1 /*
2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "webrtc/modules/rtp_rtcp/source/forward_error_correction_internal.h"
12
13 #include <assert.h>
14 #include <string.h>
15
16 #include "webrtc/modules/rtp_rtcp/source/fec_private_tables_bursty.h"
17 #include "webrtc/modules/rtp_rtcp/source/fec_private_tables_random.h"
18
19 namespace {
20
21 // Allow for different modes of protection for packets in UEP case.
22 enum ProtectionMode {
23 kModeNoOverlap,
24 kModeOverlap,
25 kModeBiasFirstPacket,
26 };
27
28 // Fits an input mask (sub_mask) to an output mask.
29 // The mask is a matrix where the rows are the FEC packets,
30 // and the columns are the source packets the FEC is applied to.
31 // Each row of the mask is represented by a number of mask bytes.
32 //
33 // \param[in] num_mask_bytes The number of mask bytes of output mask.
34 // \param[in] num_sub_mask_bytes The number of mask bytes of input mask.
35 // \param[in] num_rows The number of rows of the input mask.
36 // \param[in] sub_mask A pointer to hold the input mask, of size
37 // [0, num_rows * num_sub_mask_bytes]
38 // \param[out] packet_mask A pointer to hold the output mask, of size
39 // [0, x * num_mask_bytes], where x >= num_rows.
FitSubMask(int num_mask_bytes,int num_sub_mask_bytes,int num_rows,const uint8_t * sub_mask,uint8_t * packet_mask)40 void FitSubMask(int num_mask_bytes, int num_sub_mask_bytes, int num_rows,
41 const uint8_t* sub_mask, uint8_t* packet_mask) {
42 if (num_mask_bytes == num_sub_mask_bytes) {
43 memcpy(packet_mask, sub_mask, num_rows * num_sub_mask_bytes);
44 } else {
45 for (int i = 0; i < num_rows; ++i) {
46 int pkt_mask_idx = i * num_mask_bytes;
47 int pkt_mask_idx2 = i * num_sub_mask_bytes;
48 for (int j = 0; j < num_sub_mask_bytes; ++j) {
49 packet_mask[pkt_mask_idx] = sub_mask[pkt_mask_idx2];
50 pkt_mask_idx++;
51 pkt_mask_idx2++;
52 }
53 }
54 }
55 }
56
57 // Shifts a mask by number of columns (bits), and fits it to an output mask.
58 // The mask is a matrix where the rows are the FEC packets,
59 // and the columns are the source packets the FEC is applied to.
60 // Each row of the mask is represented by a number of mask bytes.
61 //
62 // \param[in] num_mask_bytes The number of mask bytes of output mask.
63 // \param[in] num_sub_mask_bytes The number of mask bytes of input mask.
64 // \param[in] num_column_shift The number columns to be shifted, and
65 // the starting row for the output mask.
66 // \param[in] end_row The ending row for the output mask.
67 // \param[in] sub_mask A pointer to hold the input mask, of size
68 // [0, (end_row_fec - start_row_fec) *
69 // num_sub_mask_bytes]
70 // \param[out] packet_mask A pointer to hold the output mask, of size
71 // [0, x * num_mask_bytes],
72 // where x >= end_row_fec.
73 // TODO (marpan): This function is doing three things at the same time:
74 // shift within a byte, byte shift and resizing.
75 // Split up into subroutines.
ShiftFitSubMask(int num_mask_bytes,int res_mask_bytes,int num_column_shift,int end_row,const uint8_t * sub_mask,uint8_t * packet_mask)76 void ShiftFitSubMask(int num_mask_bytes, int res_mask_bytes,
77 int num_column_shift, int end_row, const uint8_t* sub_mask,
78 uint8_t* packet_mask) {
79
80 // Number of bit shifts within a byte
81 const int num_bit_shifts = (num_column_shift % 8);
82 const int num_byte_shifts = num_column_shift >> 3;
83
84 // Modify new mask with sub-mask21.
85
86 // Loop over the remaining FEC packets.
87 for (int i = num_column_shift; i < end_row; ++i) {
88 // Byte index of new mask, for row i and column res_mask_bytes,
89 // offset by the number of bytes shifts
90 int pkt_mask_idx =
91 i * num_mask_bytes + res_mask_bytes - 1 + num_byte_shifts;
92 // Byte index of sub_mask, for row i and column res_mask_bytes
93 int pkt_mask_idx2 =
94 (i - num_column_shift) * res_mask_bytes + res_mask_bytes - 1;
95
96 uint8_t shift_right_curr_byte = 0;
97 uint8_t shift_left_prev_byte = 0;
98 uint8_t comb_new_byte = 0;
99
100 // Handle case of num_mask_bytes > res_mask_bytes:
101 // For a given row, copy the rightmost "numBitShifts" bits
102 // of the last byte of sub_mask into output mask.
103 if (num_mask_bytes > res_mask_bytes) {
104 shift_left_prev_byte = (sub_mask[pkt_mask_idx2] << (8 - num_bit_shifts));
105 packet_mask[pkt_mask_idx + 1] = shift_left_prev_byte;
106 }
107
108 // For each row i (FEC packet), shift the bit-mask of the sub_mask.
109 // Each row of the mask contains "resMaskBytes" of bytes.
110 // We start from the last byte of the sub_mask and move to first one.
111 for (int j = res_mask_bytes - 1; j > 0; j--) {
112 // Shift current byte of sub21 to the right by "numBitShifts".
113 shift_right_curr_byte = sub_mask[pkt_mask_idx2] >> num_bit_shifts;
114
115 // Fill in shifted bits with bits from the previous (left) byte:
116 // First shift the previous byte to the left by "8-numBitShifts".
117 shift_left_prev_byte =
118 (sub_mask[pkt_mask_idx2 - 1] << (8 - num_bit_shifts));
119
120 // Then combine both shifted bytes into new mask byte.
121 comb_new_byte = shift_right_curr_byte | shift_left_prev_byte;
122
123 // Assign to new mask.
124 packet_mask[pkt_mask_idx] = comb_new_byte;
125 pkt_mask_idx--;
126 pkt_mask_idx2--;
127 }
128 // For the first byte in the row (j=0 case).
129 shift_right_curr_byte = sub_mask[pkt_mask_idx2] >> num_bit_shifts;
130 packet_mask[pkt_mask_idx] = shift_right_curr_byte;
131
132 }
133 }
134 } // namespace
135
136 namespace webrtc {
137 namespace internal {
138
PacketMaskTable(FecMaskType fec_mask_type,int num_media_packets)139 PacketMaskTable::PacketMaskTable(FecMaskType fec_mask_type,
140 int num_media_packets)
141 : fec_mask_type_(InitMaskType(fec_mask_type, num_media_packets)),
142 fec_packet_mask_table_(InitMaskTable(fec_mask_type_)) {}
143
144 // Sets |fec_mask_type_| to the type of packet mask selected. The type of
145 // packet mask selected is based on |fec_mask_type| and |num_media_packets|.
146 // If |num_media_packets| is larger than the maximum allowed by |fec_mask_type|
147 // for the bursty type, then the random type is selected.
InitMaskType(FecMaskType fec_mask_type,int num_media_packets)148 FecMaskType PacketMaskTable::InitMaskType(FecMaskType fec_mask_type,
149 int num_media_packets) {
150 // The mask should not be bigger than |packetMaskTbl|.
151 assert(num_media_packets <= static_cast<int>(sizeof(kPacketMaskRandomTbl) /
152 sizeof(*kPacketMaskRandomTbl)));
153 switch (fec_mask_type) {
154 case kFecMaskRandom: { return kFecMaskRandom; }
155 case kFecMaskBursty: {
156 int max_media_packets = static_cast<int>(sizeof(kPacketMaskBurstyTbl) /
157 sizeof(*kPacketMaskBurstyTbl));
158 if (num_media_packets > max_media_packets) {
159 return kFecMaskRandom;
160 } else {
161 return kFecMaskBursty;
162 }
163 }
164 }
165 assert(false);
166 return kFecMaskRandom;
167 }
168
169 // Returns the pointer to the packet mask tables corresponding to type
170 // |fec_mask_type|.
InitMaskTable(FecMaskType fec_mask_type)171 const uint8_t*** PacketMaskTable::InitMaskTable(FecMaskType fec_mask_type) {
172 switch (fec_mask_type) {
173 case kFecMaskRandom: { return kPacketMaskRandomTbl; }
174 case kFecMaskBursty: { return kPacketMaskBurstyTbl; }
175 }
176 assert(false);
177 return kPacketMaskRandomTbl;
178 }
179
180 // Remaining protection after important (first partition) packet protection
RemainingPacketProtection(int num_media_packets,int num_fec_remaining,int num_fec_for_imp_packets,int num_mask_bytes,ProtectionMode mode,uint8_t * packet_mask,const PacketMaskTable & mask_table)181 void RemainingPacketProtection(int num_media_packets, int num_fec_remaining,
182 int num_fec_for_imp_packets, int num_mask_bytes,
183 ProtectionMode mode, uint8_t* packet_mask,
184 const PacketMaskTable& mask_table) {
185 if (mode == kModeNoOverlap) {
186 // sub_mask21
187
188 const int l_bit =
189 (num_media_packets - num_fec_for_imp_packets) > 16 ? 1 : 0;
190
191 const int res_mask_bytes =
192 (l_bit == 1) ? kMaskSizeLBitSet : kMaskSizeLBitClear;
193
194 const uint8_t* packet_mask_sub_21 = mask_table.fec_packet_mask_table()[
195 num_media_packets - num_fec_for_imp_packets - 1][num_fec_remaining - 1];
196
197 ShiftFitSubMask(num_mask_bytes, res_mask_bytes, num_fec_for_imp_packets,
198 (num_fec_for_imp_packets + num_fec_remaining),
199 packet_mask_sub_21, packet_mask);
200
201 } else if (mode == kModeOverlap || mode == kModeBiasFirstPacket) {
202 // sub_mask22
203
204 const uint8_t* packet_mask_sub_22 = mask_table
205 .fec_packet_mask_table()[num_media_packets - 1][num_fec_remaining - 1];
206
207 FitSubMask(num_mask_bytes, num_mask_bytes, num_fec_remaining,
208 packet_mask_sub_22,
209 &packet_mask[num_fec_for_imp_packets * num_mask_bytes]);
210
211 if (mode == kModeBiasFirstPacket) {
212 for (int i = 0; i < num_fec_remaining; ++i) {
213 int pkt_mask_idx = i * num_mask_bytes;
214 packet_mask[pkt_mask_idx] = packet_mask[pkt_mask_idx] | (1 << 7);
215 }
216 }
217 } else {
218 assert(false);
219 }
220
221 }
222
223 // Protection for important (first partition) packets
ImportantPacketProtection(int num_fec_for_imp_packets,int num_imp_packets,int num_mask_bytes,uint8_t * packet_mask,const PacketMaskTable & mask_table)224 void ImportantPacketProtection(int num_fec_for_imp_packets, int num_imp_packets,
225 int num_mask_bytes, uint8_t* packet_mask,
226 const PacketMaskTable& mask_table) {
227 const int l_bit = num_imp_packets > 16 ? 1 : 0;
228 const int num_imp_mask_bytes =
229 (l_bit == 1) ? kMaskSizeLBitSet : kMaskSizeLBitClear;
230
231 // Get sub_mask1 from table
232 const uint8_t* packet_mask_sub_1 = mask_table.fec_packet_mask_table()[
233 num_imp_packets - 1][num_fec_for_imp_packets - 1];
234
235 FitSubMask(num_mask_bytes, num_imp_mask_bytes, num_fec_for_imp_packets,
236 packet_mask_sub_1, packet_mask);
237
238 }
239
240 // This function sets the protection allocation: i.e., how many FEC packets
241 // to use for num_imp (1st partition) packets, given the: number of media
242 // packets, number of FEC packets, and number of 1st partition packets.
SetProtectionAllocation(int num_media_packets,int num_fec_packets,int num_imp_packets)243 int SetProtectionAllocation(int num_media_packets, int num_fec_packets,
244 int num_imp_packets) {
245
246 // TODO (marpan): test different cases for protection allocation:
247
248 // Use at most (alloc_par * num_fec_packets) for important packets.
249 float alloc_par = 0.5;
250 int max_num_fec_for_imp = alloc_par * num_fec_packets;
251
252 int num_fec_for_imp_packets =
253 (num_imp_packets < max_num_fec_for_imp) ? num_imp_packets
254 : max_num_fec_for_imp;
255
256 // Fall back to equal protection in this case
257 if (num_fec_packets == 1 && (num_media_packets > 2 * num_imp_packets)) {
258 num_fec_for_imp_packets = 0;
259 }
260
261 return num_fec_for_imp_packets;
262 }
263
264 // Modification for UEP: reuse the off-line tables for the packet masks.
265 // Note: these masks were designed for equal packet protection case,
266 // assuming random packet loss.
267
268 // Current version has 3 modes (options) to build UEP mask from existing ones.
269 // Various other combinations may be added in future versions.
270 // Longer-term, we may add another set of tables specifically for UEP cases.
271 // TODO (marpan): also consider modification of masks for bursty loss cases.
272
273 // Mask is characterized as (#packets_to_protect, #fec_for_protection).
274 // Protection factor defined as: (#fec_for_protection / #packets_to_protect).
275
276 // Let k=num_media_packets, n=total#packets, (n-k)=num_fec_packets,
277 // m=num_imp_packets.
278
279 // For ProtectionMode 0 and 1:
280 // one mask (sub_mask1) is used for 1st partition packets,
281 // the other mask (sub_mask21/22, for 0/1) is for the remaining FEC packets.
282
283 // In both mode 0 and 1, the packets of 1st partition (num_imp_packets) are
284 // treated equally important, and are afforded more protection than the
285 // residual partition packets.
286
287 // For num_imp_packets:
288 // sub_mask1 = (m, t): protection = t/(m), where t=F(k,n-k,m).
289 // t=F(k,n-k,m) is the number of packets used to protect first partition in
290 // sub_mask1. This is determined from the function SetProtectionAllocation().
291
292 // For the left-over protection:
293 // Mode 0: sub_mask21 = (k-m,n-k-t): protection = (n-k-t)/(k-m)
294 // mode 0 has no protection overlap between the two partitions.
295 // For mode 0, we would typically set t = min(m, n-k).
296
297 // Mode 1: sub_mask22 = (k, n-k-t), with protection (n-k-t)/(k)
298 // mode 1 has protection overlap between the two partitions (preferred).
299
300 // For ProtectionMode 2:
301 // This gives 1st packet of list (which is 1st packet of 1st partition) more
302 // protection. In mode 2, the equal protection mask (which is obtained from
303 // mode 1 for t=0) is modified (more "1s" added in 1st column of packet mask)
304 // to bias higher protection for the 1st source packet.
305
306 // Protection Mode 2 may be extended for a sort of sliding protection
307 // (i.e., vary the number/density of "1s" across columns) across packets.
308
UnequalProtectionMask(int num_media_packets,int num_fec_packets,int num_imp_packets,int num_mask_bytes,uint8_t * packet_mask,const PacketMaskTable & mask_table)309 void UnequalProtectionMask(int num_media_packets, int num_fec_packets,
310 int num_imp_packets, int num_mask_bytes,
311 uint8_t* packet_mask,
312 const PacketMaskTable& mask_table) {
313
314 // Set Protection type and allocation
315 // TODO (marpan): test/update for best mode and some combinations thereof.
316
317 ProtectionMode mode = kModeOverlap;
318 int num_fec_for_imp_packets = 0;
319
320 if (mode != kModeBiasFirstPacket) {
321 num_fec_for_imp_packets = SetProtectionAllocation(
322 num_media_packets, num_fec_packets, num_imp_packets);
323 }
324
325 int num_fec_remaining = num_fec_packets - num_fec_for_imp_packets;
326 // Done with setting protection type and allocation
327
328 //
329 // Generate sub_mask1
330 //
331 if (num_fec_for_imp_packets > 0) {
332 ImportantPacketProtection(num_fec_for_imp_packets, num_imp_packets,
333 num_mask_bytes, packet_mask, mask_table);
334 }
335
336 //
337 // Generate sub_mask2
338 //
339 if (num_fec_remaining > 0) {
340 RemainingPacketProtection(num_media_packets, num_fec_remaining,
341 num_fec_for_imp_packets, num_mask_bytes, mode,
342 packet_mask, mask_table);
343 }
344
345 }
346
GeneratePacketMasks(int num_media_packets,int num_fec_packets,int num_imp_packets,bool use_unequal_protection,const PacketMaskTable & mask_table,uint8_t * packet_mask)347 void GeneratePacketMasks(int num_media_packets, int num_fec_packets,
348 int num_imp_packets, bool use_unequal_protection,
349 const PacketMaskTable& mask_table,
350 uint8_t* packet_mask) {
351 assert(num_media_packets > 0);
352 assert(num_fec_packets <= num_media_packets && num_fec_packets > 0);
353 assert(num_imp_packets <= num_media_packets && num_imp_packets >= 0);
354
355 int l_bit = num_media_packets > 16 ? 1 : 0;
356 const int num_mask_bytes =
357 (l_bit == 1) ? kMaskSizeLBitSet : kMaskSizeLBitClear;
358
359 // Equal-protection for these cases.
360 if (!use_unequal_protection || num_imp_packets == 0) {
361 // Retrieve corresponding mask table directly:for equal-protection case.
362 // Mask = (k,n-k), with protection factor = (n-k)/k,
363 // where k = num_media_packets, n=total#packets, (n-k)=num_fec_packets.
364 memcpy(packet_mask, mask_table.fec_packet_mask_table()[
365 num_media_packets - 1][num_fec_packets - 1],
366 num_fec_packets * num_mask_bytes);
367 } else //UEP case
368 {
369 UnequalProtectionMask(num_media_packets, num_fec_packets, num_imp_packets,
370 num_mask_bytes, packet_mask, mask_table);
371
372 } // End of UEP modification
373 } //End of GetPacketMasks
374
375 } // namespace internal
376 } // namespace webrtc
377