1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // InstructionCombining - Combine instructions to form fewer, simple
11 // instructions. This pass does not modify the CFG. This pass is where
12 // algebraic simplification happens.
13 //
14 // This pass combines things like:
15 // %Y = add i32 %X, 1
16 // %Z = add i32 %Y, 1
17 // into:
18 // %Z = add i32 %X, 2
19 //
20 // This is a simple worklist driven algorithm.
21 //
22 // This pass guarantees that the following canonicalizations are performed on
23 // the program:
24 // 1. If a binary operator has a constant operand, it is moved to the RHS
25 // 2. Bitwise operators with constant operands are always grouped so that
26 // shifts are performed first, then or's, then and's, then xor's.
27 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28 // 4. All cmp instructions on boolean values are replaced with logical ops
29 // 5. add X, X is represented as (X*2) => (X << 1)
30 // 6. Multiplies with a power-of-two constant argument are transformed into
31 // shifts.
32 // ... etc.
33 //
34 //===----------------------------------------------------------------------===//
35
36 #include "llvm/Transforms/Scalar.h"
37 #include "InstCombine.h"
38 #include "llvm-c/Initialization.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/Statistic.h"
41 #include "llvm/ADT/StringSwitch.h"
42 #include "llvm/Analysis/ConstantFolding.h"
43 #include "llvm/Analysis/InstructionSimplify.h"
44 #include "llvm/Analysis/MemoryBuiltins.h"
45 #include "llvm/Analysis/ValueTracking.h"
46 #include "llvm/IR/CFG.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/GetElementPtrTypeIterator.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/PatternMatch.h"
51 #include "llvm/IR/ValueHandle.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Target/TargetLibraryInfo.h"
55 #include "llvm/Transforms/Utils/Local.h"
56 #include <algorithm>
57 #include <climits>
58 using namespace llvm;
59 using namespace llvm::PatternMatch;
60
61 #define DEBUG_TYPE "instcombine"
62
63 STATISTIC(NumCombined , "Number of insts combined");
64 STATISTIC(NumConstProp, "Number of constant folds");
65 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
66 STATISTIC(NumSunkInst , "Number of instructions sunk");
67 STATISTIC(NumExpand, "Number of expansions");
68 STATISTIC(NumFactor , "Number of factorizations");
69 STATISTIC(NumReassoc , "Number of reassociations");
70
71 static cl::opt<bool> UnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
72 cl::init(false),
73 cl::desc("Enable unsafe double to float "
74 "shrinking for math lib calls"));
75
76 // Initialization Routines
initializeInstCombine(PassRegistry & Registry)77 void llvm::initializeInstCombine(PassRegistry &Registry) {
78 initializeInstCombinerPass(Registry);
79 }
80
LLVMInitializeInstCombine(LLVMPassRegistryRef R)81 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
82 initializeInstCombine(*unwrap(R));
83 }
84
85 char InstCombiner::ID = 0;
86 INITIALIZE_PASS_BEGIN(InstCombiner, "instcombine",
87 "Combine redundant instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)88 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
89 INITIALIZE_PASS_END(InstCombiner, "instcombine",
90 "Combine redundant instructions", false, false)
91
92 void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
93 AU.setPreservesCFG();
94 AU.addRequired<TargetLibraryInfo>();
95 }
96
97
EmitGEPOffset(User * GEP)98 Value *InstCombiner::EmitGEPOffset(User *GEP) {
99 return llvm::EmitGEPOffset(Builder, *getDataLayout(), GEP);
100 }
101
102 /// ShouldChangeType - Return true if it is desirable to convert a computation
103 /// from 'From' to 'To'. We don't want to convert from a legal to an illegal
104 /// type for example, or from a smaller to a larger illegal type.
ShouldChangeType(Type * From,Type * To) const105 bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
106 assert(From->isIntegerTy() && To->isIntegerTy());
107
108 // If we don't have DL, we don't know if the source/dest are legal.
109 if (!DL) return false;
110
111 unsigned FromWidth = From->getPrimitiveSizeInBits();
112 unsigned ToWidth = To->getPrimitiveSizeInBits();
113 bool FromLegal = DL->isLegalInteger(FromWidth);
114 bool ToLegal = DL->isLegalInteger(ToWidth);
115
116 // If this is a legal integer from type, and the result would be an illegal
117 // type, don't do the transformation.
118 if (FromLegal && !ToLegal)
119 return false;
120
121 // Otherwise, if both are illegal, do not increase the size of the result. We
122 // do allow things like i160 -> i64, but not i64 -> i160.
123 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
124 return false;
125
126 return true;
127 }
128
129 // Return true, if No Signed Wrap should be maintained for I.
130 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
131 // where both B and C should be ConstantInts, results in a constant that does
132 // not overflow. This function only handles the Add and Sub opcodes. For
133 // all other opcodes, the function conservatively returns false.
MaintainNoSignedWrap(BinaryOperator & I,Value * B,Value * C)134 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
135 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
136 if (!OBO || !OBO->hasNoSignedWrap()) {
137 return false;
138 }
139
140 // We reason about Add and Sub Only.
141 Instruction::BinaryOps Opcode = I.getOpcode();
142 if (Opcode != Instruction::Add &&
143 Opcode != Instruction::Sub) {
144 return false;
145 }
146
147 ConstantInt *CB = dyn_cast<ConstantInt>(B);
148 ConstantInt *CC = dyn_cast<ConstantInt>(C);
149
150 if (!CB || !CC) {
151 return false;
152 }
153
154 const APInt &BVal = CB->getValue();
155 const APInt &CVal = CC->getValue();
156 bool Overflow = false;
157
158 if (Opcode == Instruction::Add) {
159 BVal.sadd_ov(CVal, Overflow);
160 } else {
161 BVal.ssub_ov(CVal, Overflow);
162 }
163
164 return !Overflow;
165 }
166
167 /// Conservatively clears subclassOptionalData after a reassociation or
168 /// commutation. We preserve fast-math flags when applicable as they can be
169 /// preserved.
ClearSubclassDataAfterReassociation(BinaryOperator & I)170 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
171 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
172 if (!FPMO) {
173 I.clearSubclassOptionalData();
174 return;
175 }
176
177 FastMathFlags FMF = I.getFastMathFlags();
178 I.clearSubclassOptionalData();
179 I.setFastMathFlags(FMF);
180 }
181
182 /// SimplifyAssociativeOrCommutative - This performs a few simplifications for
183 /// operators which are associative or commutative:
184 //
185 // Commutative operators:
186 //
187 // 1. Order operands such that they are listed from right (least complex) to
188 // left (most complex). This puts constants before unary operators before
189 // binary operators.
190 //
191 // Associative operators:
192 //
193 // 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
194 // 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
195 //
196 // Associative and commutative operators:
197 //
198 // 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
199 // 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
200 // 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
201 // if C1 and C2 are constants.
202 //
SimplifyAssociativeOrCommutative(BinaryOperator & I)203 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
204 Instruction::BinaryOps Opcode = I.getOpcode();
205 bool Changed = false;
206
207 do {
208 // Order operands such that they are listed from right (least complex) to
209 // left (most complex). This puts constants before unary operators before
210 // binary operators.
211 if (I.isCommutative() && getComplexity(I.getOperand(0)) <
212 getComplexity(I.getOperand(1)))
213 Changed = !I.swapOperands();
214
215 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
216 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
217
218 if (I.isAssociative()) {
219 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
220 if (Op0 && Op0->getOpcode() == Opcode) {
221 Value *A = Op0->getOperand(0);
222 Value *B = Op0->getOperand(1);
223 Value *C = I.getOperand(1);
224
225 // Does "B op C" simplify?
226 if (Value *V = SimplifyBinOp(Opcode, B, C, DL)) {
227 // It simplifies to V. Form "A op V".
228 I.setOperand(0, A);
229 I.setOperand(1, V);
230 // Conservatively clear the optional flags, since they may not be
231 // preserved by the reassociation.
232 if (MaintainNoSignedWrap(I, B, C) &&
233 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
234 // Note: this is only valid because SimplifyBinOp doesn't look at
235 // the operands to Op0.
236 I.clearSubclassOptionalData();
237 I.setHasNoSignedWrap(true);
238 } else {
239 ClearSubclassDataAfterReassociation(I);
240 }
241
242 Changed = true;
243 ++NumReassoc;
244 continue;
245 }
246 }
247
248 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
249 if (Op1 && Op1->getOpcode() == Opcode) {
250 Value *A = I.getOperand(0);
251 Value *B = Op1->getOperand(0);
252 Value *C = Op1->getOperand(1);
253
254 // Does "A op B" simplify?
255 if (Value *V = SimplifyBinOp(Opcode, A, B, DL)) {
256 // It simplifies to V. Form "V op C".
257 I.setOperand(0, V);
258 I.setOperand(1, C);
259 // Conservatively clear the optional flags, since they may not be
260 // preserved by the reassociation.
261 ClearSubclassDataAfterReassociation(I);
262 Changed = true;
263 ++NumReassoc;
264 continue;
265 }
266 }
267 }
268
269 if (I.isAssociative() && I.isCommutative()) {
270 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
271 if (Op0 && Op0->getOpcode() == Opcode) {
272 Value *A = Op0->getOperand(0);
273 Value *B = Op0->getOperand(1);
274 Value *C = I.getOperand(1);
275
276 // Does "C op A" simplify?
277 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
278 // It simplifies to V. Form "V op B".
279 I.setOperand(0, V);
280 I.setOperand(1, B);
281 // Conservatively clear the optional flags, since they may not be
282 // preserved by the reassociation.
283 ClearSubclassDataAfterReassociation(I);
284 Changed = true;
285 ++NumReassoc;
286 continue;
287 }
288 }
289
290 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
291 if (Op1 && Op1->getOpcode() == Opcode) {
292 Value *A = I.getOperand(0);
293 Value *B = Op1->getOperand(0);
294 Value *C = Op1->getOperand(1);
295
296 // Does "C op A" simplify?
297 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
298 // It simplifies to V. Form "B op V".
299 I.setOperand(0, B);
300 I.setOperand(1, V);
301 // Conservatively clear the optional flags, since they may not be
302 // preserved by the reassociation.
303 ClearSubclassDataAfterReassociation(I);
304 Changed = true;
305 ++NumReassoc;
306 continue;
307 }
308 }
309
310 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
311 // if C1 and C2 are constants.
312 if (Op0 && Op1 &&
313 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
314 isa<Constant>(Op0->getOperand(1)) &&
315 isa<Constant>(Op1->getOperand(1)) &&
316 Op0->hasOneUse() && Op1->hasOneUse()) {
317 Value *A = Op0->getOperand(0);
318 Constant *C1 = cast<Constant>(Op0->getOperand(1));
319 Value *B = Op1->getOperand(0);
320 Constant *C2 = cast<Constant>(Op1->getOperand(1));
321
322 Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
323 BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
324 if (isa<FPMathOperator>(New)) {
325 FastMathFlags Flags = I.getFastMathFlags();
326 Flags &= Op0->getFastMathFlags();
327 Flags &= Op1->getFastMathFlags();
328 New->setFastMathFlags(Flags);
329 }
330 InsertNewInstWith(New, I);
331 New->takeName(Op1);
332 I.setOperand(0, New);
333 I.setOperand(1, Folded);
334 // Conservatively clear the optional flags, since they may not be
335 // preserved by the reassociation.
336 ClearSubclassDataAfterReassociation(I);
337
338 Changed = true;
339 continue;
340 }
341 }
342
343 // No further simplifications.
344 return Changed;
345 } while (1);
346 }
347
348 /// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
349 /// "(X LOp Y) ROp (X LOp Z)".
LeftDistributesOverRight(Instruction::BinaryOps LOp,Instruction::BinaryOps ROp)350 static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
351 Instruction::BinaryOps ROp) {
352 switch (LOp) {
353 default:
354 return false;
355
356 case Instruction::And:
357 // And distributes over Or and Xor.
358 switch (ROp) {
359 default:
360 return false;
361 case Instruction::Or:
362 case Instruction::Xor:
363 return true;
364 }
365
366 case Instruction::Mul:
367 // Multiplication distributes over addition and subtraction.
368 switch (ROp) {
369 default:
370 return false;
371 case Instruction::Add:
372 case Instruction::Sub:
373 return true;
374 }
375
376 case Instruction::Or:
377 // Or distributes over And.
378 switch (ROp) {
379 default:
380 return false;
381 case Instruction::And:
382 return true;
383 }
384 }
385 }
386
387 /// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
388 /// "(X ROp Z) LOp (Y ROp Z)".
RightDistributesOverLeft(Instruction::BinaryOps LOp,Instruction::BinaryOps ROp)389 static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
390 Instruction::BinaryOps ROp) {
391 if (Instruction::isCommutative(ROp))
392 return LeftDistributesOverRight(ROp, LOp);
393 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
394 // but this requires knowing that the addition does not overflow and other
395 // such subtleties.
396 return false;
397 }
398
399 /// This function returns identity value for given opcode, which can be used to
400 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
getIdentityValue(Instruction::BinaryOps OpCode,Value * V)401 static Value *getIdentityValue(Instruction::BinaryOps OpCode, Value *V) {
402 if (isa<Constant>(V))
403 return nullptr;
404
405 if (OpCode == Instruction::Mul)
406 return ConstantInt::get(V->getType(), 1);
407
408 // TODO: We can handle other cases e.g. Instruction::And, Instruction::Or etc.
409
410 return nullptr;
411 }
412
413 /// This function factors binary ops which can be combined using distributive
414 /// laws. This also factor SHL as MUL e.g. SHL(X, 2) ==> MUL(X, 4).
415 static Instruction::BinaryOps
getBinOpsForFactorization(BinaryOperator * Op,Value * & LHS,Value * & RHS)416 getBinOpsForFactorization(BinaryOperator *Op, Value *&LHS, Value *&RHS) {
417 if (!Op)
418 return Instruction::BinaryOpsEnd;
419
420 if (Op->getOpcode() == Instruction::Shl) {
421 if (Constant *CST = dyn_cast<Constant>(Op->getOperand(1))) {
422 // The multiplier is really 1 << CST.
423 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), CST);
424 LHS = Op->getOperand(0);
425 return Instruction::Mul;
426 }
427 }
428
429 // TODO: We can add other conversions e.g. shr => div etc.
430
431 LHS = Op->getOperand(0);
432 RHS = Op->getOperand(1);
433 return Op->getOpcode();
434 }
435
436 /// This tries to simplify binary operations by factorizing out common terms
437 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
tryFactorization(InstCombiner::BuilderTy * Builder,const DataLayout * DL,BinaryOperator & I,Instruction::BinaryOps InnerOpcode,Value * A,Value * B,Value * C,Value * D)438 static Value *tryFactorization(InstCombiner::BuilderTy *Builder,
439 const DataLayout *DL, BinaryOperator &I,
440 Instruction::BinaryOps InnerOpcode, Value *A,
441 Value *B, Value *C, Value *D) {
442
443 // If any of A, B, C, D are null, we can not factor I, return early.
444 // Checking A and C should be enough.
445 if (!A || !C || !B || !D)
446 return nullptr;
447
448 Value *SimplifiedInst = nullptr;
449 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
450 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
451
452 // Does "X op' Y" always equal "Y op' X"?
453 bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
454
455 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
456 if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
457 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
458 // commutative case, "(A op' B) op (C op' A)"?
459 if (A == C || (InnerCommutative && A == D)) {
460 if (A != C)
461 std::swap(C, D);
462 // Consider forming "A op' (B op D)".
463 // If "B op D" simplifies then it can be formed with no cost.
464 Value *V = SimplifyBinOp(TopLevelOpcode, B, D, DL);
465 // If "B op D" doesn't simplify then only go on if both of the existing
466 // operations "A op' B" and "C op' D" will be zapped as no longer used.
467 if (!V && LHS->hasOneUse() && RHS->hasOneUse())
468 V = Builder->CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
469 if (V) {
470 SimplifiedInst = Builder->CreateBinOp(InnerOpcode, A, V);
471 }
472 }
473
474 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
475 if (!SimplifiedInst && RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
476 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
477 // commutative case, "(A op' B) op (B op' D)"?
478 if (B == D || (InnerCommutative && B == C)) {
479 if (B != D)
480 std::swap(C, D);
481 // Consider forming "(A op C) op' B".
482 // If "A op C" simplifies then it can be formed with no cost.
483 Value *V = SimplifyBinOp(TopLevelOpcode, A, C, DL);
484
485 // If "A op C" doesn't simplify then only go on if both of the existing
486 // operations "A op' B" and "C op' D" will be zapped as no longer used.
487 if (!V && LHS->hasOneUse() && RHS->hasOneUse())
488 V = Builder->CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
489 if (V) {
490 SimplifiedInst = Builder->CreateBinOp(InnerOpcode, V, B);
491 }
492 }
493
494 if (SimplifiedInst) {
495 ++NumFactor;
496 SimplifiedInst->takeName(&I);
497
498 // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag.
499 // TODO: Check for NUW.
500 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
501 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
502 bool HasNSW = false;
503 if (isa<OverflowingBinaryOperator>(&I))
504 HasNSW = I.hasNoSignedWrap();
505
506 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
507 if (isa<OverflowingBinaryOperator>(Op0))
508 HasNSW &= Op0->hasNoSignedWrap();
509
510 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
511 if (isa<OverflowingBinaryOperator>(Op1))
512 HasNSW &= Op1->hasNoSignedWrap();
513 BO->setHasNoSignedWrap(HasNSW);
514 }
515 }
516 }
517 return SimplifiedInst;
518 }
519
520 /// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
521 /// which some other binary operation distributes over either by factorizing
522 /// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
523 /// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
524 /// a win). Returns the simplified value, or null if it didn't simplify.
SimplifyUsingDistributiveLaws(BinaryOperator & I)525 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
526 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
527 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
528 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
529
530 // Factorization.
531 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
532 Instruction::BinaryOps LHSOpcode = getBinOpsForFactorization(Op0, A, B);
533 Instruction::BinaryOps RHSOpcode = getBinOpsForFactorization(Op1, C, D);
534
535 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
536 // a common term.
537 if (LHSOpcode == RHSOpcode) {
538 if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, C, D))
539 return V;
540 }
541
542 // The instruction has the form "(A op' B) op (C)". Try to factorize common
543 // term.
544 if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, RHS,
545 getIdentityValue(LHSOpcode, RHS)))
546 return V;
547
548 // The instruction has the form "(B) op (C op' D)". Try to factorize common
549 // term.
550 if (Value *V = tryFactorization(Builder, DL, I, RHSOpcode, LHS,
551 getIdentityValue(RHSOpcode, LHS), C, D))
552 return V;
553
554 // Expansion.
555 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
556 if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
557 // The instruction has the form "(A op' B) op C". See if expanding it out
558 // to "(A op C) op' (B op C)" results in simplifications.
559 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
560 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
561
562 // Do "A op C" and "B op C" both simplify?
563 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, DL))
564 if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, DL)) {
565 // They do! Return "L op' R".
566 ++NumExpand;
567 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
568 if ((L == A && R == B) ||
569 (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
570 return Op0;
571 // Otherwise return "L op' R" if it simplifies.
572 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
573 return V;
574 // Otherwise, create a new instruction.
575 C = Builder->CreateBinOp(InnerOpcode, L, R);
576 C->takeName(&I);
577 return C;
578 }
579 }
580
581 if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
582 // The instruction has the form "A op (B op' C)". See if expanding it out
583 // to "(A op B) op' (A op C)" results in simplifications.
584 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
585 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
586
587 // Do "A op B" and "A op C" both simplify?
588 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, DL))
589 if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, DL)) {
590 // They do! Return "L op' R".
591 ++NumExpand;
592 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
593 if ((L == B && R == C) ||
594 (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
595 return Op1;
596 // Otherwise return "L op' R" if it simplifies.
597 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
598 return V;
599 // Otherwise, create a new instruction.
600 A = Builder->CreateBinOp(InnerOpcode, L, R);
601 A->takeName(&I);
602 return A;
603 }
604 }
605
606 return nullptr;
607 }
608
609 // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
610 // if the LHS is a constant zero (which is the 'negate' form).
611 //
dyn_castNegVal(Value * V) const612 Value *InstCombiner::dyn_castNegVal(Value *V) const {
613 if (BinaryOperator::isNeg(V))
614 return BinaryOperator::getNegArgument(V);
615
616 // Constants can be considered to be negated values if they can be folded.
617 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
618 return ConstantExpr::getNeg(C);
619
620 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
621 if (C->getType()->getElementType()->isIntegerTy())
622 return ConstantExpr::getNeg(C);
623
624 return nullptr;
625 }
626
627 // dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
628 // instruction if the LHS is a constant negative zero (which is the 'negate'
629 // form).
630 //
dyn_castFNegVal(Value * V,bool IgnoreZeroSign) const631 Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const {
632 if (BinaryOperator::isFNeg(V, IgnoreZeroSign))
633 return BinaryOperator::getFNegArgument(V);
634
635 // Constants can be considered to be negated values if they can be folded.
636 if (ConstantFP *C = dyn_cast<ConstantFP>(V))
637 return ConstantExpr::getFNeg(C);
638
639 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
640 if (C->getType()->getElementType()->isFloatingPointTy())
641 return ConstantExpr::getFNeg(C);
642
643 return nullptr;
644 }
645
FoldOperationIntoSelectOperand(Instruction & I,Value * SO,InstCombiner * IC)646 static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
647 InstCombiner *IC) {
648 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
649 return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
650 }
651
652 // Figure out if the constant is the left or the right argument.
653 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
654 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
655
656 if (Constant *SOC = dyn_cast<Constant>(SO)) {
657 if (ConstIsRHS)
658 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
659 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
660 }
661
662 Value *Op0 = SO, *Op1 = ConstOperand;
663 if (!ConstIsRHS)
664 std::swap(Op0, Op1);
665
666 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) {
667 Value *RI = IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
668 SO->getName()+".op");
669 Instruction *FPInst = dyn_cast<Instruction>(RI);
670 if (FPInst && isa<FPMathOperator>(FPInst))
671 FPInst->copyFastMathFlags(BO);
672 return RI;
673 }
674 if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
675 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
676 SO->getName()+".cmp");
677 if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
678 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
679 SO->getName()+".cmp");
680 llvm_unreachable("Unknown binary instruction type!");
681 }
682
683 // FoldOpIntoSelect - Given an instruction with a select as one operand and a
684 // constant as the other operand, try to fold the binary operator into the
685 // select arguments. This also works for Cast instructions, which obviously do
686 // not have a second operand.
FoldOpIntoSelect(Instruction & Op,SelectInst * SI)687 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
688 // Don't modify shared select instructions
689 if (!SI->hasOneUse()) return nullptr;
690 Value *TV = SI->getOperand(1);
691 Value *FV = SI->getOperand(2);
692
693 if (isa<Constant>(TV) || isa<Constant>(FV)) {
694 // Bool selects with constant operands can be folded to logical ops.
695 if (SI->getType()->isIntegerTy(1)) return nullptr;
696
697 // If it's a bitcast involving vectors, make sure it has the same number of
698 // elements on both sides.
699 if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
700 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
701 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
702
703 // Verify that either both or neither are vectors.
704 if ((SrcTy == nullptr) != (DestTy == nullptr)) return nullptr;
705 // If vectors, verify that they have the same number of elements.
706 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
707 return nullptr;
708 }
709
710 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
711 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
712
713 return SelectInst::Create(SI->getCondition(),
714 SelectTrueVal, SelectFalseVal);
715 }
716 return nullptr;
717 }
718
719
720 /// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
721 /// has a PHI node as operand #0, see if we can fold the instruction into the
722 /// PHI (which is only possible if all operands to the PHI are constants).
723 ///
FoldOpIntoPhi(Instruction & I)724 Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
725 PHINode *PN = cast<PHINode>(I.getOperand(0));
726 unsigned NumPHIValues = PN->getNumIncomingValues();
727 if (NumPHIValues == 0)
728 return nullptr;
729
730 // We normally only transform phis with a single use. However, if a PHI has
731 // multiple uses and they are all the same operation, we can fold *all* of the
732 // uses into the PHI.
733 if (!PN->hasOneUse()) {
734 // Walk the use list for the instruction, comparing them to I.
735 for (User *U : PN->users()) {
736 Instruction *UI = cast<Instruction>(U);
737 if (UI != &I && !I.isIdenticalTo(UI))
738 return nullptr;
739 }
740 // Otherwise, we can replace *all* users with the new PHI we form.
741 }
742
743 // Check to see if all of the operands of the PHI are simple constants
744 // (constantint/constantfp/undef). If there is one non-constant value,
745 // remember the BB it is in. If there is more than one or if *it* is a PHI,
746 // bail out. We don't do arbitrary constant expressions here because moving
747 // their computation can be expensive without a cost model.
748 BasicBlock *NonConstBB = nullptr;
749 for (unsigned i = 0; i != NumPHIValues; ++i) {
750 Value *InVal = PN->getIncomingValue(i);
751 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
752 continue;
753
754 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi.
755 if (NonConstBB) return nullptr; // More than one non-const value.
756
757 NonConstBB = PN->getIncomingBlock(i);
758
759 // If the InVal is an invoke at the end of the pred block, then we can't
760 // insert a computation after it without breaking the edge.
761 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
762 if (II->getParent() == NonConstBB)
763 return nullptr;
764
765 // If the incoming non-constant value is in I's block, we will remove one
766 // instruction, but insert another equivalent one, leading to infinite
767 // instcombine.
768 if (NonConstBB == I.getParent())
769 return nullptr;
770 }
771
772 // If there is exactly one non-constant value, we can insert a copy of the
773 // operation in that block. However, if this is a critical edge, we would be
774 // inserting the computation one some other paths (e.g. inside a loop). Only
775 // do this if the pred block is unconditionally branching into the phi block.
776 if (NonConstBB != nullptr) {
777 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
778 if (!BI || !BI->isUnconditional()) return nullptr;
779 }
780
781 // Okay, we can do the transformation: create the new PHI node.
782 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
783 InsertNewInstBefore(NewPN, *PN);
784 NewPN->takeName(PN);
785
786 // If we are going to have to insert a new computation, do so right before the
787 // predecessors terminator.
788 if (NonConstBB)
789 Builder->SetInsertPoint(NonConstBB->getTerminator());
790
791 // Next, add all of the operands to the PHI.
792 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
793 // We only currently try to fold the condition of a select when it is a phi,
794 // not the true/false values.
795 Value *TrueV = SI->getTrueValue();
796 Value *FalseV = SI->getFalseValue();
797 BasicBlock *PhiTransBB = PN->getParent();
798 for (unsigned i = 0; i != NumPHIValues; ++i) {
799 BasicBlock *ThisBB = PN->getIncomingBlock(i);
800 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
801 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
802 Value *InV = nullptr;
803 // Beware of ConstantExpr: it may eventually evaluate to getNullValue,
804 // even if currently isNullValue gives false.
805 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
806 if (InC && !isa<ConstantExpr>(InC))
807 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
808 else
809 InV = Builder->CreateSelect(PN->getIncomingValue(i),
810 TrueVInPred, FalseVInPred, "phitmp");
811 NewPN->addIncoming(InV, ThisBB);
812 }
813 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
814 Constant *C = cast<Constant>(I.getOperand(1));
815 for (unsigned i = 0; i != NumPHIValues; ++i) {
816 Value *InV = nullptr;
817 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
818 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
819 else if (isa<ICmpInst>(CI))
820 InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
821 C, "phitmp");
822 else
823 InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
824 C, "phitmp");
825 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
826 }
827 } else if (I.getNumOperands() == 2) {
828 Constant *C = cast<Constant>(I.getOperand(1));
829 for (unsigned i = 0; i != NumPHIValues; ++i) {
830 Value *InV = nullptr;
831 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
832 InV = ConstantExpr::get(I.getOpcode(), InC, C);
833 else
834 InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
835 PN->getIncomingValue(i), C, "phitmp");
836 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
837 }
838 } else {
839 CastInst *CI = cast<CastInst>(&I);
840 Type *RetTy = CI->getType();
841 for (unsigned i = 0; i != NumPHIValues; ++i) {
842 Value *InV;
843 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
844 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
845 else
846 InV = Builder->CreateCast(CI->getOpcode(),
847 PN->getIncomingValue(i), I.getType(), "phitmp");
848 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
849 }
850 }
851
852 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
853 Instruction *User = cast<Instruction>(*UI++);
854 if (User == &I) continue;
855 ReplaceInstUsesWith(*User, NewPN);
856 EraseInstFromFunction(*User);
857 }
858 return ReplaceInstUsesWith(I, NewPN);
859 }
860
861 /// FindElementAtOffset - Given a pointer type and a constant offset, determine
862 /// whether or not there is a sequence of GEP indices into the pointed type that
863 /// will land us at the specified offset. If so, fill them into NewIndices and
864 /// return the resultant element type, otherwise return null.
FindElementAtOffset(Type * PtrTy,int64_t Offset,SmallVectorImpl<Value * > & NewIndices)865 Type *InstCombiner::FindElementAtOffset(Type *PtrTy, int64_t Offset,
866 SmallVectorImpl<Value*> &NewIndices) {
867 assert(PtrTy->isPtrOrPtrVectorTy());
868
869 if (!DL)
870 return nullptr;
871
872 Type *Ty = PtrTy->getPointerElementType();
873 if (!Ty->isSized())
874 return nullptr;
875
876 // Start with the index over the outer type. Note that the type size
877 // might be zero (even if the offset isn't zero) if the indexed type
878 // is something like [0 x {int, int}]
879 Type *IntPtrTy = DL->getIntPtrType(PtrTy);
880 int64_t FirstIdx = 0;
881 if (int64_t TySize = DL->getTypeAllocSize(Ty)) {
882 FirstIdx = Offset/TySize;
883 Offset -= FirstIdx*TySize;
884
885 // Handle hosts where % returns negative instead of values [0..TySize).
886 if (Offset < 0) {
887 --FirstIdx;
888 Offset += TySize;
889 assert(Offset >= 0);
890 }
891 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
892 }
893
894 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
895
896 // Index into the types. If we fail, set OrigBase to null.
897 while (Offset) {
898 // Indexing into tail padding between struct/array elements.
899 if (uint64_t(Offset*8) >= DL->getTypeSizeInBits(Ty))
900 return nullptr;
901
902 if (StructType *STy = dyn_cast<StructType>(Ty)) {
903 const StructLayout *SL = DL->getStructLayout(STy);
904 assert(Offset < (int64_t)SL->getSizeInBytes() &&
905 "Offset must stay within the indexed type");
906
907 unsigned Elt = SL->getElementContainingOffset(Offset);
908 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
909 Elt));
910
911 Offset -= SL->getElementOffset(Elt);
912 Ty = STy->getElementType(Elt);
913 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
914 uint64_t EltSize = DL->getTypeAllocSize(AT->getElementType());
915 assert(EltSize && "Cannot index into a zero-sized array");
916 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
917 Offset %= EltSize;
918 Ty = AT->getElementType();
919 } else {
920 // Otherwise, we can't index into the middle of this atomic type, bail.
921 return nullptr;
922 }
923 }
924
925 return Ty;
926 }
927
shouldMergeGEPs(GEPOperator & GEP,GEPOperator & Src)928 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
929 // If this GEP has only 0 indices, it is the same pointer as
930 // Src. If Src is not a trivial GEP too, don't combine
931 // the indices.
932 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
933 !Src.hasOneUse())
934 return false;
935 return true;
936 }
937
938 /// Descale - Return a value X such that Val = X * Scale, or null if none. If
939 /// the multiplication is known not to overflow then NoSignedWrap is set.
Descale(Value * Val,APInt Scale,bool & NoSignedWrap)940 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
941 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
942 assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
943 Scale.getBitWidth() && "Scale not compatible with value!");
944
945 // If Val is zero or Scale is one then Val = Val * Scale.
946 if (match(Val, m_Zero()) || Scale == 1) {
947 NoSignedWrap = true;
948 return Val;
949 }
950
951 // If Scale is zero then it does not divide Val.
952 if (Scale.isMinValue())
953 return nullptr;
954
955 // Look through chains of multiplications, searching for a constant that is
956 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
957 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
958 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore
959 // down from Val:
960 //
961 // Val = M1 * X || Analysis starts here and works down
962 // M1 = M2 * Y || Doesn't descend into terms with more
963 // M2 = Z * 4 \/ than one use
964 //
965 // Then to modify a term at the bottom:
966 //
967 // Val = M1 * X
968 // M1 = Z * Y || Replaced M2 with Z
969 //
970 // Then to work back up correcting nsw flags.
971
972 // Op - the term we are currently analyzing. Starts at Val then drills down.
973 // Replaced with its descaled value before exiting from the drill down loop.
974 Value *Op = Val;
975
976 // Parent - initially null, but after drilling down notes where Op came from.
977 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
978 // 0'th operand of Val.
979 std::pair<Instruction*, unsigned> Parent;
980
981 // RequireNoSignedWrap - Set if the transform requires a descaling at deeper
982 // levels that doesn't overflow.
983 bool RequireNoSignedWrap = false;
984
985 // logScale - log base 2 of the scale. Negative if not a power of 2.
986 int32_t logScale = Scale.exactLogBase2();
987
988 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
989
990 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
991 // If Op is a constant divisible by Scale then descale to the quotient.
992 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
993 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
994 if (!Remainder.isMinValue())
995 // Not divisible by Scale.
996 return nullptr;
997 // Replace with the quotient in the parent.
998 Op = ConstantInt::get(CI->getType(), Quotient);
999 NoSignedWrap = true;
1000 break;
1001 }
1002
1003 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1004
1005 if (BO->getOpcode() == Instruction::Mul) {
1006 // Multiplication.
1007 NoSignedWrap = BO->hasNoSignedWrap();
1008 if (RequireNoSignedWrap && !NoSignedWrap)
1009 return nullptr;
1010
1011 // There are three cases for multiplication: multiplication by exactly
1012 // the scale, multiplication by a constant different to the scale, and
1013 // multiplication by something else.
1014 Value *LHS = BO->getOperand(0);
1015 Value *RHS = BO->getOperand(1);
1016
1017 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1018 // Multiplication by a constant.
1019 if (CI->getValue() == Scale) {
1020 // Multiplication by exactly the scale, replace the multiplication
1021 // by its left-hand side in the parent.
1022 Op = LHS;
1023 break;
1024 }
1025
1026 // Otherwise drill down into the constant.
1027 if (!Op->hasOneUse())
1028 return nullptr;
1029
1030 Parent = std::make_pair(BO, 1);
1031 continue;
1032 }
1033
1034 // Multiplication by something else. Drill down into the left-hand side
1035 // since that's where the reassociate pass puts the good stuff.
1036 if (!Op->hasOneUse())
1037 return nullptr;
1038
1039 Parent = std::make_pair(BO, 0);
1040 continue;
1041 }
1042
1043 if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1044 isa<ConstantInt>(BO->getOperand(1))) {
1045 // Multiplication by a power of 2.
1046 NoSignedWrap = BO->hasNoSignedWrap();
1047 if (RequireNoSignedWrap && !NoSignedWrap)
1048 return nullptr;
1049
1050 Value *LHS = BO->getOperand(0);
1051 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1052 getLimitedValue(Scale.getBitWidth());
1053 // Op = LHS << Amt.
1054
1055 if (Amt == logScale) {
1056 // Multiplication by exactly the scale, replace the multiplication
1057 // by its left-hand side in the parent.
1058 Op = LHS;
1059 break;
1060 }
1061 if (Amt < logScale || !Op->hasOneUse())
1062 return nullptr;
1063
1064 // Multiplication by more than the scale. Reduce the multiplying amount
1065 // by the scale in the parent.
1066 Parent = std::make_pair(BO, 1);
1067 Op = ConstantInt::get(BO->getType(), Amt - logScale);
1068 break;
1069 }
1070 }
1071
1072 if (!Op->hasOneUse())
1073 return nullptr;
1074
1075 if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1076 if (Cast->getOpcode() == Instruction::SExt) {
1077 // Op is sign-extended from a smaller type, descale in the smaller type.
1078 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1079 APInt SmallScale = Scale.trunc(SmallSize);
1080 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
1081 // descale Op as (sext Y) * Scale. In order to have
1082 // sext (Y * SmallScale) = (sext Y) * Scale
1083 // some conditions need to hold however: SmallScale must sign-extend to
1084 // Scale and the multiplication Y * SmallScale should not overflow.
1085 if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1086 // SmallScale does not sign-extend to Scale.
1087 return nullptr;
1088 assert(SmallScale.exactLogBase2() == logScale);
1089 // Require that Y * SmallScale must not overflow.
1090 RequireNoSignedWrap = true;
1091
1092 // Drill down through the cast.
1093 Parent = std::make_pair(Cast, 0);
1094 Scale = SmallScale;
1095 continue;
1096 }
1097
1098 if (Cast->getOpcode() == Instruction::Trunc) {
1099 // Op is truncated from a larger type, descale in the larger type.
1100 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
1101 // trunc (Y * sext Scale) = (trunc Y) * Scale
1102 // always holds. However (trunc Y) * Scale may overflow even if
1103 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1104 // from this point up in the expression (see later).
1105 if (RequireNoSignedWrap)
1106 return nullptr;
1107
1108 // Drill down through the cast.
1109 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1110 Parent = std::make_pair(Cast, 0);
1111 Scale = Scale.sext(LargeSize);
1112 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1113 logScale = -1;
1114 assert(Scale.exactLogBase2() == logScale);
1115 continue;
1116 }
1117 }
1118
1119 // Unsupported expression, bail out.
1120 return nullptr;
1121 }
1122
1123 // If Op is zero then Val = Op * Scale.
1124 if (match(Op, m_Zero())) {
1125 NoSignedWrap = true;
1126 return Op;
1127 }
1128
1129 // We know that we can successfully descale, so from here on we can safely
1130 // modify the IR. Op holds the descaled version of the deepest term in the
1131 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
1132 // not to overflow.
1133
1134 if (!Parent.first)
1135 // The expression only had one term.
1136 return Op;
1137
1138 // Rewrite the parent using the descaled version of its operand.
1139 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1140 assert(Op != Parent.first->getOperand(Parent.second) &&
1141 "Descaling was a no-op?");
1142 Parent.first->setOperand(Parent.second, Op);
1143 Worklist.Add(Parent.first);
1144
1145 // Now work back up the expression correcting nsw flags. The logic is based
1146 // on the following observation: if X * Y is known not to overflow as a signed
1147 // multiplication, and Y is replaced by a value Z with smaller absolute value,
1148 // then X * Z will not overflow as a signed multiplication either. As we work
1149 // our way up, having NoSignedWrap 'true' means that the descaled value at the
1150 // current level has strictly smaller absolute value than the original.
1151 Instruction *Ancestor = Parent.first;
1152 do {
1153 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1154 // If the multiplication wasn't nsw then we can't say anything about the
1155 // value of the descaled multiplication, and we have to clear nsw flags
1156 // from this point on up.
1157 bool OpNoSignedWrap = BO->hasNoSignedWrap();
1158 NoSignedWrap &= OpNoSignedWrap;
1159 if (NoSignedWrap != OpNoSignedWrap) {
1160 BO->setHasNoSignedWrap(NoSignedWrap);
1161 Worklist.Add(Ancestor);
1162 }
1163 } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1164 // The fact that the descaled input to the trunc has smaller absolute
1165 // value than the original input doesn't tell us anything useful about
1166 // the absolute values of the truncations.
1167 NoSignedWrap = false;
1168 }
1169 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1170 "Failed to keep proper track of nsw flags while drilling down?");
1171
1172 if (Ancestor == Val)
1173 // Got to the top, all done!
1174 return Val;
1175
1176 // Move up one level in the expression.
1177 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1178 Ancestor = Ancestor->user_back();
1179 } while (1);
1180 }
1181
1182 /// \brief Creates node of binary operation with the same attributes as the
1183 /// specified one but with other operands.
CreateBinOpAsGiven(BinaryOperator & Inst,Value * LHS,Value * RHS,InstCombiner::BuilderTy * B)1184 static Value *CreateBinOpAsGiven(BinaryOperator &Inst, Value *LHS, Value *RHS,
1185 InstCombiner::BuilderTy *B) {
1186 Value *BORes = B->CreateBinOp(Inst.getOpcode(), LHS, RHS);
1187 if (BinaryOperator *NewBO = dyn_cast<BinaryOperator>(BORes)) {
1188 if (isa<OverflowingBinaryOperator>(NewBO)) {
1189 NewBO->setHasNoSignedWrap(Inst.hasNoSignedWrap());
1190 NewBO->setHasNoUnsignedWrap(Inst.hasNoUnsignedWrap());
1191 }
1192 if (isa<PossiblyExactOperator>(NewBO))
1193 NewBO->setIsExact(Inst.isExact());
1194 }
1195 return BORes;
1196 }
1197
1198 /// \brief Makes transformation of binary operation specific for vector types.
1199 /// \param Inst Binary operator to transform.
1200 /// \return Pointer to node that must replace the original binary operator, or
1201 /// null pointer if no transformation was made.
SimplifyVectorOp(BinaryOperator & Inst)1202 Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) {
1203 if (!Inst.getType()->isVectorTy()) return nullptr;
1204
1205 // It may not be safe to reorder shuffles and things like div, urem, etc.
1206 // because we may trap when executing those ops on unknown vector elements.
1207 // See PR20059.
1208 if (!isSafeToSpeculativelyExecute(&Inst, DL)) return nullptr;
1209
1210 unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements();
1211 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1212 assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth);
1213 assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth);
1214
1215 // If both arguments of binary operation are shuffles, which use the same
1216 // mask and shuffle within a single vector, it is worthwhile to move the
1217 // shuffle after binary operation:
1218 // Op(shuffle(v1, m), shuffle(v2, m)) -> shuffle(Op(v1, v2), m)
1219 if (isa<ShuffleVectorInst>(LHS) && isa<ShuffleVectorInst>(RHS)) {
1220 ShuffleVectorInst *LShuf = cast<ShuffleVectorInst>(LHS);
1221 ShuffleVectorInst *RShuf = cast<ShuffleVectorInst>(RHS);
1222 if (isa<UndefValue>(LShuf->getOperand(1)) &&
1223 isa<UndefValue>(RShuf->getOperand(1)) &&
1224 LShuf->getOperand(0)->getType() == RShuf->getOperand(0)->getType() &&
1225 LShuf->getMask() == RShuf->getMask()) {
1226 Value *NewBO = CreateBinOpAsGiven(Inst, LShuf->getOperand(0),
1227 RShuf->getOperand(0), Builder);
1228 Value *Res = Builder->CreateShuffleVector(NewBO,
1229 UndefValue::get(NewBO->getType()), LShuf->getMask());
1230 return Res;
1231 }
1232 }
1233
1234 // If one argument is a shuffle within one vector, the other is a constant,
1235 // try moving the shuffle after the binary operation.
1236 ShuffleVectorInst *Shuffle = nullptr;
1237 Constant *C1 = nullptr;
1238 if (isa<ShuffleVectorInst>(LHS)) Shuffle = cast<ShuffleVectorInst>(LHS);
1239 if (isa<ShuffleVectorInst>(RHS)) Shuffle = cast<ShuffleVectorInst>(RHS);
1240 if (isa<Constant>(LHS)) C1 = cast<Constant>(LHS);
1241 if (isa<Constant>(RHS)) C1 = cast<Constant>(RHS);
1242 if (Shuffle && C1 &&
1243 (isa<ConstantVector>(C1) || isa<ConstantDataVector>(C1)) &&
1244 isa<UndefValue>(Shuffle->getOperand(1)) &&
1245 Shuffle->getType() == Shuffle->getOperand(0)->getType()) {
1246 SmallVector<int, 16> ShMask = Shuffle->getShuffleMask();
1247 // Find constant C2 that has property:
1248 // shuffle(C2, ShMask) = C1
1249 // If such constant does not exist (example: ShMask=<0,0> and C1=<1,2>)
1250 // reorder is not possible.
1251 SmallVector<Constant*, 16> C2M(VWidth,
1252 UndefValue::get(C1->getType()->getScalarType()));
1253 bool MayChange = true;
1254 for (unsigned I = 0; I < VWidth; ++I) {
1255 if (ShMask[I] >= 0) {
1256 assert(ShMask[I] < (int)VWidth);
1257 if (!isa<UndefValue>(C2M[ShMask[I]])) {
1258 MayChange = false;
1259 break;
1260 }
1261 C2M[ShMask[I]] = C1->getAggregateElement(I);
1262 }
1263 }
1264 if (MayChange) {
1265 Constant *C2 = ConstantVector::get(C2M);
1266 Value *NewLHS, *NewRHS;
1267 if (isa<Constant>(LHS)) {
1268 NewLHS = C2;
1269 NewRHS = Shuffle->getOperand(0);
1270 } else {
1271 NewLHS = Shuffle->getOperand(0);
1272 NewRHS = C2;
1273 }
1274 Value *NewBO = CreateBinOpAsGiven(Inst, NewLHS, NewRHS, Builder);
1275 Value *Res = Builder->CreateShuffleVector(NewBO,
1276 UndefValue::get(Inst.getType()), Shuffle->getMask());
1277 return Res;
1278 }
1279 }
1280
1281 return nullptr;
1282 }
1283
visitGetElementPtrInst(GetElementPtrInst & GEP)1284 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1285 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1286
1287 if (Value *V = SimplifyGEPInst(Ops, DL))
1288 return ReplaceInstUsesWith(GEP, V);
1289
1290 Value *PtrOp = GEP.getOperand(0);
1291
1292 // Eliminate unneeded casts for indices, and replace indices which displace
1293 // by multiples of a zero size type with zero.
1294 if (DL) {
1295 bool MadeChange = false;
1296 Type *IntPtrTy = DL->getIntPtrType(GEP.getPointerOperandType());
1297
1298 gep_type_iterator GTI = gep_type_begin(GEP);
1299 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
1300 I != E; ++I, ++GTI) {
1301 // Skip indices into struct types.
1302 SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
1303 if (!SeqTy) continue;
1304
1305 // If the element type has zero size then any index over it is equivalent
1306 // to an index of zero, so replace it with zero if it is not zero already.
1307 if (SeqTy->getElementType()->isSized() &&
1308 DL->getTypeAllocSize(SeqTy->getElementType()) == 0)
1309 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
1310 *I = Constant::getNullValue(IntPtrTy);
1311 MadeChange = true;
1312 }
1313
1314 Type *IndexTy = (*I)->getType();
1315 if (IndexTy != IntPtrTy) {
1316 // If we are using a wider index than needed for this platform, shrink
1317 // it to what we need. If narrower, sign-extend it to what we need.
1318 // This explicit cast can make subsequent optimizations more obvious.
1319 *I = Builder->CreateIntCast(*I, IntPtrTy, true);
1320 MadeChange = true;
1321 }
1322 }
1323 if (MadeChange) return &GEP;
1324 }
1325
1326 // Check to see if the inputs to the PHI node are getelementptr instructions.
1327 if (PHINode *PN = dyn_cast<PHINode>(PtrOp)) {
1328 GetElementPtrInst *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1329 if (!Op1)
1330 return nullptr;
1331
1332 signed DI = -1;
1333
1334 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1335 GetElementPtrInst *Op2 = dyn_cast<GetElementPtrInst>(*I);
1336 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1337 return nullptr;
1338
1339 // Keep track of the type as we walk the GEP.
1340 Type *CurTy = Op1->getOperand(0)->getType()->getScalarType();
1341
1342 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1343 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1344 return nullptr;
1345
1346 if (Op1->getOperand(J) != Op2->getOperand(J)) {
1347 if (DI == -1) {
1348 // We have not seen any differences yet in the GEPs feeding the
1349 // PHI yet, so we record this one if it is allowed to be a
1350 // variable.
1351
1352 // The first two arguments can vary for any GEP, the rest have to be
1353 // static for struct slots
1354 if (J > 1 && CurTy->isStructTy())
1355 return nullptr;
1356
1357 DI = J;
1358 } else {
1359 // The GEP is different by more than one input. While this could be
1360 // extended to support GEPs that vary by more than one variable it
1361 // doesn't make sense since it greatly increases the complexity and
1362 // would result in an R+R+R addressing mode which no backend
1363 // directly supports and would need to be broken into several
1364 // simpler instructions anyway.
1365 return nullptr;
1366 }
1367 }
1368
1369 // Sink down a layer of the type for the next iteration.
1370 if (J > 0) {
1371 if (CompositeType *CT = dyn_cast<CompositeType>(CurTy)) {
1372 CurTy = CT->getTypeAtIndex(Op1->getOperand(J));
1373 } else {
1374 CurTy = nullptr;
1375 }
1376 }
1377 }
1378 }
1379
1380 GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(Op1->clone());
1381
1382 if (DI == -1) {
1383 // All the GEPs feeding the PHI are identical. Clone one down into our
1384 // BB so that it can be merged with the current GEP.
1385 GEP.getParent()->getInstList().insert(GEP.getParent()->getFirstNonPHI(),
1386 NewGEP);
1387 } else {
1388 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
1389 // into the current block so it can be merged, and create a new PHI to
1390 // set that index.
1391 Instruction *InsertPt = Builder->GetInsertPoint();
1392 Builder->SetInsertPoint(PN);
1393 PHINode *NewPN = Builder->CreatePHI(Op1->getOperand(DI)->getType(),
1394 PN->getNumOperands());
1395 Builder->SetInsertPoint(InsertPt);
1396
1397 for (auto &I : PN->operands())
1398 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
1399 PN->getIncomingBlock(I));
1400
1401 NewGEP->setOperand(DI, NewPN);
1402 GEP.getParent()->getInstList().insert(GEP.getParent()->getFirstNonPHI(),
1403 NewGEP);
1404 NewGEP->setOperand(DI, NewPN);
1405 }
1406
1407 GEP.setOperand(0, NewGEP);
1408 PtrOp = NewGEP;
1409 }
1410
1411 // Combine Indices - If the source pointer to this getelementptr instruction
1412 // is a getelementptr instruction, combine the indices of the two
1413 // getelementptr instructions into a single instruction.
1414 //
1415 if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
1416 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
1417 return nullptr;
1418
1419 // Note that if our source is a gep chain itself then we wait for that
1420 // chain to be resolved before we perform this transformation. This
1421 // avoids us creating a TON of code in some cases.
1422 if (GEPOperator *SrcGEP =
1423 dyn_cast<GEPOperator>(Src->getOperand(0)))
1424 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
1425 return nullptr; // Wait until our source is folded to completion.
1426
1427 SmallVector<Value*, 8> Indices;
1428
1429 // Find out whether the last index in the source GEP is a sequential idx.
1430 bool EndsWithSequential = false;
1431 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
1432 I != E; ++I)
1433 EndsWithSequential = !(*I)->isStructTy();
1434
1435 // Can we combine the two pointer arithmetics offsets?
1436 if (EndsWithSequential) {
1437 // Replace: gep (gep %P, long B), long A, ...
1438 // With: T = long A+B; gep %P, T, ...
1439 //
1440 Value *Sum;
1441 Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
1442 Value *GO1 = GEP.getOperand(1);
1443 if (SO1 == Constant::getNullValue(SO1->getType())) {
1444 Sum = GO1;
1445 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
1446 Sum = SO1;
1447 } else {
1448 // If they aren't the same type, then the input hasn't been processed
1449 // by the loop above yet (which canonicalizes sequential index types to
1450 // intptr_t). Just avoid transforming this until the input has been
1451 // normalized.
1452 if (SO1->getType() != GO1->getType())
1453 return nullptr;
1454 Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
1455 }
1456
1457 // Update the GEP in place if possible.
1458 if (Src->getNumOperands() == 2) {
1459 GEP.setOperand(0, Src->getOperand(0));
1460 GEP.setOperand(1, Sum);
1461 return &GEP;
1462 }
1463 Indices.append(Src->op_begin()+1, Src->op_end()-1);
1464 Indices.push_back(Sum);
1465 Indices.append(GEP.op_begin()+2, GEP.op_end());
1466 } else if (isa<Constant>(*GEP.idx_begin()) &&
1467 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
1468 Src->getNumOperands() != 1) {
1469 // Otherwise we can do the fold if the first index of the GEP is a zero
1470 Indices.append(Src->op_begin()+1, Src->op_end());
1471 Indices.append(GEP.idx_begin()+1, GEP.idx_end());
1472 }
1473
1474 if (!Indices.empty())
1475 return (GEP.isInBounds() && Src->isInBounds()) ?
1476 GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices,
1477 GEP.getName()) :
1478 GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName());
1479 }
1480
1481 // Canonicalize (gep i8* X, -(ptrtoint Y)) to (sub (ptrtoint X), (ptrtoint Y))
1482 // The GEP pattern is emitted by the SCEV expander for certain kinds of
1483 // pointer arithmetic.
1484 if (DL && GEP.getNumIndices() == 1 &&
1485 match(GEP.getOperand(1), m_Neg(m_PtrToInt(m_Value())))) {
1486 unsigned AS = GEP.getPointerAddressSpace();
1487 if (GEP.getType() == Builder->getInt8PtrTy(AS) &&
1488 GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
1489 DL->getPointerSizeInBits(AS)) {
1490 Operator *Index = cast<Operator>(GEP.getOperand(1));
1491 Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType());
1492 Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1));
1493 return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType());
1494 }
1495 }
1496
1497 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
1498 Value *StrippedPtr = PtrOp->stripPointerCasts();
1499 PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
1500
1501 // We do not handle pointer-vector geps here.
1502 if (!StrippedPtrTy)
1503 return nullptr;
1504
1505 if (StrippedPtr != PtrOp) {
1506 bool HasZeroPointerIndex = false;
1507 if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
1508 HasZeroPointerIndex = C->isZero();
1509
1510 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
1511 // into : GEP [10 x i8]* X, i32 0, ...
1512 //
1513 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
1514 // into : GEP i8* X, ...
1515 //
1516 // This occurs when the program declares an array extern like "int X[];"
1517 if (HasZeroPointerIndex) {
1518 PointerType *CPTy = cast<PointerType>(PtrOp->getType());
1519 if (ArrayType *CATy =
1520 dyn_cast<ArrayType>(CPTy->getElementType())) {
1521 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
1522 if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
1523 // -> GEP i8* X, ...
1524 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
1525 GetElementPtrInst *Res =
1526 GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName());
1527 Res->setIsInBounds(GEP.isInBounds());
1528 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
1529 return Res;
1530 // Insert Res, and create an addrspacecast.
1531 // e.g.,
1532 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
1533 // ->
1534 // %0 = GEP i8 addrspace(1)* X, ...
1535 // addrspacecast i8 addrspace(1)* %0 to i8*
1536 return new AddrSpaceCastInst(Builder->Insert(Res), GEP.getType());
1537 }
1538
1539 if (ArrayType *XATy =
1540 dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
1541 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
1542 if (CATy->getElementType() == XATy->getElementType()) {
1543 // -> GEP [10 x i8]* X, i32 0, ...
1544 // At this point, we know that the cast source type is a pointer
1545 // to an array of the same type as the destination pointer
1546 // array. Because the array type is never stepped over (there
1547 // is a leading zero) we can fold the cast into this GEP.
1548 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
1549 GEP.setOperand(0, StrippedPtr);
1550 return &GEP;
1551 }
1552 // Cannot replace the base pointer directly because StrippedPtr's
1553 // address space is different. Instead, create a new GEP followed by
1554 // an addrspacecast.
1555 // e.g.,
1556 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
1557 // i32 0, ...
1558 // ->
1559 // %0 = GEP [10 x i8] addrspace(1)* X, ...
1560 // addrspacecast i8 addrspace(1)* %0 to i8*
1561 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
1562 Value *NewGEP = GEP.isInBounds() ?
1563 Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
1564 Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
1565 return new AddrSpaceCastInst(NewGEP, GEP.getType());
1566 }
1567 }
1568 }
1569 } else if (GEP.getNumOperands() == 2) {
1570 // Transform things like:
1571 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
1572 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
1573 Type *SrcElTy = StrippedPtrTy->getElementType();
1574 Type *ResElTy = PtrOp->getType()->getPointerElementType();
1575 if (DL && SrcElTy->isArrayTy() &&
1576 DL->getTypeAllocSize(SrcElTy->getArrayElementType()) ==
1577 DL->getTypeAllocSize(ResElTy)) {
1578 Type *IdxType = DL->getIntPtrType(GEP.getType());
1579 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
1580 Value *NewGEP = GEP.isInBounds() ?
1581 Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
1582 Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
1583
1584 // V and GEP are both pointer types --> BitCast
1585 if (StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace())
1586 return new BitCastInst(NewGEP, GEP.getType());
1587 return new AddrSpaceCastInst(NewGEP, GEP.getType());
1588 }
1589
1590 // Transform things like:
1591 // %V = mul i64 %N, 4
1592 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
1593 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
1594 if (DL && ResElTy->isSized() && SrcElTy->isSized()) {
1595 // Check that changing the type amounts to dividing the index by a scale
1596 // factor.
1597 uint64_t ResSize = DL->getTypeAllocSize(ResElTy);
1598 uint64_t SrcSize = DL->getTypeAllocSize(SrcElTy);
1599 if (ResSize && SrcSize % ResSize == 0) {
1600 Value *Idx = GEP.getOperand(1);
1601 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1602 uint64_t Scale = SrcSize / ResSize;
1603
1604 // Earlier transforms ensure that the index has type IntPtrType, which
1605 // considerably simplifies the logic by eliminating implicit casts.
1606 assert(Idx->getType() == DL->getIntPtrType(GEP.getType()) &&
1607 "Index not cast to pointer width?");
1608
1609 bool NSW;
1610 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1611 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1612 // If the multiplication NewIdx * Scale may overflow then the new
1613 // GEP may not be "inbounds".
1614 Value *NewGEP = GEP.isInBounds() && NSW ?
1615 Builder->CreateInBoundsGEP(StrippedPtr, NewIdx, GEP.getName()) :
1616 Builder->CreateGEP(StrippedPtr, NewIdx, GEP.getName());
1617
1618 // The NewGEP must be pointer typed, so must the old one -> BitCast
1619 if (StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace())
1620 return new BitCastInst(NewGEP, GEP.getType());
1621 return new AddrSpaceCastInst(NewGEP, GEP.getType());
1622 }
1623 }
1624 }
1625
1626 // Similarly, transform things like:
1627 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
1628 // (where tmp = 8*tmp2) into:
1629 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
1630 if (DL && ResElTy->isSized() && SrcElTy->isSized() &&
1631 SrcElTy->isArrayTy()) {
1632 // Check that changing to the array element type amounts to dividing the
1633 // index by a scale factor.
1634 uint64_t ResSize = DL->getTypeAllocSize(ResElTy);
1635 uint64_t ArrayEltSize
1636 = DL->getTypeAllocSize(SrcElTy->getArrayElementType());
1637 if (ResSize && ArrayEltSize % ResSize == 0) {
1638 Value *Idx = GEP.getOperand(1);
1639 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1640 uint64_t Scale = ArrayEltSize / ResSize;
1641
1642 // Earlier transforms ensure that the index has type IntPtrType, which
1643 // considerably simplifies the logic by eliminating implicit casts.
1644 assert(Idx->getType() == DL->getIntPtrType(GEP.getType()) &&
1645 "Index not cast to pointer width?");
1646
1647 bool NSW;
1648 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1649 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1650 // If the multiplication NewIdx * Scale may overflow then the new
1651 // GEP may not be "inbounds".
1652 Value *Off[2] = {
1653 Constant::getNullValue(DL->getIntPtrType(GEP.getType())),
1654 NewIdx
1655 };
1656
1657 Value *NewGEP = GEP.isInBounds() && NSW ?
1658 Builder->CreateInBoundsGEP(StrippedPtr, Off, GEP.getName()) :
1659 Builder->CreateGEP(StrippedPtr, Off, GEP.getName());
1660 // The NewGEP must be pointer typed, so must the old one -> BitCast
1661 if (StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace())
1662 return new BitCastInst(NewGEP, GEP.getType());
1663 return new AddrSpaceCastInst(NewGEP, GEP.getType());
1664 }
1665 }
1666 }
1667 }
1668 }
1669
1670 if (!DL)
1671 return nullptr;
1672
1673 /// See if we can simplify:
1674 /// X = bitcast A* to B*
1675 /// Y = gep X, <...constant indices...>
1676 /// into a gep of the original struct. This is important for SROA and alias
1677 /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
1678 if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
1679 Value *Operand = BCI->getOperand(0);
1680 PointerType *OpType = cast<PointerType>(Operand->getType());
1681 unsigned OffsetBits = DL->getPointerTypeSizeInBits(OpType);
1682 APInt Offset(OffsetBits, 0);
1683 if (!isa<BitCastInst>(Operand) &&
1684 GEP.accumulateConstantOffset(*DL, Offset) &&
1685 StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
1686
1687 // If this GEP instruction doesn't move the pointer, just replace the GEP
1688 // with a bitcast of the real input to the dest type.
1689 if (!Offset) {
1690 // If the bitcast is of an allocation, and the allocation will be
1691 // converted to match the type of the cast, don't touch this.
1692 if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, TLI)) {
1693 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1694 if (Instruction *I = visitBitCast(*BCI)) {
1695 if (I != BCI) {
1696 I->takeName(BCI);
1697 BCI->getParent()->getInstList().insert(BCI, I);
1698 ReplaceInstUsesWith(*BCI, I);
1699 }
1700 return &GEP;
1701 }
1702 }
1703 return new BitCastInst(Operand, GEP.getType());
1704 }
1705
1706 // Otherwise, if the offset is non-zero, we need to find out if there is a
1707 // field at Offset in 'A's type. If so, we can pull the cast through the
1708 // GEP.
1709 SmallVector<Value*, 8> NewIndices;
1710 if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) {
1711 Value *NGEP = GEP.isInBounds() ?
1712 Builder->CreateInBoundsGEP(Operand, NewIndices) :
1713 Builder->CreateGEP(Operand, NewIndices);
1714
1715 if (NGEP->getType() == GEP.getType())
1716 return ReplaceInstUsesWith(GEP, NGEP);
1717 NGEP->takeName(&GEP);
1718 return new BitCastInst(NGEP, GEP.getType());
1719 }
1720 }
1721 }
1722
1723 return nullptr;
1724 }
1725
1726 static bool
isAllocSiteRemovable(Instruction * AI,SmallVectorImpl<WeakVH> & Users,const TargetLibraryInfo * TLI)1727 isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
1728 const TargetLibraryInfo *TLI) {
1729 SmallVector<Instruction*, 4> Worklist;
1730 Worklist.push_back(AI);
1731
1732 do {
1733 Instruction *PI = Worklist.pop_back_val();
1734 for (User *U : PI->users()) {
1735 Instruction *I = cast<Instruction>(U);
1736 switch (I->getOpcode()) {
1737 default:
1738 // Give up the moment we see something we can't handle.
1739 return false;
1740
1741 case Instruction::BitCast:
1742 case Instruction::GetElementPtr:
1743 Users.push_back(I);
1744 Worklist.push_back(I);
1745 continue;
1746
1747 case Instruction::ICmp: {
1748 ICmpInst *ICI = cast<ICmpInst>(I);
1749 // We can fold eq/ne comparisons with null to false/true, respectively.
1750 if (!ICI->isEquality() || !isa<ConstantPointerNull>(ICI->getOperand(1)))
1751 return false;
1752 Users.push_back(I);
1753 continue;
1754 }
1755
1756 case Instruction::Call:
1757 // Ignore no-op and store intrinsics.
1758 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1759 switch (II->getIntrinsicID()) {
1760 default:
1761 return false;
1762
1763 case Intrinsic::memmove:
1764 case Intrinsic::memcpy:
1765 case Intrinsic::memset: {
1766 MemIntrinsic *MI = cast<MemIntrinsic>(II);
1767 if (MI->isVolatile() || MI->getRawDest() != PI)
1768 return false;
1769 }
1770 // fall through
1771 case Intrinsic::dbg_declare:
1772 case Intrinsic::dbg_value:
1773 case Intrinsic::invariant_start:
1774 case Intrinsic::invariant_end:
1775 case Intrinsic::lifetime_start:
1776 case Intrinsic::lifetime_end:
1777 case Intrinsic::objectsize:
1778 Users.push_back(I);
1779 continue;
1780 }
1781 }
1782
1783 if (isFreeCall(I, TLI)) {
1784 Users.push_back(I);
1785 continue;
1786 }
1787 return false;
1788
1789 case Instruction::Store: {
1790 StoreInst *SI = cast<StoreInst>(I);
1791 if (SI->isVolatile() || SI->getPointerOperand() != PI)
1792 return false;
1793 Users.push_back(I);
1794 continue;
1795 }
1796 }
1797 llvm_unreachable("missing a return?");
1798 }
1799 } while (!Worklist.empty());
1800 return true;
1801 }
1802
visitAllocSite(Instruction & MI)1803 Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
1804 // If we have a malloc call which is only used in any amount of comparisons
1805 // to null and free calls, delete the calls and replace the comparisons with
1806 // true or false as appropriate.
1807 SmallVector<WeakVH, 64> Users;
1808 if (isAllocSiteRemovable(&MI, Users, TLI)) {
1809 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1810 Instruction *I = cast_or_null<Instruction>(&*Users[i]);
1811 if (!I) continue;
1812
1813 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
1814 ReplaceInstUsesWith(*C,
1815 ConstantInt::get(Type::getInt1Ty(C->getContext()),
1816 C->isFalseWhenEqual()));
1817 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
1818 ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
1819 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1820 if (II->getIntrinsicID() == Intrinsic::objectsize) {
1821 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1822 uint64_t DontKnow = CI->isZero() ? -1ULL : 0;
1823 ReplaceInstUsesWith(*I, ConstantInt::get(I->getType(), DontKnow));
1824 }
1825 }
1826 EraseInstFromFunction(*I);
1827 }
1828
1829 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
1830 // Replace invoke with a NOP intrinsic to maintain the original CFG
1831 Module *M = II->getParent()->getParent()->getParent();
1832 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
1833 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
1834 None, "", II->getParent());
1835 }
1836 return EraseInstFromFunction(MI);
1837 }
1838 return nullptr;
1839 }
1840
1841 /// \brief Move the call to free before a NULL test.
1842 ///
1843 /// Check if this free is accessed after its argument has been test
1844 /// against NULL (property 0).
1845 /// If yes, it is legal to move this call in its predecessor block.
1846 ///
1847 /// The move is performed only if the block containing the call to free
1848 /// will be removed, i.e.:
1849 /// 1. it has only one predecessor P, and P has two successors
1850 /// 2. it contains the call and an unconditional branch
1851 /// 3. its successor is the same as its predecessor's successor
1852 ///
1853 /// The profitability is out-of concern here and this function should
1854 /// be called only if the caller knows this transformation would be
1855 /// profitable (e.g., for code size).
1856 static Instruction *
tryToMoveFreeBeforeNullTest(CallInst & FI)1857 tryToMoveFreeBeforeNullTest(CallInst &FI) {
1858 Value *Op = FI.getArgOperand(0);
1859 BasicBlock *FreeInstrBB = FI.getParent();
1860 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
1861
1862 // Validate part of constraint #1: Only one predecessor
1863 // FIXME: We can extend the number of predecessor, but in that case, we
1864 // would duplicate the call to free in each predecessor and it may
1865 // not be profitable even for code size.
1866 if (!PredBB)
1867 return nullptr;
1868
1869 // Validate constraint #2: Does this block contains only the call to
1870 // free and an unconditional branch?
1871 // FIXME: We could check if we can speculate everything in the
1872 // predecessor block
1873 if (FreeInstrBB->size() != 2)
1874 return nullptr;
1875 BasicBlock *SuccBB;
1876 if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB)))
1877 return nullptr;
1878
1879 // Validate the rest of constraint #1 by matching on the pred branch.
1880 TerminatorInst *TI = PredBB->getTerminator();
1881 BasicBlock *TrueBB, *FalseBB;
1882 ICmpInst::Predicate Pred;
1883 if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB)))
1884 return nullptr;
1885 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
1886 return nullptr;
1887
1888 // Validate constraint #3: Ensure the null case just falls through.
1889 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
1890 return nullptr;
1891 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
1892 "Broken CFG: missing edge from predecessor to successor");
1893
1894 FI.moveBefore(TI);
1895 return &FI;
1896 }
1897
1898
visitFree(CallInst & FI)1899 Instruction *InstCombiner::visitFree(CallInst &FI) {
1900 Value *Op = FI.getArgOperand(0);
1901
1902 // free undef -> unreachable.
1903 if (isa<UndefValue>(Op)) {
1904 // Insert a new store to null because we cannot modify the CFG here.
1905 Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
1906 UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
1907 return EraseInstFromFunction(FI);
1908 }
1909
1910 // If we have 'free null' delete the instruction. This can happen in stl code
1911 // when lots of inlining happens.
1912 if (isa<ConstantPointerNull>(Op))
1913 return EraseInstFromFunction(FI);
1914
1915 // If we optimize for code size, try to move the call to free before the null
1916 // test so that simplify cfg can remove the empty block and dead code
1917 // elimination the branch. I.e., helps to turn something like:
1918 // if (foo) free(foo);
1919 // into
1920 // free(foo);
1921 if (MinimizeSize)
1922 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI))
1923 return I;
1924
1925 return nullptr;
1926 }
1927
1928
1929
visitBranchInst(BranchInst & BI)1930 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
1931 // Change br (not X), label True, label False to: br X, label False, True
1932 Value *X = nullptr;
1933 BasicBlock *TrueDest;
1934 BasicBlock *FalseDest;
1935 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
1936 !isa<Constant>(X)) {
1937 // Swap Destinations and condition...
1938 BI.setCondition(X);
1939 BI.swapSuccessors();
1940 return &BI;
1941 }
1942
1943 // Canonicalize fcmp_one -> fcmp_oeq
1944 FCmpInst::Predicate FPred; Value *Y;
1945 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
1946 TrueDest, FalseDest)) &&
1947 BI.getCondition()->hasOneUse())
1948 if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
1949 FPred == FCmpInst::FCMP_OGE) {
1950 FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
1951 Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
1952
1953 // Swap Destinations and condition.
1954 BI.swapSuccessors();
1955 Worklist.Add(Cond);
1956 return &BI;
1957 }
1958
1959 // Canonicalize icmp_ne -> icmp_eq
1960 ICmpInst::Predicate IPred;
1961 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
1962 TrueDest, FalseDest)) &&
1963 BI.getCondition()->hasOneUse())
1964 if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
1965 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
1966 IPred == ICmpInst::ICMP_SGE) {
1967 ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
1968 Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
1969 // Swap Destinations and condition.
1970 BI.swapSuccessors();
1971 Worklist.Add(Cond);
1972 return &BI;
1973 }
1974
1975 return nullptr;
1976 }
1977
visitSwitchInst(SwitchInst & SI)1978 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
1979 Value *Cond = SI.getCondition();
1980 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
1981 if (I->getOpcode() == Instruction::Add)
1982 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1983 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
1984 // Skip the first item since that's the default case.
1985 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
1986 i != e; ++i) {
1987 ConstantInt* CaseVal = i.getCaseValue();
1988 Constant* NewCaseVal = ConstantExpr::getSub(cast<Constant>(CaseVal),
1989 AddRHS);
1990 assert(isa<ConstantInt>(NewCaseVal) &&
1991 "Result of expression should be constant");
1992 i.setValue(cast<ConstantInt>(NewCaseVal));
1993 }
1994 SI.setCondition(I->getOperand(0));
1995 Worklist.Add(I);
1996 return &SI;
1997 }
1998 }
1999 return nullptr;
2000 }
2001
visitExtractValueInst(ExtractValueInst & EV)2002 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
2003 Value *Agg = EV.getAggregateOperand();
2004
2005 if (!EV.hasIndices())
2006 return ReplaceInstUsesWith(EV, Agg);
2007
2008 if (Constant *C = dyn_cast<Constant>(Agg)) {
2009 if (Constant *C2 = C->getAggregateElement(*EV.idx_begin())) {
2010 if (EV.getNumIndices() == 0)
2011 return ReplaceInstUsesWith(EV, C2);
2012 // Extract the remaining indices out of the constant indexed by the
2013 // first index
2014 return ExtractValueInst::Create(C2, EV.getIndices().slice(1));
2015 }
2016 return nullptr; // Can't handle other constants
2017 }
2018
2019 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
2020 // We're extracting from an insertvalue instruction, compare the indices
2021 const unsigned *exti, *exte, *insi, *inse;
2022 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
2023 exte = EV.idx_end(), inse = IV->idx_end();
2024 exti != exte && insi != inse;
2025 ++exti, ++insi) {
2026 if (*insi != *exti)
2027 // The insert and extract both reference distinctly different elements.
2028 // This means the extract is not influenced by the insert, and we can
2029 // replace the aggregate operand of the extract with the aggregate
2030 // operand of the insert. i.e., replace
2031 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2032 // %E = extractvalue { i32, { i32 } } %I, 0
2033 // with
2034 // %E = extractvalue { i32, { i32 } } %A, 0
2035 return ExtractValueInst::Create(IV->getAggregateOperand(),
2036 EV.getIndices());
2037 }
2038 if (exti == exte && insi == inse)
2039 // Both iterators are at the end: Index lists are identical. Replace
2040 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2041 // %C = extractvalue { i32, { i32 } } %B, 1, 0
2042 // with "i32 42"
2043 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
2044 if (exti == exte) {
2045 // The extract list is a prefix of the insert list. i.e. replace
2046 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2047 // %E = extractvalue { i32, { i32 } } %I, 1
2048 // with
2049 // %X = extractvalue { i32, { i32 } } %A, 1
2050 // %E = insertvalue { i32 } %X, i32 42, 0
2051 // by switching the order of the insert and extract (though the
2052 // insertvalue should be left in, since it may have other uses).
2053 Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
2054 EV.getIndices());
2055 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
2056 makeArrayRef(insi, inse));
2057 }
2058 if (insi == inse)
2059 // The insert list is a prefix of the extract list
2060 // We can simply remove the common indices from the extract and make it
2061 // operate on the inserted value instead of the insertvalue result.
2062 // i.e., replace
2063 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2064 // %E = extractvalue { i32, { i32 } } %I, 1, 0
2065 // with
2066 // %E extractvalue { i32 } { i32 42 }, 0
2067 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
2068 makeArrayRef(exti, exte));
2069 }
2070 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
2071 // We're extracting from an intrinsic, see if we're the only user, which
2072 // allows us to simplify multiple result intrinsics to simpler things that
2073 // just get one value.
2074 if (II->hasOneUse()) {
2075 // Check if we're grabbing the overflow bit or the result of a 'with
2076 // overflow' intrinsic. If it's the latter we can remove the intrinsic
2077 // and replace it with a traditional binary instruction.
2078 switch (II->getIntrinsicID()) {
2079 case Intrinsic::uadd_with_overflow:
2080 case Intrinsic::sadd_with_overflow:
2081 if (*EV.idx_begin() == 0) { // Normal result.
2082 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2083 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
2084 EraseInstFromFunction(*II);
2085 return BinaryOperator::CreateAdd(LHS, RHS);
2086 }
2087
2088 // If the normal result of the add is dead, and the RHS is a constant,
2089 // we can transform this into a range comparison.
2090 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3
2091 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
2092 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
2093 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
2094 ConstantExpr::getNot(CI));
2095 break;
2096 case Intrinsic::usub_with_overflow:
2097 case Intrinsic::ssub_with_overflow:
2098 if (*EV.idx_begin() == 0) { // Normal result.
2099 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2100 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
2101 EraseInstFromFunction(*II);
2102 return BinaryOperator::CreateSub(LHS, RHS);
2103 }
2104 break;
2105 case Intrinsic::umul_with_overflow:
2106 case Intrinsic::smul_with_overflow:
2107 if (*EV.idx_begin() == 0) { // Normal result.
2108 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2109 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
2110 EraseInstFromFunction(*II);
2111 return BinaryOperator::CreateMul(LHS, RHS);
2112 }
2113 break;
2114 default:
2115 break;
2116 }
2117 }
2118 }
2119 if (LoadInst *L = dyn_cast<LoadInst>(Agg))
2120 // If the (non-volatile) load only has one use, we can rewrite this to a
2121 // load from a GEP. This reduces the size of the load.
2122 // FIXME: If a load is used only by extractvalue instructions then this
2123 // could be done regardless of having multiple uses.
2124 if (L->isSimple() && L->hasOneUse()) {
2125 // extractvalue has integer indices, getelementptr has Value*s. Convert.
2126 SmallVector<Value*, 4> Indices;
2127 // Prefix an i32 0 since we need the first element.
2128 Indices.push_back(Builder->getInt32(0));
2129 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
2130 I != E; ++I)
2131 Indices.push_back(Builder->getInt32(*I));
2132
2133 // We need to insert these at the location of the old load, not at that of
2134 // the extractvalue.
2135 Builder->SetInsertPoint(L->getParent(), L);
2136 Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices);
2137 // Returning the load directly will cause the main loop to insert it in
2138 // the wrong spot, so use ReplaceInstUsesWith().
2139 return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
2140 }
2141 // We could simplify extracts from other values. Note that nested extracts may
2142 // already be simplified implicitly by the above: extract (extract (insert) )
2143 // will be translated into extract ( insert ( extract ) ) first and then just
2144 // the value inserted, if appropriate. Similarly for extracts from single-use
2145 // loads: extract (extract (load)) will be translated to extract (load (gep))
2146 // and if again single-use then via load (gep (gep)) to load (gep).
2147 // However, double extracts from e.g. function arguments or return values
2148 // aren't handled yet.
2149 return nullptr;
2150 }
2151
2152 enum Personality_Type {
2153 Unknown_Personality,
2154 GNU_Ada_Personality,
2155 GNU_CXX_Personality,
2156 GNU_ObjC_Personality
2157 };
2158
2159 /// RecognizePersonality - See if the given exception handling personality
2160 /// function is one that we understand. If so, return a description of it;
2161 /// otherwise return Unknown_Personality.
RecognizePersonality(Value * Pers)2162 static Personality_Type RecognizePersonality(Value *Pers) {
2163 Function *F = dyn_cast<Function>(Pers->stripPointerCasts());
2164 if (!F)
2165 return Unknown_Personality;
2166 return StringSwitch<Personality_Type>(F->getName())
2167 .Case("__gnat_eh_personality", GNU_Ada_Personality)
2168 .Case("__gxx_personality_v0", GNU_CXX_Personality)
2169 .Case("__objc_personality_v0", GNU_ObjC_Personality)
2170 .Default(Unknown_Personality);
2171 }
2172
2173 /// isCatchAll - Return 'true' if the given typeinfo will match anything.
isCatchAll(Personality_Type Personality,Constant * TypeInfo)2174 static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) {
2175 switch (Personality) {
2176 case Unknown_Personality:
2177 return false;
2178 case GNU_Ada_Personality:
2179 // While __gnat_all_others_value will match any Ada exception, it doesn't
2180 // match foreign exceptions (or didn't, before gcc-4.7).
2181 return false;
2182 case GNU_CXX_Personality:
2183 case GNU_ObjC_Personality:
2184 return TypeInfo->isNullValue();
2185 }
2186 llvm_unreachable("Unknown personality!");
2187 }
2188
shorter_filter(const Value * LHS,const Value * RHS)2189 static bool shorter_filter(const Value *LHS, const Value *RHS) {
2190 return
2191 cast<ArrayType>(LHS->getType())->getNumElements()
2192 <
2193 cast<ArrayType>(RHS->getType())->getNumElements();
2194 }
2195
visitLandingPadInst(LandingPadInst & LI)2196 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
2197 // The logic here should be correct for any real-world personality function.
2198 // However if that turns out not to be true, the offending logic can always
2199 // be conditioned on the personality function, like the catch-all logic is.
2200 Personality_Type Personality = RecognizePersonality(LI.getPersonalityFn());
2201
2202 // Simplify the list of clauses, eg by removing repeated catch clauses
2203 // (these are often created by inlining).
2204 bool MakeNewInstruction = false; // If true, recreate using the following:
2205 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
2206 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
2207
2208 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
2209 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
2210 bool isLastClause = i + 1 == e;
2211 if (LI.isCatch(i)) {
2212 // A catch clause.
2213 Constant *CatchClause = LI.getClause(i);
2214 Constant *TypeInfo = CatchClause->stripPointerCasts();
2215
2216 // If we already saw this clause, there is no point in having a second
2217 // copy of it.
2218 if (AlreadyCaught.insert(TypeInfo)) {
2219 // This catch clause was not already seen.
2220 NewClauses.push_back(CatchClause);
2221 } else {
2222 // Repeated catch clause - drop the redundant copy.
2223 MakeNewInstruction = true;
2224 }
2225
2226 // If this is a catch-all then there is no point in keeping any following
2227 // clauses or marking the landingpad as having a cleanup.
2228 if (isCatchAll(Personality, TypeInfo)) {
2229 if (!isLastClause)
2230 MakeNewInstruction = true;
2231 CleanupFlag = false;
2232 break;
2233 }
2234 } else {
2235 // A filter clause. If any of the filter elements were already caught
2236 // then they can be dropped from the filter. It is tempting to try to
2237 // exploit the filter further by saying that any typeinfo that does not
2238 // occur in the filter can't be caught later (and thus can be dropped).
2239 // However this would be wrong, since typeinfos can match without being
2240 // equal (for example if one represents a C++ class, and the other some
2241 // class derived from it).
2242 assert(LI.isFilter(i) && "Unsupported landingpad clause!");
2243 Constant *FilterClause = LI.getClause(i);
2244 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
2245 unsigned NumTypeInfos = FilterType->getNumElements();
2246
2247 // An empty filter catches everything, so there is no point in keeping any
2248 // following clauses or marking the landingpad as having a cleanup. By
2249 // dealing with this case here the following code is made a bit simpler.
2250 if (!NumTypeInfos) {
2251 NewClauses.push_back(FilterClause);
2252 if (!isLastClause)
2253 MakeNewInstruction = true;
2254 CleanupFlag = false;
2255 break;
2256 }
2257
2258 bool MakeNewFilter = false; // If true, make a new filter.
2259 SmallVector<Constant *, 16> NewFilterElts; // New elements.
2260 if (isa<ConstantAggregateZero>(FilterClause)) {
2261 // Not an empty filter - it contains at least one null typeinfo.
2262 assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
2263 Constant *TypeInfo =
2264 Constant::getNullValue(FilterType->getElementType());
2265 // If this typeinfo is a catch-all then the filter can never match.
2266 if (isCatchAll(Personality, TypeInfo)) {
2267 // Throw the filter away.
2268 MakeNewInstruction = true;
2269 continue;
2270 }
2271
2272 // There is no point in having multiple copies of this typeinfo, so
2273 // discard all but the first copy if there is more than one.
2274 NewFilterElts.push_back(TypeInfo);
2275 if (NumTypeInfos > 1)
2276 MakeNewFilter = true;
2277 } else {
2278 ConstantArray *Filter = cast<ConstantArray>(FilterClause);
2279 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
2280 NewFilterElts.reserve(NumTypeInfos);
2281
2282 // Remove any filter elements that were already caught or that already
2283 // occurred in the filter. While there, see if any of the elements are
2284 // catch-alls. If so, the filter can be discarded.
2285 bool SawCatchAll = false;
2286 for (unsigned j = 0; j != NumTypeInfos; ++j) {
2287 Constant *Elt = Filter->getOperand(j);
2288 Constant *TypeInfo = Elt->stripPointerCasts();
2289 if (isCatchAll(Personality, TypeInfo)) {
2290 // This element is a catch-all. Bail out, noting this fact.
2291 SawCatchAll = true;
2292 break;
2293 }
2294 if (AlreadyCaught.count(TypeInfo))
2295 // Already caught by an earlier clause, so having it in the filter
2296 // is pointless.
2297 continue;
2298 // There is no point in having multiple copies of the same typeinfo in
2299 // a filter, so only add it if we didn't already.
2300 if (SeenInFilter.insert(TypeInfo))
2301 NewFilterElts.push_back(cast<Constant>(Elt));
2302 }
2303 // A filter containing a catch-all cannot match anything by definition.
2304 if (SawCatchAll) {
2305 // Throw the filter away.
2306 MakeNewInstruction = true;
2307 continue;
2308 }
2309
2310 // If we dropped something from the filter, make a new one.
2311 if (NewFilterElts.size() < NumTypeInfos)
2312 MakeNewFilter = true;
2313 }
2314 if (MakeNewFilter) {
2315 FilterType = ArrayType::get(FilterType->getElementType(),
2316 NewFilterElts.size());
2317 FilterClause = ConstantArray::get(FilterType, NewFilterElts);
2318 MakeNewInstruction = true;
2319 }
2320
2321 NewClauses.push_back(FilterClause);
2322
2323 // If the new filter is empty then it will catch everything so there is
2324 // no point in keeping any following clauses or marking the landingpad
2325 // as having a cleanup. The case of the original filter being empty was
2326 // already handled above.
2327 if (MakeNewFilter && !NewFilterElts.size()) {
2328 assert(MakeNewInstruction && "New filter but not a new instruction!");
2329 CleanupFlag = false;
2330 break;
2331 }
2332 }
2333 }
2334
2335 // If several filters occur in a row then reorder them so that the shortest
2336 // filters come first (those with the smallest number of elements). This is
2337 // advantageous because shorter filters are more likely to match, speeding up
2338 // unwinding, but mostly because it increases the effectiveness of the other
2339 // filter optimizations below.
2340 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
2341 unsigned j;
2342 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
2343 for (j = i; j != e; ++j)
2344 if (!isa<ArrayType>(NewClauses[j]->getType()))
2345 break;
2346
2347 // Check whether the filters are already sorted by length. We need to know
2348 // if sorting them is actually going to do anything so that we only make a
2349 // new landingpad instruction if it does.
2350 for (unsigned k = i; k + 1 < j; ++k)
2351 if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
2352 // Not sorted, so sort the filters now. Doing an unstable sort would be
2353 // correct too but reordering filters pointlessly might confuse users.
2354 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
2355 shorter_filter);
2356 MakeNewInstruction = true;
2357 break;
2358 }
2359
2360 // Look for the next batch of filters.
2361 i = j + 1;
2362 }
2363
2364 // If typeinfos matched if and only if equal, then the elements of a filter L
2365 // that occurs later than a filter F could be replaced by the intersection of
2366 // the elements of F and L. In reality two typeinfos can match without being
2367 // equal (for example if one represents a C++ class, and the other some class
2368 // derived from it) so it would be wrong to perform this transform in general.
2369 // However the transform is correct and useful if F is a subset of L. In that
2370 // case L can be replaced by F, and thus removed altogether since repeating a
2371 // filter is pointless. So here we look at all pairs of filters F and L where
2372 // L follows F in the list of clauses, and remove L if every element of F is
2373 // an element of L. This can occur when inlining C++ functions with exception
2374 // specifications.
2375 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
2376 // Examine each filter in turn.
2377 Value *Filter = NewClauses[i];
2378 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
2379 if (!FTy)
2380 // Not a filter - skip it.
2381 continue;
2382 unsigned FElts = FTy->getNumElements();
2383 // Examine each filter following this one. Doing this backwards means that
2384 // we don't have to worry about filters disappearing under us when removed.
2385 for (unsigned j = NewClauses.size() - 1; j != i; --j) {
2386 Value *LFilter = NewClauses[j];
2387 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
2388 if (!LTy)
2389 // Not a filter - skip it.
2390 continue;
2391 // If Filter is a subset of LFilter, i.e. every element of Filter is also
2392 // an element of LFilter, then discard LFilter.
2393 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
2394 // If Filter is empty then it is a subset of LFilter.
2395 if (!FElts) {
2396 // Discard LFilter.
2397 NewClauses.erase(J);
2398 MakeNewInstruction = true;
2399 // Move on to the next filter.
2400 continue;
2401 }
2402 unsigned LElts = LTy->getNumElements();
2403 // If Filter is longer than LFilter then it cannot be a subset of it.
2404 if (FElts > LElts)
2405 // Move on to the next filter.
2406 continue;
2407 // At this point we know that LFilter has at least one element.
2408 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
2409 // Filter is a subset of LFilter iff Filter contains only zeros (as we
2410 // already know that Filter is not longer than LFilter).
2411 if (isa<ConstantAggregateZero>(Filter)) {
2412 assert(FElts <= LElts && "Should have handled this case earlier!");
2413 // Discard LFilter.
2414 NewClauses.erase(J);
2415 MakeNewInstruction = true;
2416 }
2417 // Move on to the next filter.
2418 continue;
2419 }
2420 ConstantArray *LArray = cast<ConstantArray>(LFilter);
2421 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
2422 // Since Filter is non-empty and contains only zeros, it is a subset of
2423 // LFilter iff LFilter contains a zero.
2424 assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
2425 for (unsigned l = 0; l != LElts; ++l)
2426 if (LArray->getOperand(l)->isNullValue()) {
2427 // LFilter contains a zero - discard it.
2428 NewClauses.erase(J);
2429 MakeNewInstruction = true;
2430 break;
2431 }
2432 // Move on to the next filter.
2433 continue;
2434 }
2435 // At this point we know that both filters are ConstantArrays. Loop over
2436 // operands to see whether every element of Filter is also an element of
2437 // LFilter. Since filters tend to be short this is probably faster than
2438 // using a method that scales nicely.
2439 ConstantArray *FArray = cast<ConstantArray>(Filter);
2440 bool AllFound = true;
2441 for (unsigned f = 0; f != FElts; ++f) {
2442 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
2443 AllFound = false;
2444 for (unsigned l = 0; l != LElts; ++l) {
2445 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
2446 if (LTypeInfo == FTypeInfo) {
2447 AllFound = true;
2448 break;
2449 }
2450 }
2451 if (!AllFound)
2452 break;
2453 }
2454 if (AllFound) {
2455 // Discard LFilter.
2456 NewClauses.erase(J);
2457 MakeNewInstruction = true;
2458 }
2459 // Move on to the next filter.
2460 }
2461 }
2462
2463 // If we changed any of the clauses, replace the old landingpad instruction
2464 // with a new one.
2465 if (MakeNewInstruction) {
2466 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
2467 LI.getPersonalityFn(),
2468 NewClauses.size());
2469 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
2470 NLI->addClause(NewClauses[i]);
2471 // A landing pad with no clauses must have the cleanup flag set. It is
2472 // theoretically possible, though highly unlikely, that we eliminated all
2473 // clauses. If so, force the cleanup flag to true.
2474 if (NewClauses.empty())
2475 CleanupFlag = true;
2476 NLI->setCleanup(CleanupFlag);
2477 return NLI;
2478 }
2479
2480 // Even if none of the clauses changed, we may nonetheless have understood
2481 // that the cleanup flag is pointless. Clear it if so.
2482 if (LI.isCleanup() != CleanupFlag) {
2483 assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
2484 LI.setCleanup(CleanupFlag);
2485 return &LI;
2486 }
2487
2488 return nullptr;
2489 }
2490
2491
2492
2493
2494 /// TryToSinkInstruction - Try to move the specified instruction from its
2495 /// current block into the beginning of DestBlock, which can only happen if it's
2496 /// safe to move the instruction past all of the instructions between it and the
2497 /// end of its block.
TryToSinkInstruction(Instruction * I,BasicBlock * DestBlock)2498 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
2499 assert(I->hasOneUse() && "Invariants didn't hold!");
2500
2501 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
2502 if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() ||
2503 isa<TerminatorInst>(I))
2504 return false;
2505
2506 // Do not sink alloca instructions out of the entry block.
2507 if (isa<AllocaInst>(I) && I->getParent() ==
2508 &DestBlock->getParent()->getEntryBlock())
2509 return false;
2510
2511 // We can only sink load instructions if there is nothing between the load and
2512 // the end of block that could change the value.
2513 if (I->mayReadFromMemory()) {
2514 for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
2515 Scan != E; ++Scan)
2516 if (Scan->mayWriteToMemory())
2517 return false;
2518 }
2519
2520 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
2521 I->moveBefore(InsertPos);
2522 ++NumSunkInst;
2523 return true;
2524 }
2525
2526
2527 /// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
2528 /// all reachable code to the worklist.
2529 ///
2530 /// This has a couple of tricks to make the code faster and more powerful. In
2531 /// particular, we constant fold and DCE instructions as we go, to avoid adding
2532 /// them to the worklist (this significantly speeds up instcombine on code where
2533 /// many instructions are dead or constant). Additionally, if we find a branch
2534 /// whose condition is a known constant, we only visit the reachable successors.
2535 ///
AddReachableCodeToWorklist(BasicBlock * BB,SmallPtrSet<BasicBlock *,64> & Visited,InstCombiner & IC,const DataLayout * DL,const TargetLibraryInfo * TLI)2536 static bool AddReachableCodeToWorklist(BasicBlock *BB,
2537 SmallPtrSet<BasicBlock*, 64> &Visited,
2538 InstCombiner &IC,
2539 const DataLayout *DL,
2540 const TargetLibraryInfo *TLI) {
2541 bool MadeIRChange = false;
2542 SmallVector<BasicBlock*, 256> Worklist;
2543 Worklist.push_back(BB);
2544
2545 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
2546 DenseMap<ConstantExpr*, Constant*> FoldedConstants;
2547
2548 do {
2549 BB = Worklist.pop_back_val();
2550
2551 // We have now visited this block! If we've already been here, ignore it.
2552 if (!Visited.insert(BB)) continue;
2553
2554 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
2555 Instruction *Inst = BBI++;
2556
2557 // DCE instruction if trivially dead.
2558 if (isInstructionTriviallyDead(Inst, TLI)) {
2559 ++NumDeadInst;
2560 DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
2561 Inst->eraseFromParent();
2562 continue;
2563 }
2564
2565 // ConstantProp instruction if trivially constant.
2566 if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
2567 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
2568 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: "
2569 << *Inst << '\n');
2570 Inst->replaceAllUsesWith(C);
2571 ++NumConstProp;
2572 Inst->eraseFromParent();
2573 continue;
2574 }
2575
2576 if (DL) {
2577 // See if we can constant fold its operands.
2578 for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
2579 i != e; ++i) {
2580 ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
2581 if (CE == nullptr) continue;
2582
2583 Constant*& FoldRes = FoldedConstants[CE];
2584 if (!FoldRes)
2585 FoldRes = ConstantFoldConstantExpression(CE, DL, TLI);
2586 if (!FoldRes)
2587 FoldRes = CE;
2588
2589 if (FoldRes != CE) {
2590 *i = FoldRes;
2591 MadeIRChange = true;
2592 }
2593 }
2594 }
2595
2596 InstrsForInstCombineWorklist.push_back(Inst);
2597 }
2598
2599 // Recursively visit successors. If this is a branch or switch on a
2600 // constant, only visit the reachable successor.
2601 TerminatorInst *TI = BB->getTerminator();
2602 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2603 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
2604 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
2605 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
2606 Worklist.push_back(ReachableBB);
2607 continue;
2608 }
2609 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2610 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
2611 // See if this is an explicit destination.
2612 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2613 i != e; ++i)
2614 if (i.getCaseValue() == Cond) {
2615 BasicBlock *ReachableBB = i.getCaseSuccessor();
2616 Worklist.push_back(ReachableBB);
2617 continue;
2618 }
2619
2620 // Otherwise it is the default destination.
2621 Worklist.push_back(SI->getDefaultDest());
2622 continue;
2623 }
2624 }
2625
2626 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
2627 Worklist.push_back(TI->getSuccessor(i));
2628 } while (!Worklist.empty());
2629
2630 // Once we've found all of the instructions to add to instcombine's worklist,
2631 // add them in reverse order. This way instcombine will visit from the top
2632 // of the function down. This jives well with the way that it adds all uses
2633 // of instructions to the worklist after doing a transformation, thus avoiding
2634 // some N^2 behavior in pathological cases.
2635 IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
2636 InstrsForInstCombineWorklist.size());
2637
2638 return MadeIRChange;
2639 }
2640
DoOneIteration(Function & F,unsigned Iteration)2641 bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
2642 MadeIRChange = false;
2643
2644 DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
2645 << F.getName() << "\n");
2646
2647 {
2648 // Do a depth-first traversal of the function, populate the worklist with
2649 // the reachable instructions. Ignore blocks that are not reachable. Keep
2650 // track of which blocks we visit.
2651 SmallPtrSet<BasicBlock*, 64> Visited;
2652 MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, DL,
2653 TLI);
2654
2655 // Do a quick scan over the function. If we find any blocks that are
2656 // unreachable, remove any instructions inside of them. This prevents
2657 // the instcombine code from having to deal with some bad special cases.
2658 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2659 if (Visited.count(BB)) continue;
2660
2661 // Delete the instructions backwards, as it has a reduced likelihood of
2662 // having to update as many def-use and use-def chains.
2663 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2664 while (EndInst != BB->begin()) {
2665 // Delete the next to last instruction.
2666 BasicBlock::iterator I = EndInst;
2667 Instruction *Inst = --I;
2668 if (!Inst->use_empty())
2669 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
2670 if (isa<LandingPadInst>(Inst)) {
2671 EndInst = Inst;
2672 continue;
2673 }
2674 if (!isa<DbgInfoIntrinsic>(Inst)) {
2675 ++NumDeadInst;
2676 MadeIRChange = true;
2677 }
2678 Inst->eraseFromParent();
2679 }
2680 }
2681 }
2682
2683 while (!Worklist.isEmpty()) {
2684 Instruction *I = Worklist.RemoveOne();
2685 if (I == nullptr) continue; // skip null values.
2686
2687 // Check to see if we can DCE the instruction.
2688 if (isInstructionTriviallyDead(I, TLI)) {
2689 DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
2690 EraseInstFromFunction(*I);
2691 ++NumDeadInst;
2692 MadeIRChange = true;
2693 continue;
2694 }
2695
2696 // Instruction isn't dead, see if we can constant propagate it.
2697 if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
2698 if (Constant *C = ConstantFoldInstruction(I, DL, TLI)) {
2699 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
2700
2701 // Add operands to the worklist.
2702 ReplaceInstUsesWith(*I, C);
2703 ++NumConstProp;
2704 EraseInstFromFunction(*I);
2705 MadeIRChange = true;
2706 continue;
2707 }
2708
2709 // See if we can trivially sink this instruction to a successor basic block.
2710 if (I->hasOneUse()) {
2711 BasicBlock *BB = I->getParent();
2712 Instruction *UserInst = cast<Instruction>(*I->user_begin());
2713 BasicBlock *UserParent;
2714
2715 // Get the block the use occurs in.
2716 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
2717 UserParent = PN->getIncomingBlock(*I->use_begin());
2718 else
2719 UserParent = UserInst->getParent();
2720
2721 if (UserParent != BB) {
2722 bool UserIsSuccessor = false;
2723 // See if the user is one of our successors.
2724 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
2725 if (*SI == UserParent) {
2726 UserIsSuccessor = true;
2727 break;
2728 }
2729
2730 // If the user is one of our immediate successors, and if that successor
2731 // only has us as a predecessors (we'd have to split the critical edge
2732 // otherwise), we can keep going.
2733 if (UserIsSuccessor && UserParent->getSinglePredecessor())
2734 // Okay, the CFG is simple enough, try to sink this instruction.
2735 MadeIRChange |= TryToSinkInstruction(I, UserParent);
2736 }
2737 }
2738
2739 // Now that we have an instruction, try combining it to simplify it.
2740 Builder->SetInsertPoint(I->getParent(), I);
2741 Builder->SetCurrentDebugLocation(I->getDebugLoc());
2742
2743 #ifndef NDEBUG
2744 std::string OrigI;
2745 #endif
2746 DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
2747 DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
2748
2749 if (Instruction *Result = visit(*I)) {
2750 ++NumCombined;
2751 // Should we replace the old instruction with a new one?
2752 if (Result != I) {
2753 DEBUG(dbgs() << "IC: Old = " << *I << '\n'
2754 << " New = " << *Result << '\n');
2755
2756 if (!I->getDebugLoc().isUnknown())
2757 Result->setDebugLoc(I->getDebugLoc());
2758 // Everything uses the new instruction now.
2759 I->replaceAllUsesWith(Result);
2760
2761 // Move the name to the new instruction first.
2762 Result->takeName(I);
2763
2764 // Push the new instruction and any users onto the worklist.
2765 Worklist.Add(Result);
2766 Worklist.AddUsersToWorkList(*Result);
2767
2768 // Insert the new instruction into the basic block...
2769 BasicBlock *InstParent = I->getParent();
2770 BasicBlock::iterator InsertPos = I;
2771
2772 // If we replace a PHI with something that isn't a PHI, fix up the
2773 // insertion point.
2774 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
2775 InsertPos = InstParent->getFirstInsertionPt();
2776
2777 InstParent->getInstList().insert(InsertPos, Result);
2778
2779 EraseInstFromFunction(*I);
2780 } else {
2781 #ifndef NDEBUG
2782 DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
2783 << " New = " << *I << '\n');
2784 #endif
2785
2786 // If the instruction was modified, it's possible that it is now dead.
2787 // if so, remove it.
2788 if (isInstructionTriviallyDead(I, TLI)) {
2789 EraseInstFromFunction(*I);
2790 } else {
2791 Worklist.Add(I);
2792 Worklist.AddUsersToWorkList(*I);
2793 }
2794 }
2795 MadeIRChange = true;
2796 }
2797 }
2798
2799 Worklist.Zap();
2800 return MadeIRChange;
2801 }
2802
2803 namespace {
2804 class InstCombinerLibCallSimplifier : public LibCallSimplifier {
2805 InstCombiner *IC;
2806 public:
InstCombinerLibCallSimplifier(const DataLayout * DL,const TargetLibraryInfo * TLI,InstCombiner * IC)2807 InstCombinerLibCallSimplifier(const DataLayout *DL,
2808 const TargetLibraryInfo *TLI,
2809 InstCombiner *IC)
2810 : LibCallSimplifier(DL, TLI, UnsafeFPShrink) {
2811 this->IC = IC;
2812 }
2813
2814 /// replaceAllUsesWith - override so that instruction replacement
2815 /// can be defined in terms of the instruction combiner framework.
replaceAllUsesWith(Instruction * I,Value * With) const2816 void replaceAllUsesWith(Instruction *I, Value *With) const override {
2817 IC->ReplaceInstUsesWith(*I, With);
2818 }
2819 };
2820 }
2821
runOnFunction(Function & F)2822 bool InstCombiner::runOnFunction(Function &F) {
2823 if (skipOptnoneFunction(F))
2824 return false;
2825
2826 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
2827 DL = DLP ? &DLP->getDataLayout() : nullptr;
2828 TLI = &getAnalysis<TargetLibraryInfo>();
2829 // Minimizing size?
2830 MinimizeSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
2831 Attribute::MinSize);
2832
2833 /// Builder - This is an IRBuilder that automatically inserts new
2834 /// instructions into the worklist when they are created.
2835 IRBuilder<true, TargetFolder, InstCombineIRInserter>
2836 TheBuilder(F.getContext(), TargetFolder(DL),
2837 InstCombineIRInserter(Worklist));
2838 Builder = &TheBuilder;
2839
2840 InstCombinerLibCallSimplifier TheSimplifier(DL, TLI, this);
2841 Simplifier = &TheSimplifier;
2842
2843 bool EverMadeChange = false;
2844
2845 // Lower dbg.declare intrinsics otherwise their value may be clobbered
2846 // by instcombiner.
2847 EverMadeChange = LowerDbgDeclare(F);
2848
2849 // Iterate while there is work to do.
2850 unsigned Iteration = 0;
2851 while (DoOneIteration(F, Iteration++))
2852 EverMadeChange = true;
2853
2854 Builder = nullptr;
2855 return EverMadeChange;
2856 }
2857
createInstructionCombiningPass()2858 FunctionPass *llvm::createInstructionCombiningPass() {
2859 return new InstCombiner();
2860 }
2861