• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- tsan_platform_linux.cc --------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 // Linux-specific code.
13 //===----------------------------------------------------------------------===//
14 
15 
16 #include "sanitizer_common/sanitizer_platform.h"
17 #if SANITIZER_LINUX || SANITIZER_FREEBSD
18 
19 #include "sanitizer_common/sanitizer_common.h"
20 #include "sanitizer_common/sanitizer_libc.h"
21 #include "sanitizer_common/sanitizer_procmaps.h"
22 #include "sanitizer_common/sanitizer_stoptheworld.h"
23 #include "tsan_platform.h"
24 #include "tsan_rtl.h"
25 #include "tsan_flags.h"
26 
27 #include <fcntl.h>
28 #include <pthread.h>
29 #include <signal.h>
30 #include <stdio.h>
31 #include <stdlib.h>
32 #include <string.h>
33 #include <stdarg.h>
34 #include <sys/mman.h>
35 #include <sys/syscall.h>
36 #include <sys/socket.h>
37 #include <sys/time.h>
38 #include <sys/types.h>
39 #include <sys/resource.h>
40 #include <sys/stat.h>
41 #include <unistd.h>
42 #include <errno.h>
43 #include <sched.h>
44 #include <dlfcn.h>
45 #if SANITIZER_LINUX
46 #define __need_res_state
47 #include <resolv.h>
48 #endif
49 
50 #ifdef sa_handler
51 # undef sa_handler
52 #endif
53 
54 #ifdef sa_sigaction
55 # undef sa_sigaction
56 #endif
57 
58 #if SANITIZER_FREEBSD
59 extern "C" void *__libc_stack_end;
60 void *__libc_stack_end = 0;
61 #endif
62 
63 namespace __tsan {
64 
65 const uptr kPageSize = 4096;
66 
67 enum {
68   MemTotal  = 0,
69   MemShadow = 1,
70   MemMeta   = 2,
71   MemFile   = 3,
72   MemMmap   = 4,
73   MemTrace  = 5,
74   MemHeap   = 6,
75   MemOther  = 7,
76   MemCount  = 8,
77 };
78 
FillProfileCallback(uptr start,uptr rss,bool file,uptr * mem,uptr stats_size)79 void FillProfileCallback(uptr start, uptr rss, bool file,
80                          uptr *mem, uptr stats_size) {
81   mem[MemTotal] += rss;
82   start >>= 40;
83   if (start < 0x10)
84     mem[MemShadow] += rss;
85   else if (start >= 0x20 && start < 0x30)
86     mem[file ? MemFile : MemMmap] += rss;
87   else if (start >= 0x30 && start < 0x40)
88     mem[MemMeta] += rss;
89   else if (start >= 0x7e)
90     mem[file ? MemFile : MemMmap] += rss;
91   else if (start >= 0x60 && start < 0x62)
92     mem[MemTrace] += rss;
93   else if (start >= 0x7d && start < 0x7e)
94     mem[MemHeap] += rss;
95   else
96     mem[MemOther] += rss;
97 }
98 
WriteMemoryProfile(char * buf,uptr buf_size,uptr nthread,uptr nlive)99 void WriteMemoryProfile(char *buf, uptr buf_size, uptr nthread, uptr nlive) {
100   uptr mem[MemCount] = {};
101   __sanitizer::GetMemoryProfile(FillProfileCallback, mem, 7);
102   internal_snprintf(buf, buf_size,
103       "RSS %zd MB: shadow:%zd meta:%zd file:%zd mmap:%zd"
104       " trace:%zd heap:%zd other:%zd nthr=%zd/%zd\n",
105       mem[MemTotal] >> 20, mem[MemShadow] >> 20, mem[MemMeta] >> 20,
106       mem[MemFile] >> 20, mem[MemMmap] >> 20, mem[MemTrace] >> 20,
107       mem[MemHeap] >> 20, mem[MemOther] >> 20,
108       nlive, nthread);
109 }
110 
GetRSS()111 uptr GetRSS() {
112   uptr mem[7] = {};
113   __sanitizer::GetMemoryProfile(FillProfileCallback, mem, 7);
114   return mem[6];
115 }
116 
117 #if SANITIZER_LINUX
FlushShadowMemoryCallback(const SuspendedThreadsList & suspended_threads_list,void * argument)118 void FlushShadowMemoryCallback(
119     const SuspendedThreadsList &suspended_threads_list,
120     void *argument) {
121   FlushUnneededShadowMemory(kLinuxShadowBeg, kLinuxShadowEnd - kLinuxShadowBeg);
122 }
123 #endif
124 
FlushShadowMemory()125 void FlushShadowMemory() {
126 #if SANITIZER_LINUX
127   StopTheWorld(FlushShadowMemoryCallback, 0);
128 #endif
129 }
130 
131 #ifndef TSAN_GO
ProtectRange(uptr beg,uptr end)132 static void ProtectRange(uptr beg, uptr end) {
133   CHECK_LE(beg, end);
134   if (beg == end)
135     return;
136   if (beg != (uptr)Mprotect(beg, end - beg)) {
137     Printf("FATAL: ThreadSanitizer can not protect [%zx,%zx]\n", beg, end);
138     Printf("FATAL: Make sure you are not using unlimited stack\n");
139     Die();
140   }
141 }
142 
143 // Mark shadow for .rodata sections with the special kShadowRodata marker.
144 // Accesses to .rodata can't race, so this saves time, memory and trace space.
MapRodata()145 static void MapRodata() {
146   // First create temp file.
147   const char *tmpdir = GetEnv("TMPDIR");
148   if (tmpdir == 0)
149     tmpdir = GetEnv("TEST_TMPDIR");
150 #ifdef P_tmpdir
151   if (tmpdir == 0)
152     tmpdir = P_tmpdir;
153 #endif
154   if (tmpdir == 0)
155     return;
156   char name[256];
157   internal_snprintf(name, sizeof(name), "%s/tsan.rodata.%d",
158                     tmpdir, (int)internal_getpid());
159   uptr openrv = internal_open(name, O_RDWR | O_CREAT | O_EXCL, 0600);
160   if (internal_iserror(openrv))
161     return;
162   internal_unlink(name);  // Unlink it now, so that we can reuse the buffer.
163   fd_t fd = openrv;
164   // Fill the file with kShadowRodata.
165   const uptr kMarkerSize = 512 * 1024 / sizeof(u64);
166   InternalScopedBuffer<u64> marker(kMarkerSize);
167   // volatile to prevent insertion of memset
168   for (volatile u64 *p = marker.data(); p < marker.data() + kMarkerSize; p++)
169     *p = kShadowRodata;
170   internal_write(fd, marker.data(), marker.size());
171   // Map the file into memory.
172   uptr page = internal_mmap(0, kPageSize, PROT_READ | PROT_WRITE,
173                             MAP_PRIVATE | MAP_ANONYMOUS, fd, 0);
174   if (internal_iserror(page)) {
175     internal_close(fd);
176     return;
177   }
178   // Map the file into shadow of .rodata sections.
179   MemoryMappingLayout proc_maps(/*cache_enabled*/true);
180   uptr start, end, offset, prot;
181   // Reusing the buffer 'name'.
182   while (proc_maps.Next(&start, &end, &offset, name, ARRAY_SIZE(name), &prot)) {
183     if (name[0] != 0 && name[0] != '['
184         && (prot & MemoryMappingLayout::kProtectionRead)
185         && (prot & MemoryMappingLayout::kProtectionExecute)
186         && !(prot & MemoryMappingLayout::kProtectionWrite)
187         && IsAppMem(start)) {
188       // Assume it's .rodata
189       char *shadow_start = (char*)MemToShadow(start);
190       char *shadow_end = (char*)MemToShadow(end);
191       for (char *p = shadow_start; p < shadow_end; p += marker.size()) {
192         internal_mmap(p, Min<uptr>(marker.size(), shadow_end - p),
193                       PROT_READ, MAP_PRIVATE | MAP_FIXED, fd, 0);
194       }
195     }
196   }
197   internal_close(fd);
198 }
199 
InitializeShadowMemory()200 void InitializeShadowMemory() {
201   // Map memory shadow.
202   uptr shadow = (uptr)MmapFixedNoReserve(kLinuxShadowBeg,
203     kLinuxShadowEnd - kLinuxShadowBeg);
204   if (shadow != kLinuxShadowBeg) {
205     Printf("FATAL: ThreadSanitizer can not mmap the shadow memory\n");
206     Printf("FATAL: Make sure to compile with -fPIE and "
207                "to link with -pie (%p, %p).\n", shadow, kLinuxShadowBeg);
208     Die();
209   }
210   DPrintf("memory shadow: %zx-%zx (%zuGB)\n",
211       kLinuxShadowBeg, kLinuxShadowEnd,
212       (kLinuxShadowEnd - kLinuxShadowBeg) >> 30);
213 
214   // Map meta shadow.
215   if (MemToMeta(kLinuxAppMemBeg) < (u32*)kMetaShadow) {
216     Printf("ThreadSanitizer: bad meta shadow (%p -> %p < %p)\n",
217         kLinuxAppMemBeg, MemToMeta(kLinuxAppMemBeg), kMetaShadow);
218     Die();
219   }
220   if (MemToMeta(kLinuxAppMemEnd) >= (u32*)(kMetaShadow + kMetaSize)) {
221     Printf("ThreadSanitizer: bad meta shadow (%p -> %p >= %p)\n",
222         kLinuxAppMemEnd, MemToMeta(kLinuxAppMemEnd), kMetaShadow + kMetaSize);
223     Die();
224   }
225   uptr meta = (uptr)MmapFixedNoReserve(kMetaShadow, kMetaSize);
226   if (meta != kMetaShadow) {
227     Printf("FATAL: ThreadSanitizer can not mmap the shadow memory\n");
228     Printf("FATAL: Make sure to compile with -fPIE and "
229                "to link with -pie (%p, %p).\n", meta, kMetaShadow);
230     Die();
231   }
232   DPrintf("meta shadow: %zx-%zx (%zuGB)\n",
233       kMetaShadow, kMetaShadow + kMetaSize, kMetaSize >> 30);
234 
235   // Protect gaps.
236   const uptr kClosedLowBeg  = 0x200000;
237   const uptr kClosedLowEnd  = kLinuxShadowBeg - 1;
238   const uptr kClosedMidBeg = kLinuxShadowEnd + 1;
239   const uptr kClosedMidEnd = min(min(kLinuxAppMemBeg, kTraceMemBegin),
240       kMetaShadow);
241 
242   ProtectRange(kClosedLowBeg, kClosedLowEnd);
243   ProtectRange(kClosedMidBeg, kClosedMidEnd);
244   VPrintf(2, "kClosedLow   %zx-%zx (%zuGB)\n",
245       kClosedLowBeg, kClosedLowEnd, (kClosedLowEnd - kClosedLowBeg) >> 30);
246   VPrintf(2, "kClosedMid   %zx-%zx (%zuGB)\n",
247       kClosedMidBeg, kClosedMidEnd, (kClosedMidEnd - kClosedMidBeg) >> 30);
248   VPrintf(2, "app mem: %zx-%zx (%zuGB)\n",
249       kLinuxAppMemBeg, kLinuxAppMemEnd,
250       (kLinuxAppMemEnd - kLinuxAppMemBeg) >> 30);
251   VPrintf(2, "stack: %zx\n", (uptr)&shadow);
252 
253   MapRodata();
254 }
255 #endif
256 
257 static uptr g_data_start;
258 static uptr g_data_end;
259 
260 #ifndef TSAN_GO
CheckPIE()261 static void CheckPIE() {
262   // Ensure that the binary is indeed compiled with -pie.
263   MemoryMappingLayout proc_maps(true);
264   uptr start, end;
265   if (proc_maps.Next(&start, &end,
266                      /*offset*/0, /*filename*/0, /*filename_size*/0,
267                      /*protection*/0)) {
268     if ((u64)start < kLinuxAppMemBeg) {
269       Printf("FATAL: ThreadSanitizer can not mmap the shadow memory ("
270              "something is mapped at 0x%zx < 0x%zx)\n",
271              start, kLinuxAppMemBeg);
272       Printf("FATAL: Make sure to compile with -fPIE"
273              " and to link with -pie.\n");
274       Die();
275     }
276   }
277 }
278 
InitDataSeg()279 static void InitDataSeg() {
280   MemoryMappingLayout proc_maps(true);
281   uptr start, end, offset;
282   char name[128];
283   bool prev_is_data = false;
284   while (proc_maps.Next(&start, &end, &offset, name, ARRAY_SIZE(name),
285                         /*protection*/ 0)) {
286     DPrintf("%p-%p %p %s\n", start, end, offset, name);
287     bool is_data = offset != 0 && name[0] != 0;
288     // BSS may get merged with [heap] in /proc/self/maps. This is not very
289     // reliable.
290     bool is_bss = offset == 0 &&
291       (name[0] == 0 || internal_strcmp(name, "[heap]") == 0) && prev_is_data;
292     if (g_data_start == 0 && is_data)
293       g_data_start = start;
294     if (is_bss)
295       g_data_end = end;
296     prev_is_data = is_data;
297   }
298   DPrintf("guessed data_start=%p data_end=%p\n",  g_data_start, g_data_end);
299   CHECK_LT(g_data_start, g_data_end);
300   CHECK_GE((uptr)&g_data_start, g_data_start);
301   CHECK_LT((uptr)&g_data_start, g_data_end);
302 }
303 
304 #endif  // #ifndef TSAN_GO
305 
getlim(int res)306 static rlim_t getlim(int res) {
307   rlimit rlim;
308   CHECK_EQ(0, getrlimit(res, &rlim));
309   return rlim.rlim_cur;
310 }
311 
setlim(int res,rlim_t lim)312 static void setlim(int res, rlim_t lim) {
313   // The following magic is to prevent clang from replacing it with memset.
314   volatile rlimit rlim;
315   rlim.rlim_cur = lim;
316   rlim.rlim_max = lim;
317   setrlimit(res, (rlimit*)&rlim);
318 }
319 
InitializePlatform()320 const char *InitializePlatform() {
321   void *p = 0;
322   if (sizeof(p) == 8) {
323     // Disable core dumps, dumping of 16TB usually takes a bit long.
324     setlim(RLIMIT_CORE, 0);
325   }
326 
327   // Go maps shadow memory lazily and works fine with limited address space.
328   // Unlimited stack is not a problem as well, because the executable
329   // is not compiled with -pie.
330   if (kCppMode) {
331     bool reexec = false;
332     // TSan doesn't play well with unlimited stack size (as stack
333     // overlaps with shadow memory). If we detect unlimited stack size,
334     // we re-exec the program with limited stack size as a best effort.
335     if (getlim(RLIMIT_STACK) == (rlim_t)-1) {
336       const uptr kMaxStackSize = 32 * 1024 * 1024;
337       VReport(1, "Program is run with unlimited stack size, which wouldn't "
338                  "work with ThreadSanitizer.\n"
339                  "Re-execing with stack size limited to %zd bytes.\n",
340               kMaxStackSize);
341       SetStackSizeLimitInBytes(kMaxStackSize);
342       reexec = true;
343     }
344 
345     if (getlim(RLIMIT_AS) != (rlim_t)-1) {
346       Report("WARNING: Program is run with limited virtual address space,"
347              " which wouldn't work with ThreadSanitizer.\n");
348       Report("Re-execing with unlimited virtual address space.\n");
349       setlim(RLIMIT_AS, -1);
350       reexec = true;
351     }
352     if (reexec)
353       ReExec();
354   }
355 
356 #ifndef TSAN_GO
357   CheckPIE();
358   InitTlsSize();
359   InitDataSeg();
360 #endif
361   return GetEnv(kTsanOptionsEnv);
362 }
363 
IsGlobalVar(uptr addr)364 bool IsGlobalVar(uptr addr) {
365   return g_data_start && addr >= g_data_start && addr < g_data_end;
366 }
367 
368 #ifndef TSAN_GO
369 // Extract file descriptors passed to glibc internal __res_iclose function.
370 // This is required to properly "close" the fds, because we do not see internal
371 // closes within glibc. The code is a pure hack.
ExtractResolvFDs(void * state,int * fds,int nfd)372 int ExtractResolvFDs(void *state, int *fds, int nfd) {
373 #if SANITIZER_LINUX
374   int cnt = 0;
375   __res_state *statp = (__res_state*)state;
376   for (int i = 0; i < MAXNS && cnt < nfd; i++) {
377     if (statp->_u._ext.nsaddrs[i] && statp->_u._ext.nssocks[i] != -1)
378       fds[cnt++] = statp->_u._ext.nssocks[i];
379   }
380   return cnt;
381 #else
382   return 0;
383 #endif
384 }
385 
386 // Extract file descriptors passed via UNIX domain sockets.
387 // This is requried to properly handle "open" of these fds.
388 // see 'man recvmsg' and 'man 3 cmsg'.
ExtractRecvmsgFDs(void * msgp,int * fds,int nfd)389 int ExtractRecvmsgFDs(void *msgp, int *fds, int nfd) {
390   int res = 0;
391   msghdr *msg = (msghdr*)msgp;
392   struct cmsghdr *cmsg = CMSG_FIRSTHDR(msg);
393   for (; cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
394     if (cmsg->cmsg_level != SOL_SOCKET || cmsg->cmsg_type != SCM_RIGHTS)
395       continue;
396     int n = (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(fds[0]);
397     for (int i = 0; i < n; i++) {
398       fds[res++] = ((int*)CMSG_DATA(cmsg))[i];
399       if (res == nfd)
400         return res;
401     }
402   }
403   return res;
404 }
405 
call_pthread_cancel_with_cleanup(int (* fn)(void * c,void * m,void * abstime),void * c,void * m,void * abstime,void (* cleanup)(void * arg),void * arg)406 int call_pthread_cancel_with_cleanup(int(*fn)(void *c, void *m,
407     void *abstime), void *c, void *m, void *abstime,
408     void(*cleanup)(void *arg), void *arg) {
409   // pthread_cleanup_push/pop are hardcore macros mess.
410   // We can't intercept nor call them w/o including pthread.h.
411   int res;
412   pthread_cleanup_push(cleanup, arg);
413   res = fn(c, m, abstime);
414   pthread_cleanup_pop(0);
415   return res;
416 }
417 #endif
418 
419 }  // namespace __tsan
420 
421 #endif  // SANITIZER_LINUX
422