• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "net/quic/quic_framer.h"
6 
7 #include "base/containers/hash_tables.h"
8 #include "base/stl_util.h"
9 #include "net/quic/crypto/crypto_framer.h"
10 #include "net/quic/crypto/crypto_handshake_message.h"
11 #include "net/quic/crypto/crypto_protocol.h"
12 #include "net/quic/crypto/quic_decrypter.h"
13 #include "net/quic/crypto/quic_encrypter.h"
14 #include "net/quic/quic_data_reader.h"
15 #include "net/quic/quic_data_writer.h"
16 #include "net/quic/quic_flags.h"
17 #include "net/quic/quic_socket_address_coder.h"
18 
19 using base::StringPiece;
20 using std::make_pair;
21 using std::map;
22 using std::max;
23 using std::min;
24 using std::numeric_limits;
25 using std::string;
26 
27 namespace net {
28 
29 namespace {
30 
31 // Mask to select the lowest 48 bits of a sequence number.
32 const QuicPacketSequenceNumber k6ByteSequenceNumberMask =
33     GG_UINT64_C(0x0000FFFFFFFFFFFF);
34 const QuicPacketSequenceNumber k4ByteSequenceNumberMask =
35     GG_UINT64_C(0x00000000FFFFFFFF);
36 const QuicPacketSequenceNumber k2ByteSequenceNumberMask =
37     GG_UINT64_C(0x000000000000FFFF);
38 const QuicPacketSequenceNumber k1ByteSequenceNumberMask =
39     GG_UINT64_C(0x00000000000000FF);
40 
41 const QuicConnectionId k1ByteConnectionIdMask = GG_UINT64_C(0x00000000000000FF);
42 const QuicConnectionId k4ByteConnectionIdMask = GG_UINT64_C(0x00000000FFFFFFFF);
43 
44 // Number of bits the sequence number length bits are shifted from the right
45 // edge of the public header.
46 const uint8 kPublicHeaderSequenceNumberShift = 4;
47 
48 // New Frame Types, QUIC v. >= 10:
49 // There are two interpretations for the Frame Type byte in the QUIC protocol,
50 // resulting in two Frame Types: Special Frame Types and Regular Frame Types.
51 //
52 // Regular Frame Types use the Frame Type byte simply. Currently defined
53 // Regular Frame Types are:
54 // Padding            : 0b 00000000 (0x00)
55 // ResetStream        : 0b 00000001 (0x01)
56 // ConnectionClose    : 0b 00000010 (0x02)
57 // GoAway             : 0b 00000011 (0x03)
58 // WindowUpdate       : 0b 00000100 (0x04)
59 // Blocked            : 0b 00000101 (0x05)
60 //
61 // Special Frame Types encode both a Frame Type and corresponding flags
62 // all in the Frame Type byte. Currently defined Special Frame Types are:
63 // Stream             : 0b 1xxxxxxx
64 // Ack                : 0b 01xxxxxx
65 // CongestionFeedback : 0b 001xxxxx
66 //
67 // Semantics of the flag bits above (the x bits) depends on the frame type.
68 
69 // Masks to determine if the frame type is a special use
70 // and for specific special frame types.
71 const uint8 kQuicFrameTypeSpecialMask = 0xE0;  // 0b 11100000
72 const uint8 kQuicFrameTypeStreamMask = 0x80;
73 const uint8 kQuicFrameTypeAckMask = 0x40;
74 const uint8 kQuicFrameTypeCongestionFeedbackMask = 0x20;
75 
76 // Stream frame relative shifts and masks for interpreting the stream flags.
77 // StreamID may be 1, 2, 3, or 4 bytes.
78 const uint8 kQuicStreamIdShift = 2;
79 const uint8 kQuicStreamIDLengthMask = 0x03;
80 
81 // Offset may be 0, 2, 3, 4, 5, 6, 7, 8 bytes.
82 const uint8 kQuicStreamOffsetShift = 3;
83 const uint8 kQuicStreamOffsetMask = 0x07;
84 
85 // Data length may be 0 or 2 bytes.
86 const uint8 kQuicStreamDataLengthShift = 1;
87 const uint8 kQuicStreamDataLengthMask = 0x01;
88 
89 // Fin bit may be set or not.
90 const uint8 kQuicStreamFinShift = 1;
91 const uint8 kQuicStreamFinMask = 0x01;
92 
93 // Sequence number size shift used in AckFrames.
94 const uint8 kQuicSequenceNumberLengthShift = 2;
95 
96 // Acks may be truncated.
97 const uint8 kQuicAckTruncatedShift = 1;
98 const uint8 kQuicAckTruncatedMask = 0x01;
99 
100 // Acks may not have any nacks.
101 const uint8 kQuicHasNacksMask = 0x01;
102 
103 // Returns the absolute value of the difference between |a| and |b|.
Delta(QuicPacketSequenceNumber a,QuicPacketSequenceNumber b)104 QuicPacketSequenceNumber Delta(QuicPacketSequenceNumber a,
105                                QuicPacketSequenceNumber b) {
106   // Since these are unsigned numbers, we can't just return abs(a - b)
107   if (a < b) {
108     return b - a;
109   }
110   return a - b;
111 }
112 
ClosestTo(QuicPacketSequenceNumber target,QuicPacketSequenceNumber a,QuicPacketSequenceNumber b)113 QuicPacketSequenceNumber ClosestTo(QuicPacketSequenceNumber target,
114                                    QuicPacketSequenceNumber a,
115                                    QuicPacketSequenceNumber b) {
116   return (Delta(target, a) < Delta(target, b)) ? a : b;
117 }
118 
ReadSequenceNumberLength(uint8 flags)119 QuicSequenceNumberLength ReadSequenceNumberLength(uint8 flags) {
120   switch (flags & PACKET_FLAGS_6BYTE_SEQUENCE) {
121     case PACKET_FLAGS_6BYTE_SEQUENCE:
122       return PACKET_6BYTE_SEQUENCE_NUMBER;
123     case PACKET_FLAGS_4BYTE_SEQUENCE:
124       return PACKET_4BYTE_SEQUENCE_NUMBER;
125     case PACKET_FLAGS_2BYTE_SEQUENCE:
126       return PACKET_2BYTE_SEQUENCE_NUMBER;
127     case PACKET_FLAGS_1BYTE_SEQUENCE:
128       return PACKET_1BYTE_SEQUENCE_NUMBER;
129     default:
130       LOG(DFATAL) << "Unreachable case statement.";
131       return PACKET_6BYTE_SEQUENCE_NUMBER;
132   }
133 }
134 
135 }  // namespace
136 
OnWindowUpdateFrame(const QuicWindowUpdateFrame & frame)137 bool QuicFramerVisitorInterface::OnWindowUpdateFrame(
138     const QuicWindowUpdateFrame& frame) {
139   return true;
140 }
141 
OnBlockedFrame(const QuicBlockedFrame & frame)142 bool QuicFramerVisitorInterface::OnBlockedFrame(const QuicBlockedFrame& frame) {
143   return true;
144 }
145 
QuicFramer(const QuicVersionVector & supported_versions,QuicTime creation_time,bool is_server)146 QuicFramer::QuicFramer(const QuicVersionVector& supported_versions,
147                        QuicTime creation_time,
148                        bool is_server)
149     : visitor_(NULL),
150       fec_builder_(NULL),
151       entropy_calculator_(NULL),
152       error_(QUIC_NO_ERROR),
153       last_sequence_number_(0),
154       last_serialized_connection_id_(0),
155       supported_versions_(supported_versions),
156       decrypter_level_(ENCRYPTION_NONE),
157       alternative_decrypter_level_(ENCRYPTION_NONE),
158       alternative_decrypter_latch_(false),
159       is_server_(is_server),
160       validate_flags_(true),
161       creation_time_(creation_time),
162       last_timestamp_(QuicTime::Delta::Zero()) {
163   DCHECK(!supported_versions.empty());
164   quic_version_ = supported_versions_[0];
165   decrypter_.reset(QuicDecrypter::Create(kNULL));
166   encrypter_[ENCRYPTION_NONE].reset(
167       QuicEncrypter::Create(kNULL));
168 }
169 
~QuicFramer()170 QuicFramer::~QuicFramer() {}
171 
172 // static
GetMinStreamFrameSize(QuicStreamId stream_id,QuicStreamOffset offset,bool last_frame_in_packet,InFecGroup is_in_fec_group)173 size_t QuicFramer::GetMinStreamFrameSize(QuicStreamId stream_id,
174                                          QuicStreamOffset offset,
175                                          bool last_frame_in_packet,
176                                          InFecGroup is_in_fec_group) {
177   bool no_stream_frame_length = last_frame_in_packet &&
178                                 is_in_fec_group == NOT_IN_FEC_GROUP;
179   return kQuicFrameTypeSize + GetStreamIdSize(stream_id) +
180       GetStreamOffsetSize(offset) +
181       (no_stream_frame_length ? 0 : kQuicStreamPayloadLengthSize);
182 }
183 
184 // static
GetMinAckFrameSize(QuicSequenceNumberLength sequence_number_length,QuicSequenceNumberLength largest_observed_length)185 size_t QuicFramer::GetMinAckFrameSize(
186     QuicSequenceNumberLength sequence_number_length,
187     QuicSequenceNumberLength largest_observed_length) {
188   return kQuicFrameTypeSize + kQuicEntropyHashSize +
189       largest_observed_length + kQuicDeltaTimeLargestObservedSize;
190 }
191 
192 // static
GetStopWaitingFrameSize(QuicSequenceNumberLength sequence_number_length)193 size_t QuicFramer::GetStopWaitingFrameSize(
194     QuicSequenceNumberLength sequence_number_length) {
195   return kQuicFrameTypeSize + kQuicEntropyHashSize +
196       sequence_number_length;
197 }
198 
199 // static
GetMinRstStreamFrameSize()200 size_t QuicFramer::GetMinRstStreamFrameSize() {
201   return kQuicFrameTypeSize + kQuicMaxStreamIdSize +
202       kQuicMaxStreamOffsetSize + kQuicErrorCodeSize +
203       kQuicErrorDetailsLengthSize;
204 }
205 
206 // static
GetMinConnectionCloseFrameSize()207 size_t QuicFramer::GetMinConnectionCloseFrameSize() {
208   return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize;
209 }
210 
211 // static
GetMinGoAwayFrameSize()212 size_t QuicFramer::GetMinGoAwayFrameSize() {
213   return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize +
214       kQuicMaxStreamIdSize;
215 }
216 
217 // static
GetWindowUpdateFrameSize()218 size_t QuicFramer::GetWindowUpdateFrameSize() {
219   return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize;
220 }
221 
222 // static
GetBlockedFrameSize()223 size_t QuicFramer::GetBlockedFrameSize() {
224   return kQuicFrameTypeSize + kQuicMaxStreamIdSize;
225 }
226 
227 // static
GetStreamIdSize(QuicStreamId stream_id)228 size_t QuicFramer::GetStreamIdSize(QuicStreamId stream_id) {
229   // Sizes are 1 through 4 bytes.
230   for (int i = 1; i <= 4; ++i) {
231     stream_id >>= 8;
232     if (stream_id == 0) {
233       return i;
234     }
235   }
236   LOG(DFATAL) << "Failed to determine StreamIDSize.";
237   return 4;
238 }
239 
240 // static
GetStreamOffsetSize(QuicStreamOffset offset)241 size_t QuicFramer::GetStreamOffsetSize(QuicStreamOffset offset) {
242   // 0 is a special case.
243   if (offset == 0) {
244     return 0;
245   }
246   // 2 through 8 are the remaining sizes.
247   offset >>= 8;
248   for (int i = 2; i <= 8; ++i) {
249     offset >>= 8;
250     if (offset == 0) {
251       return i;
252     }
253   }
254   LOG(DFATAL) << "Failed to determine StreamOffsetSize.";
255   return 8;
256 }
257 
258 // static
GetVersionNegotiationPacketSize(size_t number_versions)259 size_t QuicFramer::GetVersionNegotiationPacketSize(size_t number_versions) {
260   return kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID +
261       number_versions * kQuicVersionSize;
262 }
263 
IsSupportedVersion(const QuicVersion version) const264 bool QuicFramer::IsSupportedVersion(const QuicVersion version) const {
265   for (size_t i = 0; i < supported_versions_.size(); ++i) {
266     if (version == supported_versions_[i]) {
267       return true;
268     }
269   }
270   return false;
271 }
272 
GetSerializedFrameLength(const QuicFrame & frame,size_t free_bytes,bool first_frame,bool last_frame,InFecGroup is_in_fec_group,QuicSequenceNumberLength sequence_number_length)273 size_t QuicFramer::GetSerializedFrameLength(
274     const QuicFrame& frame,
275     size_t free_bytes,
276     bool first_frame,
277     bool last_frame,
278     InFecGroup is_in_fec_group,
279     QuicSequenceNumberLength sequence_number_length) {
280   if (frame.type == PADDING_FRAME) {
281     // PADDING implies end of packet.
282     return free_bytes;
283   }
284   size_t frame_len =
285       ComputeFrameLength(frame, last_frame, is_in_fec_group,
286                          sequence_number_length);
287   if (frame_len <= free_bytes) {
288     // Frame fits within packet. Note that acks may be truncated.
289     return frame_len;
290   }
291   // Only truncate the first frame in a packet, so if subsequent ones go
292   // over, stop including more frames.
293   if (!first_frame) {
294     return 0;
295   }
296   bool can_truncate = frame.type == ACK_FRAME &&
297       free_bytes >= GetMinAckFrameSize(PACKET_6BYTE_SEQUENCE_NUMBER,
298                                        PACKET_6BYTE_SEQUENCE_NUMBER);
299   if (can_truncate) {
300     // Truncate the frame so the packet will not exceed kMaxPacketSize.
301     // Note that we may not use every byte of the writer in this case.
302     DVLOG(1) << "Truncating large frame, free bytes: " << free_bytes;
303     return free_bytes;
304   }
305   if (!FLAGS_quic_allow_oversized_packets_for_test) {
306     return 0;
307   }
308   LOG(DFATAL) << "Packet size too small to fit frame.";
309   return frame_len;
310 }
311 
AckFrameInfo()312 QuicFramer::AckFrameInfo::AckFrameInfo() : max_delta(0) {}
313 
~AckFrameInfo()314 QuicFramer::AckFrameInfo::~AckFrameInfo() {}
315 
GetPacketEntropyHash(const QuicPacketHeader & header) const316 QuicPacketEntropyHash QuicFramer::GetPacketEntropyHash(
317     const QuicPacketHeader& header) const {
318   return header.entropy_flag << (header.packet_sequence_number % 8);
319 }
320 
BuildDataPacket(const QuicPacketHeader & header,const QuicFrames & frames,size_t packet_size)321 SerializedPacket QuicFramer::BuildDataPacket(
322     const QuicPacketHeader& header,
323     const QuicFrames& frames,
324     size_t packet_size) {
325   QuicDataWriter writer(packet_size);
326   const SerializedPacket kNoPacket(
327       0, PACKET_1BYTE_SEQUENCE_NUMBER, NULL, 0, NULL);
328   if (!AppendPacketHeader(header, &writer)) {
329     LOG(DFATAL) << "AppendPacketHeader failed";
330     return kNoPacket;
331   }
332 
333   for (size_t i = 0; i < frames.size(); ++i) {
334     const QuicFrame& frame = frames[i];
335 
336     // Determine if we should write stream frame length in header.
337     const bool no_stream_frame_length =
338         (header.is_in_fec_group == NOT_IN_FEC_GROUP) &&
339         (i == frames.size() - 1);
340     if (!AppendTypeByte(frame, no_stream_frame_length, &writer)) {
341       LOG(DFATAL) << "AppendTypeByte failed";
342       return kNoPacket;
343     }
344 
345     switch (frame.type) {
346       case PADDING_FRAME:
347         writer.WritePadding();
348         break;
349       case STREAM_FRAME:
350         if (!AppendStreamFrame(
351             *frame.stream_frame, no_stream_frame_length, &writer)) {
352           LOG(DFATAL) << "AppendStreamFrame failed";
353           return kNoPacket;
354         }
355         break;
356       case ACK_FRAME:
357         if (!AppendAckFrameAndTypeByte(
358                 header, *frame.ack_frame, &writer)) {
359           LOG(DFATAL) << "AppendAckFrameAndTypeByte failed";
360           return kNoPacket;
361         }
362         break;
363       case CONGESTION_FEEDBACK_FRAME:
364         if (!AppendCongestionFeedbackFrame(
365                 *frame.congestion_feedback_frame, &writer)) {
366           LOG(DFATAL) << "AppendCongestionFeedbackFrame failed";
367           return kNoPacket;
368         }
369         break;
370       case STOP_WAITING_FRAME:
371         if (!AppendStopWaitingFrame(
372                 header, *frame.stop_waiting_frame, &writer)) {
373           LOG(DFATAL) << "AppendStopWaitingFrame failed";
374           return kNoPacket;
375         }
376         break;
377       case PING_FRAME:
378         if (quic_version_ == QUIC_VERSION_16) {
379           LOG(DFATAL) << "Attempt to add a PingFrame in "
380                       << QuicVersionToString(quic_version_);
381           return kNoPacket;
382         }
383         // Ping has no payload.
384         break;
385       case RST_STREAM_FRAME:
386         if (!AppendRstStreamFrame(*frame.rst_stream_frame, &writer)) {
387           LOG(DFATAL) << "AppendRstStreamFrame failed";
388           return kNoPacket;
389         }
390         break;
391       case CONNECTION_CLOSE_FRAME:
392         if (!AppendConnectionCloseFrame(
393                 *frame.connection_close_frame, &writer)) {
394           LOG(DFATAL) << "AppendConnectionCloseFrame failed";
395           return kNoPacket;
396         }
397         break;
398       case GOAWAY_FRAME:
399         if (!AppendGoAwayFrame(*frame.goaway_frame, &writer)) {
400           LOG(DFATAL) << "AppendGoAwayFrame failed";
401           return kNoPacket;
402         }
403         break;
404       case WINDOW_UPDATE_FRAME:
405         if (!AppendWindowUpdateFrame(*frame.window_update_frame, &writer)) {
406           LOG(DFATAL) << "AppendWindowUpdateFrame failed";
407           return kNoPacket;
408         }
409         break;
410       case BLOCKED_FRAME:
411         if (!AppendBlockedFrame(*frame.blocked_frame, &writer)) {
412           LOG(DFATAL) << "AppendBlockedFrame failed";
413           return kNoPacket;
414         }
415         break;
416       default:
417         RaiseError(QUIC_INVALID_FRAME_DATA);
418         LOG(DFATAL) << "QUIC_INVALID_FRAME_DATA";
419         return kNoPacket;
420     }
421   }
422 
423   // Save the length before writing, because take clears it.
424   const size_t len = writer.length();
425   // Less than or equal because truncated acks end up with max_plaintex_size
426   // length, even though they're typically slightly shorter.
427   DCHECK_LE(len, packet_size);
428   QuicPacket* packet = QuicPacket::NewDataPacket(
429       writer.take(), len, true, header.public_header.connection_id_length,
430       header.public_header.version_flag,
431       header.public_header.sequence_number_length);
432 
433   if (fec_builder_) {
434     fec_builder_->OnBuiltFecProtectedPayload(header,
435                                              packet->FecProtectedData());
436   }
437 
438   return SerializedPacket(header.packet_sequence_number,
439                           header.public_header.sequence_number_length, packet,
440                           GetPacketEntropyHash(header), NULL);
441 }
442 
BuildFecPacket(const QuicPacketHeader & header,const QuicFecData & fec)443 SerializedPacket QuicFramer::BuildFecPacket(const QuicPacketHeader& header,
444                                             const QuicFecData& fec) {
445   DCHECK_EQ(IN_FEC_GROUP, header.is_in_fec_group);
446   DCHECK_NE(0u, header.fec_group);
447   size_t len = GetPacketHeaderSize(header);
448   len += fec.redundancy.length();
449 
450   QuicDataWriter writer(len);
451   const SerializedPacket kNoPacket(
452       0, PACKET_1BYTE_SEQUENCE_NUMBER, NULL, 0, NULL);
453   if (!AppendPacketHeader(header, &writer)) {
454     LOG(DFATAL) << "AppendPacketHeader failed";
455     return kNoPacket;
456   }
457 
458   if (!writer.WriteBytes(fec.redundancy.data(), fec.redundancy.length())) {
459     LOG(DFATAL) << "Failed to add FEC";
460     return kNoPacket;
461   }
462 
463   return SerializedPacket(
464       header.packet_sequence_number,
465       header.public_header.sequence_number_length,
466       QuicPacket::NewFecPacket(writer.take(), len, true,
467                                header.public_header.connection_id_length,
468                                header.public_header.version_flag,
469                                header.public_header.sequence_number_length),
470       GetPacketEntropyHash(header), NULL);
471 }
472 
473 // static
BuildPublicResetPacket(const QuicPublicResetPacket & packet)474 QuicEncryptedPacket* QuicFramer::BuildPublicResetPacket(
475     const QuicPublicResetPacket& packet) {
476   DCHECK(packet.public_header.reset_flag);
477 
478   CryptoHandshakeMessage reset;
479   reset.set_tag(kPRST);
480   reset.SetValue(kRNON, packet.nonce_proof);
481   reset.SetValue(kRSEQ, packet.rejected_sequence_number);
482   if (!packet.client_address.address().empty()) {
483     // packet.client_address is non-empty.
484     QuicSocketAddressCoder address_coder(packet.client_address);
485     string serialized_address = address_coder.Encode();
486     if (serialized_address.empty()) {
487       return NULL;
488     }
489     reset.SetStringPiece(kCADR, serialized_address);
490   }
491   const QuicData& reset_serialized = reset.GetSerialized();
492 
493   size_t len =
494       kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID + reset_serialized.length();
495   QuicDataWriter writer(len);
496 
497   uint8 flags = static_cast<uint8>(PACKET_PUBLIC_FLAGS_RST |
498                                    PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID);
499   if (!writer.WriteUInt8(flags)) {
500     return NULL;
501   }
502 
503   if (!writer.WriteUInt64(packet.public_header.connection_id)) {
504     return NULL;
505   }
506 
507   if (!writer.WriteBytes(reset_serialized.data(), reset_serialized.length())) {
508     return NULL;
509   }
510 
511   return new QuicEncryptedPacket(writer.take(), len, true);
512 }
513 
BuildVersionNegotiationPacket(const QuicPacketPublicHeader & header,const QuicVersionVector & supported_versions)514 QuicEncryptedPacket* QuicFramer::BuildVersionNegotiationPacket(
515     const QuicPacketPublicHeader& header,
516     const QuicVersionVector& supported_versions) {
517   DCHECK(header.version_flag);
518   size_t len = GetVersionNegotiationPacketSize(supported_versions.size());
519   QuicDataWriter writer(len);
520 
521   uint8 flags = static_cast<uint8>(PACKET_PUBLIC_FLAGS_VERSION |
522                                    PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID);
523   if (!writer.WriteUInt8(flags)) {
524     return NULL;
525   }
526 
527   if (!writer.WriteUInt64(header.connection_id)) {
528     return NULL;
529   }
530 
531   for (size_t i = 0; i < supported_versions.size(); ++i) {
532     if (!writer.WriteUInt32(QuicVersionToQuicTag(supported_versions[i]))) {
533       return NULL;
534     }
535   }
536 
537   return new QuicEncryptedPacket(writer.take(), len, true);
538 }
539 
ProcessPacket(const QuicEncryptedPacket & packet)540 bool QuicFramer::ProcessPacket(const QuicEncryptedPacket& packet) {
541   DCHECK(!reader_.get());
542   reader_.reset(new QuicDataReader(packet.data(), packet.length()));
543 
544   visitor_->OnPacket();
545 
546   // First parse the public header.
547   QuicPacketPublicHeader public_header;
548   if (!ProcessPublicHeader(&public_header)) {
549     DLOG(WARNING) << "Unable to process public header.";
550     DCHECK_NE("", detailed_error_);
551     return RaiseError(QUIC_INVALID_PACKET_HEADER);
552   }
553 
554   if (!visitor_->OnUnauthenticatedPublicHeader(public_header)) {
555     // The visitor suppresses further processing of the packet.
556     reader_.reset(NULL);
557     return true;
558   }
559 
560   if (is_server_ && public_header.version_flag &&
561       public_header.versions[0] != quic_version_) {
562     if (!visitor_->OnProtocolVersionMismatch(public_header.versions[0])) {
563       reader_.reset(NULL);
564       return true;
565     }
566   }
567 
568   bool rv;
569   if (!is_server_ && public_header.version_flag) {
570     rv = ProcessVersionNegotiationPacket(&public_header);
571   } else if (public_header.reset_flag) {
572     rv = ProcessPublicResetPacket(public_header);
573   } else {
574     rv = ProcessDataPacket(public_header, packet);
575   }
576 
577   reader_.reset(NULL);
578   return rv;
579 }
580 
ProcessVersionNegotiationPacket(QuicPacketPublicHeader * public_header)581 bool QuicFramer::ProcessVersionNegotiationPacket(
582     QuicPacketPublicHeader* public_header) {
583   DCHECK(!is_server_);
584   // Try reading at least once to raise error if the packet is invalid.
585   do {
586     QuicTag version;
587     if (!reader_->ReadBytes(&version, kQuicVersionSize)) {
588       set_detailed_error("Unable to read supported version in negotiation.");
589       return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET);
590     }
591     public_header->versions.push_back(QuicTagToQuicVersion(version));
592   } while (!reader_->IsDoneReading());
593 
594   visitor_->OnVersionNegotiationPacket(*public_header);
595   return true;
596 }
597 
ProcessDataPacket(const QuicPacketPublicHeader & public_header,const QuicEncryptedPacket & packet)598 bool QuicFramer::ProcessDataPacket(
599     const QuicPacketPublicHeader& public_header,
600     const QuicEncryptedPacket& packet) {
601   QuicPacketHeader header(public_header);
602   if (!ProcessPacketHeader(&header, packet)) {
603     DLOG(WARNING) << "Unable to process data packet header.";
604     return false;
605   }
606 
607   if (!visitor_->OnPacketHeader(header)) {
608     // The visitor suppresses further processing of the packet.
609     return true;
610   }
611 
612   if (packet.length() > kMaxPacketSize) {
613     DLOG(WARNING) << "Packet too large: " << packet.length();
614     return RaiseError(QUIC_PACKET_TOO_LARGE);
615   }
616 
617   // Handle the payload.
618   if (!header.fec_flag) {
619     if (header.is_in_fec_group == IN_FEC_GROUP) {
620       StringPiece payload = reader_->PeekRemainingPayload();
621       visitor_->OnFecProtectedPayload(payload);
622     }
623     if (!ProcessFrameData(header)) {
624       DCHECK_NE(QUIC_NO_ERROR, error_);  // ProcessFrameData sets the error.
625       DLOG(WARNING) << "Unable to process frame data.";
626       return false;
627     }
628   } else {
629     QuicFecData fec_data;
630     fec_data.fec_group = header.fec_group;
631     fec_data.redundancy = reader_->ReadRemainingPayload();
632     visitor_->OnFecData(fec_data);
633   }
634 
635   visitor_->OnPacketComplete();
636   return true;
637 }
638 
ProcessPublicResetPacket(const QuicPacketPublicHeader & public_header)639 bool QuicFramer::ProcessPublicResetPacket(
640     const QuicPacketPublicHeader& public_header) {
641   QuicPublicResetPacket packet(public_header);
642 
643   scoped_ptr<CryptoHandshakeMessage> reset(
644       CryptoFramer::ParseMessage(reader_->ReadRemainingPayload()));
645   if (!reset.get()) {
646     set_detailed_error("Unable to read reset message.");
647     return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
648   }
649   if (reset->tag() != kPRST) {
650     set_detailed_error("Incorrect message tag.");
651     return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
652   }
653 
654   if (reset->GetUint64(kRNON, &packet.nonce_proof) != QUIC_NO_ERROR) {
655     set_detailed_error("Unable to read nonce proof.");
656     return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
657   }
658   // TODO(satyamshekhar): validate nonce to protect against DoS.
659 
660   if (reset->GetUint64(kRSEQ, &packet.rejected_sequence_number) !=
661       QUIC_NO_ERROR) {
662     set_detailed_error("Unable to read rejected sequence number.");
663     return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
664   }
665 
666   StringPiece address;
667   if (reset->GetStringPiece(kCADR, &address)) {
668     QuicSocketAddressCoder address_coder;
669     if (address_coder.Decode(address.data(), address.length())) {
670       packet.client_address = IPEndPoint(address_coder.ip(),
671                                          address_coder.port());
672     }
673   }
674 
675   visitor_->OnPublicResetPacket(packet);
676   return true;
677 }
678 
ProcessRevivedPacket(QuicPacketHeader * header,StringPiece payload)679 bool QuicFramer::ProcessRevivedPacket(QuicPacketHeader* header,
680                                       StringPiece payload) {
681   DCHECK(!reader_.get());
682 
683   visitor_->OnRevivedPacket();
684 
685   header->entropy_hash = GetPacketEntropyHash(*header);
686 
687   if (!visitor_->OnPacketHeader(*header)) {
688     return true;
689   }
690 
691   if (payload.length() > kMaxPacketSize) {
692     set_detailed_error("Revived packet too large.");
693     return RaiseError(QUIC_PACKET_TOO_LARGE);
694   }
695 
696   reader_.reset(new QuicDataReader(payload.data(), payload.length()));
697   if (!ProcessFrameData(*header)) {
698     DCHECK_NE(QUIC_NO_ERROR, error_);  // ProcessFrameData sets the error.
699     DLOG(WARNING) << "Unable to process frame data.";
700     return false;
701   }
702 
703   visitor_->OnPacketComplete();
704   reader_.reset(NULL);
705   return true;
706 }
707 
AppendPacketHeader(const QuicPacketHeader & header,QuicDataWriter * writer)708 bool QuicFramer::AppendPacketHeader(const QuicPacketHeader& header,
709                                     QuicDataWriter* writer) {
710   DVLOG(1) << "Appending header: " << header;
711   DCHECK(header.fec_group > 0 || header.is_in_fec_group == NOT_IN_FEC_GROUP);
712   uint8 public_flags = 0;
713   if (header.public_header.reset_flag) {
714     public_flags |= PACKET_PUBLIC_FLAGS_RST;
715   }
716   if (header.public_header.version_flag) {
717     public_flags |= PACKET_PUBLIC_FLAGS_VERSION;
718   }
719 
720   public_flags |=
721       GetSequenceNumberFlags(header.public_header.sequence_number_length)
722           << kPublicHeaderSequenceNumberShift;
723 
724   switch (header.public_header.connection_id_length) {
725     case PACKET_0BYTE_CONNECTION_ID:
726       if (!writer->WriteUInt8(
727               public_flags | PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID)) {
728         return false;
729       }
730       break;
731     case PACKET_1BYTE_CONNECTION_ID:
732       if (!writer->WriteUInt8(
733               public_flags | PACKET_PUBLIC_FLAGS_1BYTE_CONNECTION_ID)) {
734          return false;
735       }
736       if (!writer->WriteUInt8(
737               header.public_header.connection_id & k1ByteConnectionIdMask)) {
738         return false;
739       }
740       break;
741     case PACKET_4BYTE_CONNECTION_ID:
742       if (!writer->WriteUInt8(
743               public_flags | PACKET_PUBLIC_FLAGS_4BYTE_CONNECTION_ID)) {
744          return false;
745       }
746       if (!writer->WriteUInt32(
747               header.public_header.connection_id & k4ByteConnectionIdMask)) {
748         return false;
749       }
750       break;
751     case PACKET_8BYTE_CONNECTION_ID:
752       if (!writer->WriteUInt8(
753               public_flags | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID)) {
754         return false;
755       }
756       if (!writer->WriteUInt64(header.public_header.connection_id)) {
757         return false;
758       }
759       break;
760   }
761   last_serialized_connection_id_ = header.public_header.connection_id;
762 
763   if (header.public_header.version_flag) {
764     DCHECK(!is_server_);
765     writer->WriteUInt32(QuicVersionToQuicTag(quic_version_));
766   }
767 
768   if (!AppendPacketSequenceNumber(header.public_header.sequence_number_length,
769                                   header.packet_sequence_number, writer)) {
770     return false;
771   }
772 
773   uint8 private_flags = 0;
774   if (header.entropy_flag) {
775     private_flags |= PACKET_PRIVATE_FLAGS_ENTROPY;
776   }
777   if (header.is_in_fec_group == IN_FEC_GROUP) {
778     private_flags |= PACKET_PRIVATE_FLAGS_FEC_GROUP;
779   }
780   if (header.fec_flag) {
781     private_flags |= PACKET_PRIVATE_FLAGS_FEC;
782   }
783   if (!writer->WriteUInt8(private_flags)) {
784     return false;
785   }
786 
787   // The FEC group number is the sequence number of the first fec
788   // protected packet, or 0 if this packet is not protected.
789   if (header.is_in_fec_group == IN_FEC_GROUP) {
790     DCHECK_GE(header.packet_sequence_number, header.fec_group);
791     DCHECK_GT(255u, header.packet_sequence_number - header.fec_group);
792     // Offset from the current packet sequence number to the first fec
793     // protected packet.
794     uint8 first_fec_protected_packet_offset =
795         header.packet_sequence_number - header.fec_group;
796     if (!writer->WriteBytes(&first_fec_protected_packet_offset, 1)) {
797       return false;
798     }
799   }
800 
801   return true;
802 }
803 
CalculateTimestampFromWire(uint32 time_delta_us)804 const QuicTime::Delta QuicFramer::CalculateTimestampFromWire(
805     uint32 time_delta_us) {
806   // The new time_delta might have wrapped to the next epoch, or it
807   // might have reverse wrapped to the previous epoch, or it might
808   // remain in the same epoch. Select the time closest to the previous
809   // time.
810   //
811   // epoch_delta is the delta between epochs. A delta is 4 bytes of
812   // microseconds.
813   const uint64 epoch_delta = GG_UINT64_C(1) << 32;
814   uint64 epoch = last_timestamp_.ToMicroseconds() & ~(epoch_delta - 1);
815   // Wrapping is safe here because a wrapped value will not be ClosestTo below.
816   uint64 prev_epoch = epoch - epoch_delta;
817   uint64 next_epoch = epoch + epoch_delta;
818 
819   uint64 time = ClosestTo(last_timestamp_.ToMicroseconds(),
820                           epoch + time_delta_us,
821                           ClosestTo(last_timestamp_.ToMicroseconds(),
822                                     prev_epoch + time_delta_us,
823                                     next_epoch + time_delta_us));
824 
825   return QuicTime::Delta::FromMicroseconds(time);
826 }
827 
CalculatePacketSequenceNumberFromWire(QuicSequenceNumberLength sequence_number_length,QuicPacketSequenceNumber packet_sequence_number) const828 QuicPacketSequenceNumber QuicFramer::CalculatePacketSequenceNumberFromWire(
829     QuicSequenceNumberLength sequence_number_length,
830     QuicPacketSequenceNumber packet_sequence_number) const {
831   // The new sequence number might have wrapped to the next epoch, or
832   // it might have reverse wrapped to the previous epoch, or it might
833   // remain in the same epoch.  Select the sequence number closest to the
834   // next expected sequence number, the previous sequence number plus 1.
835 
836   // epoch_delta is the delta between epochs the sequence number was serialized
837   // with, so the correct value is likely the same epoch as the last sequence
838   // number or an adjacent epoch.
839   const QuicPacketSequenceNumber epoch_delta =
840       GG_UINT64_C(1) << (8 * sequence_number_length);
841   QuicPacketSequenceNumber next_sequence_number = last_sequence_number_ + 1;
842   QuicPacketSequenceNumber epoch = last_sequence_number_ & ~(epoch_delta - 1);
843   QuicPacketSequenceNumber prev_epoch = epoch - epoch_delta;
844   QuicPacketSequenceNumber next_epoch = epoch + epoch_delta;
845 
846   return ClosestTo(next_sequence_number,
847                    epoch + packet_sequence_number,
848                    ClosestTo(next_sequence_number,
849                              prev_epoch + packet_sequence_number,
850                              next_epoch + packet_sequence_number));
851 }
852 
ProcessPublicHeader(QuicPacketPublicHeader * public_header)853 bool QuicFramer::ProcessPublicHeader(
854     QuicPacketPublicHeader* public_header) {
855   uint8 public_flags;
856   if (!reader_->ReadBytes(&public_flags, 1)) {
857     set_detailed_error("Unable to read public flags.");
858     return false;
859   }
860 
861   public_header->reset_flag = (public_flags & PACKET_PUBLIC_FLAGS_RST) != 0;
862   public_header->version_flag =
863       (public_flags & PACKET_PUBLIC_FLAGS_VERSION) != 0;
864 
865   if (validate_flags_ &&
866       !public_header->version_flag && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
867     set_detailed_error("Illegal public flags value.");
868     return false;
869   }
870 
871   if (public_header->reset_flag && public_header->version_flag) {
872     set_detailed_error("Got version flag in reset packet");
873     return false;
874   }
875 
876   switch (public_flags & PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID) {
877     case PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID:
878       if (!reader_->ReadUInt64(&public_header->connection_id)) {
879         set_detailed_error("Unable to read ConnectionId.");
880         return false;
881       }
882       public_header->connection_id_length = PACKET_8BYTE_CONNECTION_ID;
883       break;
884     case PACKET_PUBLIC_FLAGS_4BYTE_CONNECTION_ID:
885       // If the connection_id is truncated, expect to read the last serialized
886       // connection_id.
887       if (!reader_->ReadBytes(&public_header->connection_id,
888                               PACKET_4BYTE_CONNECTION_ID)) {
889         set_detailed_error("Unable to read ConnectionId.");
890         return false;
891       }
892       if ((public_header->connection_id & k4ByteConnectionIdMask) !=
893           (last_serialized_connection_id_ & k4ByteConnectionIdMask)) {
894         set_detailed_error("Truncated 4 byte ConnectionId does not match "
895                            "previous connection_id.");
896         return false;
897       }
898       public_header->connection_id_length = PACKET_4BYTE_CONNECTION_ID;
899       public_header->connection_id = last_serialized_connection_id_;
900       break;
901     case PACKET_PUBLIC_FLAGS_1BYTE_CONNECTION_ID:
902       if (!reader_->ReadBytes(&public_header->connection_id,
903                               PACKET_1BYTE_CONNECTION_ID)) {
904         set_detailed_error("Unable to read ConnectionId.");
905         return false;
906       }
907       if ((public_header->connection_id & k1ByteConnectionIdMask) !=
908           (last_serialized_connection_id_ & k1ByteConnectionIdMask)) {
909         set_detailed_error("Truncated 1 byte ConnectionId does not match "
910                            "previous connection_id.");
911         return false;
912       }
913       public_header->connection_id_length = PACKET_1BYTE_CONNECTION_ID;
914       public_header->connection_id = last_serialized_connection_id_;
915       break;
916     case PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID:
917       public_header->connection_id_length = PACKET_0BYTE_CONNECTION_ID;
918       public_header->connection_id = last_serialized_connection_id_;
919       break;
920   }
921 
922   public_header->sequence_number_length =
923       ReadSequenceNumberLength(
924           public_flags >> kPublicHeaderSequenceNumberShift);
925 
926   // Read the version only if the packet is from the client.
927   // version flag from the server means version negotiation packet.
928   if (public_header->version_flag && is_server_) {
929     QuicTag version_tag;
930     if (!reader_->ReadUInt32(&version_tag)) {
931       set_detailed_error("Unable to read protocol version.");
932       return false;
933     }
934 
935     // If the version from the new packet is the same as the version of this
936     // framer, then the public flags should be set to something we understand.
937     // If not, this raises an error.
938     QuicVersion version = QuicTagToQuicVersion(version_tag);
939     if (version == quic_version_ && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
940       set_detailed_error("Illegal public flags value.");
941       return false;
942     }
943     public_header->versions.push_back(version);
944   }
945   return true;
946 }
947 
948 // static
GetMinSequenceNumberLength(QuicPacketSequenceNumber sequence_number)949 QuicSequenceNumberLength QuicFramer::GetMinSequenceNumberLength(
950     QuicPacketSequenceNumber sequence_number) {
951   if (sequence_number < 1 << (PACKET_1BYTE_SEQUENCE_NUMBER * 8)) {
952     return PACKET_1BYTE_SEQUENCE_NUMBER;
953   } else if (sequence_number < 1 << (PACKET_2BYTE_SEQUENCE_NUMBER * 8)) {
954     return PACKET_2BYTE_SEQUENCE_NUMBER;
955   } else if (sequence_number <
956              GG_UINT64_C(1) << (PACKET_4BYTE_SEQUENCE_NUMBER * 8)) {
957     return PACKET_4BYTE_SEQUENCE_NUMBER;
958   } else {
959     return PACKET_6BYTE_SEQUENCE_NUMBER;
960   }
961 }
962 
963 // static
GetSequenceNumberFlags(QuicSequenceNumberLength sequence_number_length)964 uint8 QuicFramer::GetSequenceNumberFlags(
965     QuicSequenceNumberLength sequence_number_length) {
966   switch (sequence_number_length) {
967     case PACKET_1BYTE_SEQUENCE_NUMBER:
968       return PACKET_FLAGS_1BYTE_SEQUENCE;
969     case PACKET_2BYTE_SEQUENCE_NUMBER:
970       return PACKET_FLAGS_2BYTE_SEQUENCE;
971     case PACKET_4BYTE_SEQUENCE_NUMBER:
972       return PACKET_FLAGS_4BYTE_SEQUENCE;
973     case PACKET_6BYTE_SEQUENCE_NUMBER:
974       return PACKET_FLAGS_6BYTE_SEQUENCE;
975     default:
976       LOG(DFATAL) << "Unreachable case statement.";
977       return PACKET_FLAGS_6BYTE_SEQUENCE;
978   }
979 }
980 
981 // static
GetAckFrameInfo(const QuicAckFrame & frame)982 QuicFramer::AckFrameInfo QuicFramer::GetAckFrameInfo(
983     const QuicAckFrame& frame) {
984   AckFrameInfo ack_info;
985   if (!frame.missing_packets.empty()) {
986     DCHECK_GE(frame.largest_observed, *frame.missing_packets.rbegin());
987     size_t cur_range_length = 0;
988     SequenceNumberSet::const_iterator iter = frame.missing_packets.begin();
989     QuicPacketSequenceNumber last_missing = *iter;
990     ++iter;
991     for (; iter != frame.missing_packets.end(); ++iter) {
992       if (cur_range_length != numeric_limits<uint8>::max() &&
993           *iter == (last_missing + 1)) {
994         ++cur_range_length;
995       } else {
996         ack_info.nack_ranges[last_missing - cur_range_length] =
997             cur_range_length;
998         cur_range_length = 0;
999       }
1000       ack_info.max_delta = max(ack_info.max_delta, *iter - last_missing);
1001       last_missing = *iter;
1002     }
1003     // Include the last nack range.
1004     ack_info.nack_ranges[last_missing - cur_range_length] = cur_range_length;
1005     // Include the range to the largest observed.
1006     ack_info.max_delta = max(ack_info.max_delta,
1007                              frame.largest_observed - last_missing);
1008   }
1009   return ack_info;
1010 }
1011 
ProcessPacketHeader(QuicPacketHeader * header,const QuicEncryptedPacket & packet)1012 bool QuicFramer::ProcessPacketHeader(
1013     QuicPacketHeader* header,
1014     const QuicEncryptedPacket& packet) {
1015   if (!ProcessPacketSequenceNumber(header->public_header.sequence_number_length,
1016                                    &header->packet_sequence_number)) {
1017     set_detailed_error("Unable to read sequence number.");
1018     return RaiseError(QUIC_INVALID_PACKET_HEADER);
1019   }
1020 
1021   if (header->packet_sequence_number == 0u) {
1022     set_detailed_error("Packet sequence numbers cannot be 0.");
1023     return RaiseError(QUIC_INVALID_PACKET_HEADER);
1024   }
1025 
1026   if (!visitor_->OnUnauthenticatedHeader(*header)) {
1027     return false;
1028   }
1029 
1030   if (!DecryptPayload(*header, packet)) {
1031     set_detailed_error("Unable to decrypt payload.");
1032     return RaiseError(QUIC_DECRYPTION_FAILURE);
1033   }
1034 
1035   uint8 private_flags;
1036   if (!reader_->ReadBytes(&private_flags, 1)) {
1037     set_detailed_error("Unable to read private flags.");
1038     return RaiseError(QUIC_INVALID_PACKET_HEADER);
1039   }
1040 
1041   if (private_flags > PACKET_PRIVATE_FLAGS_MAX) {
1042     set_detailed_error("Illegal private flags value.");
1043     return RaiseError(QUIC_INVALID_PACKET_HEADER);
1044   }
1045 
1046   header->entropy_flag = (private_flags & PACKET_PRIVATE_FLAGS_ENTROPY) != 0;
1047   header->fec_flag = (private_flags & PACKET_PRIVATE_FLAGS_FEC) != 0;
1048 
1049   if ((private_flags & PACKET_PRIVATE_FLAGS_FEC_GROUP) != 0) {
1050     header->is_in_fec_group = IN_FEC_GROUP;
1051     uint8 first_fec_protected_packet_offset;
1052     if (!reader_->ReadBytes(&first_fec_protected_packet_offset, 1)) {
1053       set_detailed_error("Unable to read first fec protected packet offset.");
1054       return RaiseError(QUIC_INVALID_PACKET_HEADER);
1055     }
1056     if (first_fec_protected_packet_offset >= header->packet_sequence_number) {
1057       set_detailed_error("First fec protected packet offset must be less "
1058                          "than the sequence number.");
1059       return RaiseError(QUIC_INVALID_PACKET_HEADER);
1060     }
1061     header->fec_group =
1062         header->packet_sequence_number - first_fec_protected_packet_offset;
1063   }
1064 
1065   header->entropy_hash = GetPacketEntropyHash(*header);
1066   // Set the last sequence number after we have decrypted the packet
1067   // so we are confident is not attacker controlled.
1068   last_sequence_number_ = header->packet_sequence_number;
1069   return true;
1070 }
1071 
ProcessPacketSequenceNumber(QuicSequenceNumberLength sequence_number_length,QuicPacketSequenceNumber * sequence_number)1072 bool QuicFramer::ProcessPacketSequenceNumber(
1073     QuicSequenceNumberLength sequence_number_length,
1074     QuicPacketSequenceNumber* sequence_number) {
1075   QuicPacketSequenceNumber wire_sequence_number = 0u;
1076   if (!reader_->ReadBytes(&wire_sequence_number, sequence_number_length)) {
1077     return false;
1078   }
1079 
1080   // TODO(ianswett): Explore the usefulness of trying multiple sequence numbers
1081   // in case the first guess is incorrect.
1082   *sequence_number =
1083       CalculatePacketSequenceNumberFromWire(sequence_number_length,
1084                                             wire_sequence_number);
1085   return true;
1086 }
1087 
ProcessFrameData(const QuicPacketHeader & header)1088 bool QuicFramer::ProcessFrameData(const QuicPacketHeader& header) {
1089   if (reader_->IsDoneReading()) {
1090     set_detailed_error("Packet has no frames.");
1091     return RaiseError(QUIC_MISSING_PAYLOAD);
1092   }
1093   while (!reader_->IsDoneReading()) {
1094     uint8 frame_type;
1095     if (!reader_->ReadBytes(&frame_type, 1)) {
1096       set_detailed_error("Unable to read frame type.");
1097       return RaiseError(QUIC_INVALID_FRAME_DATA);
1098     }
1099 
1100     if (frame_type & kQuicFrameTypeSpecialMask) {
1101       // Stream Frame
1102       if (frame_type & kQuicFrameTypeStreamMask) {
1103         QuicStreamFrame frame;
1104         if (!ProcessStreamFrame(frame_type, &frame)) {
1105           return RaiseError(QUIC_INVALID_STREAM_DATA);
1106         }
1107         if (!visitor_->OnStreamFrame(frame)) {
1108           DVLOG(1) << "Visitor asked to stop further processing.";
1109           // Returning true since there was no parsing error.
1110           return true;
1111         }
1112         continue;
1113       }
1114 
1115       // Ack Frame
1116       if (frame_type & kQuicFrameTypeAckMask) {
1117         QuicAckFrame frame;
1118         if (!ProcessAckFrame(frame_type, &frame)) {
1119           return RaiseError(QUIC_INVALID_ACK_DATA);
1120         }
1121         if (!visitor_->OnAckFrame(frame)) {
1122           DVLOG(1) << "Visitor asked to stop further processing.";
1123           // Returning true since there was no parsing error.
1124           return true;
1125         }
1126         continue;
1127       }
1128 
1129       // Congestion Feedback Frame
1130       if (frame_type & kQuicFrameTypeCongestionFeedbackMask) {
1131         if (quic_version_ > QUIC_VERSION_22) {
1132           set_detailed_error("Congestion Feedback Frame has been deprecated.");
1133           DLOG(WARNING) << "Congestion Feedback Frame has been deprecated.";
1134         }
1135         QuicCongestionFeedbackFrame frame;
1136         if (!ProcessCongestionFeedbackFrame(&frame)) {
1137           return RaiseError(QUIC_INVALID_CONGESTION_FEEDBACK_DATA);
1138         }
1139         if (!visitor_->OnCongestionFeedbackFrame(frame)) {
1140           DVLOG(1) << "Visitor asked to stop further processing.";
1141           // Returning true since there was no parsing error.
1142           return true;
1143         }
1144         continue;
1145       }
1146 
1147       // This was a special frame type that did not match any
1148       // of the known ones. Error.
1149       set_detailed_error("Illegal frame type.");
1150       DLOG(WARNING) << "Illegal frame type: "
1151                     << static_cast<int>(frame_type);
1152       return RaiseError(QUIC_INVALID_FRAME_DATA);
1153     }
1154 
1155     switch (frame_type) {
1156       case PADDING_FRAME:
1157         // We're done with the packet.
1158         return true;
1159 
1160       case RST_STREAM_FRAME: {
1161         QuicRstStreamFrame frame;
1162         if (!ProcessRstStreamFrame(&frame)) {
1163           return RaiseError(QUIC_INVALID_RST_STREAM_DATA);
1164         }
1165         if (!visitor_->OnRstStreamFrame(frame)) {
1166           DVLOG(1) << "Visitor asked to stop further processing.";
1167           // Returning true since there was no parsing error.
1168           return true;
1169         }
1170         continue;
1171       }
1172 
1173       case CONNECTION_CLOSE_FRAME: {
1174         QuicConnectionCloseFrame frame;
1175         if (!ProcessConnectionCloseFrame(&frame)) {
1176           return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA);
1177         }
1178 
1179         if (!visitor_->OnConnectionCloseFrame(frame)) {
1180           DVLOG(1) << "Visitor asked to stop further processing.";
1181           // Returning true since there was no parsing error.
1182           return true;
1183         }
1184         continue;
1185       }
1186 
1187       case GOAWAY_FRAME: {
1188         QuicGoAwayFrame goaway_frame;
1189         if (!ProcessGoAwayFrame(&goaway_frame)) {
1190           return RaiseError(QUIC_INVALID_GOAWAY_DATA);
1191         }
1192         if (!visitor_->OnGoAwayFrame(goaway_frame)) {
1193           DVLOG(1) << "Visitor asked to stop further processing.";
1194           // Returning true since there was no parsing error.
1195           return true;
1196         }
1197         continue;
1198       }
1199 
1200       case WINDOW_UPDATE_FRAME: {
1201         QuicWindowUpdateFrame window_update_frame;
1202         if (!ProcessWindowUpdateFrame(&window_update_frame)) {
1203           return RaiseError(QUIC_INVALID_WINDOW_UPDATE_DATA);
1204         }
1205         if (!visitor_->OnWindowUpdateFrame(window_update_frame)) {
1206           DVLOG(1) << "Visitor asked to stop further processing.";
1207           // Returning true since there was no parsing error.
1208           return true;
1209         }
1210         continue;
1211       }
1212 
1213       case BLOCKED_FRAME: {
1214         QuicBlockedFrame blocked_frame;
1215         if (!ProcessBlockedFrame(&blocked_frame)) {
1216           return RaiseError(QUIC_INVALID_BLOCKED_DATA);
1217         }
1218         if (!visitor_->OnBlockedFrame(blocked_frame)) {
1219           DVLOG(1) << "Visitor asked to stop further processing.";
1220           // Returning true since there was no parsing error.
1221           return true;
1222         }
1223         continue;
1224       }
1225 
1226       case STOP_WAITING_FRAME: {
1227         QuicStopWaitingFrame stop_waiting_frame;
1228         if (!ProcessStopWaitingFrame(header, &stop_waiting_frame)) {
1229           return RaiseError(QUIC_INVALID_STOP_WAITING_DATA);
1230         }
1231         if (!visitor_->OnStopWaitingFrame(stop_waiting_frame)) {
1232           DVLOG(1) << "Visitor asked to stop further processing.";
1233           // Returning true since there was no parsing error.
1234           return true;
1235         }
1236         continue;
1237       }
1238       case PING_FRAME: {
1239         if (quic_version_ == QUIC_VERSION_16) {
1240           LOG(DFATAL) << "Trying to read a Ping in "
1241                       << QuicVersionToString(quic_version_);
1242           return RaiseError(QUIC_INTERNAL_ERROR);
1243         }
1244         // Ping has no payload.
1245         QuicPingFrame ping_frame;
1246         if (!visitor_->OnPingFrame(ping_frame)) {
1247           DVLOG(1) << "Visitor asked to stop further processing.";
1248           // Returning true since there was no parsing error.
1249           return true;
1250         }
1251         continue;
1252       }
1253 
1254       default:
1255         set_detailed_error("Illegal frame type.");
1256         DLOG(WARNING) << "Illegal frame type: "
1257                       << static_cast<int>(frame_type);
1258         return RaiseError(QUIC_INVALID_FRAME_DATA);
1259     }
1260   }
1261 
1262   return true;
1263 }
1264 
ProcessStreamFrame(uint8 frame_type,QuicStreamFrame * frame)1265 bool QuicFramer::ProcessStreamFrame(uint8 frame_type,
1266                                     QuicStreamFrame* frame) {
1267   uint8 stream_flags = frame_type;
1268 
1269   stream_flags &= ~kQuicFrameTypeStreamMask;
1270 
1271   // Read from right to left: StreamID, Offset, Data Length, Fin.
1272   const uint8 stream_id_length = (stream_flags & kQuicStreamIDLengthMask) + 1;
1273   stream_flags >>= kQuicStreamIdShift;
1274 
1275   uint8 offset_length = (stream_flags & kQuicStreamOffsetMask);
1276   // There is no encoding for 1 byte, only 0 and 2 through 8.
1277   if (offset_length > 0) {
1278     offset_length += 1;
1279   }
1280   stream_flags >>= kQuicStreamOffsetShift;
1281 
1282   bool has_data_length =
1283       (stream_flags & kQuicStreamDataLengthMask) == kQuicStreamDataLengthMask;
1284   stream_flags >>= kQuicStreamDataLengthShift;
1285 
1286   frame->fin = (stream_flags & kQuicStreamFinMask) == kQuicStreamFinShift;
1287 
1288   frame->stream_id = 0;
1289   if (!reader_->ReadBytes(&frame->stream_id, stream_id_length)) {
1290     set_detailed_error("Unable to read stream_id.");
1291     return false;
1292   }
1293 
1294   frame->offset = 0;
1295   if (!reader_->ReadBytes(&frame->offset, offset_length)) {
1296     set_detailed_error("Unable to read offset.");
1297     return false;
1298   }
1299 
1300   StringPiece frame_data;
1301   if (has_data_length) {
1302     if (!reader_->ReadStringPiece16(&frame_data)) {
1303       set_detailed_error("Unable to read frame data.");
1304       return false;
1305     }
1306   } else {
1307     if (!reader_->ReadStringPiece(&frame_data, reader_->BytesRemaining())) {
1308       set_detailed_error("Unable to read frame data.");
1309       return false;
1310     }
1311   }
1312   // Point frame to the right data.
1313   frame->data.Clear();
1314   if (!frame_data.empty()) {
1315     frame->data.Append(const_cast<char*>(frame_data.data()), frame_data.size());
1316   }
1317 
1318   return true;
1319 }
1320 
ProcessAckFrame(uint8 frame_type,QuicAckFrame * ack_frame)1321 bool QuicFramer::ProcessAckFrame(uint8 frame_type, QuicAckFrame* ack_frame) {
1322   // Determine the three lengths from the frame type: largest observed length,
1323   // missing sequence number length, and missing range length.
1324   const QuicSequenceNumberLength missing_sequence_number_length =
1325       ReadSequenceNumberLength(frame_type);
1326   frame_type >>= kQuicSequenceNumberLengthShift;
1327   const QuicSequenceNumberLength largest_observed_sequence_number_length =
1328       ReadSequenceNumberLength(frame_type);
1329   frame_type >>= kQuicSequenceNumberLengthShift;
1330   ack_frame->is_truncated = frame_type & kQuicAckTruncatedMask;
1331   frame_type >>= kQuicAckTruncatedShift;
1332   bool has_nacks = frame_type & kQuicHasNacksMask;
1333 
1334   if (!reader_->ReadBytes(&ack_frame->entropy_hash, 1)) {
1335     set_detailed_error("Unable to read entropy hash for received packets.");
1336     return false;
1337   }
1338 
1339   if (!reader_->ReadBytes(&ack_frame->largest_observed,
1340                           largest_observed_sequence_number_length)) {
1341     set_detailed_error("Unable to read largest observed.");
1342     return false;
1343   }
1344 
1345   uint64 delta_time_largest_observed_us;
1346   if (!reader_->ReadUFloat16(&delta_time_largest_observed_us)) {
1347     set_detailed_error("Unable to read delta time largest observed.");
1348     return false;
1349   }
1350 
1351   if (delta_time_largest_observed_us == kUFloat16MaxValue) {
1352     ack_frame->delta_time_largest_observed = QuicTime::Delta::Infinite();
1353   } else {
1354     ack_frame->delta_time_largest_observed =
1355         QuicTime::Delta::FromMicroseconds(delta_time_largest_observed_us);
1356   }
1357 
1358   if (!ProcessTimestampsInAckFrame(ack_frame)) {
1359     return false;
1360   }
1361 
1362   if (!has_nacks) {
1363     return true;
1364   }
1365 
1366   uint8 num_missing_ranges;
1367   if (!reader_->ReadBytes(&num_missing_ranges, 1)) {
1368     set_detailed_error("Unable to read num missing packet ranges.");
1369     return false;
1370   }
1371 
1372   QuicPacketSequenceNumber last_sequence_number = ack_frame->largest_observed;
1373   for (size_t i = 0; i < num_missing_ranges; ++i) {
1374     QuicPacketSequenceNumber missing_delta = 0;
1375     if (!reader_->ReadBytes(&missing_delta, missing_sequence_number_length)) {
1376       set_detailed_error("Unable to read missing sequence number delta.");
1377       return false;
1378     }
1379     last_sequence_number -= missing_delta;
1380     QuicPacketSequenceNumber range_length = 0;
1381     if (!reader_->ReadBytes(&range_length, PACKET_1BYTE_SEQUENCE_NUMBER)) {
1382       set_detailed_error("Unable to read missing sequence number range.");
1383       return false;
1384     }
1385     for (size_t i = 0; i <= range_length; ++i) {
1386       ack_frame->missing_packets.insert(last_sequence_number - i);
1387     }
1388     // Subtract an extra 1 to ensure ranges are represented efficiently and
1389     // can't overlap by 1 sequence number.  This allows a missing_delta of 0
1390     // to represent an adjacent nack range.
1391     last_sequence_number -= (range_length + 1);
1392   }
1393 
1394   // Parse the revived packets list.
1395   uint8 num_revived_packets;
1396   if (!reader_->ReadBytes(&num_revived_packets, 1)) {
1397     set_detailed_error("Unable to read num revived packets.");
1398     return false;
1399   }
1400 
1401   for (size_t i = 0; i < num_revived_packets; ++i) {
1402     QuicPacketSequenceNumber revived_packet = 0;
1403     if (!reader_->ReadBytes(&revived_packet,
1404                             largest_observed_sequence_number_length)) {
1405       set_detailed_error("Unable to read revived packet.");
1406       return false;
1407     }
1408 
1409     ack_frame->revived_packets.insert(revived_packet);
1410   }
1411 
1412   return true;
1413 }
1414 
ProcessTimestampsInAckFrame(QuicAckFrame * ack_frame)1415 bool QuicFramer::ProcessTimestampsInAckFrame(QuicAckFrame* ack_frame) {
1416   if (version() > QUIC_VERSION_22 && !ack_frame->is_truncated) {
1417     uint8 num_received_packets;
1418     if (!reader_->ReadBytes(&num_received_packets, 1)) {
1419       set_detailed_error("Unable to read num received packets.");
1420       return false;
1421     }
1422 
1423     if (num_received_packets > 0) {
1424       uint8 delta_from_largest_observed;
1425       if (!reader_->ReadBytes(&delta_from_largest_observed,
1426                               PACKET_1BYTE_SEQUENCE_NUMBER)) {
1427         set_detailed_error(
1428             "Unable to read sequence delta in received packets.");
1429         return false;
1430       }
1431       QuicPacketSequenceNumber seq_num = ack_frame->largest_observed -
1432           delta_from_largest_observed;
1433 
1434       // Time delta from the framer creation.
1435       uint32 time_delta_us;
1436       if (!reader_->ReadBytes(&time_delta_us, sizeof(time_delta_us))) {
1437         set_detailed_error("Unable to read time delta in received packets.");
1438         return false;
1439       }
1440 
1441       last_timestamp_ = CalculateTimestampFromWire(time_delta_us);
1442 
1443       ack_frame->received_packet_times.push_back(
1444           make_pair(seq_num, creation_time_.Add(last_timestamp_)));
1445 
1446       for (uint8 i = 1; i < num_received_packets; ++i) {
1447         if (!reader_->ReadBytes(&delta_from_largest_observed,
1448                                 PACKET_1BYTE_SEQUENCE_NUMBER)) {
1449           set_detailed_error(
1450               "Unable to read sequence delta in received packets.");
1451           return false;
1452         }
1453         seq_num = ack_frame->largest_observed - delta_from_largest_observed;
1454 
1455         // Time delta from the previous timestamp.
1456         uint64 incremental_time_delta_us;
1457         if (!reader_->ReadUFloat16(&incremental_time_delta_us)) {
1458           set_detailed_error(
1459               "Unable to read incremental time delta in received packets.");
1460           return false;
1461         }
1462 
1463         last_timestamp_ = last_timestamp_.Add(
1464             QuicTime::Delta::FromMicroseconds(incremental_time_delta_us));
1465         ack_frame->received_packet_times.push_back(
1466             make_pair(seq_num, creation_time_.Add(last_timestamp_)));
1467       }
1468     }
1469   }
1470   return true;
1471 }
1472 
ProcessStopWaitingFrame(const QuicPacketHeader & header,QuicStopWaitingFrame * stop_waiting)1473 bool QuicFramer::ProcessStopWaitingFrame(const QuicPacketHeader& header,
1474                                          QuicStopWaitingFrame* stop_waiting) {
1475   if (!reader_->ReadBytes(&stop_waiting->entropy_hash, 1)) {
1476     set_detailed_error("Unable to read entropy hash for sent packets.");
1477     return false;
1478   }
1479 
1480   QuicPacketSequenceNumber least_unacked_delta = 0;
1481   if (!reader_->ReadBytes(&least_unacked_delta,
1482                           header.public_header.sequence_number_length)) {
1483     set_detailed_error("Unable to read least unacked delta.");
1484     return false;
1485   }
1486   DCHECK_GE(header.packet_sequence_number, least_unacked_delta);
1487   stop_waiting->least_unacked =
1488       header.packet_sequence_number - least_unacked_delta;
1489 
1490   return true;
1491 }
1492 
ProcessCongestionFeedbackFrame(QuicCongestionFeedbackFrame * frame)1493 bool QuicFramer::ProcessCongestionFeedbackFrame(
1494     QuicCongestionFeedbackFrame* frame) {
1495   uint8 feedback_type;
1496   if (!reader_->ReadBytes(&feedback_type, 1)) {
1497     set_detailed_error("Unable to read congestion feedback type.");
1498     return false;
1499   }
1500   frame->type =
1501       static_cast<CongestionFeedbackType>(feedback_type);
1502 
1503   switch (frame->type) {
1504     case kTCP: {
1505       CongestionFeedbackMessageTCP* tcp = &frame->tcp;
1506       uint16 receive_window = 0;
1507       if (!reader_->ReadUInt16(&receive_window)) {
1508         set_detailed_error("Unable to read receive window.");
1509         return false;
1510       }
1511       // Simple bit packing, don't send the 4 least significant bits.
1512       tcp->receive_window = static_cast<QuicByteCount>(receive_window) << 4;
1513       break;
1514     }
1515     default:
1516       set_detailed_error("Illegal congestion feedback type.");
1517       DLOG(WARNING) << "Illegal congestion feedback type: "
1518                     << frame->type;
1519       return RaiseError(QUIC_INVALID_FRAME_DATA);
1520   }
1521 
1522   return true;
1523 }
1524 
ProcessRstStreamFrame(QuicRstStreamFrame * frame)1525 bool QuicFramer::ProcessRstStreamFrame(QuicRstStreamFrame* frame) {
1526   if (!reader_->ReadUInt32(&frame->stream_id)) {
1527     set_detailed_error("Unable to read stream_id.");
1528     return false;
1529   }
1530 
1531   if (!reader_->ReadUInt64(&frame->byte_offset)) {
1532     set_detailed_error("Unable to read rst stream sent byte offset.");
1533     return false;
1534   }
1535 
1536   uint32 error_code;
1537   if (!reader_->ReadUInt32(&error_code)) {
1538     set_detailed_error("Unable to read rst stream error code.");
1539     return false;
1540   }
1541 
1542   if (error_code >= QUIC_STREAM_LAST_ERROR ||
1543       error_code < QUIC_STREAM_NO_ERROR) {
1544     set_detailed_error("Invalid rst stream error code.");
1545     return false;
1546   }
1547 
1548   frame->error_code = static_cast<QuicRstStreamErrorCode>(error_code);
1549 
1550   StringPiece error_details;
1551   if (!reader_->ReadStringPiece16(&error_details)) {
1552     set_detailed_error("Unable to read rst stream error details.");
1553     return false;
1554   }
1555   frame->error_details = error_details.as_string();
1556 
1557   return true;
1558 }
1559 
ProcessConnectionCloseFrame(QuicConnectionCloseFrame * frame)1560 bool QuicFramer::ProcessConnectionCloseFrame(QuicConnectionCloseFrame* frame) {
1561   uint32 error_code;
1562   if (!reader_->ReadUInt32(&error_code)) {
1563     set_detailed_error("Unable to read connection close error code.");
1564     return false;
1565   }
1566 
1567   if (error_code >= QUIC_LAST_ERROR ||
1568          error_code < QUIC_NO_ERROR) {
1569     set_detailed_error("Invalid error code.");
1570     return false;
1571   }
1572 
1573   frame->error_code = static_cast<QuicErrorCode>(error_code);
1574 
1575   StringPiece error_details;
1576   if (!reader_->ReadStringPiece16(&error_details)) {
1577     set_detailed_error("Unable to read connection close error details.");
1578     return false;
1579   }
1580   frame->error_details = error_details.as_string();
1581 
1582   return true;
1583 }
1584 
ProcessGoAwayFrame(QuicGoAwayFrame * frame)1585 bool QuicFramer::ProcessGoAwayFrame(QuicGoAwayFrame* frame) {
1586   uint32 error_code;
1587   if (!reader_->ReadUInt32(&error_code)) {
1588     set_detailed_error("Unable to read go away error code.");
1589     return false;
1590   }
1591   frame->error_code = static_cast<QuicErrorCode>(error_code);
1592 
1593   if (error_code >= QUIC_LAST_ERROR ||
1594       error_code < QUIC_NO_ERROR) {
1595     set_detailed_error("Invalid error code.");
1596     return false;
1597   }
1598 
1599   uint32 stream_id;
1600   if (!reader_->ReadUInt32(&stream_id)) {
1601     set_detailed_error("Unable to read last good stream id.");
1602     return false;
1603   }
1604   frame->last_good_stream_id = static_cast<QuicStreamId>(stream_id);
1605 
1606   StringPiece reason_phrase;
1607   if (!reader_->ReadStringPiece16(&reason_phrase)) {
1608     set_detailed_error("Unable to read goaway reason.");
1609     return false;
1610   }
1611   frame->reason_phrase = reason_phrase.as_string();
1612 
1613   return true;
1614 }
1615 
ProcessWindowUpdateFrame(QuicWindowUpdateFrame * frame)1616 bool QuicFramer::ProcessWindowUpdateFrame(QuicWindowUpdateFrame* frame) {
1617   if (!reader_->ReadUInt32(&frame->stream_id)) {
1618     set_detailed_error("Unable to read stream_id.");
1619     return false;
1620   }
1621 
1622   if (!reader_->ReadUInt64(&frame->byte_offset)) {
1623     set_detailed_error("Unable to read window byte_offset.");
1624     return false;
1625   }
1626 
1627   return true;
1628 }
1629 
ProcessBlockedFrame(QuicBlockedFrame * frame)1630 bool QuicFramer::ProcessBlockedFrame(QuicBlockedFrame* frame) {
1631   if (!reader_->ReadUInt32(&frame->stream_id)) {
1632     set_detailed_error("Unable to read stream_id.");
1633     return false;
1634   }
1635 
1636   return true;
1637 }
1638 
1639 // static
GetAssociatedDataFromEncryptedPacket(const QuicEncryptedPacket & encrypted,QuicConnectionIdLength connection_id_length,bool includes_version,QuicSequenceNumberLength sequence_number_length)1640 StringPiece QuicFramer::GetAssociatedDataFromEncryptedPacket(
1641     const QuicEncryptedPacket& encrypted,
1642     QuicConnectionIdLength connection_id_length,
1643     bool includes_version,
1644     QuicSequenceNumberLength sequence_number_length) {
1645   return StringPiece(
1646       encrypted.data() + kStartOfHashData, GetStartOfEncryptedData(
1647           connection_id_length, includes_version, sequence_number_length)
1648       - kStartOfHashData);
1649 }
1650 
SetDecrypter(QuicDecrypter * decrypter,EncryptionLevel level)1651 void QuicFramer::SetDecrypter(QuicDecrypter* decrypter,
1652                               EncryptionLevel level) {
1653   DCHECK(alternative_decrypter_.get() == NULL);
1654   DCHECK_GE(level, decrypter_level_);
1655   decrypter_.reset(decrypter);
1656   decrypter_level_ = level;
1657 }
1658 
SetAlternativeDecrypter(QuicDecrypter * decrypter,EncryptionLevel level,bool latch_once_used)1659 void QuicFramer::SetAlternativeDecrypter(QuicDecrypter* decrypter,
1660                                          EncryptionLevel level,
1661                                          bool latch_once_used) {
1662   alternative_decrypter_.reset(decrypter);
1663   alternative_decrypter_level_ = level;
1664   alternative_decrypter_latch_ = latch_once_used;
1665 }
1666 
decrypter() const1667 const QuicDecrypter* QuicFramer::decrypter() const {
1668   return decrypter_.get();
1669 }
1670 
alternative_decrypter() const1671 const QuicDecrypter* QuicFramer::alternative_decrypter() const {
1672   return alternative_decrypter_.get();
1673 }
1674 
SetEncrypter(EncryptionLevel level,QuicEncrypter * encrypter)1675 void QuicFramer::SetEncrypter(EncryptionLevel level,
1676                               QuicEncrypter* encrypter) {
1677   DCHECK_GE(level, 0);
1678   DCHECK_LT(level, NUM_ENCRYPTION_LEVELS);
1679   encrypter_[level].reset(encrypter);
1680 }
1681 
encrypter(EncryptionLevel level) const1682 const QuicEncrypter* QuicFramer::encrypter(EncryptionLevel level) const {
1683   DCHECK_GE(level, 0);
1684   DCHECK_LT(level, NUM_ENCRYPTION_LEVELS);
1685   DCHECK(encrypter_[level].get() != NULL);
1686   return encrypter_[level].get();
1687 }
1688 
EncryptPacket(EncryptionLevel level,QuicPacketSequenceNumber packet_sequence_number,const QuicPacket & packet)1689 QuicEncryptedPacket* QuicFramer::EncryptPacket(
1690     EncryptionLevel level,
1691     QuicPacketSequenceNumber packet_sequence_number,
1692     const QuicPacket& packet) {
1693   DCHECK(encrypter_[level].get() != NULL);
1694 
1695   scoped_ptr<QuicData> out(encrypter_[level]->EncryptPacket(
1696       packet_sequence_number, packet.AssociatedData(), packet.Plaintext()));
1697   if (out.get() == NULL) {
1698     RaiseError(QUIC_ENCRYPTION_FAILURE);
1699     return NULL;
1700   }
1701   StringPiece header_data = packet.BeforePlaintext();
1702   size_t len =  header_data.length() + out->length();
1703   char* buffer = new char[len];
1704   // TODO(rch): eliminate this buffer copy by passing in a buffer to Encrypt().
1705   memcpy(buffer, header_data.data(), header_data.length());
1706   memcpy(buffer + header_data.length(), out->data(), out->length());
1707   return new QuicEncryptedPacket(buffer, len, true);
1708 }
1709 
GetMaxPlaintextSize(size_t ciphertext_size)1710 size_t QuicFramer::GetMaxPlaintextSize(size_t ciphertext_size) {
1711   // In order to keep the code simple, we don't have the current encryption
1712   // level to hand. Both the NullEncrypter and AES-GCM have a tag length of 12.
1713   size_t min_plaintext_size = ciphertext_size;
1714 
1715   for (int i = ENCRYPTION_NONE; i < NUM_ENCRYPTION_LEVELS; i++) {
1716     if (encrypter_[i].get() != NULL) {
1717       size_t size = encrypter_[i]->GetMaxPlaintextSize(ciphertext_size);
1718       if (size < min_plaintext_size) {
1719         min_plaintext_size = size;
1720       }
1721     }
1722   }
1723 
1724   return min_plaintext_size;
1725 }
1726 
DecryptPayload(const QuicPacketHeader & header,const QuicEncryptedPacket & packet)1727 bool QuicFramer::DecryptPayload(const QuicPacketHeader& header,
1728                                 const QuicEncryptedPacket& packet) {
1729   StringPiece encrypted;
1730   if (!reader_->ReadStringPiece(&encrypted, reader_->BytesRemaining())) {
1731     return false;
1732   }
1733   DCHECK(decrypter_.get() != NULL);
1734   decrypted_.reset(decrypter_->DecryptPacket(
1735       header.packet_sequence_number,
1736       GetAssociatedDataFromEncryptedPacket(
1737           packet,
1738           header.public_header.connection_id_length,
1739           header.public_header.version_flag,
1740           header.public_header.sequence_number_length),
1741       encrypted));
1742   if  (decrypted_.get() != NULL) {
1743     visitor_->OnDecryptedPacket(decrypter_level_);
1744   } else if  (alternative_decrypter_.get() != NULL) {
1745     decrypted_.reset(alternative_decrypter_->DecryptPacket(
1746         header.packet_sequence_number,
1747         GetAssociatedDataFromEncryptedPacket(
1748             packet,
1749             header.public_header.connection_id_length,
1750             header.public_header.version_flag,
1751             header.public_header.sequence_number_length),
1752         encrypted));
1753     if (decrypted_.get() != NULL) {
1754       visitor_->OnDecryptedPacket(alternative_decrypter_level_);
1755       if (alternative_decrypter_latch_) {
1756         // Switch to the alternative decrypter and latch so that we cannot
1757         // switch back.
1758         decrypter_.reset(alternative_decrypter_.release());
1759         decrypter_level_ = alternative_decrypter_level_;
1760         alternative_decrypter_level_ = ENCRYPTION_NONE;
1761       } else {
1762         // Switch the alternative decrypter so that we use it first next time.
1763         decrypter_.swap(alternative_decrypter_);
1764         EncryptionLevel level = alternative_decrypter_level_;
1765         alternative_decrypter_level_ = decrypter_level_;
1766         decrypter_level_ = level;
1767       }
1768     }
1769   }
1770 
1771   if  (decrypted_.get() == NULL) {
1772     DLOG(WARNING) << "DecryptPacket failed for sequence_number:"
1773                   << header.packet_sequence_number;
1774     return false;
1775   }
1776 
1777   reader_.reset(new QuicDataReader(decrypted_->data(), decrypted_->length()));
1778   return true;
1779 }
1780 
GetAckFrameSize(const QuicAckFrame & ack,QuicSequenceNumberLength sequence_number_length)1781 size_t QuicFramer::GetAckFrameSize(
1782     const QuicAckFrame& ack,
1783     QuicSequenceNumberLength sequence_number_length) {
1784   AckFrameInfo ack_info = GetAckFrameInfo(ack);
1785   QuicSequenceNumberLength largest_observed_length =
1786       GetMinSequenceNumberLength(ack.largest_observed);
1787   QuicSequenceNumberLength missing_sequence_number_length =
1788       GetMinSequenceNumberLength(ack_info.max_delta);
1789 
1790   size_t ack_size = GetMinAckFrameSize(sequence_number_length,
1791                                        largest_observed_length);
1792   if (!ack_info.nack_ranges.empty()) {
1793     ack_size += kNumberOfNackRangesSize  + kNumberOfRevivedPacketsSize;
1794     ack_size += min(ack_info.nack_ranges.size(), kMaxNackRanges) *
1795       (missing_sequence_number_length + PACKET_1BYTE_SEQUENCE_NUMBER);
1796     ack_size += min(ack.revived_packets.size(),
1797                     kMaxRevivedPackets) * largest_observed_length;
1798   }
1799 
1800   // In version 23, if the ack will be truncated due to too many nack ranges,
1801   // then do not include the number of timestamps (1 byte).
1802   if (version() > QUIC_VERSION_22 &&
1803       ack_info.nack_ranges.size() <= kMaxNackRanges) {
1804     // 1 byte for the number of timestamps.
1805     ack_size += 1;
1806     if (ack.received_packet_times.size() > 0) {
1807       // 1 byte for sequence number, 4 bytes for timestamp for the first
1808       // packet.
1809       ack_size += 5;
1810 
1811       // 1 byte for sequence number, 2 bytes for timestamp for the other
1812       // packets.
1813       ack_size += 3 * (ack.received_packet_times.size() - 1);
1814     }
1815   }
1816 
1817   return ack_size;
1818 }
1819 
ComputeFrameLength(const QuicFrame & frame,bool last_frame_in_packet,InFecGroup is_in_fec_group,QuicSequenceNumberLength sequence_number_length)1820 size_t QuicFramer::ComputeFrameLength(
1821     const QuicFrame& frame,
1822     bool last_frame_in_packet,
1823     InFecGroup is_in_fec_group,
1824     QuicSequenceNumberLength sequence_number_length) {
1825   switch (frame.type) {
1826     case STREAM_FRAME:
1827       return GetMinStreamFrameSize(frame.stream_frame->stream_id,
1828                                    frame.stream_frame->offset,
1829                                    last_frame_in_packet,
1830                                    is_in_fec_group) +
1831           frame.stream_frame->data.TotalBufferSize();
1832     case ACK_FRAME: {
1833       return GetAckFrameSize(*frame.ack_frame, sequence_number_length);
1834     }
1835     case CONGESTION_FEEDBACK_FRAME: {
1836       size_t len = kQuicFrameTypeSize;
1837       const QuicCongestionFeedbackFrame& congestion_feedback =
1838           *frame.congestion_feedback_frame;
1839       len += 1;  // Congestion feedback type.
1840 
1841       switch (congestion_feedback.type) {
1842         case kTCP:
1843           len += 2;  // Receive window.
1844           break;
1845         default:
1846           set_detailed_error("Illegal feedback type.");
1847           DVLOG(1) << "Illegal feedback type: " << congestion_feedback.type;
1848           break;
1849       }
1850       return len;
1851     }
1852     case STOP_WAITING_FRAME:
1853       return GetStopWaitingFrameSize(sequence_number_length);
1854     case PING_FRAME:
1855       // Ping has no payload.
1856       return kQuicFrameTypeSize;
1857     case RST_STREAM_FRAME:
1858       return GetMinRstStreamFrameSize() +
1859           frame.rst_stream_frame->error_details.size();
1860     case CONNECTION_CLOSE_FRAME:
1861       return GetMinConnectionCloseFrameSize() +
1862           frame.connection_close_frame->error_details.size();
1863     case GOAWAY_FRAME:
1864       return GetMinGoAwayFrameSize() + frame.goaway_frame->reason_phrase.size();
1865     case WINDOW_UPDATE_FRAME:
1866       return GetWindowUpdateFrameSize();
1867     case BLOCKED_FRAME:
1868       return GetBlockedFrameSize();
1869     case PADDING_FRAME:
1870       DCHECK(false);
1871       return 0;
1872     case NUM_FRAME_TYPES:
1873       DCHECK(false);
1874       return 0;
1875   }
1876 
1877   // Not reachable, but some Chrome compilers can't figure that out.  *sigh*
1878   DCHECK(false);
1879   return 0;
1880 }
1881 
AppendTypeByte(const QuicFrame & frame,bool no_stream_frame_length,QuicDataWriter * writer)1882 bool QuicFramer::AppendTypeByte(const QuicFrame& frame,
1883                                 bool no_stream_frame_length,
1884                                 QuicDataWriter* writer) {
1885   uint8 type_byte = 0;
1886   switch (frame.type) {
1887     case STREAM_FRAME: {
1888       if (frame.stream_frame == NULL) {
1889         LOG(DFATAL) << "Failed to append STREAM frame with no stream_frame.";
1890       }
1891       // Fin bit.
1892       type_byte |= frame.stream_frame->fin ? kQuicStreamFinMask : 0;
1893 
1894       // Data Length bit.
1895       type_byte <<= kQuicStreamDataLengthShift;
1896       type_byte |= no_stream_frame_length ? 0: kQuicStreamDataLengthMask;
1897 
1898       // Offset 3 bits.
1899       type_byte <<= kQuicStreamOffsetShift;
1900       const size_t offset_len = GetStreamOffsetSize(frame.stream_frame->offset);
1901       if (offset_len > 0) {
1902         type_byte |= offset_len - 1;
1903       }
1904 
1905       // stream id 2 bits.
1906       type_byte <<= kQuicStreamIdShift;
1907       type_byte |= GetStreamIdSize(frame.stream_frame->stream_id) - 1;
1908       type_byte |= kQuicFrameTypeStreamMask;  // Set Stream Frame Type to 1.
1909       break;
1910     }
1911     case ACK_FRAME:
1912       return true;
1913     case CONGESTION_FEEDBACK_FRAME: {
1914       // TODO(ianswett): Use extra 5 bits in the congestion feedback framing.
1915       type_byte = kQuicFrameTypeCongestionFeedbackMask;
1916       break;
1917     }
1918     default:
1919       type_byte = frame.type;
1920       break;
1921   }
1922 
1923   return writer->WriteUInt8(type_byte);
1924 }
1925 
1926 // static
AppendPacketSequenceNumber(QuicSequenceNumberLength sequence_number_length,QuicPacketSequenceNumber packet_sequence_number,QuicDataWriter * writer)1927 bool QuicFramer::AppendPacketSequenceNumber(
1928     QuicSequenceNumberLength sequence_number_length,
1929     QuicPacketSequenceNumber packet_sequence_number,
1930     QuicDataWriter* writer) {
1931   // Ensure the entire sequence number can be written.
1932   if (writer->capacity() - writer->length() <
1933       static_cast<size_t>(sequence_number_length)) {
1934     return false;
1935   }
1936   switch (sequence_number_length) {
1937     case PACKET_1BYTE_SEQUENCE_NUMBER:
1938       return writer->WriteUInt8(
1939           packet_sequence_number & k1ByteSequenceNumberMask);
1940       break;
1941     case PACKET_2BYTE_SEQUENCE_NUMBER:
1942       return writer->WriteUInt16(
1943           packet_sequence_number & k2ByteSequenceNumberMask);
1944       break;
1945     case PACKET_4BYTE_SEQUENCE_NUMBER:
1946       return writer->WriteUInt32(
1947           packet_sequence_number & k4ByteSequenceNumberMask);
1948       break;
1949     case PACKET_6BYTE_SEQUENCE_NUMBER:
1950       return writer->WriteUInt48(
1951           packet_sequence_number & k6ByteSequenceNumberMask);
1952       break;
1953     default:
1954       DCHECK(false) << "sequence_number_length: " << sequence_number_length;
1955       return false;
1956   }
1957 }
1958 
AppendStreamFrame(const QuicStreamFrame & frame,bool no_stream_frame_length,QuicDataWriter * writer)1959 bool QuicFramer::AppendStreamFrame(
1960     const QuicStreamFrame& frame,
1961     bool no_stream_frame_length,
1962     QuicDataWriter* writer) {
1963   if (!writer->WriteBytes(&frame.stream_id, GetStreamIdSize(frame.stream_id))) {
1964     LOG(DFATAL) << "Writing stream id size failed.";
1965     return false;
1966   }
1967   if (!writer->WriteBytes(&frame.offset, GetStreamOffsetSize(frame.offset))) {
1968     LOG(DFATAL) << "Writing offset size failed.";
1969     return false;
1970   }
1971   if (!no_stream_frame_length) {
1972     if (!writer->WriteUInt16(frame.data.TotalBufferSize())) {
1973       LOG(DFATAL) << "Writing stream frame length failed";
1974       return false;
1975     }
1976   }
1977 
1978   if (!writer->WriteIOVector(frame.data)) {
1979     LOG(DFATAL) << "Writing frame data failed.";
1980     return false;
1981   }
1982   return true;
1983 }
1984 
1985 // static
set_version(const QuicVersion version)1986 void QuicFramer::set_version(const QuicVersion version) {
1987   DCHECK(IsSupportedVersion(version)) << QuicVersionToString(version);
1988   quic_version_ = version;
1989 }
1990 
AppendAckFrameAndTypeByte(const QuicPacketHeader & header,const QuicAckFrame & frame,QuicDataWriter * writer)1991 bool QuicFramer::AppendAckFrameAndTypeByte(
1992     const QuicPacketHeader& header,
1993     const QuicAckFrame& frame,
1994     QuicDataWriter* writer) {
1995   AckFrameInfo ack_info = GetAckFrameInfo(frame);
1996   QuicPacketSequenceNumber ack_largest_observed = frame.largest_observed;
1997   QuicSequenceNumberLength largest_observed_length =
1998       GetMinSequenceNumberLength(ack_largest_observed);
1999   QuicSequenceNumberLength missing_sequence_number_length =
2000       GetMinSequenceNumberLength(ack_info.max_delta);
2001   // Determine whether we need to truncate ranges.
2002   size_t available_range_bytes = writer->capacity() - writer->length() -
2003       kNumberOfRevivedPacketsSize - kNumberOfNackRangesSize -
2004       GetMinAckFrameSize(header.public_header.sequence_number_length,
2005                          largest_observed_length);
2006   size_t max_num_ranges = available_range_bytes /
2007       (missing_sequence_number_length + PACKET_1BYTE_SEQUENCE_NUMBER);
2008   max_num_ranges = min(kMaxNackRanges, max_num_ranges);
2009   bool truncated = ack_info.nack_ranges.size() > max_num_ranges;
2010   DVLOG_IF(1, truncated) << "Truncating ack from "
2011                          << ack_info.nack_ranges.size() << " ranges to "
2012                          << max_num_ranges;
2013   // Write out the type byte by setting the low order bits and doing shifts
2014   // to make room for the next bit flags to be set.
2015   // Whether there are any nacks.
2016   uint8 type_byte = ack_info.nack_ranges.empty() ? 0 : kQuicHasNacksMask;
2017 
2018   // truncating bit.
2019   type_byte <<= kQuicAckTruncatedShift;
2020   type_byte |= truncated ? kQuicAckTruncatedMask : 0;
2021 
2022   // Largest observed sequence number length.
2023   type_byte <<= kQuicSequenceNumberLengthShift;
2024   type_byte |= GetSequenceNumberFlags(largest_observed_length);
2025 
2026   // Missing sequence number length.
2027   type_byte <<= kQuicSequenceNumberLengthShift;
2028   type_byte |= GetSequenceNumberFlags(missing_sequence_number_length);
2029 
2030   type_byte |= kQuicFrameTypeAckMask;
2031 
2032   if (!writer->WriteUInt8(type_byte)) {
2033     return false;
2034   }
2035 
2036   QuicPacketEntropyHash ack_entropy_hash = frame.entropy_hash;
2037   NackRangeMap::reverse_iterator ack_iter = ack_info.nack_ranges.rbegin();
2038   if (truncated) {
2039     // Skip the nack ranges which the truncated ack won't include and set
2040     // a correct largest observed for the truncated ack.
2041     for (size_t i = 1; i < (ack_info.nack_ranges.size() - max_num_ranges);
2042          ++i) {
2043       ++ack_iter;
2044     }
2045     // If the last range is followed by acks, include them.
2046     // If the last range is followed by another range, specify the end of the
2047     // range as the largest_observed.
2048     ack_largest_observed = ack_iter->first - 1;
2049     // Also update the entropy so it matches the largest observed.
2050     ack_entropy_hash = entropy_calculator_->EntropyHash(ack_largest_observed);
2051     ++ack_iter;
2052   }
2053 
2054   if (!writer->WriteUInt8(ack_entropy_hash)) {
2055     return false;
2056   }
2057 
2058   if (!AppendPacketSequenceNumber(largest_observed_length,
2059                                   ack_largest_observed, writer)) {
2060     return false;
2061   }
2062 
2063   uint64 delta_time_largest_observed_us = kUFloat16MaxValue;
2064   if (!frame.delta_time_largest_observed.IsInfinite()) {
2065     DCHECK_LE(0u, frame.delta_time_largest_observed.ToMicroseconds());
2066     delta_time_largest_observed_us =
2067         frame.delta_time_largest_observed.ToMicroseconds();
2068   }
2069 
2070   if (!writer->WriteUFloat16(delta_time_largest_observed_us)) {
2071     return false;
2072   }
2073 
2074   // Timestamp goes at the end of the required fields.
2075   if (version() > QUIC_VERSION_22 && !truncated) {
2076     if (!AppendTimestampToAckFrame(frame, writer)) {
2077       return false;
2078     }
2079   }
2080 
2081   if (ack_info.nack_ranges.empty()) {
2082     return true;
2083   }
2084 
2085   const uint8 num_missing_ranges =
2086       min(ack_info.nack_ranges.size(), max_num_ranges);
2087   if (!writer->WriteBytes(&num_missing_ranges, 1)) {
2088     return false;
2089   }
2090 
2091   int num_ranges_written = 0;
2092   QuicPacketSequenceNumber last_sequence_written = ack_largest_observed;
2093   for (; ack_iter != ack_info.nack_ranges.rend(); ++ack_iter) {
2094     // Calculate the delta to the last number in the range.
2095     QuicPacketSequenceNumber missing_delta =
2096         last_sequence_written - (ack_iter->first + ack_iter->second);
2097     if (!AppendPacketSequenceNumber(missing_sequence_number_length,
2098                                     missing_delta, writer)) {
2099       return false;
2100     }
2101     if (!AppendPacketSequenceNumber(PACKET_1BYTE_SEQUENCE_NUMBER,
2102                                     ack_iter->second, writer)) {
2103       return false;
2104     }
2105     // Subtract 1 so a missing_delta of 0 means an adjacent range.
2106     last_sequence_written = ack_iter->first - 1;
2107     ++num_ranges_written;
2108   }
2109   DCHECK_EQ(num_missing_ranges, num_ranges_written);
2110 
2111   // Append revived packets.
2112   // If not all the revived packets fit, only mention the ones that do.
2113   uint8 num_revived_packets = min(frame.revived_packets.size(),
2114                                   kMaxRevivedPackets);
2115   num_revived_packets = min(
2116       static_cast<size_t>(num_revived_packets),
2117       (writer->capacity() - writer->length()) / largest_observed_length);
2118   if (!writer->WriteBytes(&num_revived_packets, 1)) {
2119     return false;
2120   }
2121 
2122   SequenceNumberSet::const_iterator iter = frame.revived_packets.begin();
2123   for (int i = 0; i < num_revived_packets; ++i, ++iter) {
2124     LOG_IF(DFATAL, !ContainsKey(frame.missing_packets, *iter));
2125     if (!AppendPacketSequenceNumber(largest_observed_length,
2126                                     *iter, writer)) {
2127       return false;
2128     }
2129   }
2130 
2131   return true;
2132 }
2133 
AppendCongestionFeedbackFrame(const QuicCongestionFeedbackFrame & frame,QuicDataWriter * writer)2134 bool QuicFramer::AppendCongestionFeedbackFrame(
2135     const QuicCongestionFeedbackFrame& frame,
2136     QuicDataWriter* writer) {
2137   if (!writer->WriteBytes(&frame.type, 1)) {
2138     return false;
2139   }
2140 
2141   switch (frame.type) {
2142     case kTCP: {
2143       const CongestionFeedbackMessageTCP& tcp = frame.tcp;
2144       DCHECK_LE(tcp.receive_window, 1u << 20);
2145       // Simple bit packing, don't send the 4 least significant bits.
2146       uint16 receive_window = static_cast<uint16>(tcp.receive_window >> 4);
2147       if (!writer->WriteUInt16(receive_window)) {
2148         return false;
2149       }
2150       break;
2151     }
2152     default:
2153       return false;
2154   }
2155 
2156   return true;
2157 }
2158 
AppendTimestampToAckFrame(const QuicAckFrame & frame,QuicDataWriter * writer)2159 bool QuicFramer::AppendTimestampToAckFrame(const QuicAckFrame& frame,
2160                                            QuicDataWriter* writer) {
2161   DCHECK_GE(version(), QUIC_VERSION_23);
2162   DCHECK_GE(numeric_limits<uint8>::max(), frame.received_packet_times.size());
2163   // num_received_packets is only 1 byte.
2164   if (frame.received_packet_times.size() > numeric_limits<uint8>::max()) {
2165     return false;
2166   }
2167 
2168   uint8 num_received_packets = frame.received_packet_times.size();
2169 
2170   if (!writer->WriteBytes(&num_received_packets, 1)) {
2171     return false;
2172   }
2173   if (num_received_packets == 0) {
2174     return true;
2175   }
2176 
2177   PacketTimeList::const_iterator it = frame.received_packet_times.begin();
2178   QuicPacketSequenceNumber sequence_number = it->first;
2179   QuicPacketSequenceNumber delta_from_largest_observed =
2180       frame.largest_observed - sequence_number;
2181 
2182   DCHECK_GE(numeric_limits<uint8>::max(), delta_from_largest_observed);
2183   if (delta_from_largest_observed > numeric_limits<uint8>::max()) {
2184     return false;
2185   }
2186 
2187   if (!writer->WriteUInt8(
2188     delta_from_largest_observed & k1ByteSequenceNumberMask)) {
2189     return false;
2190   }
2191 
2192   // Use the lowest 4 bytes of the time delta from the creation_time_.
2193   const uint64 time_epoch_delta_us = GG_UINT64_C(1) << 32;
2194   uint32 time_delta_us =
2195       static_cast<uint32>(it->second.Subtract(creation_time_).ToMicroseconds()
2196                           & (time_epoch_delta_us - 1));
2197   if (!writer->WriteBytes(&time_delta_us, sizeof(time_delta_us))) {
2198     return false;
2199   }
2200 
2201   QuicTime prev_time = it->second;
2202 
2203   for (++it; it != frame.received_packet_times.end(); ++it) {
2204     sequence_number = it->first;
2205     delta_from_largest_observed = frame.largest_observed - sequence_number;
2206 
2207     if (delta_from_largest_observed > numeric_limits<uint8>::max()) {
2208       return false;
2209     }
2210 
2211     if (!writer->WriteUInt8(
2212             delta_from_largest_observed & k1ByteSequenceNumberMask)) {
2213       return false;
2214     }
2215 
2216     uint64 time_delta_us = it->second.Subtract(prev_time).ToMicroseconds();
2217     prev_time = it->second;
2218     if (!writer->WriteUFloat16(time_delta_us)) {
2219       return false;
2220     }
2221   }
2222   return true;
2223 }
2224 
AppendStopWaitingFrame(const QuicPacketHeader & header,const QuicStopWaitingFrame & frame,QuicDataWriter * writer)2225 bool QuicFramer::AppendStopWaitingFrame(
2226     const QuicPacketHeader& header,
2227     const QuicStopWaitingFrame& frame,
2228     QuicDataWriter* writer) {
2229   DCHECK_GE(header.packet_sequence_number, frame.least_unacked);
2230   const QuicPacketSequenceNumber least_unacked_delta =
2231       header.packet_sequence_number - frame.least_unacked;
2232   const QuicPacketSequenceNumber length_shift =
2233       header.public_header.sequence_number_length * 8;
2234   if (!writer->WriteUInt8(frame.entropy_hash)) {
2235     LOG(DFATAL) << " hash failed";
2236     return false;
2237   }
2238 
2239   if (least_unacked_delta >> length_shift > 0) {
2240     LOG(DFATAL) << "sequence_number_length "
2241                 << header.public_header.sequence_number_length
2242                 << " is too small for least_unacked_delta: "
2243                 << least_unacked_delta;
2244     return false;
2245   }
2246   if (!AppendPacketSequenceNumber(header.public_header.sequence_number_length,
2247                                   least_unacked_delta, writer)) {
2248     LOG(DFATAL) << " seq failed: "
2249                 << header.public_header.sequence_number_length;
2250     return false;
2251   }
2252 
2253   return true;
2254 }
2255 
AppendRstStreamFrame(const QuicRstStreamFrame & frame,QuicDataWriter * writer)2256 bool QuicFramer::AppendRstStreamFrame(
2257         const QuicRstStreamFrame& frame,
2258         QuicDataWriter* writer) {
2259   if (!writer->WriteUInt32(frame.stream_id)) {
2260     return false;
2261   }
2262 
2263   if (!writer->WriteUInt64(frame.byte_offset)) {
2264     return false;
2265   }
2266 
2267   uint32 error_code = static_cast<uint32>(frame.error_code);
2268   if (!writer->WriteUInt32(error_code)) {
2269     return false;
2270   }
2271 
2272   if (!writer->WriteStringPiece16(frame.error_details)) {
2273     return false;
2274   }
2275   return true;
2276 }
2277 
AppendConnectionCloseFrame(const QuicConnectionCloseFrame & frame,QuicDataWriter * writer)2278 bool QuicFramer::AppendConnectionCloseFrame(
2279     const QuicConnectionCloseFrame& frame,
2280     QuicDataWriter* writer) {
2281   uint32 error_code = static_cast<uint32>(frame.error_code);
2282   if (!writer->WriteUInt32(error_code)) {
2283     return false;
2284   }
2285   if (!writer->WriteStringPiece16(frame.error_details)) {
2286     return false;
2287   }
2288   return true;
2289 }
2290 
AppendGoAwayFrame(const QuicGoAwayFrame & frame,QuicDataWriter * writer)2291 bool QuicFramer::AppendGoAwayFrame(const QuicGoAwayFrame& frame,
2292                                    QuicDataWriter* writer) {
2293   uint32 error_code = static_cast<uint32>(frame.error_code);
2294   if (!writer->WriteUInt32(error_code)) {
2295     return false;
2296   }
2297   uint32 stream_id = static_cast<uint32>(frame.last_good_stream_id);
2298   if (!writer->WriteUInt32(stream_id)) {
2299     return false;
2300   }
2301   if (!writer->WriteStringPiece16(frame.reason_phrase)) {
2302     return false;
2303   }
2304   return true;
2305 }
2306 
AppendWindowUpdateFrame(const QuicWindowUpdateFrame & frame,QuicDataWriter * writer)2307 bool QuicFramer::AppendWindowUpdateFrame(const QuicWindowUpdateFrame& frame,
2308                                          QuicDataWriter* writer) {
2309   uint32 stream_id = static_cast<uint32>(frame.stream_id);
2310   if (!writer->WriteUInt32(stream_id)) {
2311     return false;
2312   }
2313   if (!writer->WriteUInt64(frame.byte_offset)) {
2314     return false;
2315   }
2316   return true;
2317 }
2318 
AppendBlockedFrame(const QuicBlockedFrame & frame,QuicDataWriter * writer)2319 bool QuicFramer::AppendBlockedFrame(const QuicBlockedFrame& frame,
2320                                     QuicDataWriter* writer) {
2321   uint32 stream_id = static_cast<uint32>(frame.stream_id);
2322   if (!writer->WriteUInt32(stream_id)) {
2323     return false;
2324   }
2325   return true;
2326 }
2327 
RaiseError(QuicErrorCode error)2328 bool QuicFramer::RaiseError(QuicErrorCode error) {
2329   DVLOG(1) << "Error detail: " << detailed_error_;
2330   set_error(error);
2331   visitor_->OnError(this);
2332   reader_.reset(NULL);
2333   return false;
2334 }
2335 
2336 }  // namespace net
2337