1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "base/files/file_path_watcher_kqueue.h"
6
7 #include <fcntl.h>
8 #include <sys/param.h>
9
10 #include "base/bind.h"
11 #include "base/files/file_util.h"
12 #include "base/logging.h"
13 #include "base/strings/stringprintf.h"
14
15 // On some platforms these are not defined.
16 #if !defined(EV_RECEIPT)
17 #define EV_RECEIPT 0
18 #endif
19 #if !defined(O_EVTONLY)
20 #define O_EVTONLY O_RDONLY
21 #endif
22
23 namespace base {
24
FilePathWatcherKQueue()25 FilePathWatcherKQueue::FilePathWatcherKQueue() : kqueue_(-1) {}
26
~FilePathWatcherKQueue()27 FilePathWatcherKQueue::~FilePathWatcherKQueue() {}
28
ReleaseEvent(struct kevent & event)29 void FilePathWatcherKQueue::ReleaseEvent(struct kevent& event) {
30 CloseFileDescriptor(&event.ident);
31 EventData* entry = EventDataForKevent(event);
32 delete entry;
33 event.udata = NULL;
34 }
35
EventsForPath(FilePath path,EventVector * events)36 int FilePathWatcherKQueue::EventsForPath(FilePath path, EventVector* events) {
37 DCHECK(MessageLoopForIO::current());
38 // Make sure that we are working with a clean slate.
39 DCHECK(events->empty());
40
41 std::vector<FilePath::StringType> components;
42 path.GetComponents(&components);
43
44 if (components.size() < 1) {
45 return -1;
46 }
47
48 int last_existing_entry = 0;
49 FilePath built_path;
50 bool path_still_exists = true;
51 for (std::vector<FilePath::StringType>::iterator i = components.begin();
52 i != components.end(); ++i) {
53 if (i == components.begin()) {
54 built_path = FilePath(*i);
55 } else {
56 built_path = built_path.Append(*i);
57 }
58 uintptr_t fd = kNoFileDescriptor;
59 if (path_still_exists) {
60 fd = FileDescriptorForPath(built_path);
61 if (fd == kNoFileDescriptor) {
62 path_still_exists = false;
63 } else {
64 ++last_existing_entry;
65 }
66 }
67 FilePath::StringType subdir = (i != (components.end() - 1)) ? *(i + 1) : "";
68 EventData* data = new EventData(built_path, subdir);
69 struct kevent event;
70 EV_SET(&event, fd, EVFILT_VNODE, (EV_ADD | EV_CLEAR | EV_RECEIPT),
71 (NOTE_DELETE | NOTE_WRITE | NOTE_ATTRIB |
72 NOTE_RENAME | NOTE_REVOKE | NOTE_EXTEND), 0, data);
73 events->push_back(event);
74 }
75 return last_existing_entry;
76 }
77
FileDescriptorForPath(const FilePath & path)78 uintptr_t FilePathWatcherKQueue::FileDescriptorForPath(const FilePath& path) {
79 int fd = HANDLE_EINTR(open(path.value().c_str(), O_EVTONLY));
80 if (fd == -1)
81 return kNoFileDescriptor;
82 return fd;
83 }
84
CloseFileDescriptor(uintptr_t * fd)85 void FilePathWatcherKQueue::CloseFileDescriptor(uintptr_t* fd) {
86 if (*fd == kNoFileDescriptor) {
87 return;
88 }
89
90 if (IGNORE_EINTR(close(*fd)) != 0) {
91 DPLOG(ERROR) << "close";
92 }
93 *fd = kNoFileDescriptor;
94 }
95
AreKeventValuesValid(struct kevent * kevents,int count)96 bool FilePathWatcherKQueue::AreKeventValuesValid(struct kevent* kevents,
97 int count) {
98 if (count < 0) {
99 DPLOG(ERROR) << "kevent";
100 return false;
101 }
102 bool valid = true;
103 for (int i = 0; i < count; ++i) {
104 if (kevents[i].flags & EV_ERROR && kevents[i].data) {
105 // Find the kevent in |events_| that matches the kevent with the error.
106 EventVector::iterator event = events_.begin();
107 for (; event != events_.end(); ++event) {
108 if (event->ident == kevents[i].ident) {
109 break;
110 }
111 }
112 std::string path_name;
113 if (event != events_.end()) {
114 EventData* event_data = EventDataForKevent(*event);
115 if (event_data != NULL) {
116 path_name = event_data->path_.value();
117 }
118 }
119 if (path_name.empty()) {
120 path_name = base::StringPrintf(
121 "fd %ld", reinterpret_cast<long>(&kevents[i].ident));
122 }
123 DLOG(ERROR) << "Error: " << kevents[i].data << " for " << path_name;
124 valid = false;
125 }
126 }
127 return valid;
128 }
129
HandleAttributesChange(const EventVector::iterator & event,bool * target_file_affected,bool * update_watches)130 void FilePathWatcherKQueue::HandleAttributesChange(
131 const EventVector::iterator& event,
132 bool* target_file_affected,
133 bool* update_watches) {
134 EventVector::iterator next_event = event + 1;
135 EventData* next_event_data = EventDataForKevent(*next_event);
136 // Check to see if the next item in path is still accessible.
137 uintptr_t have_access = FileDescriptorForPath(next_event_data->path_);
138 if (have_access == kNoFileDescriptor) {
139 *target_file_affected = true;
140 *update_watches = true;
141 EventVector::iterator local_event(event);
142 for (; local_event != events_.end(); ++local_event) {
143 // Close all nodes from the event down. This has the side effect of
144 // potentially rendering other events in |updates| invalid.
145 // There is no need to remove the events from |kqueue_| because this
146 // happens as a side effect of closing the file descriptor.
147 CloseFileDescriptor(&local_event->ident);
148 }
149 } else {
150 CloseFileDescriptor(&have_access);
151 }
152 }
153
HandleDeleteOrMoveChange(const EventVector::iterator & event,bool * target_file_affected,bool * update_watches)154 void FilePathWatcherKQueue::HandleDeleteOrMoveChange(
155 const EventVector::iterator& event,
156 bool* target_file_affected,
157 bool* update_watches) {
158 *target_file_affected = true;
159 *update_watches = true;
160 EventVector::iterator local_event(event);
161 for (; local_event != events_.end(); ++local_event) {
162 // Close all nodes from the event down. This has the side effect of
163 // potentially rendering other events in |updates| invalid.
164 // There is no need to remove the events from |kqueue_| because this
165 // happens as a side effect of closing the file descriptor.
166 CloseFileDescriptor(&local_event->ident);
167 }
168 }
169
HandleCreateItemChange(const EventVector::iterator & event,bool * target_file_affected,bool * update_watches)170 void FilePathWatcherKQueue::HandleCreateItemChange(
171 const EventVector::iterator& event,
172 bool* target_file_affected,
173 bool* update_watches) {
174 // Get the next item in the path.
175 EventVector::iterator next_event = event + 1;
176 // Check to see if it already has a valid file descriptor.
177 if (!IsKeventFileDescriptorOpen(*next_event)) {
178 EventData* next_event_data = EventDataForKevent(*next_event);
179 // If not, attempt to open a file descriptor for it.
180 next_event->ident = FileDescriptorForPath(next_event_data->path_);
181 if (IsKeventFileDescriptorOpen(*next_event)) {
182 *update_watches = true;
183 if (next_event_data->subdir_.empty()) {
184 *target_file_affected = true;
185 }
186 }
187 }
188 }
189
UpdateWatches(bool * target_file_affected)190 bool FilePathWatcherKQueue::UpdateWatches(bool* target_file_affected) {
191 // Iterate over events adding kevents for items that exist to the kqueue.
192 // Then check to see if new components in the path have been created.
193 // Repeat until no new components in the path are detected.
194 // This is to get around races in directory creation in a watched path.
195 bool update_watches = true;
196 while (update_watches) {
197 size_t valid;
198 for (valid = 0; valid < events_.size(); ++valid) {
199 if (!IsKeventFileDescriptorOpen(events_[valid])) {
200 break;
201 }
202 }
203 if (valid == 0) {
204 // The root of the file path is inaccessible?
205 return false;
206 }
207
208 EventVector updates(valid);
209 int count = HANDLE_EINTR(kevent(kqueue_, &events_[0], valid, &updates[0],
210 valid, NULL));
211 if (!AreKeventValuesValid(&updates[0], count)) {
212 return false;
213 }
214 update_watches = false;
215 for (; valid < events_.size(); ++valid) {
216 EventData* event_data = EventDataForKevent(events_[valid]);
217 events_[valid].ident = FileDescriptorForPath(event_data->path_);
218 if (IsKeventFileDescriptorOpen(events_[valid])) {
219 update_watches = true;
220 if (event_data->subdir_.empty()) {
221 *target_file_affected = true;
222 }
223 } else {
224 break;
225 }
226 }
227 }
228 return true;
229 }
230
OnFileCanReadWithoutBlocking(int fd)231 void FilePathWatcherKQueue::OnFileCanReadWithoutBlocking(int fd) {
232 DCHECK(MessageLoopForIO::current());
233 DCHECK_EQ(fd, kqueue_);
234 DCHECK(events_.size());
235
236 // Request the file system update notifications that have occurred and return
237 // them in |updates|. |count| will contain the number of updates that have
238 // occurred.
239 EventVector updates(events_.size());
240 struct timespec timeout = {0, 0};
241 int count = HANDLE_EINTR(kevent(kqueue_, NULL, 0, &updates[0], updates.size(),
242 &timeout));
243
244 // Error values are stored within updates, so check to make sure that no
245 // errors occurred.
246 if (!AreKeventValuesValid(&updates[0], count)) {
247 callback_.Run(target_, true /* error */);
248 Cancel();
249 return;
250 }
251
252 bool update_watches = false;
253 bool send_notification = false;
254
255 // Iterate through each of the updates and react to them.
256 for (int i = 0; i < count; ++i) {
257 // Find our kevent record that matches the update notification.
258 EventVector::iterator event = events_.begin();
259 for (; event != events_.end(); ++event) {
260 if (!IsKeventFileDescriptorOpen(*event) ||
261 event->ident == updates[i].ident) {
262 break;
263 }
264 }
265 if (event == events_.end() || !IsKeventFileDescriptorOpen(*event)) {
266 // The event may no longer exist in |events_| because another event
267 // modified |events_| in such a way to make it invalid. For example if
268 // the path is /foo/bar/bam and foo is deleted, NOTE_DELETE events for
269 // foo, bar and bam will be sent. If foo is processed first, then
270 // the file descriptors for bar and bam will already be closed and set
271 // to -1 before they get a chance to be processed.
272 continue;
273 }
274
275 EventData* event_data = EventDataForKevent(*event);
276
277 // If the subdir is empty, this is the last item on the path and is the
278 // target file.
279 bool target_file_affected = event_data->subdir_.empty();
280 if ((updates[i].fflags & NOTE_ATTRIB) && !target_file_affected) {
281 HandleAttributesChange(event, &target_file_affected, &update_watches);
282 }
283 if (updates[i].fflags & (NOTE_DELETE | NOTE_REVOKE | NOTE_RENAME)) {
284 HandleDeleteOrMoveChange(event, &target_file_affected, &update_watches);
285 }
286 if ((updates[i].fflags & NOTE_WRITE) && !target_file_affected) {
287 HandleCreateItemChange(event, &target_file_affected, &update_watches);
288 }
289 send_notification |= target_file_affected;
290 }
291
292 if (update_watches) {
293 if (!UpdateWatches(&send_notification)) {
294 callback_.Run(target_, true /* error */);
295 Cancel();
296 }
297 }
298
299 if (send_notification) {
300 callback_.Run(target_, false);
301 }
302 }
303
OnFileCanWriteWithoutBlocking(int fd)304 void FilePathWatcherKQueue::OnFileCanWriteWithoutBlocking(int fd) {
305 NOTREACHED();
306 }
307
WillDestroyCurrentMessageLoop()308 void FilePathWatcherKQueue::WillDestroyCurrentMessageLoop() {
309 CancelOnMessageLoopThread();
310 }
311
Watch(const FilePath & path,bool recursive,const FilePathWatcher::Callback & callback)312 bool FilePathWatcherKQueue::Watch(const FilePath& path,
313 bool recursive,
314 const FilePathWatcher::Callback& callback) {
315 DCHECK(MessageLoopForIO::current());
316 DCHECK(target_.value().empty()); // Can only watch one path.
317 DCHECK(!callback.is_null());
318 DCHECK_EQ(kqueue_, -1);
319
320 if (recursive) {
321 // Recursive watch is not supported using kqueue.
322 NOTIMPLEMENTED();
323 return false;
324 }
325
326 callback_ = callback;
327 target_ = path;
328
329 MessageLoop::current()->AddDestructionObserver(this);
330 io_message_loop_ = base::MessageLoopProxy::current();
331
332 kqueue_ = kqueue();
333 if (kqueue_ == -1) {
334 DPLOG(ERROR) << "kqueue";
335 return false;
336 }
337
338 int last_entry = EventsForPath(target_, &events_);
339 DCHECK_NE(last_entry, 0);
340
341 EventVector responses(last_entry);
342
343 int count = HANDLE_EINTR(kevent(kqueue_, &events_[0], last_entry,
344 &responses[0], last_entry, NULL));
345 if (!AreKeventValuesValid(&responses[0], count)) {
346 // Calling Cancel() here to close any file descriptors that were opened.
347 // This would happen in the destructor anyways, but FilePathWatchers tend to
348 // be long lived, and if an error has occurred, there is no reason to waste
349 // the file descriptors.
350 Cancel();
351 return false;
352 }
353
354 return MessageLoopForIO::current()->WatchFileDescriptor(
355 kqueue_, true, MessageLoopForIO::WATCH_READ, &kqueue_watcher_, this);
356 }
357
Cancel()358 void FilePathWatcherKQueue::Cancel() {
359 base::MessageLoopProxy* proxy = io_message_loop_.get();
360 if (!proxy) {
361 set_cancelled();
362 return;
363 }
364 if (!proxy->BelongsToCurrentThread()) {
365 proxy->PostTask(FROM_HERE,
366 base::Bind(&FilePathWatcherKQueue::Cancel, this));
367 return;
368 }
369 CancelOnMessageLoopThread();
370 }
371
CancelOnMessageLoopThread()372 void FilePathWatcherKQueue::CancelOnMessageLoopThread() {
373 DCHECK(MessageLoopForIO::current());
374 if (!is_cancelled()) {
375 set_cancelled();
376 kqueue_watcher_.StopWatchingFileDescriptor();
377 if (IGNORE_EINTR(close(kqueue_)) != 0) {
378 DPLOG(ERROR) << "close kqueue";
379 }
380 kqueue_ = -1;
381 std::for_each(events_.begin(), events_.end(), ReleaseEvent);
382 events_.clear();
383 io_message_loop_ = NULL;
384 MessageLoop::current()->RemoveDestructionObserver(this);
385 callback_.Reset();
386 }
387 }
388
389 } // namespace base
390