1 /*
2 * Copyright 2004 The WebRTC Project Authors. All rights reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "webrtc/base/win32.h"
12
13 #include <winsock2.h>
14 #include <ws2tcpip.h>
15 #include <algorithm>
16
17 #include "webrtc/base/basictypes.h"
18 #include "webrtc/base/byteorder.h"
19 #include "webrtc/base/common.h"
20 #include "webrtc/base/logging.h"
21
22 namespace rtc {
23
24 // Helper function declarations for inet_ntop/inet_pton.
25 static const char* inet_ntop_v4(const void* src, char* dst, socklen_t size);
26 static const char* inet_ntop_v6(const void* src, char* dst, socklen_t size);
27 static int inet_pton_v4(const char* src, void* dst);
28 static int inet_pton_v6(const char* src, void* dst);
29
30 // Implementation of inet_ntop (create a printable representation of an
31 // ip address). XP doesn't have its own inet_ntop, and
32 // WSAAddressToString requires both IPv6 to be installed and for Winsock
33 // to be initialized.
win32_inet_ntop(int af,const void * src,char * dst,socklen_t size)34 const char* win32_inet_ntop(int af, const void *src,
35 char* dst, socklen_t size) {
36 if (!src || !dst) {
37 return NULL;
38 }
39 switch (af) {
40 case AF_INET: {
41 return inet_ntop_v4(src, dst, size);
42 }
43 case AF_INET6: {
44 return inet_ntop_v6(src, dst, size);
45 }
46 }
47 return NULL;
48 }
49
50 // As above, but for inet_pton. Implements inet_pton for v4 and v6.
51 // Note that our inet_ntop will output normal 'dotted' v4 addresses only.
win32_inet_pton(int af,const char * src,void * dst)52 int win32_inet_pton(int af, const char* src, void* dst) {
53 if (!src || !dst) {
54 return 0;
55 }
56 if (af == AF_INET) {
57 return inet_pton_v4(src, dst);
58 } else if (af == AF_INET6) {
59 return inet_pton_v6(src, dst);
60 }
61 return -1;
62 }
63
64 // Helper function for inet_ntop for IPv4 addresses.
65 // Outputs "dotted-quad" decimal notation.
inet_ntop_v4(const void * src,char * dst,socklen_t size)66 const char* inet_ntop_v4(const void* src, char* dst, socklen_t size) {
67 if (size < INET_ADDRSTRLEN) {
68 return NULL;
69 }
70 const struct in_addr* as_in_addr =
71 reinterpret_cast<const struct in_addr*>(src);
72 rtc::sprintfn(dst, size, "%d.%d.%d.%d",
73 as_in_addr->S_un.S_un_b.s_b1,
74 as_in_addr->S_un.S_un_b.s_b2,
75 as_in_addr->S_un.S_un_b.s_b3,
76 as_in_addr->S_un.S_un_b.s_b4);
77 return dst;
78 }
79
80 // Helper function for inet_ntop for IPv6 addresses.
inet_ntop_v6(const void * src,char * dst,socklen_t size)81 const char* inet_ntop_v6(const void* src, char* dst, socklen_t size) {
82 if (size < INET6_ADDRSTRLEN) {
83 return NULL;
84 }
85 const uint16* as_shorts =
86 reinterpret_cast<const uint16*>(src);
87 int runpos[8];
88 int current = 1;
89 int max = 1;
90 int maxpos = -1;
91 int run_array_size = ARRAY_SIZE(runpos);
92 // Run over the address marking runs of 0s.
93 for (int i = 0; i < run_array_size; ++i) {
94 if (as_shorts[i] == 0) {
95 runpos[i] = current;
96 if (current > max) {
97 maxpos = i;
98 max = current;
99 }
100 ++current;
101 } else {
102 runpos[i] = -1;
103 current =1;
104 }
105 }
106
107 if (max > 1) {
108 int tmpmax = maxpos;
109 // Run back through, setting -1 for all but the longest run.
110 for (int i = run_array_size - 1; i >= 0; i--) {
111 if (i > tmpmax) {
112 runpos[i] = -1;
113 } else if (runpos[i] == -1) {
114 // We're less than maxpos, we hit a -1, so the 'good' run is done.
115 // Setting tmpmax -1 means all remaining positions get set to -1.
116 tmpmax = -1;
117 }
118 }
119 }
120
121 char* cursor = dst;
122 // Print IPv4 compatible and IPv4 mapped addresses using the IPv4 helper.
123 // These addresses have an initial run of either eight zero-bytes followed
124 // by 0xFFFF, or an initial run of ten zero-bytes.
125 if (runpos[0] == 1 && (maxpos == 5 ||
126 (maxpos == 4 && as_shorts[5] == 0xFFFF))) {
127 *cursor++ = ':';
128 *cursor++ = ':';
129 if (maxpos == 4) {
130 cursor += rtc::sprintfn(cursor, INET6_ADDRSTRLEN - 2, "ffff:");
131 }
132 const struct in_addr* as_v4 =
133 reinterpret_cast<const struct in_addr*>(&(as_shorts[6]));
134 inet_ntop_v4(as_v4, cursor,
135 static_cast<socklen_t>(INET6_ADDRSTRLEN - (cursor - dst)));
136 } else {
137 for (int i = 0; i < run_array_size; ++i) {
138 if (runpos[i] == -1) {
139 cursor += rtc::sprintfn(cursor,
140 INET6_ADDRSTRLEN - (cursor - dst),
141 "%x", NetworkToHost16(as_shorts[i]));
142 if (i != 7 && runpos[i + 1] != 1) {
143 *cursor++ = ':';
144 }
145 } else if (runpos[i] == 1) {
146 // Entered the run; print the colons and skip the run.
147 *cursor++ = ':';
148 *cursor++ = ':';
149 i += (max - 1);
150 }
151 }
152 }
153 return dst;
154 }
155
156 // Helper function for inet_pton for IPv4 addresses.
157 // |src| points to a character string containing an IPv4 network address in
158 // dotted-decimal format, "ddd.ddd.ddd.ddd", where ddd is a decimal number
159 // of up to three digits in the range 0 to 255.
160 // The address is converted and copied to dst,
161 // which must be sizeof(struct in_addr) (4) bytes (32 bits) long.
inet_pton_v4(const char * src,void * dst)162 int inet_pton_v4(const char* src, void* dst) {
163 const int kIpv4AddressSize = 4;
164 int found = 0;
165 const char* src_pos = src;
166 unsigned char result[kIpv4AddressSize] = {0};
167
168 while (*src_pos != '\0') {
169 // strtol won't treat whitespace characters in the begining as an error,
170 // so check to ensure this is started with digit before passing to strtol.
171 if (!isdigit(*src_pos)) {
172 return 0;
173 }
174 char* end_pos;
175 long value = strtol(src_pos, &end_pos, 10);
176 if (value < 0 || value > 255 || src_pos == end_pos) {
177 return 0;
178 }
179 ++found;
180 if (found > kIpv4AddressSize) {
181 return 0;
182 }
183 result[found - 1] = static_cast<unsigned char>(value);
184 src_pos = end_pos;
185 if (*src_pos == '.') {
186 // There's more.
187 ++src_pos;
188 } else if (*src_pos != '\0') {
189 // If it's neither '.' nor '\0' then return fail.
190 return 0;
191 }
192 }
193 if (found != kIpv4AddressSize) {
194 return 0;
195 }
196 memcpy(dst, result, sizeof(result));
197 return 1;
198 }
199
200 // Helper function for inet_pton for IPv6 addresses.
inet_pton_v6(const char * src,void * dst)201 int inet_pton_v6(const char* src, void* dst) {
202 // sscanf will pick any other invalid chars up, but it parses 0xnnnn as hex.
203 // Check for literal x in the input string.
204 const char* readcursor = src;
205 char c = *readcursor++;
206 while (c) {
207 if (c == 'x') {
208 return 0;
209 }
210 c = *readcursor++;
211 }
212 readcursor = src;
213
214 struct in6_addr an_addr;
215 memset(&an_addr, 0, sizeof(an_addr));
216
217 uint16* addr_cursor = reinterpret_cast<uint16*>(&an_addr.s6_addr[0]);
218 uint16* addr_end = reinterpret_cast<uint16*>(&an_addr.s6_addr[16]);
219 bool seencompressed = false;
220
221 // Addresses that start with "::" (i.e., a run of initial zeros) or
222 // "::ffff:" can potentially be IPv4 mapped or compatibility addresses.
223 // These have dotted-style IPv4 addresses on the end (e.g. "::192.168.7.1").
224 if (*readcursor == ':' && *(readcursor+1) == ':' &&
225 *(readcursor + 2) != 0) {
226 // Check for periods, which we'll take as a sign of v4 addresses.
227 const char* addrstart = readcursor + 2;
228 if (rtc::strchr(addrstart, ".")) {
229 const char* colon = rtc::strchr(addrstart, "::");
230 if (colon) {
231 uint16 a_short;
232 int bytesread = 0;
233 if (sscanf(addrstart, "%hx%n", &a_short, &bytesread) != 1 ||
234 a_short != 0xFFFF || bytesread != 4) {
235 // Colons + periods means has to be ::ffff:a.b.c.d. But it wasn't.
236 return 0;
237 } else {
238 an_addr.s6_addr[10] = 0xFF;
239 an_addr.s6_addr[11] = 0xFF;
240 addrstart = colon + 1;
241 }
242 }
243 struct in_addr v4;
244 if (inet_pton_v4(addrstart, &v4.s_addr)) {
245 memcpy(&an_addr.s6_addr[12], &v4, sizeof(v4));
246 memcpy(dst, &an_addr, sizeof(an_addr));
247 return 1;
248 } else {
249 // Invalid v4 address.
250 return 0;
251 }
252 }
253 }
254
255 // For addresses without a trailing IPv4 component ('normal' IPv6 addresses).
256 while (*readcursor != 0 && addr_cursor < addr_end) {
257 if (*readcursor == ':') {
258 if (*(readcursor + 1) == ':') {
259 if (seencompressed) {
260 // Can only have one compressed run of zeroes ("::") per address.
261 return 0;
262 }
263 // Hit a compressed run. Count colons to figure out how much of the
264 // address is skipped.
265 readcursor += 2;
266 const char* coloncounter = readcursor;
267 int coloncount = 0;
268 if (*coloncounter == 0) {
269 // Special case - trailing ::.
270 addr_cursor = addr_end;
271 } else {
272 while (*coloncounter) {
273 if (*coloncounter == ':') {
274 ++coloncount;
275 }
276 ++coloncounter;
277 }
278 // (coloncount + 1) is the number of shorts left in the address.
279 addr_cursor = addr_end - (coloncount + 1);
280 seencompressed = true;
281 }
282 } else {
283 ++readcursor;
284 }
285 } else {
286 uint16 word;
287 int bytesread = 0;
288 if (sscanf(readcursor, "%hx%n", &word, &bytesread) != 1) {
289 return 0;
290 } else {
291 *addr_cursor = HostToNetwork16(word);
292 ++addr_cursor;
293 readcursor += bytesread;
294 if (*readcursor != ':' && *readcursor != '\0') {
295 return 0;
296 }
297 }
298 }
299 }
300
301 if (*readcursor != '\0' || addr_cursor < addr_end) {
302 // Catches addresses too short or too long.
303 return 0;
304 }
305 memcpy(dst, &an_addr, sizeof(an_addr));
306 return 1;
307 }
308
309 //
310 // Unix time is in seconds relative to 1/1/1970. So we compute the windows
311 // FILETIME of that time/date, then we add/subtract in appropriate units to
312 // convert to/from unix time.
313 // The units of FILETIME are 100ns intervals, so by multiplying by or dividing
314 // by 10000000, we can convert to/from seconds.
315 //
316 // FileTime = UnixTime*10000000 + FileTime(1970)
317 // UnixTime = (FileTime-FileTime(1970))/10000000
318 //
319
FileTimeToUnixTime(const FILETIME & ft,time_t * ut)320 void FileTimeToUnixTime(const FILETIME& ft, time_t* ut) {
321 ASSERT(NULL != ut);
322
323 // FILETIME has an earlier date base than time_t (1/1/1970), so subtract off
324 // the difference.
325 SYSTEMTIME base_st;
326 memset(&base_st, 0, sizeof(base_st));
327 base_st.wDay = 1;
328 base_st.wMonth = 1;
329 base_st.wYear = 1970;
330
331 FILETIME base_ft;
332 SystemTimeToFileTime(&base_st, &base_ft);
333
334 ULARGE_INTEGER base_ul, current_ul;
335 memcpy(&base_ul, &base_ft, sizeof(FILETIME));
336 memcpy(¤t_ul, &ft, sizeof(FILETIME));
337
338 // Divide by big number to convert to seconds, then subtract out the 1970
339 // base date value.
340 const ULONGLONG RATIO = 10000000;
341 *ut = static_cast<time_t>((current_ul.QuadPart - base_ul.QuadPart) / RATIO);
342 }
343
UnixTimeToFileTime(const time_t & ut,FILETIME * ft)344 void UnixTimeToFileTime(const time_t& ut, FILETIME* ft) {
345 ASSERT(NULL != ft);
346
347 // FILETIME has an earlier date base than time_t (1/1/1970), so add in
348 // the difference.
349 SYSTEMTIME base_st;
350 memset(&base_st, 0, sizeof(base_st));
351 base_st.wDay = 1;
352 base_st.wMonth = 1;
353 base_st.wYear = 1970;
354
355 FILETIME base_ft;
356 SystemTimeToFileTime(&base_st, &base_ft);
357
358 ULARGE_INTEGER base_ul;
359 memcpy(&base_ul, &base_ft, sizeof(FILETIME));
360
361 // Multiply by big number to convert to 100ns units, then add in the 1970
362 // base date value.
363 const ULONGLONG RATIO = 10000000;
364 ULARGE_INTEGER current_ul;
365 current_ul.QuadPart = base_ul.QuadPart + static_cast<int64>(ut) * RATIO;
366 memcpy(ft, ¤t_ul, sizeof(FILETIME));
367 }
368
Utf8ToWindowsFilename(const std::string & utf8,std::wstring * filename)369 bool Utf8ToWindowsFilename(const std::string& utf8, std::wstring* filename) {
370 // TODO: Integrate into fileutils.h
371 // TODO: Handle wide and non-wide cases via TCHAR?
372 // TODO: Skip \\?\ processing if the length is not > MAX_PATH?
373 // TODO: Write unittests
374
375 // Convert to Utf16
376 int wlen = ::MultiByteToWideChar(CP_UTF8, 0, utf8.c_str(),
377 static_cast<int>(utf8.length() + 1), NULL,
378 0);
379 if (0 == wlen) {
380 return false;
381 }
382 wchar_t* wfilename = STACK_ARRAY(wchar_t, wlen);
383 if (0 == ::MultiByteToWideChar(CP_UTF8, 0, utf8.c_str(),
384 static_cast<int>(utf8.length() + 1),
385 wfilename, wlen)) {
386 return false;
387 }
388 // Replace forward slashes with backslashes
389 std::replace(wfilename, wfilename + wlen, L'/', L'\\');
390 // Convert to complete filename
391 DWORD full_len = ::GetFullPathName(wfilename, 0, NULL, NULL);
392 if (0 == full_len) {
393 return false;
394 }
395 wchar_t* filepart = NULL;
396 wchar_t* full_filename = STACK_ARRAY(wchar_t, full_len + 6);
397 wchar_t* start = full_filename + 6;
398 if (0 == ::GetFullPathName(wfilename, full_len, start, &filepart)) {
399 return false;
400 }
401 // Add long-path prefix
402 const wchar_t kLongPathPrefix[] = L"\\\\?\\UNC";
403 if ((start[0] != L'\\') || (start[1] != L'\\')) {
404 // Non-unc path: <pathname>
405 // Becomes: \\?\<pathname>
406 start -= 4;
407 ASSERT(start >= full_filename);
408 memcpy(start, kLongPathPrefix, 4 * sizeof(wchar_t));
409 } else if (start[2] != L'?') {
410 // Unc path: \\<server>\<pathname>
411 // Becomes: \\?\UNC\<server>\<pathname>
412 start -= 6;
413 ASSERT(start >= full_filename);
414 memcpy(start, kLongPathPrefix, 7 * sizeof(wchar_t));
415 } else {
416 // Already in long-path form.
417 }
418 filename->assign(start);
419 return true;
420 }
421
GetOsVersion(int * major,int * minor,int * build)422 bool GetOsVersion(int* major, int* minor, int* build) {
423 OSVERSIONINFO info = {0};
424 info.dwOSVersionInfoSize = sizeof(info);
425 if (GetVersionEx(&info)) {
426 if (major) *major = info.dwMajorVersion;
427 if (minor) *minor = info.dwMinorVersion;
428 if (build) *build = info.dwBuildNumber;
429 return true;
430 }
431 return false;
432 }
433
GetCurrentProcessIntegrityLevel(int * level)434 bool GetCurrentProcessIntegrityLevel(int* level) {
435 bool ret = false;
436 HANDLE process = ::GetCurrentProcess(), token;
437 if (OpenProcessToken(process, TOKEN_QUERY | TOKEN_QUERY_SOURCE, &token)) {
438 DWORD size;
439 if (!GetTokenInformation(token, TokenIntegrityLevel, NULL, 0, &size) &&
440 GetLastError() == ERROR_INSUFFICIENT_BUFFER) {
441
442 char* buf = STACK_ARRAY(char, size);
443 TOKEN_MANDATORY_LABEL* til =
444 reinterpret_cast<TOKEN_MANDATORY_LABEL*>(buf);
445 if (GetTokenInformation(token, TokenIntegrityLevel, til, size, &size)) {
446
447 DWORD count = *GetSidSubAuthorityCount(til->Label.Sid);
448 *level = *GetSidSubAuthority(til->Label.Sid, count - 1);
449 ret = true;
450 }
451 }
452 CloseHandle(token);
453 }
454 return ret;
455 }
456 } // namespace rtc
457