1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Analysis/MemoryBuiltins.h"
19 #include "llvm/IR/CallSite.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/GlobalAlias.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/Support/MathExtras.h"
33 #include <cstring>
34 using namespace llvm;
35 using namespace llvm::PatternMatch;
36
37 const unsigned MaxDepth = 6;
38
39 /// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
40 /// unknown returns 0). For vector types, returns the element type's bitwidth.
getBitWidth(Type * Ty,const DataLayout * TD)41 static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
42 if (unsigned BitWidth = Ty->getScalarSizeInBits())
43 return BitWidth;
44
45 return TD ? TD->getPointerTypeSizeInBits(Ty) : 0;
46 }
47
computeKnownBitsAddSub(bool Add,Value * Op0,Value * Op1,bool NSW,APInt & KnownZero,APInt & KnownOne,APInt & KnownZero2,APInt & KnownOne2,const DataLayout * TD,unsigned Depth)48 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
49 APInt &KnownZero, APInt &KnownOne,
50 APInt &KnownZero2, APInt &KnownOne2,
51 const DataLayout *TD, unsigned Depth) {
52 if (!Add) {
53 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
54 // We know that the top bits of C-X are clear if X contains less bits
55 // than C (i.e. no wrap-around can happen). For example, 20-X is
56 // positive if we can prove that X is >= 0 and < 16.
57 if (!CLHS->getValue().isNegative()) {
58 unsigned BitWidth = KnownZero.getBitWidth();
59 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
60 // NLZ can't be BitWidth with no sign bit
61 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
62 llvm::computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
63
64 // If all of the MaskV bits are known to be zero, then we know the
65 // output top bits are zero, because we now know that the output is
66 // from [0-C].
67 if ((KnownZero2 & MaskV) == MaskV) {
68 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
69 // Top bits known zero.
70 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
71 }
72 }
73 }
74 }
75
76 unsigned BitWidth = KnownZero.getBitWidth();
77
78 // If one of the operands has trailing zeros, then the bits that the
79 // other operand has in those bit positions will be preserved in the
80 // result. For an add, this works with either operand. For a subtract,
81 // this only works if the known zeros are in the right operand.
82 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
83 llvm::computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1);
84 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
85
86 llvm::computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
87 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
88
89 // Determine which operand has more trailing zeros, and use that
90 // many bits from the other operand.
91 if (LHSKnownZeroOut > RHSKnownZeroOut) {
92 if (Add) {
93 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
94 KnownZero |= KnownZero2 & Mask;
95 KnownOne |= KnownOne2 & Mask;
96 } else {
97 // If the known zeros are in the left operand for a subtract,
98 // fall back to the minimum known zeros in both operands.
99 KnownZero |= APInt::getLowBitsSet(BitWidth,
100 std::min(LHSKnownZeroOut,
101 RHSKnownZeroOut));
102 }
103 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
104 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
105 KnownZero |= LHSKnownZero & Mask;
106 KnownOne |= LHSKnownOne & Mask;
107 }
108
109 // Are we still trying to solve for the sign bit?
110 if (!KnownZero.isNegative() && !KnownOne.isNegative()) {
111 if (NSW) {
112 if (Add) {
113 // Adding two positive numbers can't wrap into negative
114 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
115 KnownZero |= APInt::getSignBit(BitWidth);
116 // and adding two negative numbers can't wrap into positive.
117 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
118 KnownOne |= APInt::getSignBit(BitWidth);
119 } else {
120 // Subtracting a negative number from a positive one can't wrap
121 if (LHSKnownZero.isNegative() && KnownOne2.isNegative())
122 KnownZero |= APInt::getSignBit(BitWidth);
123 // neither can subtracting a positive number from a negative one.
124 else if (LHSKnownOne.isNegative() && KnownZero2.isNegative())
125 KnownOne |= APInt::getSignBit(BitWidth);
126 }
127 }
128 }
129 }
130
computeKnownBitsMul(Value * Op0,Value * Op1,bool NSW,APInt & KnownZero,APInt & KnownOne,APInt & KnownZero2,APInt & KnownOne2,const DataLayout * TD,unsigned Depth)131 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
132 APInt &KnownZero, APInt &KnownOne,
133 APInt &KnownZero2, APInt &KnownOne2,
134 const DataLayout *TD, unsigned Depth) {
135 unsigned BitWidth = KnownZero.getBitWidth();
136 computeKnownBits(Op1, KnownZero, KnownOne, TD, Depth+1);
137 computeKnownBits(Op0, KnownZero2, KnownOne2, TD, Depth+1);
138
139 bool isKnownNegative = false;
140 bool isKnownNonNegative = false;
141 // If the multiplication is known not to overflow, compute the sign bit.
142 if (NSW) {
143 if (Op0 == Op1) {
144 // The product of a number with itself is non-negative.
145 isKnownNonNegative = true;
146 } else {
147 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
148 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
149 bool isKnownNegativeOp1 = KnownOne.isNegative();
150 bool isKnownNegativeOp0 = KnownOne2.isNegative();
151 // The product of two numbers with the same sign is non-negative.
152 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
153 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
154 // The product of a negative number and a non-negative number is either
155 // negative or zero.
156 if (!isKnownNonNegative)
157 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
158 isKnownNonZero(Op0, TD, Depth)) ||
159 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
160 isKnownNonZero(Op1, TD, Depth));
161 }
162 }
163
164 // If low bits are zero in either operand, output low known-0 bits.
165 // Also compute a conserative estimate for high known-0 bits.
166 // More trickiness is possible, but this is sufficient for the
167 // interesting case of alignment computation.
168 KnownOne.clearAllBits();
169 unsigned TrailZ = KnownZero.countTrailingOnes() +
170 KnownZero2.countTrailingOnes();
171 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
172 KnownZero2.countLeadingOnes(),
173 BitWidth) - BitWidth;
174
175 TrailZ = std::min(TrailZ, BitWidth);
176 LeadZ = std::min(LeadZ, BitWidth);
177 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
178 APInt::getHighBitsSet(BitWidth, LeadZ);
179
180 // Only make use of no-wrap flags if we failed to compute the sign bit
181 // directly. This matters if the multiplication always overflows, in
182 // which case we prefer to follow the result of the direct computation,
183 // though as the program is invoking undefined behaviour we can choose
184 // whatever we like here.
185 if (isKnownNonNegative && !KnownOne.isNegative())
186 KnownZero.setBit(BitWidth - 1);
187 else if (isKnownNegative && !KnownZero.isNegative())
188 KnownOne.setBit(BitWidth - 1);
189 }
190
computeKnownBitsFromRangeMetadata(const MDNode & Ranges,APInt & KnownZero)191 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
192 APInt &KnownZero) {
193 unsigned BitWidth = KnownZero.getBitWidth();
194 unsigned NumRanges = Ranges.getNumOperands() / 2;
195 assert(NumRanges >= 1);
196
197 // Use the high end of the ranges to find leading zeros.
198 unsigned MinLeadingZeros = BitWidth;
199 for (unsigned i = 0; i < NumRanges; ++i) {
200 ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0));
201 ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1));
202 ConstantRange Range(Lower->getValue(), Upper->getValue());
203 if (Range.isWrappedSet())
204 MinLeadingZeros = 0; // -1 has no zeros
205 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
206 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
207 }
208
209 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
210 }
211
212 /// Determine which bits of V are known to be either zero or one and return
213 /// them in the KnownZero/KnownOne bit sets.
214 ///
215 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
216 /// we cannot optimize based on the assumption that it is zero without changing
217 /// it to be an explicit zero. If we don't change it to zero, other code could
218 /// optimized based on the contradictory assumption that it is non-zero.
219 /// Because instcombine aggressively folds operations with undef args anyway,
220 /// this won't lose us code quality.
221 ///
222 /// This function is defined on values with integer type, values with pointer
223 /// type (but only if TD is non-null), and vectors of integers. In the case
224 /// where V is a vector, known zero, and known one values are the
225 /// same width as the vector element, and the bit is set only if it is true
226 /// for all of the elements in the vector.
computeKnownBits(Value * V,APInt & KnownZero,APInt & KnownOne,const DataLayout * TD,unsigned Depth)227 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
228 const DataLayout *TD, unsigned Depth) {
229 assert(V && "No Value?");
230 assert(Depth <= MaxDepth && "Limit Search Depth");
231 unsigned BitWidth = KnownZero.getBitWidth();
232
233 assert((V->getType()->isIntOrIntVectorTy() ||
234 V->getType()->getScalarType()->isPointerTy()) &&
235 "Not integer or pointer type!");
236 assert((!TD ||
237 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
238 (!V->getType()->isIntOrIntVectorTy() ||
239 V->getType()->getScalarSizeInBits() == BitWidth) &&
240 KnownZero.getBitWidth() == BitWidth &&
241 KnownOne.getBitWidth() == BitWidth &&
242 "V, KnownOne and KnownZero should have same BitWidth");
243
244 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
245 // We know all of the bits for a constant!
246 KnownOne = CI->getValue();
247 KnownZero = ~KnownOne;
248 return;
249 }
250 // Null and aggregate-zero are all-zeros.
251 if (isa<ConstantPointerNull>(V) ||
252 isa<ConstantAggregateZero>(V)) {
253 KnownOne.clearAllBits();
254 KnownZero = APInt::getAllOnesValue(BitWidth);
255 return;
256 }
257 // Handle a constant vector by taking the intersection of the known bits of
258 // each element. There is no real need to handle ConstantVector here, because
259 // we don't handle undef in any particularly useful way.
260 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
261 // We know that CDS must be a vector of integers. Take the intersection of
262 // each element.
263 KnownZero.setAllBits(); KnownOne.setAllBits();
264 APInt Elt(KnownZero.getBitWidth(), 0);
265 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
266 Elt = CDS->getElementAsInteger(i);
267 KnownZero &= ~Elt;
268 KnownOne &= Elt;
269 }
270 return;
271 }
272
273 // The address of an aligned GlobalValue has trailing zeros.
274 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
275 unsigned Align = GV->getAlignment();
276 if (Align == 0 && TD) {
277 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
278 Type *ObjectType = GVar->getType()->getElementType();
279 if (ObjectType->isSized()) {
280 // If the object is defined in the current Module, we'll be giving
281 // it the preferred alignment. Otherwise, we have to assume that it
282 // may only have the minimum ABI alignment.
283 if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
284 Align = TD->getPreferredAlignment(GVar);
285 else
286 Align = TD->getABITypeAlignment(ObjectType);
287 }
288 }
289 }
290 if (Align > 0)
291 KnownZero = APInt::getLowBitsSet(BitWidth,
292 countTrailingZeros(Align));
293 else
294 KnownZero.clearAllBits();
295 KnownOne.clearAllBits();
296 return;
297 }
298 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
299 // the bits of its aliasee.
300 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
301 if (GA->mayBeOverridden()) {
302 KnownZero.clearAllBits(); KnownOne.clearAllBits();
303 } else {
304 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1);
305 }
306 return;
307 }
308
309 if (Argument *A = dyn_cast<Argument>(V)) {
310 unsigned Align = 0;
311
312 if (A->hasByValOrInAllocaAttr()) {
313 // Get alignment information off byval/inalloca arguments if specified in
314 // the IR.
315 Align = A->getParamAlignment();
316 } else if (TD && A->hasStructRetAttr()) {
317 // An sret parameter has at least the ABI alignment of the return type.
318 Type *EltTy = cast<PointerType>(A->getType())->getElementType();
319 if (EltTy->isSized())
320 Align = TD->getABITypeAlignment(EltTy);
321 }
322
323 if (Align)
324 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
325 return;
326 }
327
328 // Start out not knowing anything.
329 KnownZero.clearAllBits(); KnownOne.clearAllBits();
330
331 if (Depth == MaxDepth)
332 return; // Limit search depth.
333
334 Operator *I = dyn_cast<Operator>(V);
335 if (!I) return;
336
337 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
338 switch (I->getOpcode()) {
339 default: break;
340 case Instruction::Load:
341 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
342 computeKnownBitsFromRangeMetadata(*MD, KnownZero);
343 break;
344 case Instruction::And: {
345 // If either the LHS or the RHS are Zero, the result is zero.
346 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
347 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
348
349 // Output known-1 bits are only known if set in both the LHS & RHS.
350 KnownOne &= KnownOne2;
351 // Output known-0 are known to be clear if zero in either the LHS | RHS.
352 KnownZero |= KnownZero2;
353 break;
354 }
355 case Instruction::Or: {
356 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
357 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
358
359 // Output known-0 bits are only known if clear in both the LHS & RHS.
360 KnownZero &= KnownZero2;
361 // Output known-1 are known to be set if set in either the LHS | RHS.
362 KnownOne |= KnownOne2;
363 break;
364 }
365 case Instruction::Xor: {
366 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
367 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
368
369 // Output known-0 bits are known if clear or set in both the LHS & RHS.
370 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
371 // Output known-1 are known to be set if set in only one of the LHS, RHS.
372 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
373 KnownZero = KnownZeroOut;
374 break;
375 }
376 case Instruction::Mul: {
377 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
378 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW,
379 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth);
380 break;
381 }
382 case Instruction::UDiv: {
383 // For the purposes of computing leading zeros we can conservatively
384 // treat a udiv as a logical right shift by the power of 2 known to
385 // be less than the denominator.
386 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
387 unsigned LeadZ = KnownZero2.countLeadingOnes();
388
389 KnownOne2.clearAllBits();
390 KnownZero2.clearAllBits();
391 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
392 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
393 if (RHSUnknownLeadingOnes != BitWidth)
394 LeadZ = std::min(BitWidth,
395 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
396
397 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
398 break;
399 }
400 case Instruction::Select:
401 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1);
402 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD,
403 Depth+1);
404
405 // Only known if known in both the LHS and RHS.
406 KnownOne &= KnownOne2;
407 KnownZero &= KnownZero2;
408 break;
409 case Instruction::FPTrunc:
410 case Instruction::FPExt:
411 case Instruction::FPToUI:
412 case Instruction::FPToSI:
413 case Instruction::SIToFP:
414 case Instruction::UIToFP:
415 break; // Can't work with floating point.
416 case Instruction::PtrToInt:
417 case Instruction::IntToPtr:
418 // We can't handle these if we don't know the pointer size.
419 if (!TD) break;
420 // FALL THROUGH and handle them the same as zext/trunc.
421 case Instruction::ZExt:
422 case Instruction::Trunc: {
423 Type *SrcTy = I->getOperand(0)->getType();
424
425 unsigned SrcBitWidth;
426 // Note that we handle pointer operands here because of inttoptr/ptrtoint
427 // which fall through here.
428 if(TD) {
429 SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType());
430 } else {
431 SrcBitWidth = SrcTy->getScalarSizeInBits();
432 if (!SrcBitWidth) break;
433 }
434
435 assert(SrcBitWidth && "SrcBitWidth can't be zero");
436 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
437 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
438 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
439 KnownZero = KnownZero.zextOrTrunc(BitWidth);
440 KnownOne = KnownOne.zextOrTrunc(BitWidth);
441 // Any top bits are known to be zero.
442 if (BitWidth > SrcBitWidth)
443 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
444 break;
445 }
446 case Instruction::BitCast: {
447 Type *SrcTy = I->getOperand(0)->getType();
448 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
449 // TODO: For now, not handling conversions like:
450 // (bitcast i64 %x to <2 x i32>)
451 !I->getType()->isVectorTy()) {
452 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
453 break;
454 }
455 break;
456 }
457 case Instruction::SExt: {
458 // Compute the bits in the result that are not present in the input.
459 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
460
461 KnownZero = KnownZero.trunc(SrcBitWidth);
462 KnownOne = KnownOne.trunc(SrcBitWidth);
463 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
464 KnownZero = KnownZero.zext(BitWidth);
465 KnownOne = KnownOne.zext(BitWidth);
466
467 // If the sign bit of the input is known set or clear, then we know the
468 // top bits of the result.
469 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
470 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
471 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
472 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
473 break;
474 }
475 case Instruction::Shl:
476 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
477 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
478 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
479 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
480 KnownZero <<= ShiftAmt;
481 KnownOne <<= ShiftAmt;
482 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
483 break;
484 }
485 break;
486 case Instruction::LShr:
487 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
488 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
489 // Compute the new bits that are at the top now.
490 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
491
492 // Unsigned shift right.
493 computeKnownBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1);
494 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
495 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
496 // high bits known zero.
497 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
498 break;
499 }
500 break;
501 case Instruction::AShr:
502 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
503 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
504 // Compute the new bits that are at the top now.
505 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
506
507 // Signed shift right.
508 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
509 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
510 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
511
512 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
513 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
514 KnownZero |= HighBits;
515 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
516 KnownOne |= HighBits;
517 break;
518 }
519 break;
520 case Instruction::Sub: {
521 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
522 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
523 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
524 Depth);
525 break;
526 }
527 case Instruction::Add: {
528 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
529 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
530 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
531 Depth);
532 break;
533 }
534 case Instruction::SRem:
535 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
536 APInt RA = Rem->getValue().abs();
537 if (RA.isPowerOf2()) {
538 APInt LowBits = RA - 1;
539 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
540
541 // The low bits of the first operand are unchanged by the srem.
542 KnownZero = KnownZero2 & LowBits;
543 KnownOne = KnownOne2 & LowBits;
544
545 // If the first operand is non-negative or has all low bits zero, then
546 // the upper bits are all zero.
547 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
548 KnownZero |= ~LowBits;
549
550 // If the first operand is negative and not all low bits are zero, then
551 // the upper bits are all one.
552 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
553 KnownOne |= ~LowBits;
554
555 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
556 }
557 }
558
559 // The sign bit is the LHS's sign bit, except when the result of the
560 // remainder is zero.
561 if (KnownZero.isNonNegative()) {
562 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
563 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
564 Depth+1);
565 // If it's known zero, our sign bit is also zero.
566 if (LHSKnownZero.isNegative())
567 KnownZero.setBit(BitWidth - 1);
568 }
569
570 break;
571 case Instruction::URem: {
572 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
573 APInt RA = Rem->getValue();
574 if (RA.isPowerOf2()) {
575 APInt LowBits = (RA - 1);
576 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD,
577 Depth+1);
578 KnownZero |= ~LowBits;
579 KnownOne &= LowBits;
580 break;
581 }
582 }
583
584 // Since the result is less than or equal to either operand, any leading
585 // zero bits in either operand must also exist in the result.
586 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
587 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
588
589 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
590 KnownZero2.countLeadingOnes());
591 KnownOne.clearAllBits();
592 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
593 break;
594 }
595
596 case Instruction::Alloca: {
597 AllocaInst *AI = cast<AllocaInst>(V);
598 unsigned Align = AI->getAlignment();
599 if (Align == 0 && TD)
600 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
601
602 if (Align > 0)
603 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
604 break;
605 }
606 case Instruction::GetElementPtr: {
607 // Analyze all of the subscripts of this getelementptr instruction
608 // to determine if we can prove known low zero bits.
609 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
610 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
611 Depth+1);
612 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
613
614 gep_type_iterator GTI = gep_type_begin(I);
615 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
616 Value *Index = I->getOperand(i);
617 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
618 // Handle struct member offset arithmetic.
619 if (!TD) {
620 TrailZ = 0;
621 break;
622 }
623
624 // Handle case when index is vector zeroinitializer
625 Constant *CIndex = cast<Constant>(Index);
626 if (CIndex->isZeroValue())
627 continue;
628
629 if (CIndex->getType()->isVectorTy())
630 Index = CIndex->getSplatValue();
631
632 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
633 const StructLayout *SL = TD->getStructLayout(STy);
634 uint64_t Offset = SL->getElementOffset(Idx);
635 TrailZ = std::min<unsigned>(TrailZ,
636 countTrailingZeros(Offset));
637 } else {
638 // Handle array index arithmetic.
639 Type *IndexedTy = GTI.getIndexedType();
640 if (!IndexedTy->isSized()) {
641 TrailZ = 0;
642 break;
643 }
644 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
645 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
646 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
647 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1);
648 TrailZ = std::min(TrailZ,
649 unsigned(countTrailingZeros(TypeSize) +
650 LocalKnownZero.countTrailingOnes()));
651 }
652 }
653
654 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
655 break;
656 }
657 case Instruction::PHI: {
658 PHINode *P = cast<PHINode>(I);
659 // Handle the case of a simple two-predecessor recurrence PHI.
660 // There's a lot more that could theoretically be done here, but
661 // this is sufficient to catch some interesting cases.
662 if (P->getNumIncomingValues() == 2) {
663 for (unsigned i = 0; i != 2; ++i) {
664 Value *L = P->getIncomingValue(i);
665 Value *R = P->getIncomingValue(!i);
666 Operator *LU = dyn_cast<Operator>(L);
667 if (!LU)
668 continue;
669 unsigned Opcode = LU->getOpcode();
670 // Check for operations that have the property that if
671 // both their operands have low zero bits, the result
672 // will have low zero bits.
673 if (Opcode == Instruction::Add ||
674 Opcode == Instruction::Sub ||
675 Opcode == Instruction::And ||
676 Opcode == Instruction::Or ||
677 Opcode == Instruction::Mul) {
678 Value *LL = LU->getOperand(0);
679 Value *LR = LU->getOperand(1);
680 // Find a recurrence.
681 if (LL == I)
682 L = LR;
683 else if (LR == I)
684 L = LL;
685 else
686 break;
687 // Ok, we have a PHI of the form L op= R. Check for low
688 // zero bits.
689 computeKnownBits(R, KnownZero2, KnownOne2, TD, Depth+1);
690
691 // We need to take the minimum number of known bits
692 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
693 computeKnownBits(L, KnownZero3, KnownOne3, TD, Depth+1);
694
695 KnownZero = APInt::getLowBitsSet(BitWidth,
696 std::min(KnownZero2.countTrailingOnes(),
697 KnownZero3.countTrailingOnes()));
698 break;
699 }
700 }
701 }
702
703 // Unreachable blocks may have zero-operand PHI nodes.
704 if (P->getNumIncomingValues() == 0)
705 break;
706
707 // Otherwise take the unions of the known bit sets of the operands,
708 // taking conservative care to avoid excessive recursion.
709 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
710 // Skip if every incoming value references to ourself.
711 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
712 break;
713
714 KnownZero = APInt::getAllOnesValue(BitWidth);
715 KnownOne = APInt::getAllOnesValue(BitWidth);
716 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
717 // Skip direct self references.
718 if (P->getIncomingValue(i) == P) continue;
719
720 KnownZero2 = APInt(BitWidth, 0);
721 KnownOne2 = APInt(BitWidth, 0);
722 // Recurse, but cap the recursion to one level, because we don't
723 // want to waste time spinning around in loops.
724 computeKnownBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
725 MaxDepth-1);
726 KnownZero &= KnownZero2;
727 KnownOne &= KnownOne2;
728 // If all bits have been ruled out, there's no need to check
729 // more operands.
730 if (!KnownZero && !KnownOne)
731 break;
732 }
733 }
734 break;
735 }
736 case Instruction::Call:
737 case Instruction::Invoke:
738 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
739 computeKnownBitsFromRangeMetadata(*MD, KnownZero);
740 // If a range metadata is attached to this IntrinsicInst, intersect the
741 // explicit range specified by the metadata and the implicit range of
742 // the intrinsic.
743 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
744 switch (II->getIntrinsicID()) {
745 default: break;
746 case Intrinsic::ctlz:
747 case Intrinsic::cttz: {
748 unsigned LowBits = Log2_32(BitWidth)+1;
749 // If this call is undefined for 0, the result will be less than 2^n.
750 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
751 LowBits -= 1;
752 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
753 break;
754 }
755 case Intrinsic::ctpop: {
756 unsigned LowBits = Log2_32(BitWidth)+1;
757 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
758 break;
759 }
760 case Intrinsic::x86_sse42_crc32_64_64:
761 KnownZero |= APInt::getHighBitsSet(64, 32);
762 break;
763 }
764 }
765 break;
766 case Instruction::ExtractValue:
767 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
768 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
769 if (EVI->getNumIndices() != 1) break;
770 if (EVI->getIndices()[0] == 0) {
771 switch (II->getIntrinsicID()) {
772 default: break;
773 case Intrinsic::uadd_with_overflow:
774 case Intrinsic::sadd_with_overflow:
775 computeKnownBitsAddSub(true, II->getArgOperand(0),
776 II->getArgOperand(1), false, KnownZero,
777 KnownOne, KnownZero2, KnownOne2, TD, Depth);
778 break;
779 case Intrinsic::usub_with_overflow:
780 case Intrinsic::ssub_with_overflow:
781 computeKnownBitsAddSub(false, II->getArgOperand(0),
782 II->getArgOperand(1), false, KnownZero,
783 KnownOne, KnownZero2, KnownOne2, TD, Depth);
784 break;
785 case Intrinsic::umul_with_overflow:
786 case Intrinsic::smul_with_overflow:
787 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1),
788 false, KnownZero, KnownOne,
789 KnownZero2, KnownOne2, TD, Depth);
790 break;
791 }
792 }
793 }
794 }
795
796 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
797 }
798
799 /// ComputeSignBit - Determine whether the sign bit is known to be zero or
800 /// one. Convenience wrapper around computeKnownBits.
ComputeSignBit(Value * V,bool & KnownZero,bool & KnownOne,const DataLayout * TD,unsigned Depth)801 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
802 const DataLayout *TD, unsigned Depth) {
803 unsigned BitWidth = getBitWidth(V->getType(), TD);
804 if (!BitWidth) {
805 KnownZero = false;
806 KnownOne = false;
807 return;
808 }
809 APInt ZeroBits(BitWidth, 0);
810 APInt OneBits(BitWidth, 0);
811 computeKnownBits(V, ZeroBits, OneBits, TD, Depth);
812 KnownOne = OneBits[BitWidth - 1];
813 KnownZero = ZeroBits[BitWidth - 1];
814 }
815
816 /// isKnownToBeAPowerOfTwo - Return true if the given value is known to have exactly one
817 /// bit set when defined. For vectors return true if every element is known to
818 /// be a power of two when defined. Supports values with integer or pointer
819 /// types and vectors of integers.
isKnownToBeAPowerOfTwo(Value * V,bool OrZero,unsigned Depth)820 bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) {
821 if (Constant *C = dyn_cast<Constant>(V)) {
822 if (C->isNullValue())
823 return OrZero;
824 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
825 return CI->getValue().isPowerOf2();
826 // TODO: Handle vector constants.
827 }
828
829 // 1 << X is clearly a power of two if the one is not shifted off the end. If
830 // it is shifted off the end then the result is undefined.
831 if (match(V, m_Shl(m_One(), m_Value())))
832 return true;
833
834 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
835 // bottom. If it is shifted off the bottom then the result is undefined.
836 if (match(V, m_LShr(m_SignBit(), m_Value())))
837 return true;
838
839 // The remaining tests are all recursive, so bail out if we hit the limit.
840 if (Depth++ == MaxDepth)
841 return false;
842
843 Value *X = nullptr, *Y = nullptr;
844 // A shift of a power of two is a power of two or zero.
845 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
846 match(V, m_Shr(m_Value(X), m_Value()))))
847 return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth);
848
849 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
850 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth);
851
852 if (SelectInst *SI = dyn_cast<SelectInst>(V))
853 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth) &&
854 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth);
855
856 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
857 // A power of two and'd with anything is a power of two or zero.
858 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth) ||
859 isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth))
860 return true;
861 // X & (-X) is always a power of two or zero.
862 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
863 return true;
864 return false;
865 }
866
867 // Adding a power-of-two or zero to the same power-of-two or zero yields
868 // either the original power-of-two, a larger power-of-two or zero.
869 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
870 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
871 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
872 if (match(X, m_And(m_Specific(Y), m_Value())) ||
873 match(X, m_And(m_Value(), m_Specific(Y))))
874 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth))
875 return true;
876 if (match(Y, m_And(m_Specific(X), m_Value())) ||
877 match(Y, m_And(m_Value(), m_Specific(X))))
878 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth))
879 return true;
880
881 unsigned BitWidth = V->getType()->getScalarSizeInBits();
882 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
883 computeKnownBits(X, LHSZeroBits, LHSOneBits, nullptr, Depth);
884
885 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
886 computeKnownBits(Y, RHSZeroBits, RHSOneBits, nullptr, Depth);
887 // If i8 V is a power of two or zero:
888 // ZeroBits: 1 1 1 0 1 1 1 1
889 // ~ZeroBits: 0 0 0 1 0 0 0 0
890 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
891 // If OrZero isn't set, we cannot give back a zero result.
892 // Make sure either the LHS or RHS has a bit set.
893 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
894 return true;
895 }
896 }
897
898 // An exact divide or right shift can only shift off zero bits, so the result
899 // is a power of two only if the first operand is a power of two and not
900 // copying a sign bit (sdiv int_min, 2).
901 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
902 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
903 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, Depth);
904 }
905
906 return false;
907 }
908
909 /// \brief Test whether a GEP's result is known to be non-null.
910 ///
911 /// Uses properties inherent in a GEP to try to determine whether it is known
912 /// to be non-null.
913 ///
914 /// Currently this routine does not support vector GEPs.
isGEPKnownNonNull(GEPOperator * GEP,const DataLayout * DL,unsigned Depth)915 static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
916 unsigned Depth) {
917 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
918 return false;
919
920 // FIXME: Support vector-GEPs.
921 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
922
923 // If the base pointer is non-null, we cannot walk to a null address with an
924 // inbounds GEP in address space zero.
925 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth))
926 return true;
927
928 // Past this, if we don't have DataLayout, we can't do much.
929 if (!DL)
930 return false;
931
932 // Walk the GEP operands and see if any operand introduces a non-zero offset.
933 // If so, then the GEP cannot produce a null pointer, as doing so would
934 // inherently violate the inbounds contract within address space zero.
935 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
936 GTI != GTE; ++GTI) {
937 // Struct types are easy -- they must always be indexed by a constant.
938 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
939 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
940 unsigned ElementIdx = OpC->getZExtValue();
941 const StructLayout *SL = DL->getStructLayout(STy);
942 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
943 if (ElementOffset > 0)
944 return true;
945 continue;
946 }
947
948 // If we have a zero-sized type, the index doesn't matter. Keep looping.
949 if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0)
950 continue;
951
952 // Fast path the constant operand case both for efficiency and so we don't
953 // increment Depth when just zipping down an all-constant GEP.
954 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
955 if (!OpC->isZero())
956 return true;
957 continue;
958 }
959
960 // We post-increment Depth here because while isKnownNonZero increments it
961 // as well, when we pop back up that increment won't persist. We don't want
962 // to recurse 10k times just because we have 10k GEP operands. We don't
963 // bail completely out because we want to handle constant GEPs regardless
964 // of depth.
965 if (Depth++ >= MaxDepth)
966 continue;
967
968 if (isKnownNonZero(GTI.getOperand(), DL, Depth))
969 return true;
970 }
971
972 return false;
973 }
974
975 /// isKnownNonZero - Return true if the given value is known to be non-zero
976 /// when defined. For vectors return true if every element is known to be
977 /// non-zero when defined. Supports values with integer or pointer type and
978 /// vectors of integers.
isKnownNonZero(Value * V,const DataLayout * TD,unsigned Depth)979 bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
980 if (Constant *C = dyn_cast<Constant>(V)) {
981 if (C->isNullValue())
982 return false;
983 if (isa<ConstantInt>(C))
984 // Must be non-zero due to null test above.
985 return true;
986 // TODO: Handle vectors
987 return false;
988 }
989
990 // The remaining tests are all recursive, so bail out if we hit the limit.
991 if (Depth++ >= MaxDepth)
992 return false;
993
994 // Check for pointer simplifications.
995 if (V->getType()->isPointerTy()) {
996 if (isKnownNonNull(V))
997 return true;
998 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
999 if (isGEPKnownNonNull(GEP, TD, Depth))
1000 return true;
1001 }
1002
1003 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD);
1004
1005 // X | Y != 0 if X != 0 or Y != 0.
1006 Value *X = nullptr, *Y = nullptr;
1007 if (match(V, m_Or(m_Value(X), m_Value(Y))))
1008 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
1009
1010 // ext X != 0 if X != 0.
1011 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
1012 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
1013
1014 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
1015 // if the lowest bit is shifted off the end.
1016 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
1017 // shl nuw can't remove any non-zero bits.
1018 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1019 if (BO->hasNoUnsignedWrap())
1020 return isKnownNonZero(X, TD, Depth);
1021
1022 APInt KnownZero(BitWidth, 0);
1023 APInt KnownOne(BitWidth, 0);
1024 computeKnownBits(X, KnownZero, KnownOne, TD, Depth);
1025 if (KnownOne[0])
1026 return true;
1027 }
1028 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
1029 // defined if the sign bit is shifted off the end.
1030 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
1031 // shr exact can only shift out zero bits.
1032 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
1033 if (BO->isExact())
1034 return isKnownNonZero(X, TD, Depth);
1035
1036 bool XKnownNonNegative, XKnownNegative;
1037 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
1038 if (XKnownNegative)
1039 return true;
1040 }
1041 // div exact can only produce a zero if the dividend is zero.
1042 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
1043 return isKnownNonZero(X, TD, Depth);
1044 }
1045 // X + Y.
1046 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1047 bool XKnownNonNegative, XKnownNegative;
1048 bool YKnownNonNegative, YKnownNegative;
1049 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
1050 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
1051
1052 // If X and Y are both non-negative (as signed values) then their sum is not
1053 // zero unless both X and Y are zero.
1054 if (XKnownNonNegative && YKnownNonNegative)
1055 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth))
1056 return true;
1057
1058 // If X and Y are both negative (as signed values) then their sum is not
1059 // zero unless both X and Y equal INT_MIN.
1060 if (BitWidth && XKnownNegative && YKnownNegative) {
1061 APInt KnownZero(BitWidth, 0);
1062 APInt KnownOne(BitWidth, 0);
1063 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1064 // The sign bit of X is set. If some other bit is set then X is not equal
1065 // to INT_MIN.
1066 computeKnownBits(X, KnownZero, KnownOne, TD, Depth);
1067 if ((KnownOne & Mask) != 0)
1068 return true;
1069 // The sign bit of Y is set. If some other bit is set then Y is not equal
1070 // to INT_MIN.
1071 computeKnownBits(Y, KnownZero, KnownOne, TD, Depth);
1072 if ((KnownOne & Mask) != 0)
1073 return true;
1074 }
1075
1076 // The sum of a non-negative number and a power of two is not zero.
1077 if (XKnownNonNegative && isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth))
1078 return true;
1079 if (YKnownNonNegative && isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth))
1080 return true;
1081 }
1082 // X * Y.
1083 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1084 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1085 // If X and Y are non-zero then so is X * Y as long as the multiplication
1086 // does not overflow.
1087 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
1088 isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth))
1089 return true;
1090 }
1091 // (C ? X : Y) != 0 if X != 0 and Y != 0.
1092 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1093 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
1094 isKnownNonZero(SI->getFalseValue(), TD, Depth))
1095 return true;
1096 }
1097
1098 if (!BitWidth) return false;
1099 APInt KnownZero(BitWidth, 0);
1100 APInt KnownOne(BitWidth, 0);
1101 computeKnownBits(V, KnownZero, KnownOne, TD, Depth);
1102 return KnownOne != 0;
1103 }
1104
1105 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1106 /// this predicate to simplify operations downstream. Mask is known to be zero
1107 /// for bits that V cannot have.
1108 ///
1109 /// This function is defined on values with integer type, values with pointer
1110 /// type (but only if TD is non-null), and vectors of integers. In the case
1111 /// where V is a vector, the mask, known zero, and known one values are the
1112 /// same width as the vector element, and the bit is set only if it is true
1113 /// for all of the elements in the vector.
MaskedValueIsZero(Value * V,const APInt & Mask,const DataLayout * TD,unsigned Depth)1114 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
1115 const DataLayout *TD, unsigned Depth) {
1116 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
1117 computeKnownBits(V, KnownZero, KnownOne, TD, Depth);
1118 return (KnownZero & Mask) == Mask;
1119 }
1120
1121
1122
1123 /// ComputeNumSignBits - Return the number of times the sign bit of the
1124 /// register is replicated into the other bits. We know that at least 1 bit
1125 /// is always equal to the sign bit (itself), but other cases can give us
1126 /// information. For example, immediately after an "ashr X, 2", we know that
1127 /// the top 3 bits are all equal to each other, so we return 3.
1128 ///
1129 /// 'Op' must have a scalar integer type.
1130 ///
ComputeNumSignBits(Value * V,const DataLayout * TD,unsigned Depth)1131 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
1132 unsigned Depth) {
1133 assert((TD || V->getType()->isIntOrIntVectorTy()) &&
1134 "ComputeNumSignBits requires a DataLayout object to operate "
1135 "on non-integer values!");
1136 Type *Ty = V->getType();
1137 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
1138 Ty->getScalarSizeInBits();
1139 unsigned Tmp, Tmp2;
1140 unsigned FirstAnswer = 1;
1141
1142 // Note that ConstantInt is handled by the general computeKnownBits case
1143 // below.
1144
1145 if (Depth == 6)
1146 return 1; // Limit search depth.
1147
1148 Operator *U = dyn_cast<Operator>(V);
1149 switch (Operator::getOpcode(V)) {
1150 default: break;
1151 case Instruction::SExt:
1152 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
1153 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
1154
1155 case Instruction::AShr: {
1156 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1157 // ashr X, C -> adds C sign bits. Vectors too.
1158 const APInt *ShAmt;
1159 if (match(U->getOperand(1), m_APInt(ShAmt))) {
1160 Tmp += ShAmt->getZExtValue();
1161 if (Tmp > TyBits) Tmp = TyBits;
1162 }
1163 return Tmp;
1164 }
1165 case Instruction::Shl: {
1166 const APInt *ShAmt;
1167 if (match(U->getOperand(1), m_APInt(ShAmt))) {
1168 // shl destroys sign bits.
1169 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1170 Tmp2 = ShAmt->getZExtValue();
1171 if (Tmp2 >= TyBits || // Bad shift.
1172 Tmp2 >= Tmp) break; // Shifted all sign bits out.
1173 return Tmp - Tmp2;
1174 }
1175 break;
1176 }
1177 case Instruction::And:
1178 case Instruction::Or:
1179 case Instruction::Xor: // NOT is handled here.
1180 // Logical binary ops preserve the number of sign bits at the worst.
1181 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1182 if (Tmp != 1) {
1183 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1184 FirstAnswer = std::min(Tmp, Tmp2);
1185 // We computed what we know about the sign bits as our first
1186 // answer. Now proceed to the generic code that uses
1187 // computeKnownBits, and pick whichever answer is better.
1188 }
1189 break;
1190
1191 case Instruction::Select:
1192 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1193 if (Tmp == 1) return 1; // Early out.
1194 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
1195 return std::min(Tmp, Tmp2);
1196
1197 case Instruction::Add:
1198 // Add can have at most one carry bit. Thus we know that the output
1199 // is, at worst, one more bit than the inputs.
1200 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1201 if (Tmp == 1) return 1; // Early out.
1202
1203 // Special case decrementing a value (ADD X, -1):
1204 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
1205 if (CRHS->isAllOnesValue()) {
1206 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1207 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
1208
1209 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1210 // sign bits set.
1211 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
1212 return TyBits;
1213
1214 // If we are subtracting one from a positive number, there is no carry
1215 // out of the result.
1216 if (KnownZero.isNegative())
1217 return Tmp;
1218 }
1219
1220 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1221 if (Tmp2 == 1) return 1;
1222 return std::min(Tmp, Tmp2)-1;
1223
1224 case Instruction::Sub:
1225 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1226 if (Tmp2 == 1) return 1;
1227
1228 // Handle NEG.
1229 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
1230 if (CLHS->isNullValue()) {
1231 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1232 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
1233 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1234 // sign bits set.
1235 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
1236 return TyBits;
1237
1238 // If the input is known to be positive (the sign bit is known clear),
1239 // the output of the NEG has the same number of sign bits as the input.
1240 if (KnownZero.isNegative())
1241 return Tmp2;
1242
1243 // Otherwise, we treat this like a SUB.
1244 }
1245
1246 // Sub can have at most one carry bit. Thus we know that the output
1247 // is, at worst, one more bit than the inputs.
1248 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1249 if (Tmp == 1) return 1; // Early out.
1250 return std::min(Tmp, Tmp2)-1;
1251
1252 case Instruction::PHI: {
1253 PHINode *PN = cast<PHINode>(U);
1254 // Don't analyze large in-degree PHIs.
1255 if (PN->getNumIncomingValues() > 4) break;
1256
1257 // Take the minimum of all incoming values. This can't infinitely loop
1258 // because of our depth threshold.
1259 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
1260 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1261 if (Tmp == 1) return Tmp;
1262 Tmp = std::min(Tmp,
1263 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
1264 }
1265 return Tmp;
1266 }
1267
1268 case Instruction::Trunc:
1269 // FIXME: it's tricky to do anything useful for this, but it is an important
1270 // case for targets like X86.
1271 break;
1272 }
1273
1274 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1275 // use this information.
1276 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1277 APInt Mask;
1278 computeKnownBits(V, KnownZero, KnownOne, TD, Depth);
1279
1280 if (KnownZero.isNegative()) { // sign bit is 0
1281 Mask = KnownZero;
1282 } else if (KnownOne.isNegative()) { // sign bit is 1;
1283 Mask = KnownOne;
1284 } else {
1285 // Nothing known.
1286 return FirstAnswer;
1287 }
1288
1289 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1290 // the number of identical bits in the top of the input value.
1291 Mask = ~Mask;
1292 Mask <<= Mask.getBitWidth()-TyBits;
1293 // Return # leading zeros. We use 'min' here in case Val was zero before
1294 // shifting. We don't want to return '64' as for an i32 "0".
1295 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1296 }
1297
1298 /// ComputeMultiple - This function computes the integer multiple of Base that
1299 /// equals V. If successful, it returns true and returns the multiple in
1300 /// Multiple. If unsuccessful, it returns false. It looks
1301 /// through SExt instructions only if LookThroughSExt is true.
ComputeMultiple(Value * V,unsigned Base,Value * & Multiple,bool LookThroughSExt,unsigned Depth)1302 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
1303 bool LookThroughSExt, unsigned Depth) {
1304 const unsigned MaxDepth = 6;
1305
1306 assert(V && "No Value?");
1307 assert(Depth <= MaxDepth && "Limit Search Depth");
1308 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
1309
1310 Type *T = V->getType();
1311
1312 ConstantInt *CI = dyn_cast<ConstantInt>(V);
1313
1314 if (Base == 0)
1315 return false;
1316
1317 if (Base == 1) {
1318 Multiple = V;
1319 return true;
1320 }
1321
1322 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
1323 Constant *BaseVal = ConstantInt::get(T, Base);
1324 if (CO && CO == BaseVal) {
1325 // Multiple is 1.
1326 Multiple = ConstantInt::get(T, 1);
1327 return true;
1328 }
1329
1330 if (CI && CI->getZExtValue() % Base == 0) {
1331 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
1332 return true;
1333 }
1334
1335 if (Depth == MaxDepth) return false; // Limit search depth.
1336
1337 Operator *I = dyn_cast<Operator>(V);
1338 if (!I) return false;
1339
1340 switch (I->getOpcode()) {
1341 default: break;
1342 case Instruction::SExt:
1343 if (!LookThroughSExt) return false;
1344 // otherwise fall through to ZExt
1345 case Instruction::ZExt:
1346 return ComputeMultiple(I->getOperand(0), Base, Multiple,
1347 LookThroughSExt, Depth+1);
1348 case Instruction::Shl:
1349 case Instruction::Mul: {
1350 Value *Op0 = I->getOperand(0);
1351 Value *Op1 = I->getOperand(1);
1352
1353 if (I->getOpcode() == Instruction::Shl) {
1354 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
1355 if (!Op1CI) return false;
1356 // Turn Op0 << Op1 into Op0 * 2^Op1
1357 APInt Op1Int = Op1CI->getValue();
1358 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
1359 APInt API(Op1Int.getBitWidth(), 0);
1360 API.setBit(BitToSet);
1361 Op1 = ConstantInt::get(V->getContext(), API);
1362 }
1363
1364 Value *Mul0 = nullptr;
1365 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1366 if (Constant *Op1C = dyn_cast<Constant>(Op1))
1367 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
1368 if (Op1C->getType()->getPrimitiveSizeInBits() <
1369 MulC->getType()->getPrimitiveSizeInBits())
1370 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
1371 if (Op1C->getType()->getPrimitiveSizeInBits() >
1372 MulC->getType()->getPrimitiveSizeInBits())
1373 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
1374
1375 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1376 Multiple = ConstantExpr::getMul(MulC, Op1C);
1377 return true;
1378 }
1379
1380 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
1381 if (Mul0CI->getValue() == 1) {
1382 // V == Base * Op1, so return Op1
1383 Multiple = Op1;
1384 return true;
1385 }
1386 }
1387
1388 Value *Mul1 = nullptr;
1389 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1390 if (Constant *Op0C = dyn_cast<Constant>(Op0))
1391 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
1392 if (Op0C->getType()->getPrimitiveSizeInBits() <
1393 MulC->getType()->getPrimitiveSizeInBits())
1394 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
1395 if (Op0C->getType()->getPrimitiveSizeInBits() >
1396 MulC->getType()->getPrimitiveSizeInBits())
1397 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
1398
1399 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1400 Multiple = ConstantExpr::getMul(MulC, Op0C);
1401 return true;
1402 }
1403
1404 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
1405 if (Mul1CI->getValue() == 1) {
1406 // V == Base * Op0, so return Op0
1407 Multiple = Op0;
1408 return true;
1409 }
1410 }
1411 }
1412 }
1413
1414 // We could not determine if V is a multiple of Base.
1415 return false;
1416 }
1417
1418 /// CannotBeNegativeZero - Return true if we can prove that the specified FP
1419 /// value is never equal to -0.0.
1420 ///
1421 /// NOTE: this function will need to be revisited when we support non-default
1422 /// rounding modes!
1423 ///
CannotBeNegativeZero(const Value * V,unsigned Depth)1424 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
1425 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
1426 return !CFP->getValueAPF().isNegZero();
1427
1428 if (Depth == 6)
1429 return 1; // Limit search depth.
1430
1431 const Operator *I = dyn_cast<Operator>(V);
1432 if (!I) return false;
1433
1434 // Check if the nsz fast-math flag is set
1435 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
1436 if (FPO->hasNoSignedZeros())
1437 return true;
1438
1439 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
1440 if (I->getOpcode() == Instruction::FAdd)
1441 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
1442 if (CFP->isNullValue())
1443 return true;
1444
1445 // sitofp and uitofp turn into +0.0 for zero.
1446 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
1447 return true;
1448
1449 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1450 // sqrt(-0.0) = -0.0, no other negative results are possible.
1451 if (II->getIntrinsicID() == Intrinsic::sqrt)
1452 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
1453
1454 if (const CallInst *CI = dyn_cast<CallInst>(I))
1455 if (const Function *F = CI->getCalledFunction()) {
1456 if (F->isDeclaration()) {
1457 // abs(x) != -0.0
1458 if (F->getName() == "abs") return true;
1459 // fabs[lf](x) != -0.0
1460 if (F->getName() == "fabs") return true;
1461 if (F->getName() == "fabsf") return true;
1462 if (F->getName() == "fabsl") return true;
1463 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
1464 F->getName() == "sqrtl")
1465 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
1466 }
1467 }
1468
1469 return false;
1470 }
1471
1472 /// isBytewiseValue - If the specified value can be set by repeating the same
1473 /// byte in memory, return the i8 value that it is represented with. This is
1474 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
1475 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
1476 /// byte store (e.g. i16 0x1234), return null.
isBytewiseValue(Value * V)1477 Value *llvm::isBytewiseValue(Value *V) {
1478 // All byte-wide stores are splatable, even of arbitrary variables.
1479 if (V->getType()->isIntegerTy(8)) return V;
1480
1481 // Handle 'null' ConstantArrayZero etc.
1482 if (Constant *C = dyn_cast<Constant>(V))
1483 if (C->isNullValue())
1484 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
1485
1486 // Constant float and double values can be handled as integer values if the
1487 // corresponding integer value is "byteable". An important case is 0.0.
1488 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1489 if (CFP->getType()->isFloatTy())
1490 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
1491 if (CFP->getType()->isDoubleTy())
1492 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
1493 // Don't handle long double formats, which have strange constraints.
1494 }
1495
1496 // We can handle constant integers that are power of two in size and a
1497 // multiple of 8 bits.
1498 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1499 unsigned Width = CI->getBitWidth();
1500 if (isPowerOf2_32(Width) && Width > 8) {
1501 // We can handle this value if the recursive binary decomposition is the
1502 // same at all levels.
1503 APInt Val = CI->getValue();
1504 APInt Val2;
1505 while (Val.getBitWidth() != 8) {
1506 unsigned NextWidth = Val.getBitWidth()/2;
1507 Val2 = Val.lshr(NextWidth);
1508 Val2 = Val2.trunc(Val.getBitWidth()/2);
1509 Val = Val.trunc(Val.getBitWidth()/2);
1510
1511 // If the top/bottom halves aren't the same, reject it.
1512 if (Val != Val2)
1513 return nullptr;
1514 }
1515 return ConstantInt::get(V->getContext(), Val);
1516 }
1517 }
1518
1519 // A ConstantDataArray/Vector is splatable if all its members are equal and
1520 // also splatable.
1521 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
1522 Value *Elt = CA->getElementAsConstant(0);
1523 Value *Val = isBytewiseValue(Elt);
1524 if (!Val)
1525 return nullptr;
1526
1527 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
1528 if (CA->getElementAsConstant(I) != Elt)
1529 return nullptr;
1530
1531 return Val;
1532 }
1533
1534 // Conceptually, we could handle things like:
1535 // %a = zext i8 %X to i16
1536 // %b = shl i16 %a, 8
1537 // %c = or i16 %a, %b
1538 // but until there is an example that actually needs this, it doesn't seem
1539 // worth worrying about.
1540 return nullptr;
1541 }
1542
1543
1544 // This is the recursive version of BuildSubAggregate. It takes a few different
1545 // arguments. Idxs is the index within the nested struct From that we are
1546 // looking at now (which is of type IndexedType). IdxSkip is the number of
1547 // indices from Idxs that should be left out when inserting into the resulting
1548 // struct. To is the result struct built so far, new insertvalue instructions
1549 // build on that.
BuildSubAggregate(Value * From,Value * To,Type * IndexedType,SmallVectorImpl<unsigned> & Idxs,unsigned IdxSkip,Instruction * InsertBefore)1550 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
1551 SmallVectorImpl<unsigned> &Idxs,
1552 unsigned IdxSkip,
1553 Instruction *InsertBefore) {
1554 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
1555 if (STy) {
1556 // Save the original To argument so we can modify it
1557 Value *OrigTo = To;
1558 // General case, the type indexed by Idxs is a struct
1559 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1560 // Process each struct element recursively
1561 Idxs.push_back(i);
1562 Value *PrevTo = To;
1563 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
1564 InsertBefore);
1565 Idxs.pop_back();
1566 if (!To) {
1567 // Couldn't find any inserted value for this index? Cleanup
1568 while (PrevTo != OrigTo) {
1569 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
1570 PrevTo = Del->getAggregateOperand();
1571 Del->eraseFromParent();
1572 }
1573 // Stop processing elements
1574 break;
1575 }
1576 }
1577 // If we successfully found a value for each of our subaggregates
1578 if (To)
1579 return To;
1580 }
1581 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
1582 // the struct's elements had a value that was inserted directly. In the latter
1583 // case, perhaps we can't determine each of the subelements individually, but
1584 // we might be able to find the complete struct somewhere.
1585
1586 // Find the value that is at that particular spot
1587 Value *V = FindInsertedValue(From, Idxs);
1588
1589 if (!V)
1590 return nullptr;
1591
1592 // Insert the value in the new (sub) aggregrate
1593 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
1594 "tmp", InsertBefore);
1595 }
1596
1597 // This helper takes a nested struct and extracts a part of it (which is again a
1598 // struct) into a new value. For example, given the struct:
1599 // { a, { b, { c, d }, e } }
1600 // and the indices "1, 1" this returns
1601 // { c, d }.
1602 //
1603 // It does this by inserting an insertvalue for each element in the resulting
1604 // struct, as opposed to just inserting a single struct. This will only work if
1605 // each of the elements of the substruct are known (ie, inserted into From by an
1606 // insertvalue instruction somewhere).
1607 //
1608 // All inserted insertvalue instructions are inserted before InsertBefore
BuildSubAggregate(Value * From,ArrayRef<unsigned> idx_range,Instruction * InsertBefore)1609 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
1610 Instruction *InsertBefore) {
1611 assert(InsertBefore && "Must have someplace to insert!");
1612 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
1613 idx_range);
1614 Value *To = UndefValue::get(IndexedType);
1615 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
1616 unsigned IdxSkip = Idxs.size();
1617
1618 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
1619 }
1620
1621 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
1622 /// the scalar value indexed is already around as a register, for example if it
1623 /// were inserted directly into the aggregrate.
1624 ///
1625 /// If InsertBefore is not null, this function will duplicate (modified)
1626 /// insertvalues when a part of a nested struct is extracted.
FindInsertedValue(Value * V,ArrayRef<unsigned> idx_range,Instruction * InsertBefore)1627 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
1628 Instruction *InsertBefore) {
1629 // Nothing to index? Just return V then (this is useful at the end of our
1630 // recursion).
1631 if (idx_range.empty())
1632 return V;
1633 // We have indices, so V should have an indexable type.
1634 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
1635 "Not looking at a struct or array?");
1636 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
1637 "Invalid indices for type?");
1638
1639 if (Constant *C = dyn_cast<Constant>(V)) {
1640 C = C->getAggregateElement(idx_range[0]);
1641 if (!C) return nullptr;
1642 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
1643 }
1644
1645 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
1646 // Loop the indices for the insertvalue instruction in parallel with the
1647 // requested indices
1648 const unsigned *req_idx = idx_range.begin();
1649 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1650 i != e; ++i, ++req_idx) {
1651 if (req_idx == idx_range.end()) {
1652 // We can't handle this without inserting insertvalues
1653 if (!InsertBefore)
1654 return nullptr;
1655
1656 // The requested index identifies a part of a nested aggregate. Handle
1657 // this specially. For example,
1658 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
1659 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
1660 // %C = extractvalue {i32, { i32, i32 } } %B, 1
1661 // This can be changed into
1662 // %A = insertvalue {i32, i32 } undef, i32 10, 0
1663 // %C = insertvalue {i32, i32 } %A, i32 11, 1
1664 // which allows the unused 0,0 element from the nested struct to be
1665 // removed.
1666 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
1667 InsertBefore);
1668 }
1669
1670 // This insert value inserts something else than what we are looking for.
1671 // See if the (aggregrate) value inserted into has the value we are
1672 // looking for, then.
1673 if (*req_idx != *i)
1674 return FindInsertedValue(I->getAggregateOperand(), idx_range,
1675 InsertBefore);
1676 }
1677 // If we end up here, the indices of the insertvalue match with those
1678 // requested (though possibly only partially). Now we recursively look at
1679 // the inserted value, passing any remaining indices.
1680 return FindInsertedValue(I->getInsertedValueOperand(),
1681 makeArrayRef(req_idx, idx_range.end()),
1682 InsertBefore);
1683 }
1684
1685 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
1686 // If we're extracting a value from an aggregrate that was extracted from
1687 // something else, we can extract from that something else directly instead.
1688 // However, we will need to chain I's indices with the requested indices.
1689
1690 // Calculate the number of indices required
1691 unsigned size = I->getNumIndices() + idx_range.size();
1692 // Allocate some space to put the new indices in
1693 SmallVector<unsigned, 5> Idxs;
1694 Idxs.reserve(size);
1695 // Add indices from the extract value instruction
1696 Idxs.append(I->idx_begin(), I->idx_end());
1697
1698 // Add requested indices
1699 Idxs.append(idx_range.begin(), idx_range.end());
1700
1701 assert(Idxs.size() == size
1702 && "Number of indices added not correct?");
1703
1704 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
1705 }
1706 // Otherwise, we don't know (such as, extracting from a function return value
1707 // or load instruction)
1708 return nullptr;
1709 }
1710
1711 /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
1712 /// it can be expressed as a base pointer plus a constant offset. Return the
1713 /// base and offset to the caller.
GetPointerBaseWithConstantOffset(Value * Ptr,int64_t & Offset,const DataLayout * DL)1714 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
1715 const DataLayout *DL) {
1716 // Without DataLayout, conservatively assume 64-bit offsets, which is
1717 // the widest we support.
1718 unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(Ptr->getType()) : 64;
1719 APInt ByteOffset(BitWidth, 0);
1720 while (1) {
1721 if (Ptr->getType()->isVectorTy())
1722 break;
1723
1724 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1725 if (DL) {
1726 APInt GEPOffset(BitWidth, 0);
1727 if (!GEP->accumulateConstantOffset(*DL, GEPOffset))
1728 break;
1729
1730 ByteOffset += GEPOffset;
1731 }
1732
1733 Ptr = GEP->getPointerOperand();
1734 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1735 Ptr = cast<Operator>(Ptr)->getOperand(0);
1736 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1737 if (GA->mayBeOverridden())
1738 break;
1739 Ptr = GA->getAliasee();
1740 } else {
1741 break;
1742 }
1743 }
1744 Offset = ByteOffset.getSExtValue();
1745 return Ptr;
1746 }
1747
1748
1749 /// getConstantStringInfo - This function computes the length of a
1750 /// null-terminated C string pointed to by V. If successful, it returns true
1751 /// and returns the string in Str. If unsuccessful, it returns false.
getConstantStringInfo(const Value * V,StringRef & Str,uint64_t Offset,bool TrimAtNul)1752 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
1753 uint64_t Offset, bool TrimAtNul) {
1754 assert(V);
1755
1756 // Look through bitcast instructions and geps.
1757 V = V->stripPointerCasts();
1758
1759 // If the value is a GEP instructionor constant expression, treat it as an
1760 // offset.
1761 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1762 // Make sure the GEP has exactly three arguments.
1763 if (GEP->getNumOperands() != 3)
1764 return false;
1765
1766 // Make sure the index-ee is a pointer to array of i8.
1767 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
1768 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
1769 if (!AT || !AT->getElementType()->isIntegerTy(8))
1770 return false;
1771
1772 // Check to make sure that the first operand of the GEP is an integer and
1773 // has value 0 so that we are sure we're indexing into the initializer.
1774 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
1775 if (!FirstIdx || !FirstIdx->isZero())
1776 return false;
1777
1778 // If the second index isn't a ConstantInt, then this is a variable index
1779 // into the array. If this occurs, we can't say anything meaningful about
1780 // the string.
1781 uint64_t StartIdx = 0;
1782 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
1783 StartIdx = CI->getZExtValue();
1784 else
1785 return false;
1786 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
1787 }
1788
1789 // The GEP instruction, constant or instruction, must reference a global
1790 // variable that is a constant and is initialized. The referenced constant
1791 // initializer is the array that we'll use for optimization.
1792 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
1793 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
1794 return false;
1795
1796 // Handle the all-zeros case
1797 if (GV->getInitializer()->isNullValue()) {
1798 // This is a degenerate case. The initializer is constant zero so the
1799 // length of the string must be zero.
1800 Str = "";
1801 return true;
1802 }
1803
1804 // Must be a Constant Array
1805 const ConstantDataArray *Array =
1806 dyn_cast<ConstantDataArray>(GV->getInitializer());
1807 if (!Array || !Array->isString())
1808 return false;
1809
1810 // Get the number of elements in the array
1811 uint64_t NumElts = Array->getType()->getArrayNumElements();
1812
1813 // Start out with the entire array in the StringRef.
1814 Str = Array->getAsString();
1815
1816 if (Offset > NumElts)
1817 return false;
1818
1819 // Skip over 'offset' bytes.
1820 Str = Str.substr(Offset);
1821
1822 if (TrimAtNul) {
1823 // Trim off the \0 and anything after it. If the array is not nul
1824 // terminated, we just return the whole end of string. The client may know
1825 // some other way that the string is length-bound.
1826 Str = Str.substr(0, Str.find('\0'));
1827 }
1828 return true;
1829 }
1830
1831 // These next two are very similar to the above, but also look through PHI
1832 // nodes.
1833 // TODO: See if we can integrate these two together.
1834
1835 /// GetStringLengthH - If we can compute the length of the string pointed to by
1836 /// the specified pointer, return 'len+1'. If we can't, return 0.
GetStringLengthH(Value * V,SmallPtrSet<PHINode *,32> & PHIs)1837 static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
1838 // Look through noop bitcast instructions.
1839 V = V->stripPointerCasts();
1840
1841 // If this is a PHI node, there are two cases: either we have already seen it
1842 // or we haven't.
1843 if (PHINode *PN = dyn_cast<PHINode>(V)) {
1844 if (!PHIs.insert(PN))
1845 return ~0ULL; // already in the set.
1846
1847 // If it was new, see if all the input strings are the same length.
1848 uint64_t LenSoFar = ~0ULL;
1849 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1850 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
1851 if (Len == 0) return 0; // Unknown length -> unknown.
1852
1853 if (Len == ~0ULL) continue;
1854
1855 if (Len != LenSoFar && LenSoFar != ~0ULL)
1856 return 0; // Disagree -> unknown.
1857 LenSoFar = Len;
1858 }
1859
1860 // Success, all agree.
1861 return LenSoFar;
1862 }
1863
1864 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
1865 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1866 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
1867 if (Len1 == 0) return 0;
1868 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
1869 if (Len2 == 0) return 0;
1870 if (Len1 == ~0ULL) return Len2;
1871 if (Len2 == ~0ULL) return Len1;
1872 if (Len1 != Len2) return 0;
1873 return Len1;
1874 }
1875
1876 // Otherwise, see if we can read the string.
1877 StringRef StrData;
1878 if (!getConstantStringInfo(V, StrData))
1879 return 0;
1880
1881 return StrData.size()+1;
1882 }
1883
1884 /// GetStringLength - If we can compute the length of the string pointed to by
1885 /// the specified pointer, return 'len+1'. If we can't, return 0.
GetStringLength(Value * V)1886 uint64_t llvm::GetStringLength(Value *V) {
1887 if (!V->getType()->isPointerTy()) return 0;
1888
1889 SmallPtrSet<PHINode*, 32> PHIs;
1890 uint64_t Len = GetStringLengthH(V, PHIs);
1891 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
1892 // an empty string as a length.
1893 return Len == ~0ULL ? 1 : Len;
1894 }
1895
1896 Value *
GetUnderlyingObject(Value * V,const DataLayout * TD,unsigned MaxLookup)1897 llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
1898 if (!V->getType()->isPointerTy())
1899 return V;
1900 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
1901 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1902 V = GEP->getPointerOperand();
1903 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
1904 V = cast<Operator>(V)->getOperand(0);
1905 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1906 if (GA->mayBeOverridden())
1907 return V;
1908 V = GA->getAliasee();
1909 } else {
1910 // See if InstructionSimplify knows any relevant tricks.
1911 if (Instruction *I = dyn_cast<Instruction>(V))
1912 // TODO: Acquire a DominatorTree and use it.
1913 if (Value *Simplified = SimplifyInstruction(I, TD, nullptr)) {
1914 V = Simplified;
1915 continue;
1916 }
1917
1918 return V;
1919 }
1920 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
1921 }
1922 return V;
1923 }
1924
1925 void
GetUnderlyingObjects(Value * V,SmallVectorImpl<Value * > & Objects,const DataLayout * TD,unsigned MaxLookup)1926 llvm::GetUnderlyingObjects(Value *V,
1927 SmallVectorImpl<Value *> &Objects,
1928 const DataLayout *TD,
1929 unsigned MaxLookup) {
1930 SmallPtrSet<Value *, 4> Visited;
1931 SmallVector<Value *, 4> Worklist;
1932 Worklist.push_back(V);
1933 do {
1934 Value *P = Worklist.pop_back_val();
1935 P = GetUnderlyingObject(P, TD, MaxLookup);
1936
1937 if (!Visited.insert(P))
1938 continue;
1939
1940 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
1941 Worklist.push_back(SI->getTrueValue());
1942 Worklist.push_back(SI->getFalseValue());
1943 continue;
1944 }
1945
1946 if (PHINode *PN = dyn_cast<PHINode>(P)) {
1947 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1948 Worklist.push_back(PN->getIncomingValue(i));
1949 continue;
1950 }
1951
1952 Objects.push_back(P);
1953 } while (!Worklist.empty());
1954 }
1955
1956 /// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
1957 /// are lifetime markers.
1958 ///
onlyUsedByLifetimeMarkers(const Value * V)1959 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
1960 for (const User *U : V->users()) {
1961 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
1962 if (!II) return false;
1963
1964 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1965 II->getIntrinsicID() != Intrinsic::lifetime_end)
1966 return false;
1967 }
1968 return true;
1969 }
1970
isSafeToSpeculativelyExecute(const Value * V,const DataLayout * TD)1971 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
1972 const DataLayout *TD) {
1973 const Operator *Inst = dyn_cast<Operator>(V);
1974 if (!Inst)
1975 return false;
1976
1977 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
1978 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
1979 if (C->canTrap())
1980 return false;
1981
1982 switch (Inst->getOpcode()) {
1983 default:
1984 return true;
1985 case Instruction::UDiv:
1986 case Instruction::URem:
1987 // x / y is undefined if y == 0, but calculations like x / 3 are safe.
1988 return isKnownNonZero(Inst->getOperand(1), TD);
1989 case Instruction::SDiv:
1990 case Instruction::SRem: {
1991 Value *Op = Inst->getOperand(1);
1992 // x / y is undefined if y == 0
1993 if (!isKnownNonZero(Op, TD))
1994 return false;
1995 // x / y might be undefined if y == -1
1996 unsigned BitWidth = getBitWidth(Op->getType(), TD);
1997 if (BitWidth == 0)
1998 return false;
1999 APInt KnownZero(BitWidth, 0);
2000 APInt KnownOne(BitWidth, 0);
2001 computeKnownBits(Op, KnownZero, KnownOne, TD);
2002 return !!KnownZero;
2003 }
2004 case Instruction::Load: {
2005 const LoadInst *LI = cast<LoadInst>(Inst);
2006 if (!LI->isUnordered() ||
2007 // Speculative load may create a race that did not exist in the source.
2008 LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
2009 return false;
2010 return LI->getPointerOperand()->isDereferenceablePointer(TD);
2011 }
2012 case Instruction::Call: {
2013 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
2014 switch (II->getIntrinsicID()) {
2015 // These synthetic intrinsics have no side-effects and just mark
2016 // information about their operands.
2017 // FIXME: There are other no-op synthetic instructions that potentially
2018 // should be considered at least *safe* to speculate...
2019 case Intrinsic::dbg_declare:
2020 case Intrinsic::dbg_value:
2021 return true;
2022
2023 case Intrinsic::bswap:
2024 case Intrinsic::ctlz:
2025 case Intrinsic::ctpop:
2026 case Intrinsic::cttz:
2027 case Intrinsic::objectsize:
2028 case Intrinsic::sadd_with_overflow:
2029 case Intrinsic::smul_with_overflow:
2030 case Intrinsic::ssub_with_overflow:
2031 case Intrinsic::uadd_with_overflow:
2032 case Intrinsic::umul_with_overflow:
2033 case Intrinsic::usub_with_overflow:
2034 return true;
2035 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
2036 // errno like libm sqrt would.
2037 case Intrinsic::sqrt:
2038 case Intrinsic::fma:
2039 case Intrinsic::fmuladd:
2040 return true;
2041 // TODO: some fp intrinsics are marked as having the same error handling
2042 // as libm. They're safe to speculate when they won't error.
2043 // TODO: are convert_{from,to}_fp16 safe?
2044 // TODO: can we list target-specific intrinsics here?
2045 default: break;
2046 }
2047 }
2048 return false; // The called function could have undefined behavior or
2049 // side-effects, even if marked readnone nounwind.
2050 }
2051 case Instruction::VAArg:
2052 case Instruction::Alloca:
2053 case Instruction::Invoke:
2054 case Instruction::PHI:
2055 case Instruction::Store:
2056 case Instruction::Ret:
2057 case Instruction::Br:
2058 case Instruction::IndirectBr:
2059 case Instruction::Switch:
2060 case Instruction::Unreachable:
2061 case Instruction::Fence:
2062 case Instruction::LandingPad:
2063 case Instruction::AtomicRMW:
2064 case Instruction::AtomicCmpXchg:
2065 case Instruction::Resume:
2066 return false; // Misc instructions which have effects
2067 }
2068 }
2069
2070 /// isKnownNonNull - Return true if we know that the specified value is never
2071 /// null.
isKnownNonNull(const Value * V,const TargetLibraryInfo * TLI)2072 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
2073 // Alloca never returns null, malloc might.
2074 if (isa<AllocaInst>(V)) return true;
2075
2076 // A byval, inalloca, or nonnull argument is never null.
2077 if (const Argument *A = dyn_cast<Argument>(V))
2078 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
2079
2080 // Global values are not null unless extern weak.
2081 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2082 return !GV->hasExternalWeakLinkage();
2083
2084 if (ImmutableCallSite CS = V)
2085 if (CS.paramHasAttr(0, Attribute::NonNull))
2086 return true;
2087
2088 // operator new never returns null.
2089 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true))
2090 return true;
2091
2092 return false;
2093 }
2094