1598 }
1599
1600 return true;
1601 }
1602
1603 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1604 /// that is defined in the same block as the branch and if any PHI entries are
1605 /// constants, thread edges corresponding to that entry to be branches to their
1606 /// ultimate destination.
FoldCondBranchOnPHI(BranchInst * BI,const DataLayout * DL)1607 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *DL) {
1608 BasicBlock *BB = BI->getParent();
1609 PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1610 // NOTE: we currently cannot transform this case if the PHI node is used
1611 // outside of the block.
1612 if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1613 return false;
1614
1615 // Degenerate case of a single entry PHI.
1616 if (PN->getNumIncomingValues() == 1) {
1617 FoldSingleEntryPHINodes(PN->getParent());
1618 return true;
1619 }
1620
1621 // Now we know that this block has multiple preds and two succs.
1622 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1623
1624 if (HasNoDuplicateCall(BB)) return false;
1625
1626 // Okay, this is a simple enough basic block. See if any phi values are
1627 // constants.
1628 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1629 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1630 if (!CB || !CB->getType()->isIntegerTy(1)) continue;
1631
1632 // Okay, we now know that all edges from PredBB should be revectored to
1633 // branch to RealDest.
1634 BasicBlock *PredBB = PN->getIncomingBlock(i);
1635 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1636
1637 if (RealDest == BB) continue; // Skip self loops.
1638 // Skip if the predecessor's terminator is an indirect branch.
1639 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
1640
1641 // The dest block might have PHI nodes, other predecessors and other
1642 // difficult cases. Instead of being smart about this, just insert a new
1643 // block that jumps to the destination block, effectively splitting
1644 // the edge we are about to create.
1645 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1646 RealDest->getName()+".critedge",
1647 RealDest->getParent(), RealDest);
1648 BranchInst::Create(RealDest, EdgeBB);
1649
1650 // Update PHI nodes.
1651 AddPredecessorToBlock(RealDest, EdgeBB, BB);
1652
1653 // BB may have instructions that are being threaded over. Clone these
1654 // instructions into EdgeBB. We know that there will be no uses of the
1655 // cloned instructions outside of EdgeBB.
1656 BasicBlock::iterator InsertPt = EdgeBB->begin();
1657 DenseMap<Value*, Value*> TranslateMap; // Track translated values.
1658 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1659 if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1660 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1661 continue;
1662 }
1663 // Clone the instruction.
1664 Instruction *N = BBI->clone();
1665 if (BBI->hasName()) N->setName(BBI->getName()+".c");
1666
1667 // Update operands due to translation.
1668 for (User::op_iterator i = N->op_begin(), e = N->op_end();
1669 i != e; ++i) {
1670 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1671 if (PI != TranslateMap.end())
1672 *i = PI->second;
1673 }
1674
1675 // Check for trivial simplification.
1676 if (Value *V = SimplifyInstruction(N, DL)) {
1677 TranslateMap[BBI] = V;
1678 delete N; // Instruction folded away, don't need actual inst
1679 } else {
1680 // Insert the new instruction into its new home.
1681 EdgeBB->getInstList().insert(InsertPt, N);
1682 if (!BBI->use_empty())
1683 TranslateMap[BBI] = N;
1684 }
1685 }
1686
1687 // Loop over all of the edges from PredBB to BB, changing them to branch
1688 // to EdgeBB instead.
1689 TerminatorInst *PredBBTI = PredBB->getTerminator();
1690 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1691 if (PredBBTI->getSuccessor(i) == BB) {
1692 BB->removePredecessor(PredBB);
1693 PredBBTI->setSuccessor(i, EdgeBB);
1694 }
1695
1696 // Recurse, simplifying any other constants.
1697 return FoldCondBranchOnPHI(BI, DL) | true;
1698 }
1699
1700 return false;
1701 }
1702
1703 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1704 /// PHI node, see if we can eliminate it.
FoldTwoEntryPHINode(PHINode * PN,const DataLayout * DL)1705 static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *DL) {
1706 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
1707 // statement", which has a very simple dominance structure. Basically, we
1708 // are trying to find the condition that is being branched on, which
1709 // subsequently causes this merge to happen. We really want control
1710 // dependence information for this check, but simplifycfg can't keep it up
1711 // to date, and this catches most of the cases we care about anyway.
1712 BasicBlock *BB = PN->getParent();
1713 BasicBlock *IfTrue, *IfFalse;
1714 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1715 if (!IfCond ||
1716 // Don't bother if the branch will be constant folded trivially.
1717 isa<ConstantInt>(IfCond))
1718 return false;
1719
1720 // Okay, we found that we can merge this two-entry phi node into a select.
1721 // Doing so would require us to fold *all* two entry phi nodes in this block.
1722 // At some point this becomes non-profitable (particularly if the target
1723 // doesn't support cmov's). Only do this transformation if there are two or
1724 // fewer PHI nodes in this block.
1725 unsigned NumPhis = 0;
1726 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1727 if (NumPhis > 2)
1728 return false;
1729
1730 // Loop over the PHI's seeing if we can promote them all to select
1731 // instructions. While we are at it, keep track of the instructions
1732 // that need to be moved to the dominating block.
1733 SmallPtrSet<Instruction*, 4> AggressiveInsts;
1734 unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1735 MaxCostVal1 = PHINodeFoldingThreshold;
1736
1737 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1738 PHINode *PN = cast<PHINode>(II++);
1739 if (Value *V = SimplifyInstruction(PN, DL)) {
1740 PN->replaceAllUsesWith(V);
1741 PN->eraseFromParent();
1742 continue;
1743 }
1744
1745 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1746 MaxCostVal0, DL) ||
1747 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1748 MaxCostVal1, DL))
1749 return false;
1750 }
1751
1752 // If we folded the first phi, PN dangles at this point. Refresh it. If
1753 // we ran out of PHIs then we simplified them all.
1754 PN = dyn_cast<PHINode>(BB->begin());
1755 if (!PN) return true;
1756
1757 // Don't fold i1 branches on PHIs which contain binary operators. These can
1758 // often be turned into switches and other things.
1759 if (PN->getType()->isIntegerTy(1) &&
1760 (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1761 isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1762 isa<BinaryOperator>(IfCond)))
1763 return false;
1764
1765 // If we all PHI nodes are promotable, check to make sure that all
1766 // instructions in the predecessor blocks can be promoted as well. If
1767 // not, we won't be able to get rid of the control flow, so it's not
1768 // worth promoting to select instructions.
1769 BasicBlock *DomBlock = nullptr;
1770 BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1771 BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1772 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1773 IfBlock1 = nullptr;
1774 } else {
1775 DomBlock = *pred_begin(IfBlock1);
1776 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1777 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1778 // This is not an aggressive instruction that we can promote.
1779 // Because of this, we won't be able to get rid of the control
1780 // flow, so the xform is not worth it.
1781 return false;
1782 }
1783 }
1784
1785 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1786 IfBlock2 = nullptr;
1787 } else {
1788 DomBlock = *pred_begin(IfBlock2);
1789 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1790 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1791 // This is not an aggressive instruction that we can promote.
1792 // Because of this, we won't be able to get rid of the control
1793 // flow, so the xform is not worth it.
1794 return false;
1795 }
1796 }
1797
1798 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: "
1799 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n");
1800
1801 // If we can still promote the PHI nodes after this gauntlet of tests,
1802 // do all of the PHI's now.
1803 Instruction *InsertPt = DomBlock->getTerminator();
1804 IRBuilder<true, NoFolder> Builder(InsertPt);
1805
1806 // Move all 'aggressive' instructions, which are defined in the
1807 // conditional parts of the if's up to the dominating block.
1808 if (IfBlock1)
1809 DomBlock->getInstList().splice(InsertPt,
1810 IfBlock1->getInstList(), IfBlock1->begin(),
1811 IfBlock1->getTerminator());
1812 if (IfBlock2)
1813 DomBlock->getInstList().splice(InsertPt,
1814 IfBlock2->getInstList(), IfBlock2->begin(),
1815 IfBlock2->getTerminator());
1816
1817 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1818 // Change the PHI node into a select instruction.
1819 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1820 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1821
1822 SelectInst *NV =
1823 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
1824 PN->replaceAllUsesWith(NV);
1825 NV->takeName(PN);
1826 PN->eraseFromParent();
1827 }
1828
1829 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1830 // has been flattened. Change DomBlock to jump directly to our new block to
1831 // avoid other simplifycfg's kicking in on the diamond.
1832 TerminatorInst *OldTI = DomBlock->getTerminator();
1833 Builder.SetInsertPoint(OldTI);
1834 Builder.CreateBr(BB);
1835 OldTI->eraseFromParent();
1836 return true;
1837 }
1838
1839 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1840 /// to two returning blocks, try to merge them together into one return,
1841 /// introducing a select if the return values disagree.
SimplifyCondBranchToTwoReturns(BranchInst * BI,IRBuilder<> & Builder)1842 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
1843 IRBuilder<> &Builder) {
1844 assert(BI->isConditional() && "Must be a conditional branch");
1845 BasicBlock *TrueSucc = BI->getSuccessor(0);
1846 BasicBlock *FalseSucc = BI->getSuccessor(1);
1847 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1848 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1849
1850 // Check to ensure both blocks are empty (just a return) or optionally empty
1851 // with PHI nodes. If there are other instructions, merging would cause extra
1852 // computation on one path or the other.
1853 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1854 return false;
1855 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1856 return false;
1857
1858 Builder.SetInsertPoint(BI);
1859 // Okay, we found a branch that is going to two return nodes. If
1860 // there is no return value for this function, just change the
1861 // branch into a return.
1862 if (FalseRet->getNumOperands() == 0) {
1863 TrueSucc->removePredecessor(BI->getParent());
1864 FalseSucc->removePredecessor(BI->getParent());
1865 Builder.CreateRetVoid();
1866 EraseTerminatorInstAndDCECond(BI);
1867 return true;
1868 }
1869
1870 // Otherwise, figure out what the true and false return values are
1871 // so we can insert a new select instruction.
1872 Value *TrueValue = TrueRet->getReturnValue();
1873 Value *FalseValue = FalseRet->getReturnValue();
1874
1875 // Unwrap any PHI nodes in the return blocks.
1876 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1877 if (TVPN->getParent() == TrueSucc)
1878 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1879 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1880 if (FVPN->getParent() == FalseSucc)
1881 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1882
1883 // In order for this transformation to be safe, we must be able to
1884 // unconditionally execute both operands to the return. This is
1885 // normally the case, but we could have a potentially-trapping
1886 // constant expression that prevents this transformation from being
1887 // safe.
1888 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1889 if (TCV->canTrap())
1890 return false;
1891 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1892 if (FCV->canTrap())
1893 return false;
1894
1895 // Okay, we collected all the mapped values and checked them for sanity, and
1896 // defined to really do this transformation. First, update the CFG.
1897 TrueSucc->removePredecessor(BI->getParent());
1898 FalseSucc->removePredecessor(BI->getParent());
1899
1900 // Insert select instructions where needed.
1901 Value *BrCond = BI->getCondition();
1902 if (TrueValue) {
1903 // Insert a select if the results differ.
1904 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1905 } else if (isa<UndefValue>(TrueValue)) {
1906 TrueValue = FalseValue;
1907 } else {
1908 TrueValue = Builder.CreateSelect(BrCond, TrueValue,
1909 FalseValue, "retval");
1910 }
1911 }
1912
1913 Value *RI = !TrueValue ?
1914 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
1915
1916 (void) RI;
1917
1918 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1919 << "\n " << *BI << "NewRet = " << *RI
1920 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
1921
1922 EraseTerminatorInstAndDCECond(BI);
1923
1924 return true;
1925 }
1926
1927 /// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the
1928 /// probabilities of the branch taking each edge. Fills in the two APInt
1929 /// parameters and return true, or returns false if no or invalid metadata was
1930 /// found.
ExtractBranchMetadata(BranchInst * BI,uint64_t & ProbTrue,uint64_t & ProbFalse)1931 static bool ExtractBranchMetadata(BranchInst *BI,
1932 uint64_t &ProbTrue, uint64_t &ProbFalse) {
1933 assert(BI->isConditional() &&
1934 "Looking for probabilities on unconditional branch?");
1935 MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
1936 if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
1937 ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1));
1938 ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2));
1939 if (!CITrue || !CIFalse) return false;
1940 ProbTrue = CITrue->getValue().getZExtValue();
1941 ProbFalse = CIFalse->getValue().getZExtValue();
1942 return true;
1943 }
1944
1945 /// checkCSEInPredecessor - Return true if the given instruction is available
1946 /// in its predecessor block. If yes, the instruction will be removed.
1947 ///
checkCSEInPredecessor(Instruction * Inst,BasicBlock * PB)1948 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
1949 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
1950 return false;
1951 for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
1952 Instruction *PBI = &*I;
1953 // Check whether Inst and PBI generate the same value.
1954 if (Inst->isIdenticalTo(PBI)) {
1955 Inst->replaceAllUsesWith(PBI);
1956 Inst->eraseFromParent();
1957 return true;
1958 }
1959 }
1960 return false;
1961 }
1962
1963 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a
1964 /// predecessor branches to us and one of our successors, fold the block into
1965 /// the predecessor and use logical operations to pick the right destination.
FoldBranchToCommonDest(BranchInst * BI,const DataLayout * DL)1966 bool llvm::FoldBranchToCommonDest(BranchInst *BI, const DataLayout *DL) {
1967 BasicBlock *BB = BI->getParent();
1968
1969 Instruction *Cond = nullptr;
1970 if (BI->isConditional())
1971 Cond = dyn_cast<Instruction>(BI->getCondition());
1972 else {
1973 // For unconditional branch, check for a simple CFG pattern, where
1974 // BB has a single predecessor and BB's successor is also its predecessor's
1975 // successor. If such pattern exisits, check for CSE between BB and its
1976 // predecessor.
1977 if (BasicBlock *PB = BB->getSinglePredecessor())
1978 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
1979 if (PBI->isConditional() &&
1980 (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
1981 BI->getSuccessor(0) == PBI->getSuccessor(1))) {
1982 for (BasicBlock::iterator I = BB->begin(), E = BB->end();
1983 I != E; ) {
1984 Instruction *Curr = I++;
1985 if (isa<CmpInst>(Curr)) {
1986 Cond = Curr;
1987 break;
1988 }
1989 // Quit if we can't remove this instruction.
1990 if (!checkCSEInPredecessor(Curr, PB))
1991 return false;
1992 }
1993 }
1994
1995 if (!Cond)
1996 return false;
1997 }
1998
1999 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2000 Cond->getParent() != BB || !Cond->hasOneUse())
2001 return false;
2002
2003 // Only allow this if the condition is a simple instruction that can be
2004 // executed unconditionally. It must be in the same block as the branch, and
2005 // must be at the front of the block.
2006 BasicBlock::iterator FrontIt = BB->front();
2007
2008 // Ignore dbg intrinsics.
2009 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
2010
2011 // Allow a single instruction to be hoisted in addition to the compare
2012 // that feeds the branch. We later ensure that any values that _it_ uses
2013 // were also live in the predecessor, so that we don't unnecessarily create
2014 // register pressure or inhibit out-of-order execution.
2015 Instruction *BonusInst = nullptr;
2016 if (&*FrontIt != Cond &&
2017 FrontIt->hasOneUse() && FrontIt->user_back() == Cond &&
2018 isSafeToSpeculativelyExecute(FrontIt, DL)) {
2019 BonusInst = &*FrontIt;
2020 ++FrontIt;
2021
2022 // Ignore dbg intrinsics.
2023 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
2024 }
2025
2026 // Only a single bonus inst is allowed.
2027 if (&*FrontIt != Cond)
2028 return false;
2029
2030 // Make sure the instruction after the condition is the cond branch.
2031 BasicBlock::iterator CondIt = Cond; ++CondIt;
2032
2033 // Ignore dbg intrinsics.
2034 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
2035
2036 if (&*CondIt != BI)
2037 return false;
2038
2039 // Cond is known to be a compare or binary operator. Check to make sure that
2040 // neither operand is a potentially-trapping constant expression.
2041 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2042 if (CE->canTrap())
2043 return false;
2044 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2045 if (CE->canTrap())
2046 return false;
2047
2048 // Finally, don't infinitely unroll conditional loops.
2049 BasicBlock *TrueDest = BI->getSuccessor(0);
2050 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2051 if (TrueDest == BB || FalseDest == BB)
2052 return false;
2053
2054 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2055 BasicBlock *PredBlock = *PI;
2056 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2057
2058 // Check that we have two conditional branches. If there is a PHI node in
2059 // the common successor, verify that the same value flows in from both
2060 // blocks.
2061 SmallVector<PHINode*, 4> PHIs;
2062 if (!PBI || PBI->isUnconditional() ||
2063 (BI->isConditional() &&
2064 !SafeToMergeTerminators(BI, PBI)) ||
2065 (!BI->isConditional() &&
2066 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2067 continue;
2068
2069 // Determine if the two branches share a common destination.
2070 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2071 bool InvertPredCond = false;
2072
2073 if (BI->isConditional()) {
2074 if (PBI->getSuccessor(0) == TrueDest)
2075 Opc = Instruction::Or;
2076 else if (PBI->getSuccessor(1) == FalseDest)
2077 Opc = Instruction::And;
2078 else if (PBI->getSuccessor(0) == FalseDest)
2079 Opc = Instruction::And, InvertPredCond = true;
2080 else if (PBI->getSuccessor(1) == TrueDest)
2081 Opc = Instruction::Or, InvertPredCond = true;
2082 else
2083 continue;
2084 } else {
2085 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2086 continue;
2087 }
2088
2089 // Ensure that any values used in the bonus instruction are also used
2090 // by the terminator of the predecessor. This means that those values
2091 // must already have been resolved, so we won't be inhibiting the
2092 // out-of-order core by speculating them earlier. We also allow
2093 // instructions that are used by the terminator's condition because it
2094 // exposes more merging opportunities.
2095 bool UsedByBranch = (BonusInst && BonusInst->hasOneUse() &&
2096 BonusInst->user_back() == Cond);
2097
2098 if (BonusInst && !UsedByBranch) {
2099 // Collect the values used by the bonus inst
2100 SmallPtrSet<Value*, 4> UsedValues;
2101 for (Instruction::op_iterator OI = BonusInst->op_begin(),
2102 OE = BonusInst->op_end(); OI != OE; ++OI) {
2103 Value *V = *OI;
2104 if (!isa<Constant>(V) && !isa<Argument>(V))
2105 UsedValues.insert(V);
2106 }
2107
2108 SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
2109 Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
2110
2111 // Walk up to four levels back up the use-def chain of the predecessor's
2112 // terminator to see if all those values were used. The choice of four
2113 // levels is arbitrary, to provide a compile-time-cost bound.
2114 while (!Worklist.empty()) {
2115 std::pair<Value*, unsigned> Pair = Worklist.back();
2116 Worklist.pop_back();
2117
2118 if (Pair.second >= 4) continue;
2119 UsedValues.erase(Pair.first);
2120 if (UsedValues.empty()) break;
2121
2122 if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
2123 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
2124 OI != OE; ++OI)
2125 Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
2126 }
2127 }
2128
2129 if (!UsedValues.empty()) return false;
2130 }
2131
2132 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2133 IRBuilder<> Builder(PBI);
2134
2135 // If we need to invert the condition in the pred block to match, do so now.
2136 if (InvertPredCond) {
2137 Value *NewCond = PBI->getCondition();
2138
2139 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2140 CmpInst *CI = cast<CmpInst>(NewCond);
2141 CI->setPredicate(CI->getInversePredicate());
2142 } else {
2143 NewCond = Builder.CreateNot(NewCond,
2144 PBI->getCondition()->getName()+".not");
2145 }
2146
2147 PBI->setCondition(NewCond);
2148 PBI->swapSuccessors();
2149 }
2150
2151 // If we have a bonus inst, clone it into the predecessor block.
2152 Instruction *NewBonus = nullptr;
2153 if (BonusInst) {
2154 NewBonus = BonusInst->clone();
2155
2156 // If we moved a load, we cannot any longer claim any knowledge about
2157 // its potential value. The previous information might have been valid
2158 // only given the branch precondition.
2159 // For an analogous reason, we must also drop all the metadata whose
2160 // semantics we don't understand.
2161 NewBonus->dropUnknownMetadata(LLVMContext::MD_dbg);
2162
2163 PredBlock->getInstList().insert(PBI, NewBonus);
2164 NewBonus->takeName(BonusInst);
2165 BonusInst->setName(BonusInst->getName()+".old");
2166 }
2167
2168 // Clone Cond into the predecessor basic block, and or/and the
2169 // two conditions together.
2170 Instruction *New = Cond->clone();
2171 if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
2172 PredBlock->getInstList().insert(PBI, New);
2173 New->takeName(Cond);
2174 Cond->setName(New->getName()+".old");
2175
2176 if (BI->isConditional()) {
2177 Instruction *NewCond =
2178 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
2179 New, "or.cond"));
2180 PBI->setCondition(NewCond);
2181
2182 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2183 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2184 PredFalseWeight);
2185 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2186 SuccFalseWeight);
2187 SmallVector<uint64_t, 8> NewWeights;
2188
2189 if (PBI->getSuccessor(0) == BB) {
2190 if (PredHasWeights && SuccHasWeights) {
2191 // PBI: br i1 %x, BB, FalseDest
2192 // BI: br i1 %y, TrueDest, FalseDest
2193 //TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2194 NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2195 //FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2196 // TrueWeight for PBI * FalseWeight for BI.
2197 // We assume that total weights of a BranchInst can fit into 32 bits.
2198 // Therefore, we will not have overflow using 64-bit arithmetic.
2199 NewWeights.push_back(PredFalseWeight * (SuccFalseWeight +
2200 SuccTrueWeight) + PredTrueWeight * SuccFalseWeight);
2201 }
2202 AddPredecessorToBlock(TrueDest, PredBlock, BB);
2203 PBI->setSuccessor(0, TrueDest);
2204 }
2205 if (PBI->getSuccessor(1) == BB) {
2206 if (PredHasWeights && SuccHasWeights) {
2207 // PBI: br i1 %x, TrueDest, BB
2208 // BI: br i1 %y, TrueDest, FalseDest
2209 //TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2210 // FalseWeight for PBI * TrueWeight for BI.
2211 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight +
2212 SuccTrueWeight) + PredFalseWeight * SuccTrueWeight);
2213 //FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2214 NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2215 }
2216 AddPredecessorToBlock(FalseDest, PredBlock, BB);
2217 PBI->setSuccessor(1, FalseDest);
2218 }
2219 if (NewWeights.size() == 2) {
2220 // Halve the weights if any of them cannot fit in an uint32_t
2221 FitWeights(NewWeights);
2222
2223 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end());
2224 PBI->setMetadata(LLVMContext::MD_prof,
2225 MDBuilder(BI->getContext()).
2226 createBranchWeights(MDWeights));
2227 } else
2228 PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2229 } else {
2230 // Update PHI nodes in the common successors.
2231 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2232 ConstantInt *PBI_C = cast<ConstantInt>(
2233 PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2234 assert(PBI_C->getType()->isIntegerTy(1));
2235 Instruction *MergedCond = nullptr;
2236 if (PBI->getSuccessor(0) == TrueDest) {
2237 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2238 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2239 // is false: !PBI_Cond and BI_Value
2240 Instruction *NotCond =
2241 cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2242 "not.cond"));
2243 MergedCond =
2244 cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2245 NotCond, New,
2246 "and.cond"));
2247 if (PBI_C->isOne())
2248 MergedCond =
2249 cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2250 PBI->getCondition(), MergedCond,
2251 "or.cond"));
2252 } else {
2253 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2254 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2255 // is false: PBI_Cond and BI_Value
2256 MergedCond =
2257 cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2258 PBI->getCondition(), New,
2259 "and.cond"));
2260 if (PBI_C->isOne()) {
2261 Instruction *NotCond =
2262 cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2263 "not.cond"));
2264 MergedCond =
2265 cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2266 NotCond, MergedCond,
2267 "or.cond"));
2268 }
2269 }
2270 // Update PHI Node.
2271 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2272 MergedCond);
2273 }
2274 // Change PBI from Conditional to Unconditional.
2275 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2276 EraseTerminatorInstAndDCECond(PBI);
2277 PBI = New_PBI;
2278 }
2279
2280 // TODO: If BB is reachable from all paths through PredBlock, then we
2281 // could replace PBI's branch probabilities with BI's.
2282
2283 // Copy any debug value intrinsics into the end of PredBlock.
2284 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
2285 if (isa<DbgInfoIntrinsic>(*I))
2286 I->clone()->insertBefore(PBI);
2287
2288 return true;
2289 }
2290 return false;
2291 }
2292
2293 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
2294 /// predecessor of another block, this function tries to simplify it. We know
2295 /// that PBI and BI are both conditional branches, and BI is in one of the
2296 /// successor blocks of PBI - PBI branches to BI.
SimplifyCondBranchToCondBranch(BranchInst * PBI,BranchInst * BI)2297 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
2298 assert(PBI->isConditional() && BI->isConditional());
2299 BasicBlock *BB = BI->getParent();
2300
2301 // If this block ends with a branch instruction, and if there is a
2302 // predecessor that ends on a branch of the same condition, make
2303 // this conditional branch redundant.
2304 if (PBI->getCondition() == BI->getCondition() &&
2305 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2306 // Okay, the outcome of this conditional branch is statically
2307 // knowable. If this block had a single pred, handle specially.
2308 if (BB->getSinglePredecessor()) {
2309 // Turn this into a branch on constant.
2310 bool CondIsTrue = PBI->getSuccessor(0) == BB;
2311 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2312 CondIsTrue));
2313 return true; // Nuke the branch on constant.
2314 }
2315
2316 // Otherwise, if there are multiple predecessors, insert a PHI that merges
2317 // in the constant and simplify the block result. Subsequent passes of
2318 // simplifycfg will thread the block.
2319 if (BlockIsSimpleEnoughToThreadThrough(BB)) {
2320 pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
2321 PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
2322 std::distance(PB, PE),
2323 BI->getCondition()->getName() + ".pr",
2324 BB->begin());
2325 // Okay, we're going to insert the PHI node. Since PBI is not the only
2326 // predecessor, compute the PHI'd conditional value for all of the preds.
2327 // Any predecessor where the condition is not computable we keep symbolic.
2328 for (pred_iterator PI = PB; PI != PE; ++PI) {
2329 BasicBlock *P = *PI;
2330 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
2331 PBI != BI && PBI->isConditional() &&
2332 PBI->getCondition() == BI->getCondition() &&
2333 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2334 bool CondIsTrue = PBI->getSuccessor(0) == BB;
2335 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2336 CondIsTrue), P);
2337 } else {
2338 NewPN->addIncoming(BI->getCondition(), P);
2339 }
2340 }
2341
2342 BI->setCondition(NewPN);
2343 return true;
2344 }
2345 }
2346
2347 // If this is a conditional branch in an empty block, and if any
2348 // predecessors are a conditional branch to one of our destinations,
2349 // fold the conditions into logical ops and one cond br.
2350 BasicBlock::iterator BBI = BB->begin();
2351 // Ignore dbg intrinsics.
2352 while (isa<DbgInfoIntrinsic>(BBI))
2353 ++BBI;
2354 if (&*BBI != BI)
2355 return false;
2356
2357
2358 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
2359 if (CE->canTrap())
2360 return false;
2361
2362 int PBIOp, BIOp;
2363 if (PBI->getSuccessor(0) == BI->getSuccessor(0))
2364 PBIOp = BIOp = 0;
2365 else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
2366 PBIOp = 0, BIOp = 1;
2367 else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
2368 PBIOp = 1, BIOp = 0;
2369 else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
2370 PBIOp = BIOp = 1;
2371 else
2372 return false;
2373
2374 // Check to make sure that the other destination of this branch
2375 // isn't BB itself. If so, this is an infinite loop that will
2376 // keep getting unwound.
2377 if (PBI->getSuccessor(PBIOp) == BB)
2378 return false;
2379
2380 // Do not perform this transformation if it would require
2381 // insertion of a large number of select instructions. For targets
2382 // without predication/cmovs, this is a big pessimization.
2383
2384 // Also do not perform this transformation if any phi node in the common
2385 // destination block can trap when reached by BB or PBB (PR17073). In that
2386 // case, it would be unsafe to hoist the operation into a select instruction.
2387
2388 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
2389 unsigned NumPhis = 0;
2390 for (BasicBlock::iterator II = CommonDest->begin();
2391 isa<PHINode>(II); ++II, ++NumPhis) {
2392 if (NumPhis > 2) // Disable this xform.
2393 return false;
2394
2395 PHINode *PN = cast<PHINode>(II);
2396 Value *BIV = PN->getIncomingValueForBlock(BB);
2397 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
2398 if (CE->canTrap())
2399 return false;
2400
2401 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2402 Value *PBIV = PN->getIncomingValue(PBBIdx);
2403 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
2404 if (CE->canTrap())
2405 return false;
2406 }
2407
2408 // Finally, if everything is ok, fold the branches to logical ops.
2409 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
2410
2411 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
2412 << "AND: " << *BI->getParent());
2413
2414
2415 // If OtherDest *is* BB, then BB is a basic block with a single conditional
2416 // branch in it, where one edge (OtherDest) goes back to itself but the other
2417 // exits. We don't *know* that the program avoids the infinite loop
2418 // (even though that seems likely). If we do this xform naively, we'll end up
2419 // recursively unpeeling the loop. Since we know that (after the xform is
2420 // done) that the block *is* infinite if reached, we just make it an obviously
2421 // infinite loop with no cond branch.
2422 if (OtherDest == BB) {
2423 // Insert it at the end of the function, because it's either code,
2424 // or it won't matter if it's hot. :)
2425 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
2426 "infloop", BB->getParent());
2427 BranchInst::Create(InfLoopBlock, InfLoopBlock);
2428 OtherDest = InfLoopBlock;
2429 }
2430
2431 DEBUG(dbgs() << *PBI->getParent()->getParent());
2432
2433 // BI may have other predecessors. Because of this, we leave
2434 // it alone, but modify PBI.
2435
2436 // Make sure we get to CommonDest on True&True directions.
2437 Value *PBICond = PBI->getCondition();
2438 IRBuilder<true, NoFolder> Builder(PBI);
2439 if (PBIOp)
2440 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
2441
2442 Value *BICond = BI->getCondition();
2443 if (BIOp)
2444 BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
2445
2446 // Merge the conditions.
2447 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
2448
2449 // Modify PBI to branch on the new condition to the new dests.
2450 PBI->setCondition(Cond);
2451 PBI->setSuccessor(0, CommonDest);
2452 PBI->setSuccessor(1, OtherDest);
2453
2454 // Update branch weight for PBI.
2455 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2456 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2457 PredFalseWeight);
2458 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2459 SuccFalseWeight);
2460 if (PredHasWeights && SuccHasWeights) {
2461 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
2462 uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight;
2463 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
2464 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
2465 // The weight to CommonDest should be PredCommon * SuccTotal +
2466 // PredOther * SuccCommon.
2467 // The weight to OtherDest should be PredOther * SuccOther.
2468 SmallVector<uint64_t, 2> NewWeights;
2469 NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) +
2470 PredOther * SuccCommon);
2471 NewWeights.push_back(PredOther * SuccOther);
2472 // Halve the weights if any of them cannot fit in an uint32_t
2473 FitWeights(NewWeights);
2474
2475 SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end());
2476 PBI->setMetadata(LLVMContext::MD_prof,
2477 MDBuilder(BI->getContext()).
2478 createBranchWeights(MDWeights));
2479 }
2480
2481 // OtherDest may have phi nodes. If so, add an entry from PBI's
2482 // block that are identical to the entries for BI's block.
2483 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
2484
2485 // We know that the CommonDest already had an edge from PBI to
2486 // it. If it has PHIs though, the PHIs may have different
2487 // entries for BB and PBI's BB. If so, insert a select to make
2488 // them agree.
2489 PHINode *PN;
2490 for (BasicBlock::iterator II = CommonDest->begin();
2491 (PN = dyn_cast<PHINode>(II)); ++II) {
2492 Value *BIV = PN->getIncomingValueForBlock(BB);
2493 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2494 Value *PBIV = PN->getIncomingValue(PBBIdx);
2495 if (BIV != PBIV) {
2496 // Insert a select in PBI to pick the right value.
2497 Value *NV = cast<SelectInst>
2498 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
2499 PN->setIncomingValue(PBBIdx, NV);
2500 }
2501 }
2502
2503 DEBUG(dbgs() << "INTO: " << *PBI->getParent());
2504 DEBUG(dbgs() << *PBI->getParent()->getParent());
2505
2506 // This basic block is probably dead. We know it has at least
2507 // one fewer predecessor.
2508 return true;
2509 }
2510
2511 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
2512 // branch to TrueBB if Cond is true or to FalseBB if Cond is false.
2513 // Takes care of updating the successors and removing the old terminator.
2514 // Also makes sure not to introduce new successors by assuming that edges to
2515 // non-successor TrueBBs and FalseBBs aren't reachable.
SimplifyTerminatorOnSelect(TerminatorInst * OldTerm,Value * Cond,BasicBlock * TrueBB,BasicBlock * FalseBB,uint32_t TrueWeight,uint32_t FalseWeight)2516 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
2517 BasicBlock *TrueBB, BasicBlock *FalseBB,
2518 uint32_t TrueWeight,
2519 uint32_t FalseWeight){
2520 // Remove any superfluous successor edges from the CFG.
2521 // First, figure out which successors to preserve.
2522 // If TrueBB and FalseBB are equal, only try to preserve one copy of that
2523 // successor.
2524 BasicBlock *KeepEdge1 = TrueBB;
2525 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
2526
2527 // Then remove the rest.
2528 for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
2529 BasicBlock *Succ = OldTerm->getSuccessor(I);
2530 // Make sure only to keep exactly one copy of each edge.
2531 if (Succ == KeepEdge1)
2532 KeepEdge1 = nullptr;
2533 else if (Succ == KeepEdge2)
2534 KeepEdge2 = nullptr;
2535 else
2536 Succ->removePredecessor(OldTerm->getParent());
2537 }
2538
2539 IRBuilder<> Builder(OldTerm);
2540 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
2541
2542 // Insert an appropriate new terminator.
2543 if (!KeepEdge1 && !KeepEdge2) {
2544 if (TrueBB == FalseBB)
2545 // We were only looking for one successor, and it was present.
2546 // Create an unconditional branch to it.
2547 Builder.CreateBr(TrueBB);
2548 else {
2549 // We found both of the successors we were looking for.
2550 // Create a conditional branch sharing the condition of the select.
2551 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
2552 if (TrueWeight != FalseWeight)
2553 NewBI->setMetadata(LLVMContext::MD_prof,
2554 MDBuilder(OldTerm->getContext()).
2555 createBranchWeights(TrueWeight, FalseWeight));
2556 }
2557 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
2558 // Neither of the selected blocks were successors, so this
2559 // terminator must be unreachable.
2560 new UnreachableInst(OldTerm->getContext(), OldTerm);
2561 } else {
2562 // One of the selected values was a successor, but the other wasn't.
2563 // Insert an unconditional branch to the one that was found;
2564 // the edge to the one that wasn't must be unreachable.
2565 if (!KeepEdge1)
2566 // Only TrueBB was found.
2567 Builder.CreateBr(TrueBB);
2568 else
2569 // Only FalseBB was found.
2570 Builder.CreateBr(FalseBB);
2571 }
2572
2573 EraseTerminatorInstAndDCECond(OldTerm);
2574 return true;
2575 }
2576
2577 // SimplifySwitchOnSelect - Replaces
2578 // (switch (select cond, X, Y)) on constant X, Y
2579 // with a branch - conditional if X and Y lead to distinct BBs,
2580 // unconditional otherwise.
SimplifySwitchOnSelect(SwitchInst * SI,SelectInst * Select)2581 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
2582 // Check for constant integer values in the select.
2583 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
2584 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
2585 if (!TrueVal || !FalseVal)
2586 return false;
2587
2588 // Find the relevant condition and destinations.
2589 Value *Condition = Select->getCondition();
2590 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
2591 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
2592
2593 // Get weight for TrueBB and FalseBB.
2594 uint32_t TrueWeight = 0, FalseWeight = 0;
2595 SmallVector<uint64_t, 8> Weights;
2596 bool HasWeights = HasBranchWeights(SI);
2597 if (HasWeights) {
2598 GetBranchWeights(SI, Weights);
2599 if (Weights.size() == 1 + SI->getNumCases()) {
2600 TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal).
2601 getSuccessorIndex()];
2602 FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal).
2603 getSuccessorIndex()];
2604 }
2605 }
2606
2607 // Perform the actual simplification.
2608 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB,
2609 TrueWeight, FalseWeight);
2610 }
2611
2612 // SimplifyIndirectBrOnSelect - Replaces
2613 // (indirectbr (select cond, blockaddress(@fn, BlockA),
2614 // blockaddress(@fn, BlockB)))
2615 // with
2616 // (br cond, BlockA, BlockB).
SimplifyIndirectBrOnSelect(IndirectBrInst * IBI,SelectInst * SI)2617 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
2618 // Check that both operands of the select are block addresses.
2619 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
2620 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
2621 if (!TBA || !FBA)
2622 return false;
2623
2624 // Extract the actual blocks.
2625 BasicBlock *TrueBB = TBA->getBasicBlock();
2626 BasicBlock *FalseBB = FBA->getBasicBlock();
2627
2628 // Perform the actual simplification.
2629 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB,
2630 0, 0);
2631 }
2632
2633 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
2634 /// instruction (a seteq/setne with a constant) as the only instruction in a
2635 /// block that ends with an uncond branch. We are looking for a very specific
2636 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In
2637 /// this case, we merge the first two "or's of icmp" into a switch, but then the
2638 /// default value goes to an uncond block with a seteq in it, we get something
2639 /// like:
2640 ///
2641 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ]
2642 /// DEFAULT:
2643 /// %tmp = icmp eq i8 %A, 92
2644 /// br label %end
2645 /// end:
2646 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
2647 ///
2648 /// We prefer to split the edge to 'end' so that there is a true/false entry to
2649 /// the PHI, merging the third icmp into the switch.
TryToSimplifyUncondBranchWithICmpInIt(ICmpInst * ICI,IRBuilder<> & Builder,const TargetTransformInfo & TTI,const DataLayout * DL)2650 static bool TryToSimplifyUncondBranchWithICmpInIt(
2651 ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI,
2652 const DataLayout *DL) {
2653 BasicBlock *BB = ICI->getParent();
2654
2655 // If the block has any PHIs in it or the icmp has multiple uses, it is too
2656 // complex.
2657 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
2658
2659 Value *V = ICI->getOperand(0);
2660 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
2661
2662 // The pattern we're looking for is where our only predecessor is a switch on
2663 // 'V' and this block is the default case for the switch. In this case we can
2664 // fold the compared value into the switch to simplify things.
2665 BasicBlock *Pred = BB->getSinglePredecessor();
2666 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false;
2667
2668 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
2669 if (SI->getCondition() != V)
2670 return false;
2671
2672 // If BB is reachable on a non-default case, then we simply know the value of
2673 // V in this block. Substitute it and constant fold the icmp instruction
2674 // away.
2675 if (SI->getDefaultDest() != BB) {
2676 ConstantInt *VVal = SI->findCaseDest(BB);
2677 assert(VVal && "Should have a unique destination value");
2678 ICI->setOperand(0, VVal);
2679
2680 if (Value *V = SimplifyInstruction(ICI, DL)) {
2681 ICI->replaceAllUsesWith(V);
2682 ICI->eraseFromParent();
2683 }
2684 // BB is now empty, so it is likely to simplify away.
2685 return SimplifyCFG(BB, TTI, DL) | true;
2686 }
2687
2688 // Ok, the block is reachable from the default dest. If the constant we're
2689 // comparing exists in one of the other edges, then we can constant fold ICI
2690 // and zap it.
2691 if (SI->findCaseValue(Cst) != SI->case_default()) {
2692 Value *V;
2693 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2694 V = ConstantInt::getFalse(BB->getContext());
2695 else
2696 V = ConstantInt::getTrue(BB->getContext());
2697
2698 ICI->replaceAllUsesWith(V);
2699 ICI->eraseFromParent();
2700 // BB is now empty, so it is likely to simplify away.
2701 return SimplifyCFG(BB, TTI, DL) | true;
2702 }
2703
2704 // The use of the icmp has to be in the 'end' block, by the only PHI node in
2705 // the block.
2706 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
2707 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
2708 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
2709 isa<PHINode>(++BasicBlock::iterator(PHIUse)))
2710 return false;
2711
2712 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
2713 // true in the PHI.
2714 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
2715 Constant *NewCst = ConstantInt::getFalse(BB->getContext());
2716
2717 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2718 std::swap(DefaultCst, NewCst);
2719
2720 // Replace ICI (which is used by the PHI for the default value) with true or
2721 // false depending on if it is EQ or NE.
2722 ICI->replaceAllUsesWith(DefaultCst);
2723 ICI->eraseFromParent();
2724
2725 // Okay, the switch goes to this block on a default value. Add an edge from
2726 // the switch to the merge point on the compared value.
2727 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
2728 BB->getParent(), BB);
2729 SmallVector<uint64_t, 8> Weights;
2730 bool HasWeights = HasBranchWeights(SI);
2731 if (HasWeights) {
2732 GetBranchWeights(SI, Weights);
2733 if (Weights.size() == 1 + SI->getNumCases()) {
2734 // Split weight for default case to case for "Cst".
2735 Weights[0] = (Weights[0]+1) >> 1;
2736 Weights.push_back(Weights[0]);
2737
2738 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
2739 SI->setMetadata(LLVMContext::MD_prof,
2740 MDBuilder(SI->getContext()).
2741 createBranchWeights(MDWeights));
2742 }
2743 }
2744 SI->addCase(Cst, NewBB);
2745
2746 // NewBB branches to the phi block, add the uncond branch and the phi entry.
2747 Builder.SetInsertPoint(NewBB);
2748 Builder.SetCurrentDebugLocation(SI->getDebugLoc());
2749 Builder.CreateBr(SuccBlock);
2750 PHIUse->addIncoming(NewCst, NewBB);
2751 return true;
2752 }
2753
2754 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
2755 /// Check to see if it is branching on an or/and chain of icmp instructions, and
2756 /// fold it into a switch instruction if so.
SimplifyBranchOnICmpChain(BranchInst * BI,const DataLayout * DL,IRBuilder<> & Builder)2757 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *DL,
2758 IRBuilder<> &Builder) {
2759 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
2760 if (!Cond) return false;
2761
2762
2763 // Change br (X == 0 | X == 1), T, F into a switch instruction.
2764 // If this is a bunch of seteq's or'd together, or if it's a bunch of
2765 // 'setne's and'ed together, collect them.
2766 Value *CompVal = nullptr;
2767 std::vector<ConstantInt*> Values;
2768 bool TrueWhenEqual = true;
2769 Value *ExtraCase = nullptr;
2770 unsigned UsedICmps = 0;
2771
2772 if (Cond->getOpcode() == Instruction::Or) {
2773 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, DL, true,
2774 UsedICmps);
2775 } else if (Cond->getOpcode() == Instruction::And) {
2776 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, DL, false,
2777 UsedICmps);
2778 TrueWhenEqual = false;
2779 }
2780
2781 // If we didn't have a multiply compared value, fail.
2782 if (!CompVal) return false;
2783
2784 // Avoid turning single icmps into a switch.
2785 if (UsedICmps <= 1)
2786 return false;
2787
2788 // There might be duplicate constants in the list, which the switch
2789 // instruction can't handle, remove them now.
2790 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
2791 Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2792
2793 // If Extra was used, we require at least two switch values to do the
2794 // transformation. A switch with one value is just an cond branch.
2795 if (ExtraCase && Values.size() < 2) return false;
2796
2797 // TODO: Preserve branch weight metadata, similarly to how
2798 // FoldValueComparisonIntoPredecessors preserves it.
2799
2800 // Figure out which block is which destination.
2801 BasicBlock *DefaultBB = BI->getSuccessor(1);
2802 BasicBlock *EdgeBB = BI->getSuccessor(0);
2803 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2804
2805 BasicBlock *BB = BI->getParent();
2806
2807 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
2808 << " cases into SWITCH. BB is:\n" << *BB);
2809
2810 // If there are any extra values that couldn't be folded into the switch
2811 // then we evaluate them with an explicit branch first. Split the block
2812 // right before the condbr to handle it.
2813 if (ExtraCase) {
2814 BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
2815 // Remove the uncond branch added to the old block.
2816 TerminatorInst *OldTI = BB->getTerminator();
2817 Builder.SetInsertPoint(OldTI);
2818
2819 if (TrueWhenEqual)
2820 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
2821 else
2822 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
2823
2824 OldTI->eraseFromParent();
2825
2826 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
2827 // for the edge we just added.
2828 AddPredecessorToBlock(EdgeBB, BB, NewBB);
2829
2830 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
2831 << "\nEXTRABB = " << *BB);
2832 BB = NewBB;
2833 }
2834
2835 Builder.SetInsertPoint(BI);
2836 // Convert pointer to int before we switch.
2837 if (CompVal->getType()->isPointerTy()) {
2838 assert(DL && "Cannot switch on pointer without DataLayout");
2839 CompVal = Builder.CreatePtrToInt(CompVal,
2840 DL->getIntPtrType(CompVal->getType()),
2841 "magicptr");
2842 }
2843
2844 // Create the new switch instruction now.
2845 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
2846
2847 // Add all of the 'cases' to the switch instruction.
2848 for (unsigned i = 0, e = Values.size(); i != e; ++i)
2849 New->addCase(Values[i], EdgeBB);
2850
2851 // We added edges from PI to the EdgeBB. As such, if there were any
2852 // PHI nodes in EdgeBB, they need entries to be added corresponding to
2853 // the number of edges added.
2854 for (BasicBlock::iterator BBI = EdgeBB->begin();
2855 isa<PHINode>(BBI); ++BBI) {
2856 PHINode *PN = cast<PHINode>(BBI);
2857 Value *InVal = PN->getIncomingValueForBlock(BB);
2858 for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2859 PN->addIncoming(InVal, BB);
2860 }
2861
2862 // Erase the old branch instruction.
2863 EraseTerminatorInstAndDCECond(BI);
2864
2865 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n');
2866 return true;
2867 }
2868
SimplifyResume(ResumeInst * RI,IRBuilder<> & Builder)2869 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
2870 // If this is a trivial landing pad that just continues unwinding the caught
2871 // exception then zap the landing pad, turning its invokes into calls.
2872 BasicBlock *BB = RI->getParent();
2873 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
2874 if (RI->getValue() != LPInst)
2875 // Not a landing pad, or the resume is not unwinding the exception that
2876 // caused control to branch here.
2877 return false;
2878
2879 // Check that there are no other instructions except for debug intrinsics.
2880 BasicBlock::iterator I = LPInst, E = RI;
2881 while (++I != E)
2882 if (!isa<DbgInfoIntrinsic>(I))
2883 return false;
2884
2885 // Turn all invokes that unwind here into calls and delete the basic block.
2886 bool InvokeRequiresTableEntry = false;
2887 bool Changed = false;
2888 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
2889 InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
2890
2891 if (II->hasFnAttr(Attribute::UWTable)) {
2892 // Don't remove an `invoke' instruction if the ABI requires an entry into
2893 // the table.
2894 InvokeRequiresTableEntry = true;
2895 continue;
2896 }
2897
2898 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
2899
2900 // Insert a call instruction before the invoke.
2901 CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
2902 Call->takeName(II);
2903 Call->setCallingConv(II->getCallingConv());
2904 Call->setAttributes(II->getAttributes());
2905 Call->setDebugLoc(II->getDebugLoc());
2906
2907 // Anything that used the value produced by the invoke instruction now uses
2908 // the value produced by the call instruction. Note that we do this even
2909 // for void functions and calls with no uses so that the callgraph edge is
2910 // updated.
2911 II->replaceAllUsesWith(Call);
2912 BB->removePredecessor(II->getParent());
2913
2914 // Insert a branch to the normal destination right before the invoke.
2915 BranchInst::Create(II->getNormalDest(), II);
2916
2917 // Finally, delete the invoke instruction!
2918 II->eraseFromParent();
2919 Changed = true;
2920 }
2921
2922 if (!InvokeRequiresTableEntry)
2923 // The landingpad is now unreachable. Zap it.
2924 BB->eraseFromParent();
2925
2926 return Changed;
2927 }
2928
SimplifyReturn(ReturnInst * RI,IRBuilder<> & Builder)2929 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
2930 BasicBlock *BB = RI->getParent();
2931 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2932
2933 // Find predecessors that end with branches.
2934 SmallVector<BasicBlock*, 8> UncondBranchPreds;
2935 SmallVector<BranchInst*, 8> CondBranchPreds;
2936 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2937 BasicBlock *P = *PI;
2938 TerminatorInst *PTI = P->getTerminator();
2939 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
2940 if (BI->isUnconditional())
2941 UncondBranchPreds.push_back(P);
2942 else
2943 CondBranchPreds.push_back(BI);
2944 }
2945 }
2946
2947 // If we found some, do the transformation!
2948 if (!UncondBranchPreds.empty() && DupRet) {
2949 while (!UncondBranchPreds.empty()) {
2950 BasicBlock *Pred = UncondBranchPreds.pop_back_val();
2951 DEBUG(dbgs() << "FOLDING: " << *BB
2952 << "INTO UNCOND BRANCH PRED: " << *Pred);
2953 (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
2954 }
2955
2956 // If we eliminated all predecessors of the block, delete the block now.
2957 if (pred_begin(BB) == pred_end(BB))
2958 // We know there are no successors, so just nuke the block.
2959 BB->eraseFromParent();
2960
2961 return true;
2962 }
2963
2964 // Check out all of the conditional branches going to this return
2965 // instruction. If any of them just select between returns, change the
2966 // branch itself into a select/return pair.
2967 while (!CondBranchPreds.empty()) {
2968 BranchInst *BI = CondBranchPreds.pop_back_val();
2969
2970 // Check to see if the non-BB successor is also a return block.
2971 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
2972 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
2973 SimplifyCondBranchToTwoReturns(BI, Builder))
2974 return true;
2975 }
2976 return false;
2977 }
2978
SimplifyUnreachable(UnreachableInst * UI)2979 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
2980 BasicBlock *BB = UI->getParent();
2981
2982 bool Changed = false;
2983
2984 // If there are any instructions immediately before the unreachable that can
2985 // be removed, do so.
2986 while (UI != BB->begin()) {
2987 BasicBlock::iterator BBI = UI;
2988 --BBI;
2989 // Do not delete instructions that can have side effects which might cause
2990 // the unreachable to not be reachable; specifically, calls and volatile
2991 // operations may have this effect.
2992 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
2993
2994 if (BBI->mayHaveSideEffects()) {
2995 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
2996 if (SI->isVolatile())
2997 break;
2998 } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
2999 if (LI->isVolatile())
3000 break;
3001 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
3002 if (RMWI->isVolatile())
3003 break;
3004 } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
3005 if (CXI->isVolatile())
3006 break;
3007 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
3008 !isa<LandingPadInst>(BBI)) {
3009 break;
3010 }
3011 // Note that deleting LandingPad's here is in fact okay, although it
3012 // involves a bit of subtle reasoning. If this inst is a LandingPad,
3013 // all the predecessors of this block will be the unwind edges of Invokes,
3014 // and we can therefore guarantee this block will be erased.
3015 }
3016
3017 // Delete this instruction (any uses are guaranteed to be dead)
3018 if (!BBI->use_empty())
3019 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
3020 BBI->eraseFromParent();
3021 Changed = true;
3022 }
3023
3024 // If the unreachable instruction is the first in the block, take a gander
3025 // at all of the predecessors of this instruction, and simplify them.
3026 if (&BB->front() != UI) return Changed;
3027
3028 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
3029 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
3030 TerminatorInst *TI = Preds[i]->getTerminator();
3031 IRBuilder<> Builder(TI);
3032 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3033 if (BI->isUnconditional()) {
3034 if (BI->getSuccessor(0) == BB) {
3035 new UnreachableInst(TI->getContext(), TI);
3036 TI->eraseFromParent();
3037 Changed = true;
3038 }
3039 } else {
3040 if (BI->getSuccessor(0) == BB) {
3041 Builder.CreateBr(BI->getSuccessor(1));
3042 EraseTerminatorInstAndDCECond(BI);
3043 } else if (BI->getSuccessor(1) == BB) {
3044 Builder.CreateBr(BI->getSuccessor(0));
3045 EraseTerminatorInstAndDCECond(BI);
3046 Changed = true;
3047 }
3048 }
3049 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3050 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3051 i != e; ++i)
3052 if (i.getCaseSuccessor() == BB) {
3053 BB->removePredecessor(SI->getParent());
3054 SI->removeCase(i);
3055 --i; --e;
3056 Changed = true;
3057 }
3058 // If the default value is unreachable, figure out the most popular
3059 // destination and make it the default.
3060 if (SI->getDefaultDest() == BB) {
3061 std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
3062 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3063 i != e; ++i) {
3064 std::pair<unsigned, unsigned> &entry =
3065 Popularity[i.getCaseSuccessor()];
3066 if (entry.first == 0) {
3067 entry.first = 1;
3068 entry.second = i.getCaseIndex();
3069 } else {
3070 entry.first++;
3071 }
3072 }
3073
3074 // Find the most popular block.
3075 unsigned MaxPop = 0;
3076 unsigned MaxIndex = 0;
3077 BasicBlock *MaxBlock = nullptr;
3078 for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
3079 I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
3080 if (I->second.first > MaxPop ||
3081 (I->second.first == MaxPop && MaxIndex > I->second.second)) {
3082 MaxPop = I->second.first;
3083 MaxIndex = I->second.second;
3084 MaxBlock = I->first;
3085 }
3086 }
3087 if (MaxBlock) {
3088 // Make this the new default, allowing us to delete any explicit
3089 // edges to it.
3090 SI->setDefaultDest(MaxBlock);
3091 Changed = true;
3092
3093 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
3094 // it.
3095 if (isa<PHINode>(MaxBlock->begin()))
3096 for (unsigned i = 0; i != MaxPop-1; ++i)
3097 MaxBlock->removePredecessor(SI->getParent());
3098
3099 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3100 i != e; ++i)
3101 if (i.getCaseSuccessor() == MaxBlock) {
3102 SI->removeCase(i);
3103 --i; --e;
3104 }
3105 }
3106 }
3107 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
3108 if (II->getUnwindDest() == BB) {
3109 // Convert the invoke to a call instruction. This would be a good
3110 // place to note that the call does not throw though.
3111 BranchInst *BI = Builder.CreateBr(II->getNormalDest());
3112 II->removeFromParent(); // Take out of symbol table
3113
3114 // Insert the call now...
3115 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
3116 Builder.SetInsertPoint(BI);
3117 CallInst *CI = Builder.CreateCall(II->getCalledValue(),
3118 Args, II->getName());
3119 CI->setCallingConv(II->getCallingConv());
3120 CI->setAttributes(II->getAttributes());
3121 // If the invoke produced a value, the call does now instead.
3122 II->replaceAllUsesWith(CI);
3123 delete II;
3124 Changed = true;
3125 }
3126 }
3127 }
3128
3129 // If this block is now dead, remove it.
3130 if (pred_begin(BB) == pred_end(BB) &&
3131 BB != &BB->getParent()->getEntryBlock()) {
3132 // We know there are no successors, so just nuke the block.
3133 BB->eraseFromParent();
3134 return true;
3135 }
3136
3137 return Changed;
3138 }
3139
3140 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
3141 /// integer range comparison into a sub, an icmp and a branch.
TurnSwitchRangeIntoICmp(SwitchInst * SI,IRBuilder<> & Builder)3142 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
3143 assert(SI->getNumCases() > 1 && "Degenerate switch?");
3144
3145 // Make sure all cases point to the same destination and gather the values.
3146 SmallVector<ConstantInt *, 16> Cases;
3147 SwitchInst::CaseIt I = SI->case_begin();
3148 Cases.push_back(I.getCaseValue());
3149 SwitchInst::CaseIt PrevI = I++;
3150 for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) {
3151 if (PrevI.getCaseSuccessor() != I.getCaseSuccessor())
3152 return false;
3153 Cases.push_back(I.getCaseValue());
3154 }
3155 assert(Cases.size() == SI->getNumCases() && "Not all cases gathered");
3156
3157 // Sort the case values, then check if they form a range we can transform.
3158 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
3159 for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
3160 if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
3161 return false;
3162 }
3163
3164 Constant *Offset = ConstantExpr::getNeg(Cases.back());
3165 Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases());
3166
3167 Value *Sub = SI->getCondition();
3168 if (!Offset->isNullValue())
3169 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
3170 Value *Cmp;
3171 // If NumCases overflowed, then all possible values jump to the successor.
3172 if (NumCases->isNullValue() && SI->getNumCases() != 0)
3173 Cmp = ConstantInt::getTrue(SI->getContext());
3174 else
3175 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
3176 BranchInst *NewBI = Builder.CreateCondBr(
3177 Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest());
3178
3179 // Update weight for the newly-created conditional branch.
3180 SmallVector<uint64_t, 8> Weights;
3181 bool HasWeights = HasBranchWeights(SI);
3182 if (HasWeights) {
3183 GetBranchWeights(SI, Weights);
3184 if (Weights.size() == 1 + SI->getNumCases()) {
3185 // Combine all weights for the cases to be the true weight of NewBI.
3186 // We assume that the sum of all weights for a Terminator can fit into 32
3187 // bits.
3188 uint32_t NewTrueWeight = 0;
3189 for (unsigned I = 1, E = Weights.size(); I != E; ++I)
3190 NewTrueWeight += (uint32_t)Weights[I];
3191 NewBI->setMetadata(LLVMContext::MD_prof,
3192 MDBuilder(SI->getContext()).
3193 createBranchWeights(NewTrueWeight,
3194 (uint32_t)Weights[0]));
3195 }
3196 }
3197
3198 // Prune obsolete incoming values off the successor's PHI nodes.
3199 for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin();
3200 isa<PHINode>(BBI); ++BBI) {
3201 for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I)
3202 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3203 }
3204 SI->eraseFromParent();
3205
3206 return true;
3207 }
3208
3209 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
3210 /// and use it to remove dead cases.
EliminateDeadSwitchCases(SwitchInst * SI)3211 static bool EliminateDeadSwitchCases(SwitchInst *SI) {
3212 Value *Cond = SI->getCondition();
3213 unsigned Bits = Cond->getType()->getIntegerBitWidth();
3214 APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
3215 computeKnownBits(Cond, KnownZero, KnownOne);
3216
3217 // Gather dead cases.
3218 SmallVector<ConstantInt*, 8> DeadCases;
3219 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3220 if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
3221 (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
3222 DeadCases.push_back(I.getCaseValue());
3223 DEBUG(dbgs() << "SimplifyCFG: switch case '"
3224 << I.getCaseValue() << "' is dead.\n");
3225 }
3226 }
3227
3228 SmallVector<uint64_t, 8> Weights;
3229 bool HasWeight = HasBranchWeights(SI);
3230 if (HasWeight) {
3231 GetBranchWeights(SI, Weights);
3232 HasWeight = (Weights.size() == 1 + SI->getNumCases());
3233 }
3234
3235 // Remove dead cases from the switch.
3236 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
3237 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
3238 assert(Case != SI->case_default() &&
3239 "Case was not found. Probably mistake in DeadCases forming.");
3240 if (HasWeight) {
3241 std::swap(Weights[Case.getCaseIndex()+1], Weights.back());
3242 Weights.pop_back();
3243 }
3244
3245 // Prune unused values from PHI nodes.
3246 Case.getCaseSuccessor()->removePredecessor(SI->getParent());
3247 SI->removeCase(Case);
3248 }
3249 if (HasWeight && Weights.size() >= 2) {
3250 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3251 SI->setMetadata(LLVMContext::MD_prof,
3252 MDBuilder(SI->getParent()->getContext()).
3253 createBranchWeights(MDWeights));
3254 }
3255
3256 return !DeadCases.empty();
3257 }
3258
3259 /// FindPHIForConditionForwarding - If BB would be eligible for simplification
3260 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
3261 /// by an unconditional branch), look at the phi node for BB in the successor
3262 /// block and see if the incoming value is equal to CaseValue. If so, return
3263 /// the phi node, and set PhiIndex to BB's index in the phi node.
FindPHIForConditionForwarding(ConstantInt * CaseValue,BasicBlock * BB,int * PhiIndex)3264 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
3265 BasicBlock *BB,
3266 int *PhiIndex) {
3267 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
3268 return nullptr; // BB must be empty to be a candidate for simplification.
3269 if (!BB->getSinglePredecessor())
3270 return nullptr; // BB must be dominated by the switch.
3271
3272 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
3273 if (!Branch || !Branch->isUnconditional())
3274 return nullptr; // Terminator must be unconditional branch.
3275
3276 BasicBlock *Succ = Branch->getSuccessor(0);
3277
3278 BasicBlock::iterator I = Succ->begin();
3279 while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3280 int Idx = PHI->getBasicBlockIndex(BB);
3281 assert(Idx >= 0 && "PHI has no entry for predecessor?");
3282
3283 Value *InValue = PHI->getIncomingValue(Idx);
3284 if (InValue != CaseValue) continue;
3285
3286 *PhiIndex = Idx;
3287 return PHI;
3288 }
3289
3290 return nullptr;
3291 }
3292
3293 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
3294 /// instruction to a phi node dominated by the switch, if that would mean that
3295 /// some of the destination blocks of the switch can be folded away.
3296 /// Returns true if a change is made.
ForwardSwitchConditionToPHI(SwitchInst * SI)3297 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
3298 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
3299 ForwardingNodesMap ForwardingNodes;
3300
3301 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3302 ConstantInt *CaseValue = I.getCaseValue();
3303 BasicBlock *CaseDest = I.getCaseSuccessor();
3304
3305 int PhiIndex;
3306 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
3307 &PhiIndex);
3308 if (!PHI) continue;
3309
3310 ForwardingNodes[PHI].push_back(PhiIndex);
3311 }
3312
3313 bool Changed = false;
3314
3315 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
3316 E = ForwardingNodes.end(); I != E; ++I) {
3317 PHINode *Phi = I->first;
3318 SmallVectorImpl<int> &Indexes = I->second;
3319
3320 if (Indexes.size() < 2) continue;
3321
3322 for (size_t I = 0, E = Indexes.size(); I != E; ++I)
3323 Phi->setIncomingValue(Indexes[I], SI->getCondition());
3324 Changed = true;
3325 }
3326
3327 return Changed;
3328 }
3329
3330 /// ValidLookupTableConstant - Return true if the backend will be able to handle
3331 /// initializing an array of constants like C.
ValidLookupTableConstant(Constant * C)3332 static bool ValidLookupTableConstant(Constant *C) {
3333 if (C->isThreadDependent())
3334 return false;
3335 if (C->isDLLImportDependent())
3336 return false;
3337
3338 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
3339 return CE->isGEPWithNoNotionalOverIndexing();
3340
3341 return isa<ConstantFP>(C) ||
3342 isa<ConstantInt>(C) ||
3343 isa<ConstantPointerNull>(C) ||
3344 isa<GlobalValue>(C) ||
3345 isa<UndefValue>(C);
3346 }
3347
3348 /// LookupConstant - If V is a Constant, return it. Otherwise, try to look up
3349 /// its constant value in ConstantPool, returning 0 if it's not there.
LookupConstant(Value * V,const SmallDenseMap<Value *,Constant * > & ConstantPool)3350 static Constant *LookupConstant(Value *V,
3351 const SmallDenseMap<Value*, Constant*>& ConstantPool) {
3352 if (Constant *C = dyn_cast<Constant>(V))
3353 return C;
3354 return ConstantPool.lookup(V);
3355 }
3356
3357 /// ConstantFold - Try to fold instruction I into a constant. This works for
3358 /// simple instructions such as binary operations where both operands are
3359 /// constant or can be replaced by constants from the ConstantPool. Returns the
3360 /// resulting constant on success, 0 otherwise.
3361 static Constant *
ConstantFold(Instruction * I,const SmallDenseMap<Value *,Constant * > & ConstantPool,const DataLayout * DL)3362 ConstantFold(Instruction *I,
3363 const SmallDenseMap<Value *, Constant *> &ConstantPool,
3364 const DataLayout *DL) {
3365 if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
3366 Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
3367 if (!A)
3368 return nullptr;
3369 if (A->isAllOnesValue())
3370 return LookupConstant(Select->getTrueValue(), ConstantPool);
3371 if (A->isNullValue())
3372 return LookupConstant(Select->getFalseValue(), ConstantPool);
3373 return nullptr;
3374 }
3375
3376 SmallVector<Constant *, 4> COps;
3377 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
3378 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
3379 COps.push_back(A);
3380 else
3381 return nullptr;
3382 }
3383
3384 if (CmpInst *Cmp = dyn_cast<CmpInst>(I))
3385 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
3386 COps[1], DL);
3387
3388 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), COps, DL);
3389 }
3390
3391 /// GetCaseResults - Try to determine the resulting constant values in phi nodes
3392 /// at the common destination basic block, *CommonDest, for one of the case
3393 /// destionations CaseDest corresponding to value CaseVal (0 for the default
3394 /// case), of a switch instruction SI.
3395 static bool
GetCaseResults(SwitchInst * SI,ConstantInt * CaseVal,BasicBlock * CaseDest,BasicBlock ** CommonDest,SmallVectorImpl<std::pair<PHINode *,Constant * >> & Res,const DataLayout * DL)3396 GetCaseResults(SwitchInst *SI,
3397 ConstantInt *CaseVal,
3398 BasicBlock *CaseDest,
3399 BasicBlock **CommonDest,
3400 SmallVectorImpl<std::pair<PHINode *, Constant *> > &Res,
3401 const DataLayout *DL) {
3402 // The block from which we enter the common destination.
3403 BasicBlock *Pred = SI->getParent();
3404
3405 // If CaseDest is empty except for some side-effect free instructions through
3406 // which we can constant-propagate the CaseVal, continue to its successor.
3407 SmallDenseMap<Value*, Constant*> ConstantPool;
3408 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
3409 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
3410 ++I) {
3411 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
3412 // If the terminator is a simple branch, continue to the next block.
3413 if (T->getNumSuccessors() != 1)
3414 return false;
3415 Pred = CaseDest;
3416 CaseDest = T->getSuccessor(0);
3417 } else if (isa<DbgInfoIntrinsic>(I)) {
3418 // Skip debug intrinsic.
3419 continue;
3420 } else if (Constant *C = ConstantFold(I, ConstantPool, DL)) {
3421 // Instruction is side-effect free and constant.
3422 ConstantPool.insert(std::make_pair(I, C));
3423 } else {
3424 break;
3425 }
3426 }
3427
3428 // If we did not have a CommonDest before, use the current one.
3429 if (!*CommonDest)
3430 *CommonDest = CaseDest;
3431 // If the destination isn't the common one, abort.
3432 if (CaseDest != *CommonDest)
3433 return false;
3434
3435 // Get the values for this case from phi nodes in the destination block.
3436 BasicBlock::iterator I = (*CommonDest)->begin();
3437 while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3438 int Idx = PHI->getBasicBlockIndex(Pred);
3439 if (Idx == -1)
3440 continue;
3441
3442 Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx),
3443 ConstantPool);
3444 if (!ConstVal)
3445 return false;
3446
3447 // Note: If the constant comes from constant-propagating the case value
3448 // through the CaseDest basic block, it will be safe to remove the
3449 // instructions in that block. They cannot be used (except in the phi nodes
3450 // we visit) outside CaseDest, because that block does not dominate its
3451 // successor. If it did, we would not be in this phi node.
3452
3453 // Be conservative about which kinds of constants we support.
3454 if (!ValidLookupTableConstant(ConstVal))
3455 return false;
3456
3457 Res.push_back(std::make_pair(PHI, ConstVal));
3458 }
3459
3460 return Res.size() > 0;
3461 }
3462
3463 namespace {
3464 /// SwitchLookupTable - This class represents a lookup table that can be used
3465 /// to replace a switch.
3466 class SwitchLookupTable {
3467 public:
3468 /// SwitchLookupTable - Create a lookup table to use as a switch replacement
3469 /// with the contents of Values, using DefaultValue to fill any holes in the
3470 /// table.
3471 SwitchLookupTable(Module &M,
3472 uint64_t TableSize,
3473 ConstantInt *Offset,
3474 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values,
3475 Constant *DefaultValue,
3476 const DataLayout *DL);
3477
3478 /// BuildLookup - Build instructions with Builder to retrieve the value at
3479 /// the position given by Index in the lookup table.
3480 Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
3481
3482 /// WouldFitInRegister - Return true if a table with TableSize elements of
3483 /// type ElementType would fit in a target-legal register.
3484 static bool WouldFitInRegister(const DataLayout *DL,
3485 uint64_t TableSize,
3486 const Type *ElementType);
3487
3488 private:
3489 // Depending on the contents of the table, it can be represented in
3490 // different ways.
3491 enum {
3492 // For tables where each element contains the same value, we just have to
3493 // store that single value and return it for each lookup.
3494 SingleValueKind,
3495
3496 // For small tables with integer elements, we can pack them into a bitmap
3497 // that fits into a target-legal register. Values are retrieved by
3498 // shift and mask operations.
3499 BitMapKind,
3500
3501 // The table is stored as an array of values. Values are retrieved by load
3502 // instructions from the table.
3503 ArrayKind
3504 } Kind;
3505
3506 // For SingleValueKind, this is the single value.
3507 Constant *SingleValue;
3508
3509 // For BitMapKind, this is the bitmap.
3510 ConstantInt *BitMap;
3511 IntegerType *BitMapElementTy;
3512
3513 // For ArrayKind, this is the array.
3514 GlobalVariable *Array;
3515 };
3516 }
3517
SwitchLookupTable(Module & M,uint64_t TableSize,ConstantInt * Offset,const SmallVectorImpl<std::pair<ConstantInt *,Constant * >> & Values,Constant * DefaultValue,const DataLayout * DL)3518 SwitchLookupTable::SwitchLookupTable(Module &M,
3519 uint64_t TableSize,
3520 ConstantInt *Offset,
3521 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values,
3522 Constant *DefaultValue,
3523 const DataLayout *DL)
3524 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
3525 Array(nullptr) {
3526 assert(Values.size() && "Can't build lookup table without values!");
3527 assert(TableSize >= Values.size() && "Can't fit values in table!");
3528
3529 // If all values in the table are equal, this is that value.
3530 SingleValue = Values.begin()->second;
3531
3532 Type *ValueType = Values.begin()->second->getType();
3533
3534 // Build up the table contents.
3535 SmallVector<Constant*, 64> TableContents(TableSize);
3536 for (size_t I = 0, E = Values.size(); I != E; ++I) {
3537 ConstantInt *CaseVal = Values[I].first;
3538 Constant *CaseRes = Values[I].second;
3539 assert(CaseRes->getType() == ValueType);
3540
3541 uint64_t Idx = (CaseVal->getValue() - Offset->getValue())
3542 .getLimitedValue();
3543 TableContents[Idx] = CaseRes;
3544
3545 if (CaseRes != SingleValue)
3546 SingleValue = nullptr;
3547 }
3548
3549 // Fill in any holes in the table with the default result.
3550 if (Values.size() < TableSize) {
3551 assert(DefaultValue &&
3552 "Need a default value to fill the lookup table holes.");
3553 assert(DefaultValue->getType() == ValueType);
3554 for (uint64_t I = 0; I < TableSize; ++I) {
3555 if (!TableContents[I])
3556 TableContents[I] = DefaultValue;
3557 }
3558
3559 if (DefaultValue != SingleValue)
3560 SingleValue = nullptr;
3561 }
3562
3563 // If each element in the table contains the same value, we only need to store
3564 // that single value.
3565 if (SingleValue) {
3566 Kind = SingleValueKind;
3567 return;
3568 }
3569
3570 // If the type is integer and the table fits in a register, build a bitmap.
3571 if (WouldFitInRegister(DL, TableSize, ValueType)) {
3572 IntegerType *IT = cast<IntegerType>(ValueType);
3573 APInt TableInt(TableSize * IT->getBitWidth(), 0);
3574 for (uint64_t I = TableSize; I > 0; --I) {
3575 TableInt <<= IT->getBitWidth();
3576 // Insert values into the bitmap. Undef values are set to zero.
3577 if (!isa<UndefValue>(TableContents[I - 1])) {
3578 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
3579 TableInt |= Val->getValue().zext(TableInt.getBitWidth());
3580 }
3581 }
3582 BitMap = ConstantInt::get(M.getContext(), TableInt);
3583 BitMapElementTy = IT;
3584 Kind = BitMapKind;
3585 ++NumBitMaps;
3586 return;
3587 }
3588
3589 // Store the table in an array.
3590 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
3591 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
3592
3593 Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true,
3594 GlobalVariable::PrivateLinkage,
3595 Initializer,
3596 "switch.table");
3597 Array->setUnnamedAddr(true);
3598 Kind = ArrayKind;
3599 }
3600
BuildLookup(Value * Index,IRBuilder<> & Builder)3601 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
3602 switch (Kind) {
3603 case SingleValueKind:
3604 return SingleValue;
3605 case BitMapKind: {
3606 // Type of the bitmap (e.g. i59).
3607 IntegerType *MapTy = BitMap->getType();
3608
3609 // Cast Index to the same type as the bitmap.
3610 // Note: The Index is <= the number of elements in the table, so
3611 // truncating it to the width of the bitmask is safe.
3612 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
3613
3614 // Multiply the shift amount by the element width.
3615 ShiftAmt = Builder.CreateMul(ShiftAmt,
3616 ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
3617 "switch.shiftamt");
3618
3619 // Shift down.
3620 Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt,
3621 "switch.downshift");
3622 // Mask off.
3623 return Builder.CreateTrunc(DownShifted, BitMapElementTy,
3624 "switch.masked");
3625 }
3626 case ArrayKind: {
3627 Value *GEPIndices[] = { Builder.getInt32(0), Index };
3628 Value *GEP = Builder.CreateInBoundsGEP(Array, GEPIndices,
3629 "switch.gep");
3630 return Builder.CreateLoad(GEP, "switch.load");
3631 }
3632 }
3633 llvm_unreachable("Unknown lookup table kind!");
3634 }
3635
WouldFitInRegister(const DataLayout * DL,uint64_t TableSize,const Type * ElementType)3636 bool SwitchLookupTable::WouldFitInRegister(const DataLayout *DL,
3637 uint64_t TableSize,
3638 const Type *ElementType) {
3639 if (!DL)
3640 return false;
3641 const IntegerType *IT = dyn_cast<IntegerType>(ElementType);
3642 if (!IT)
3643 return false;
3644 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
3645 // are <= 15, we could try to narrow the type.
3646
3647 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
3648 if (TableSize >= UINT_MAX/IT->getBitWidth())
3649 return false;
3650 return DL->fitsInLegalInteger(TableSize * IT->getBitWidth());
3651 }
3652
3653 /// ShouldBuildLookupTable - Determine whether a lookup table should be built
3654 /// for this switch, based on the number of cases, size of the table and the
3655 /// types of the results.
ShouldBuildLookupTable(SwitchInst * SI,uint64_t TableSize,const TargetTransformInfo & TTI,const DataLayout * DL,const SmallDenseMap<PHINode *,Type * > & ResultTypes)3656 static bool ShouldBuildLookupTable(SwitchInst *SI,
3657 uint64_t TableSize,
3658 const TargetTransformInfo &TTI,
3659 const DataLayout *DL,
3660 const SmallDenseMap<PHINode*, Type*>& ResultTypes) {
3661 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
3662 return false; // TableSize overflowed, or mul below might overflow.
3663
3664 bool AllTablesFitInRegister = true;
3665 bool HasIllegalType = false;
3666 for (SmallDenseMap<PHINode*, Type*>::const_iterator I = ResultTypes.begin(),
3667 E = ResultTypes.end(); I != E; ++I) {
3668 Type *Ty = I->second;
3669
3670 // Saturate this flag to true.
3671 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
3672
3673 // Saturate this flag to false.
3674 AllTablesFitInRegister = AllTablesFitInRegister &&
3675 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
3676
3677 // If both flags saturate, we're done. NOTE: This *only* works with
3678 // saturating flags, and all flags have to saturate first due to the
3679 // non-deterministic behavior of iterating over a dense map.
3680 if (HasIllegalType && !AllTablesFitInRegister)
3681 break;
3682 }
3683
3684 // If each table would fit in a register, we should build it anyway.
3685 if (AllTablesFitInRegister)
3686 return true;
3687
3688 // Don't build a table that doesn't fit in-register if it has illegal types.
3689 if (HasIllegalType)
3690 return false;
3691
3692 // The table density should be at least 40%. This is the same criterion as for
3693 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
3694 // FIXME: Find the best cut-off.
3695 return SI->getNumCases() * 10 >= TableSize * 4;
3696 }
3697
3698 /// SwitchToLookupTable - If the switch is only used to initialize one or more
3699 /// phi nodes in a common successor block with different constant values,
3700 /// replace the switch with lookup tables.
SwitchToLookupTable(SwitchInst * SI,IRBuilder<> & Builder,const TargetTransformInfo & TTI,const DataLayout * DL)3701 static bool SwitchToLookupTable(SwitchInst *SI,
3702 IRBuilder<> &Builder,
3703 const TargetTransformInfo &TTI,
3704 const DataLayout* DL) {
3705 assert(SI->getNumCases() > 1 && "Degenerate switch?");
3706
3707 // Only build lookup table when we have a target that supports it.
3708 if (!TTI.shouldBuildLookupTables())
3709 return false;
3710
3711 // FIXME: If the switch is too sparse for a lookup table, perhaps we could
3712 // split off a dense part and build a lookup table for that.
3713
3714 // FIXME: This creates arrays of GEPs to constant strings, which means each
3715 // GEP needs a runtime relocation in PIC code. We should just build one big
3716 // string and lookup indices into that.
3717
3718 // Ignore switches with less than three cases. Lookup tables will not make them
3719 // faster, so we don't analyze them.
3720 if (SI->getNumCases() < 3)
3721 return false;
3722
3723 // Figure out the corresponding result for each case value and phi node in the
3724 // common destination, as well as the the min and max case values.
3725 assert(SI->case_begin() != SI->case_end());
3726 SwitchInst::CaseIt CI = SI->case_begin();
3727 ConstantInt *MinCaseVal = CI.getCaseValue();
3728 ConstantInt *MaxCaseVal = CI.getCaseValue();
3729
3730 BasicBlock *CommonDest = nullptr;
3731 typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy;
3732 SmallDenseMap<PHINode*, ResultListTy> ResultLists;
3733 SmallDenseMap<PHINode*, Constant*> DefaultResults;
3734 SmallDenseMap<PHINode*, Type*> ResultTypes;
3735 SmallVector<PHINode*, 4> PHIs;
3736
3737 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
3738 ConstantInt *CaseVal = CI.getCaseValue();
3739 if (CaseVal->getValue().slt(MinCaseVal->getValue()))
3740 MinCaseVal = CaseVal;
3741 if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
3742 MaxCaseVal = CaseVal;
3743
3744 // Resulting value at phi nodes for this case value.
3745 typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy;
3746 ResultsTy Results;
3747 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
3748 Results, DL))
3749 return false;
3750
3751 // Append the result from this case to the list for each phi.
3752 for (ResultsTy::iterator I = Results.begin(), E = Results.end(); I!=E; ++I) {
3753 if (!ResultLists.count(I->first))
3754 PHIs.push_back(I->first);
3755 ResultLists[I->first].push_back(std::make_pair(CaseVal, I->second));
3756 }
3757 }
3758
3759 // Keep track of the result types.
3760 for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
3761 PHINode *PHI = PHIs[I];
3762 ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
3763 }
3764
3765 uint64_t NumResults = ResultLists[PHIs[0]].size();
3766 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
3767 uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
3768 bool TableHasHoles = (NumResults < TableSize);
3769
3770 // If the table has holes, we need a constant result for the default case
3771 // or a bitmask that fits in a register.
3772 SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
3773 bool HasDefaultResults = false;
3774 if (TableHasHoles) {
3775 HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(),
3776 &CommonDest, DefaultResultsList, DL);
3777 }
3778 bool NeedMask = (TableHasHoles && !HasDefaultResults);
3779 if (NeedMask) {
3780 // As an extra penalty for the validity test we require more cases.
3781 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
3782 return false;
3783 if (!(DL && DL->fitsInLegalInteger(TableSize)))
3784 return false;
3785 }
3786
3787 for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) {
3788 PHINode *PHI = DefaultResultsList[I].first;
3789 Constant *Result = DefaultResultsList[I].second;
3790 DefaultResults[PHI] = Result;
3791 }
3792
3793 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
3794 return false;
3795
3796 // Create the BB that does the lookups.
3797 Module &Mod = *CommonDest->getParent()->getParent();
3798 BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(),
3799 "switch.lookup",
3800 CommonDest->getParent(),
3801 CommonDest);
3802
3803 // Compute the table index value.
3804 Builder.SetInsertPoint(SI);
3805 Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
3806 "switch.tableidx");
3807
3808 // Compute the maximum table size representable by the integer type we are
3809 // switching upon.
3810 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
3811 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
3812 assert(MaxTableSize >= TableSize &&
3813 "It is impossible for a switch to have more entries than the max "
3814 "representable value of its input integer type's size.");
3815
3816 // If we have a fully covered lookup table, unconditionally branch to the
3817 // lookup table BB. Otherwise, check if the condition value is within the case
3818 // range. If it is so, branch to the new BB. Otherwise branch to SI's default
3819 // destination.
3820 const bool GeneratingCoveredLookupTable = MaxTableSize == TableSize;
3821 if (GeneratingCoveredLookupTable) {
3822 Builder.CreateBr(LookupBB);
3823 SI->getDefaultDest()->removePredecessor(SI->getParent());
3824 } else {
3825 Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get(
3826 MinCaseVal->getType(), TableSize));
3827 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
3828 }
3829
3830 // Populate the BB that does the lookups.
3831 Builder.SetInsertPoint(LookupBB);
3832
3833 if (NeedMask) {
3834 // Before doing the lookup we do the hole check.
3835 // The LookupBB is therefore re-purposed to do the hole check
3836 // and we create a new LookupBB.
3837 BasicBlock *MaskBB = LookupBB;
3838 MaskBB->setName("switch.hole_check");
3839 LookupBB = BasicBlock::Create(Mod.getContext(),
3840 "switch.lookup",
3841 CommonDest->getParent(),
3842 CommonDest);
3843
3844 // Build bitmask; fill in a 1 bit for every case.
3845 APInt MaskInt(TableSize, 0);
3846 APInt One(TableSize, 1);
3847 const ResultListTy &ResultList = ResultLists[PHIs[0]];
3848 for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
3849 uint64_t Idx = (ResultList[I].first->getValue() -
3850 MinCaseVal->getValue()).getLimitedValue();
3851 MaskInt |= One << Idx;
3852 }
3853 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
3854
3855 // Get the TableIndex'th bit of the bitmask.
3856 // If this bit is 0 (meaning hole) jump to the default destination,
3857 // else continue with table lookup.
3858 IntegerType *MapTy = TableMask->getType();
3859 Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy,
3860 "switch.maskindex");
3861 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex,
3862 "switch.shifted");
3863 Value *LoBit = Builder.CreateTrunc(Shifted,
3864 Type::getInt1Ty(Mod.getContext()),
3865 "switch.lobit");
3866 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
3867
3868 Builder.SetInsertPoint(LookupBB);
3869 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
3870 }
3871
3872 bool ReturnedEarly = false;
3873 for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
3874 PHINode *PHI = PHIs[I];
3875
3876 // If using a bitmask, use any value to fill the lookup table holes.
3877 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
3878 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultLists[PHI],
3879 DV, DL);
3880
3881 Value *Result = Table.BuildLookup(TableIndex, Builder);
3882
3883 // If the result is used to return immediately from the function, we want to
3884 // do that right here.
3885 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
3886 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
3887 Builder.CreateRet(Result);
3888 ReturnedEarly = true;
3889 break;
3890 }
3891
3892 PHI->addIncoming(Result, LookupBB);
3893 }
3894
3895 if (!ReturnedEarly)
3896 Builder.CreateBr(CommonDest);
3897
3898 // Remove the switch.
3899 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
3900 BasicBlock *Succ = SI->getSuccessor(i);
3901
3902 if (Succ == SI->getDefaultDest())
3903 continue;
3904 Succ->removePredecessor(SI->getParent());
3905 }
3906 SI->eraseFromParent();
3907
3908 ++NumLookupTables;
3909 if (NeedMask)
3910 ++NumLookupTablesHoles;
3911 return true;
3912 }
3913
SimplifySwitch(SwitchInst * SI,IRBuilder<> & Builder)3914 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
3915 BasicBlock *BB = SI->getParent();
3916
3917 if (isValueEqualityComparison(SI)) {
3918 // If we only have one predecessor, and if it is a branch on this value,
3919 // see if that predecessor totally determines the outcome of this switch.
3920 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
3921 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
3922 return SimplifyCFG(BB, TTI, DL) | true;
3923
3924 Value *Cond = SI->getCondition();
3925 if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
3926 if (SimplifySwitchOnSelect(SI, Select))
3927 return SimplifyCFG(BB, TTI, DL) | true;
3928
3929 // If the block only contains the switch, see if we can fold the block
3930 // away into any preds.
3931 BasicBlock::iterator BBI = BB->begin();
3932 // Ignore dbg intrinsics.
3933 while (isa<DbgInfoIntrinsic>(BBI))
3934 ++BBI;
3935 if (SI == &*BBI)
3936 if (FoldValueComparisonIntoPredecessors(SI, Builder))
3937 return SimplifyCFG(BB, TTI, DL) | true;
3938 }
3939
3940 // Try to transform the switch into an icmp and a branch.
3941 if (TurnSwitchRangeIntoICmp(SI, Builder))
3942 return SimplifyCFG(BB, TTI, DL) | true;
3943
3944 // Remove unreachable cases.
3945 if (EliminateDeadSwitchCases(SI))
3946 return SimplifyCFG(BB, TTI, DL) | true;
3947
3948 if (ForwardSwitchConditionToPHI(SI))
3949 return SimplifyCFG(BB, TTI, DL) | true;
3950
3951 if (SwitchToLookupTable(SI, Builder, TTI, DL))
3952 return SimplifyCFG(BB, TTI, DL) | true;
3953
3954 return false;
3955 }
3956
SimplifyIndirectBr(IndirectBrInst * IBI)3957 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
3958 BasicBlock *BB = IBI->getParent();
3959 bool Changed = false;
3960
3961 // Eliminate redundant destinations.
3962 SmallPtrSet<Value *, 8> Succs;
3963 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
3964 BasicBlock *Dest = IBI->getDestination(i);
3965 if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
3966 Dest->removePredecessor(BB);
3967 IBI->removeDestination(i);
3968 --i; --e;
3969 Changed = true;
3970 }
3971 }
3972
3973 if (IBI->getNumDestinations() == 0) {
3974 // If the indirectbr has no successors, change it to unreachable.
3975 new UnreachableInst(IBI->getContext(), IBI);
3976 EraseTerminatorInstAndDCECond(IBI);
3977 return true;
3978 }
3979
3980 if (IBI->getNumDestinations() == 1) {
3981 // If the indirectbr has one successor, change it to a direct branch.
3982 BranchInst::Create(IBI->getDestination(0), IBI);
3983 EraseTerminatorInstAndDCECond(IBI);
3984 return true;
3985 }
3986
3987 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
3988 if (SimplifyIndirectBrOnSelect(IBI, SI))
3989 return SimplifyCFG(BB, TTI, DL) | true;
3990 }
3991 return Changed;
3992 }
3993
SimplifyUncondBranch(BranchInst * BI,IRBuilder<> & Builder)3994 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
3995 BasicBlock *BB = BI->getParent();
3996
3997 if (SinkCommon && SinkThenElseCodeToEnd(BI))
3998 return true;
3999
4000 // If the Terminator is the only non-phi instruction, simplify the block.
4001 BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime();
4002 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
4003 TryToSimplifyUncondBranchFromEmptyBlock(BB))
4004 return true;
4005
4006 // If the only instruction in the block is a seteq/setne comparison
4007 // against a constant, try to simplify the block.
4008 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
4009 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
4010 for (++I; isa<DbgInfoIntrinsic>(I); ++I)
4011 ;
4012 if (I->isTerminator() &&
4013 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI, DL))
4014 return true;
4015 }
4016
4017 // If this basic block is ONLY a compare and a branch, and if a predecessor
4018 // branches to us and our successor, fold the comparison into the
4019 // predecessor and use logical operations to update the incoming value
4020 // for PHI nodes in common successor.
4021 if (FoldBranchToCommonDest(BI, DL))
4022 return SimplifyCFG(BB, TTI, DL) | true;
4023 return false;
4024 }
4025
4026
SimplifyCondBranch(BranchInst * BI,IRBuilder<> & Builder)4027 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
4028 BasicBlock *BB = BI->getParent();
4029
4030 // Conditional branch
4031 if (isValueEqualityComparison(BI)) {
4032 // If we only have one predecessor, and if it is a branch on this value,
4033 // see if that predecessor totally determines the outcome of this
4034 // switch.
4035 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
4036 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
4037 return SimplifyCFG(BB, TTI, DL) | true;
4038
4039 // This block must be empty, except for the setcond inst, if it exists.
4040 // Ignore dbg intrinsics.
4041 BasicBlock::iterator I = BB->begin();
4042 // Ignore dbg intrinsics.
4043 while (isa<DbgInfoIntrinsic>(I))
4044 ++I;
4045 if (&*I == BI) {
4046 if (FoldValueComparisonIntoPredecessors(BI, Builder))
4047 return SimplifyCFG(BB, TTI, DL) | true;
4048 } else if (&*I == cast<Instruction>(BI->getCondition())){
4049 ++I;
4050 // Ignore dbg intrinsics.
4051 while (isa<DbgInfoIntrinsic>(I))
4052 ++I;
4053 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
4054 return SimplifyCFG(BB, TTI, DL) | true;
4055 }
4056 }
4057
4058 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
4059 if (SimplifyBranchOnICmpChain(BI, DL, Builder))
4060 return true;
4061
4062 // If this basic block is ONLY a compare and a branch, and if a predecessor
4063 // branches to us and one of our successors, fold the comparison into the
4064 // predecessor and use logical operations to pick the right destination.
4065 if (FoldBranchToCommonDest(BI, DL))
4066 return SimplifyCFG(BB, TTI, DL) | true;
4067
4068 // We have a conditional branch to two blocks that are only reachable
4069 // from BI. We know that the condbr dominates the two blocks, so see if
4070 // there is any identical code in the "then" and "else" blocks. If so, we
4071 // can hoist it up to the branching block.
4072 if (BI->getSuccessor(0)->getSinglePredecessor()) {
4073 if (BI->getSuccessor(1)->getSinglePredecessor()) {
4074 if (HoistThenElseCodeToIf(BI, DL))
4075 return SimplifyCFG(BB, TTI, DL) | true;
4076 } else {
4077 // If Successor #1 has multiple preds, we may be able to conditionally
4078 // execute Successor #0 if it branches to Successor #1.
4079 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
4080 if (Succ0TI->getNumSuccessors() == 1 &&
4081 Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
4082 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), DL))
4083 return SimplifyCFG(BB, TTI, DL) | true;
4084 }
4085 } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
4086 // If Successor #0 has multiple preds, we may be able to conditionally
4087 // execute Successor #1 if it branches to Successor #0.
4088 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
4089 if (Succ1TI->getNumSuccessors() == 1 &&
4090 Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
4091 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), DL))
4092 return SimplifyCFG(BB, TTI, DL) | true;
4093 }
4094
4095 // If this is a branch on a phi node in the current block, thread control
4096 // through this block if any PHI node entries are constants.
4097 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
4098 if (PN->getParent() == BI->getParent())
4099 if (FoldCondBranchOnPHI(BI, DL))
4100 return SimplifyCFG(BB, TTI, DL) | true;
4101
4102 // Scan predecessor blocks for conditional branches.
4103 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
4104 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
4105 if (PBI != BI && PBI->isConditional())
4106 if (SimplifyCondBranchToCondBranch(PBI, BI))
4107 return SimplifyCFG(BB, TTI, DL) | true;
4108
4109 return false;
4110 }
4111
4112 /// Check if passing a value to an instruction will cause undefined behavior.
passingValueIsAlwaysUndefined(Value * V,Instruction * I)4113 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
4114 Constant *C = dyn_cast<Constant>(V);
4115 if (!C)
4116 return false;
4117
4118 if (I->use_empty())
4119 return false;
4120
4121 if (C->isNullValue()) {
4122 // Only look at the first use, avoid hurting compile time with long uselists
4123 User *Use = *I->user_begin();
4124
4125 // Now make sure that there are no instructions in between that can alter
4126 // control flow (eg. calls)
4127 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
4128 if (i == I->getParent()->end() || i->mayHaveSideEffects())
4129 return false;
4130
4131 // Look through GEPs. A load from a GEP derived from NULL is still undefined
4132 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
4133 if (GEP->getPointerOperand() == I)
4134 return passingValueIsAlwaysUndefined(V, GEP);
4135
4136 // Look through bitcasts.
4137 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
4138 return passingValueIsAlwaysUndefined(V, BC);
4139
4140 // Load from null is undefined.
4141 if (LoadInst *LI = dyn_cast<LoadInst>(Use))
4142 if (!LI->isVolatile())
4143 return LI->getPointerAddressSpace() == 0;
4144
4145 // Store to null is undefined.
4146 if (StoreInst *SI = dyn_cast<StoreInst>(Use))
4147 if (!SI->isVolatile())
4148 return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
4149 }
4150 return false;
4151 }
4152
4153 /// If BB has an incoming value that will always trigger undefined behavior
4154 /// (eg. null pointer dereference), remove the branch leading here.
removeUndefIntroducingPredecessor(BasicBlock * BB)4155 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
4156 for (BasicBlock::iterator i = BB->begin();
4157 PHINode *PHI = dyn_cast<PHINode>(i); ++i)
4158 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
4159 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
4160 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
4161 IRBuilder<> Builder(T);
4162 if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
4163 BB->removePredecessor(PHI->getIncomingBlock(i));
4164 // Turn uncoditional branches into unreachables and remove the dead
4165 // destination from conditional branches.
4166 if (BI->isUnconditional())
4167 Builder.CreateUnreachable();
4168 else
4169 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
4170 BI->getSuccessor(0));
4171 BI->eraseFromParent();
4172 return true;
4173 }
4174 // TODO: SwitchInst.
4175 }
4176
4177 return false;
4178 }
4179
run(BasicBlock * BB)4180 bool SimplifyCFGOpt::run(BasicBlock *BB) {
4181 bool Changed = false;
4182
4183 assert(BB && BB->getParent() && "Block not embedded in function!");
4184 assert(BB->getTerminator() && "Degenerate basic block encountered!");
4185
4186 // Remove basic blocks that have no predecessors (except the entry block)...
4187 // or that just have themself as a predecessor. These are unreachable.
4188 if ((pred_begin(BB) == pred_end(BB) &&
4189 BB != &BB->getParent()->getEntryBlock()) ||
4190 BB->getSinglePredecessor() == BB) {
4191 DEBUG(dbgs() << "Removing BB: \n" << *BB);
4192 DeleteDeadBlock(BB);
4193 return true;
4194 }
4195
4196 // Check to see if we can constant propagate this terminator instruction
4197 // away...
4198 Changed |= ConstantFoldTerminator(BB, true);
4199
4200 // Check for and eliminate duplicate PHI nodes in this block.
4201 Changed |= EliminateDuplicatePHINodes(BB);
4202
4203 // Check for and remove branches that will always cause undefined behavior.
4204 Changed |= removeUndefIntroducingPredecessor(BB);
4205
4206 // Merge basic blocks into their predecessor if there is only one distinct
4207 // pred, and if there is only one distinct successor of the predecessor, and
4208 // if there are no PHI nodes.
4209 //
4210 if (MergeBlockIntoPredecessor(BB))
4211 return true;
4212
4213 IRBuilder<> Builder(BB);
4214
4215 // If there is a trivial two-entry PHI node in this basic block, and we can
4216 // eliminate it, do so now.
4217 if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
4218 if (PN->getNumIncomingValues() == 2)
4219 Changed |= FoldTwoEntryPHINode(PN, DL);
4220
4221 Builder.SetInsertPoint(BB->getTerminator());
4222 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
4223 if (BI->isUnconditional()) {
4224 if (SimplifyUncondBranch(BI, Builder)) return true;
4225 } else {
4226 if (SimplifyCondBranch(BI, Builder)) return true;
4227 }
4228 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
4229 if (SimplifyReturn(RI, Builder)) return true;
4230 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
4231 if (SimplifyResume(RI, Builder)) return true;
4232 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
4233 if (SimplifySwitch(SI, Builder)) return true;
4234 } else if (UnreachableInst *UI =
4235 dyn_cast<UnreachableInst>(BB->getTerminator())) {
4236 if (SimplifyUnreachable(UI)) return true;
4237 } else if (IndirectBrInst *IBI =
4238 dyn_cast<IndirectBrInst>(BB->getTerminator())) {
4239 if (SimplifyIndirectBr(IBI)) return true;
4240 }
4241
4242 return Changed;
4243 }
4244
4245 /// SimplifyCFG - This function is used to do simplification of a CFG. For
4246 /// example, it adjusts branches to branches to eliminate the extra hop, it
4247 /// eliminates unreachable basic blocks, and does other "peephole" optimization
4248 /// of the CFG. It returns true if a modification was made.
4249 ///
SimplifyCFG(BasicBlock * BB,const TargetTransformInfo & TTI,const DataLayout * DL)4250 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
4251 const DataLayout *DL) {
4252 return SimplifyCFGOpt(TTI, DL).run(BB);
4253 }
4254